This is rsa.c in view mode; [Download] [Up]
/* rsa.c Author: Tatu Ylonen <ylo@cs.hut.fi> Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland All rights reserved Created: Fri Mar 3 22:07:06 1995 ylo Description of the RSA algorithm can be found e.g. from the following sources: Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1994. Jennifer Seberry and Josed Pieprzyk: Cryptography: An Introduction to Computer Security. Prentice-Hall, 1989. Man Young Rhee: Cryptography and Secure Data Communications. McGraw-Hill, 1994. R. Rivest, A. Shamir, and L. M. Adleman: Cryptographic Communications System and Method. US Patent 4,405,829, 1983. Hans Riesel: Prime Numbers and Computer Methods for Factorization. Birkhauser, 1994. The RSA Frequently Asked Questions document by RSA Data Security, Inc., 1995. RSA in 3 lines of perl by Adam Back <aba@atlax.ex.ac.uk>, 1995, as included below: #!/usr/local/bin/perl -s-- -export-a-crypto-system-sig -RSA-in-3-lines-PERL ($k,$n)=@ARGV;$m=unpack(H.$w,$m."\0"x$w),$_=`echo "16do$w 2+4Oi0$d*-^1[d2% Sa2/d0<X+d*La1=z\U$n%0]SX$k"[$m*]\EszlXx++p|dc`,s/^.|\W//g,print pack('H*' ,$_)while read(STDIN,$m,($w=2*$d-1+length($n||die"$0 [-d] k n\n")&~1)/2) */ /* * $Id: rsa.c,v 1.5 1998/07/08 14:54:26 tri Exp $ * $Log: rsa.c,v $ * Revision 1.5 1998/07/08 14:54:26 tri * Print progress identification in rsa key generation * to stderr instead of stdout. * * Revision 1.4 1998/05/23 20:23:56 kivinen * Changed () -> (void). Added #include "ssh.h". * * Revision 1.3 1997/08/21 22:26:55 ylo * Set the two highest bits of the prime to one to ensure that we * end up with the right number of bits for the generated key. * (Bug reported by Ian Goldberg.) * * Revision 1.2 1997/04/27 21:53:46 kivinen * Added check that mpz_set_str succeed. * * Revision 1.1.1.1 1996/02/18 21:38:12 ylo * Imported ssh-1.2.13. * * Revision 1.3 1995/09/06 16:00:12 ylo * Added missing xfree in rsa_free. * * Revision 1.2 1995/07/13 01:31:25 ylo * Removed "Last modified" header. * Added cvs log. * * $Endlog$ */ #include "includes.h" #include "ssh.h" #include <gmp.h> #include "xmalloc.h" #include "rsa.h" int rsa_verbose = 1; #define MAX_PRIMES_IN_TABLE 1050 /* must be more than # primes */ static const unsigned int small_primes[MAX_PRIMES_IN_TABLE + 1] = { /* 2 is eliminated by trying only odd numbers. */ 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 0}; /* Generate a random number of the desired number of bits. */ void rsa_random_integer(MP_INT *ret, RandomState *state, unsigned int bits) { unsigned int bytes = (bits + 7) / 8; char *str = xmalloc(bytes * 2 + 1); unsigned int i; /* We first create a random hex number of the desired size, and then convert it to a mp-int. */ for (i = 0; i < bytes; i++) sprintf(str + 2 * i, "%02x", random_get_byte(state)); /* Convert it to the internal representation. */ if (mpz_set_str(ret, str, 16) < 0) fatal("Intenal error, mpz_set_str returned error"); /* Clear extra data. */ memset(str, 0, 2 * bytes); xfree(str); /* Reduce it to the desired number of bits. */ mpz_mod_2exp(ret, ret, bits); } /* Returns a prime number of the specified number of bits. The number will have the highest bit set and two lowest bits set. */ void rsa_random_prime(MP_INT *ret, RandomState *state, unsigned int bits) { MP_INT start, aux; unsigned int num_primes; int *moduli; long difference; mpz_init(&start); mpz_init(&aux); retry: /* Pick a random integer of the appropriate size. */ rsa_random_integer(&start, state, bits); /* Set the two highest bits. */ mpz_set_ui(&aux, 3); mpz_mul_2exp(&aux, &aux, bits - 2); mpz_ior(&start, &start, &aux); /* Set the lowest bit to make it odd. */ mpz_set_ui(&aux, 1); mpz_ior(&start, &start, &aux); /* Initialize moduli of the small primes with respect to the given random number. */ moduli = xmalloc(MAX_PRIMES_IN_TABLE * sizeof(moduli[0])); if (bits < 16) num_primes = 0; /* Don\'t use the table for very small numbers. */ else { for (num_primes = 0; small_primes[num_primes] != 0; num_primes++) { mpz_mod_ui(&aux, &start, small_primes[num_primes]); moduli[num_primes] = mpz_get_ui(&aux); } } /* Look for numbers that are not evenly divisible by any of the small primes. */ for (difference = 0; ; difference += 2) { unsigned int i; if (difference > 0x70000000) { /* Should never happen, I think... */ if (rsa_verbose) fprintf(stderr, "rsa_random_prime: failed to find a prime, retrying.\n"); xfree(moduli); goto retry; } /* Check if it is a multiple of any small prime. Note that this updates the moduli into negative values as difference grows. */ for (i = 0; i < num_primes; i++) { while (moduli[i] + difference >= small_primes[i]) moduli[i] -= small_primes[i]; if (moduli[i] + difference == 0) break; } if (i < num_primes) continue; /* Multiple of a known prime. */ /* It passed the small prime test (not divisible by any of them). */ if (rsa_verbose) { fprintf(stderr, "."); } /* Compute the number in question. */ mpz_add_ui(ret, &start, difference); /* Perform the fermat test for witness 2. This means: it is not prime if 2^n mod n != 2. */ mpz_set_ui(&aux, 2); mpz_powm(&aux, &aux, ret, ret); if (mpz_cmp_ui(&aux, 2) == 0) { /* Passed the fermat test for witness 2. */ if (rsa_verbose) { fprintf(stderr, "+"); } /* Perform a more tests. These are probably unnecessary. */ if (mpz_probab_prime_p(ret, 20)) break; /* It is a prime with probability 1 - 2^-40. */ } } /* Found a (probable) prime. It is in ret. */ if (rsa_verbose) { fprintf(stderr, "+ (distance %ld)\n", difference); } /* Free the small prime moduli; they are no longer needed. */ xfree(moduli); /* Sanity check: does it still have the high bit set (we might have wrapped around)? */ mpz_div_2exp(&aux, ret, bits - 1); if (mpz_get_ui(&aux) != 1) { if (rsa_verbose) fprintf(stderr, "rsa_random_prime: high bit not set, retrying.\n"); goto retry; } mpz_clear(&start); mpz_clear(&aux); /* Return value already set in ret. */ } /* Computes the multiplicative inverse of a number using Euclids algorithm. Computes x such that a * x mod n = 1, where 0 < a < n. */ static void mpz_mod_inverse(MP_INT *x, MP_INT *a, MP_INT *n) { MP_INT g0, g1, v0, v1, div, mod, aux; mpz_init_set(&g0, n); mpz_init_set(&g1, a); mpz_init_set_ui(&v0, 0); mpz_init_set_ui(&v1, 1); mpz_init(&div); mpz_init(&mod); mpz_init(&aux); while (mpz_cmp_ui(&g1, 0) != 0) { mpz_divmod(&div, &mod, &g0, &g1); mpz_mul(&aux, &div, &v1); mpz_sub(&aux, &v0, &aux); mpz_set(&v0, &v1); mpz_set(&v1, &aux); mpz_set(&g0, &g1); mpz_set(&g1, &mod); } if (mpz_cmp_ui(&v0, 0) < 0) mpz_add(x, &v0, n); else mpz_set(x, &v0); mpz_clear(&g0); mpz_clear(&g1); mpz_clear(&v0); mpz_clear(&v1); mpz_clear(&div); mpz_clear(&mod); mpz_clear(&aux); } /* Given mutual primes p and q, derives RSA key components n, e, d, and u. The exponent e will be at least ebits bits in size. p must be smaller than q. */ static void derive_rsa_keys(MP_INT *n, MP_INT *e, MP_INT *d, MP_INT *u, MP_INT *p, MP_INT *q, unsigned int ebits) { MP_INT p_minus_1, q_minus_1, aux, phi, G, F; assert(mpz_cmp(p, q) < 0); mpz_init(&p_minus_1); mpz_init(&q_minus_1); mpz_init(&aux); mpz_init(&phi); mpz_init(&G); mpz_init(&F); /* Compute p-1 and q-1. */ mpz_sub_ui(&p_minus_1, p, 1); mpz_sub_ui(&q_minus_1, q, 1); /* phi = (p - 1) * (q - 1); the number of positive integers less than p*q that are relatively prime to p*q. */ mpz_mul(&phi, &p_minus_1, &q_minus_1); /* G is the number of "spare key sets" for a given modulus n. The smaller G is, the better. The smallest G can get is 2. */ mpz_gcd(&G, &p_minus_1, &q_minus_1); if (rsa_verbose) { if (mpz_cmp_ui(&G, 100) >= 0) { fprintf(stderr, "Warning: G="); mpz_out_str(stdout, 10, &G); fprintf(stderr, " is large (many spare key sets); key may be bad!\n"); } } /* F = phi / G; the number of relative prime numbers per spare key set. */ mpz_div(&F, &phi, &G); /* Find a suitable e (the public exponent). */ mpz_set_ui(e, 1); mpz_mul_2exp(e, e, ebits); mpz_sub_ui(e, e, 1); /* make lowest bit 1, and substract 2. */ /* Keep adding 2 until it is relatively prime to (p-1)(q-1). */ do { mpz_add_ui(e, e, 2); mpz_gcd(&aux, e, &phi); } while (mpz_cmp_ui(&aux, 1) != 0); /* d is the multiplicative inverse of e, mod F. Could also be mod (p-1)(q-1); however, we try to choose the smallest possible d. */ mpz_mod_inverse(d, e, &F); /* u is the multiplicative inverse of p, mod q, if p < q. It is used when doing private key RSA operations using the chinese remainder theorem method. */ mpz_mod_inverse(u, p, q); /* n = p * q (the public modulus). */ mpz_mul(n, p, q); /* Clear auxiliary variables. */ mpz_clear(&p_minus_1); mpz_clear(&q_minus_1); mpz_clear(&aux); mpz_clear(&phi); mpz_clear(&G); mpz_clear(&F); } /* Generates RSA public and private keys. This initializes the data structures; they should be freed with rsa_clear_private_key and rsa_clear_public_key. */ void rsa_generate_key(RSAPrivateKey *prv, RSAPublicKey *pub, RandomState *state, unsigned int bits) { MP_INT test, aux; unsigned int pbits, qbits; int ret; mpz_init(&prv->q); mpz_init(&prv->p); mpz_init(&prv->e); mpz_init(&prv->d); mpz_init(&prv->u); mpz_init(&prv->n); mpz_init(&test); mpz_init(&aux); /* Compute the number of bits in each prime. */ pbits = bits / 2; qbits = bits - pbits; #ifndef RSAREF retry0: #endif /* !RSAREF */ if (rsa_verbose) { fprintf(stderr, "Generating p: "); } /* Generate random number p. */ rsa_random_prime(&prv->p, state, pbits); retry: if (rsa_verbose) { fprintf(stderr, "Generating q: "); } /* Generate random number q. */ rsa_random_prime(&prv->q, state, qbits); /* Sort them so that p < q. */ ret = mpz_cmp(&prv->p, &prv->q); if (ret == 0) { if (rsa_verbose) fprintf(stderr, "Generated the same prime twice!\n"); goto retry; } if (ret > 0) { mpz_set(&aux, &prv->p); mpz_set(&prv->p, &prv->q); mpz_set(&prv->q, &aux); } /* Make sure that p and q are not too close together (I am not sure if this is important). */ mpz_sub(&aux, &prv->q, &prv->p); mpz_div_2exp(&test, &prv->q, 10); if (mpz_cmp(&aux, &test) < 0) { if (rsa_verbose) fprintf(stderr, "The primes are too close together.\n"); goto retry; } /* Make certain p and q are relatively prime (in case one or both were false positives... Though this is quite impossible). */ mpz_gcd(&aux, &prv->p, &prv->q); if (mpz_cmp_ui(&aux, 1) != 0) { if (rsa_verbose) fprintf(stderr, "The primes are not relatively prime!\n"); goto retry; } /* Derive the RSA private key from the primes. */ if (rsa_verbose) fprintf(stderr, "Computing the keys...\n"); derive_rsa_keys(&prv->n, &prv->e, &prv->d, &prv->u, &prv->p, &prv->q, 5); prv->bits = bits; /* Initialize the public key with public data from the private key. */ pub->bits = bits; mpz_init_set(&pub->n, &prv->n); mpz_init_set(&pub->e, &prv->e); #ifndef RSAREF /* I don't want to kludge these to work with RSAREF. */ /* Test that the key really works. This should never fail (I think). */ if (rsa_verbose) fprintf(stderr, "Testing the keys...\n"); rsa_random_integer(&test, state, bits); mpz_mod(&test, &test, &pub->n); /* must be less than n. */ rsa_private(&aux, &test, prv); rsa_public(&aux, &aux, pub); if (mpz_cmp(&aux, &test) != 0) { if (rsa_verbose) fprintf(stderr, "**** private+public failed to decrypt.\n"); goto retry0; } rsa_public(&aux, &test, pub); rsa_private(&aux, &aux, prv); if (mpz_cmp(&aux, &test) != 0) { if (rsa_verbose) fprintf(stderr, "**** public+private failed to decrypt.\n"); goto retry0; } #endif /* !RSAREF */ mpz_clear(&aux); mpz_clear(&test); if (rsa_verbose) fprintf(stderr, "Key generation complete.\n"); } /* Frees any memory associated with the private key. */ void rsa_clear_private_key(RSAPrivateKey *prv) { prv->bits = 0; mpz_clear(&prv->n); mpz_clear(&prv->e); mpz_clear(&prv->d); mpz_clear(&prv->u); mpz_clear(&prv->p); mpz_clear(&prv->q); } /* Frees any memory associated with the public key. */ void rsa_clear_public_key(RSAPublicKey *pub) { pub->bits = 0; mpz_clear(&pub->e); mpz_clear(&pub->n); } #ifndef RSAREF /* Performs a private-key RSA operation (encrypt/decrypt). The computation is done using the Chinese Remainder Theorem, which is faster than direct modular exponentiation. */ void rsa_private(MP_INT *output, MP_INT *input, RSAPrivateKey *prv) { MP_INT dp, dq, p2, q2, k; /* Initialize temporary variables. */ mpz_init(&dp); mpz_init(&dq); mpz_init(&p2); mpz_init(&q2); mpz_init(&k); /* Compute dp = d mod p-1. */ mpz_sub_ui(&dp, &prv->p, 1); mpz_mod(&dp, &prv->d, &dp); /* Compute dq = d mod q-1. */ mpz_sub_ui(&dq, &prv->q, 1); mpz_mod(&dq, &prv->d, &dq); /* Compute p2 = (input mod p) ^ dp mod p. */ mpz_mod(&p2, input, &prv->p); mpz_powm(&p2, &p2, &dp, &prv->p); /* Compute q2 = (input mod q) ^ dq mod q. */ mpz_mod(&q2, input, &prv->q); mpz_powm(&q2, &q2, &dq, &prv->q); /* Compute k = ((q2 - p2) mod q) * u mod q. */ mpz_sub(&k, &q2, &p2); mpz_mul(&k, &k, &prv->u); mpz_mmod(&k, &k, &prv->q); /* Compute output = p2 + p * k. */ mpz_mul(output, &prv->p, &k); mpz_add(output, output, &p2); /* Clear temporary variables. */ mpz_clear(&dp); mpz_clear(&dq); mpz_clear(&p2); mpz_clear(&q2); mpz_clear(&k); } /* Performs a public-key RSA operation (encrypt/decrypt). */ void rsa_public(MP_INT *output, MP_INT *input, RSAPublicKey *pub) { mpz_powm(output, input, &pub->e, &pub->n); } #endif /* !RSAREF */ /* Special realloc that zeroes the old memory before freeing it. */ static void *rsa_realloc(void *ptr, size_t old_size, size_t new_size) { int s; void *p = xmalloc(new_size); s = old_size; if (old_size > new_size) s = new_size; memcpy(p, ptr, s); memset(ptr, 0, old_size); xfree(ptr); return p; } /* Special free that zeroes the memory before freeing it. */ static void rsa_free(void *ptr, size_t size) { memset(ptr, 0, size); xfree(ptr); } /* Sets MP_INT memory allocation routines to ones that clear any memory when freed. */ void rsa_set_mp_memory_allocation(void) { mp_set_memory_functions(xmalloc, rsa_realloc, rsa_free); } /* Set whether to output verbose messages during key generation. */ void rsa_set_verbose(int verbose) { rsa_verbose = verbose; }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.