
Originally published in the proceedings of the 5th Usenix Security Symposium

DNS and BIND Security Issues

Paul Vixie
<paul@vix.com>

Internet Software Consortium

2 May, 1995

Abstract

Efforts are underway to add security to theDNS protocol. We have observed that ifBIND would just
do what theDNSspecifications say it should do, stop crashing, and start checking its inputs, then most
of the existing security holes inDNS as practiced would go away. To be sure, attackers would still
have a pretty easy time co-optingDNS in their break-in attempts. Our aim has been to getBIND to
the point where its only vulnerabilities are due to theDNS protocol, and not to the implementation.
This paper describes our progress to date.

1. Introduction

Many were the reasons for starting work onBIND again a
few years back. TheBIND server and resolver are critical
to the daily activities of millions of Internet users, yet they
have each been infested with bugs from their first day of
use. We have made some good progress on plugging the
memory leaks and core dumps thatBIND is famous for,
and along the way we have found a lot of ways to make
BIND more secure.

Many of the classic security breaches in the history
of computers and computer networking have had to do
not with fundamental algorythm or protocol flaws, but
with implementation errors. Sometimes those errors take
the form of ignorant or “security unaware” programming,
such as collecting potentially unbounded streams of data
from the network using functions which do not know
the length of their destination buffers, or the use of
predictable magic cookies since the programmer’s goal
is to prevent accidental data errors rather than intentional
ones. Other times, a code branch rarely or never taken in
normal use is found to have “security fatal” bugs or even
deliberate back doors or loopholes.

While we do not intend to demean the efforts of
those involved in upgrading the Internet protocols to
make security a more realistic goal, we have observed
that if BIND would just do what theDNS specifications
say it should do, stop crashing, and start checking its

inputs, then most of the existing security holes inDNS as
practiced would go away. To be sure, attackers would
still have a pretty easy time co-optingDNS in their
break-in attempts. Our aim has been to getBIND to the
point where its only vulnerabilities are due to theDNS

protocol, and not to the implementation.

2. Why Is DNS Security Important?

Let’s say that a security conscious user always uses a
DESchallenge/response device when connecting to hosts
outside the local network, but when connecting locally,
she figures that it is safe to send her password in clear
text since she knows1 that outsiders cannot sniff on her
private network. Further assume that hers is one of the
many installations which does not restrict outboundTCP

connections, on the assumption that firewalls are only
necessary to keep peopleout2. If her name server is able
to receiveUDP packets on port 53 from outside her local
network, then this security conscious user is in for a
potentially rough ride.

Before we begin, we’d like to emphasize that the
examples are not drawn from theoretical studies, but
rather thetcpdump command running on real networks.

1We’ll assume that she is correct.
2An assumption with which we do not agree.



Folks over on the Dark Side have tools to exploit these
weaknesses, and they are real, right here, right now. We
learned of these weaknesses by studying some successful
attacks, not just by a careful examination of the protocol
and theBIND source code.

2.1. Misdirected Destination

A user asks her telnet client to connect tohost1. Her
client asks the name server for the address ofhost1,
receives a corrupt answer, and then initiates aTCP

connection to the telnet server at that address. This
address does not correspond to her intended host, but it
displays the usual greeting, and she types her usual login
and password. The connection drops, she tries it again,
all is well, she chalks it up to a gremlin in the network and
forgets all about it. But thereis a gremlin in her network,
and that gremlin just harvested her password.

2.2. Misdirected Source

If that same user depends on name based authentication
when inside what she considers to be the safe confines
of her internal network, she’s in for another hellride.
Anyone on any interior host can almost trivially bypass
name based authentication, causing this user’s hosts to
believe that “they” are “her” and therefore allowing them
to log in with her access rights and priviledges. Any host
which is allowed to accept incoming connections from
outside the local network could be fooled in this same
way, but by an outside host.

3. How Did That Happen?

Clearly, the above activities were not design goals of
the DNS protocol or of theBIND implementation of that
protocol. Let’s look at how they could occur.

3.1. Misdirected Destination

It could be as simple as a forged response sent directly
to her resolver. Even after 25 years of experience, the
Internet still has no production routers which disallow
packets with impossible source addresses. So if you can
route packets to someone, you can make those packets
look as though they came from a close and trusted host
– even if they originated outside that host’s network. If
an attacker can predict the time that a query will be sent,
he need only flood the resolver with bogus replies and
hope that his bogons arrive earlier than the real answer.
Predicting theUDP port used by the resolver for any
given query might require that a novice attacker spend
several minutes thinking about it, but many attackers will
consider that time well spent.

This would not have worked in our example, since
we’re assuming a one-way firewall. Her resolver isn’t
reachable by packets from outside her net – but her
name server is. If that name server can be corrupted,
even for an instant, then an attacker can redirect
telnet sessions (containing passwords), electronic mail
(containing proprietary information), or even other
DNS queries (thus using one name server to help corrupt
others.) Every one of those things has been seen in action
– we’re notjust being paranoid.

3.2. Misdirected Source

On late modelBSD-derived systems, name based authen-
tication usually takes the form of files containing lists
of host names or addresses, possibly including a user
name to be matched against the remote (“incoming”) user
name1. A convention is upheld whereby certainTCPport
numbers2 are able to be bound only by processes execut-
ing with so-called “super user” priviledges3. This rather
brittle chain of causality permits theBSD ruserok() li-
brary call to assume that the remote user name given in
the data stream is “authentic” from the point of view of
the remote host and its administrators. Users are not al-
lowed to claim, when they use thersh or rdist or rlogin
commands, that they are somebody they’re not – at least
on well run, trustworthy multiuser hosts.

BSD’s security took a giant step forward back
in 1989 or so, when the callers ofruserok() were
encouraged to do more than blindly assume that the
result of gethostbyaddr(getpeername(remote)) was
accurate. It used to be that whateverDNSgave as the name
corresponding to the source address of a connection,
was used directly as the search key when scanning
~/.rhosts and its bretheren. After someone noticed
that the name server being asked for this information
was the one belonging to the connection’s initiator, the
convention changed: Now, after callinggethostbyaddr(),
the result is passed back throughgethostbyname()to
see if the addresses and names all match. The name
server forgethostbyname()will be, barring corruption,
authoritative for any given host name in~/.rhosts(et al.)
Someone who can make their address appear to map to
one of your hosts will have to take some extra steps to
also make your host appear to have one of his addresses.

(SunOS put this check intogethostbyaddr() – an
error that will live in infamy, since not every caller of that
function wants to get an “error” return status when the

1E.g.,hosts.equiv, hosts.lpd, ~/.rhosts
2Those from 512 to 1023.
3This convention is of course meaningless on single-user hosts.



forward and reverse lookups yield asymmetric results.
The proper place for this mapping logic is in those
applications and library calls who intend to use the data
for some kind of authentication – it is not a naming issue
per se, and does not belong in the resolver.)

As effective as that extragethostbyname()call has
been, its goal was to keep attackers from just editing their
IN-ADDR.ARPA zones and zooming on in. No thought was
given to whether the name servers could be corrupted.
So while an attacker has a little more work to do now
than in the Old Days, it is still trivially easy to pollute
the caches of the set of servers who will be asked for the
gethostbyaddr() and gethostbyname()answers, or to
flood the resolvers with bogus responses at the time that
they are predicted to be waiting for the answers.

If an attacker can reach the victim’s host, they can
probably make their host name seem to be almost any
arbitrary string when viewed by the victim’srlogind .
And, if they can also break “super user” on the source host
(or if that host is their own office workstation), they can
make the victim see any arbitrary remote user name. If
this attacker knows any of the contents of your~/.rhosts
files or your ~Bhosts.equiv file – and these are eminently
guessable – then they arein.

4. Protocol View of Weaknesses

One way of looking at these weaknesses is from an
operational point of view, which given the current
state of the art, tells us:name based authentication is
inherently insecure. Sessions (whetherTELNET, NFS, or
whatever) should require something stronger than trying
to determine a host’s name and and then looking for that
name in some statically configured list. ([RFC1510] and
[RFC1760] are each cause for optimism.)

From the bottom, though, these weaknesses all come
with particular sets of details and can be described in
terms ofDNS protocol elements. As implementors we
are more interested in this view than in the more political
questions of Global Internet Authentication. So let’s have
a look at the packets, shall we? After that we’ll take a
look at the ways they can be perverted.

We do not intend to present an exhaustive descrip-
tion of DNS– [RFC1034] and [RFC1035] already fill that
need. Our goal in this section is to present enough infor-
mation aboutDNS that someone unfamiliar with its details
can still understand the security ramifications of some
of DNS’s design choices. If this report disagrees with
[RFC1034] or [RFC1035] in any detail, it is most likely
that the report is wrong.

4.1. DNS Datagram Formats

DNS queries and responses use a common format, though
not all protocol elements are used all the time. The
simplest case, described here, usesIP/UDP where each
datagram contains oneDNS query or response.DNS’s use
of IP/TCP is beyond the scope of this report other than as
it affects zone transfers, which we will discuss shortly.

Header Section: Describes the other sections, has
flags including RD (recursion desired) andAA

(authoritative answer), and most important for our
discussion, has a 16 bit “queryID.”

Query Section: Contains the name, class, and type of the
resource record set (“RRset”)being queried for.DNS

permits multiple queries in this section but this has
never been tried and is not well specified.

Answer Section: Always empty in queries. Contains
the RRset matching the query, or is empty if name
doesn’t exist, if no data matched the query, or if a
nonrecursive query results in a referral.

Authority Section: Always empty in queries. Can be
empty in responses. If nonempty, it contains the
NS and SOA RRs for the enclosing zone. This is
sometimes called “referral data.”

Additional Data Section: Always empty in queries. Can
be empty in responses. If the answer or authority
section contains anyRRs whose data fields contain
RRnames, the RRsets for those RRnames appear
here.

4.2. Servers and Resolvers

The client inDNS is called a “resolver.” The server is
called, appropriately enough, a “name server.” Resolvers
have some static configuration information, consisting of
a domain “search list” and a list of name server addresses.
Theoretically, a resolver can also be configured with a
static map of domains to name server addresses, allowing
queries to be forwarded directly to appropriate name
servers for some set of locally known domains.BIND

does not implement this last part yet. The resolver’s list
of name server addresses had better include at least one
recursive name server, or theDNS name space is going to
look pretty small.

4.3. Recursion

To “recurse” on a query means that when a query comes
in for an RRset not known to the server receiving it, that
server will forward it to some name server more likely to
know the answer. In some cases, the forwarding server
will know the name server list for the exact domain or
parent domain of the query. More often, a grandparent



domain’s servers are known, or no servers are known
and the query is sent all the way to the root name servers
(which are co-operated by the InterNIC and a worldwide
cadre of volunteers.) There is a flag in the query calledRD

which, if set, specifies that recursion is desired; if clear,
a name server will answer queries for unknown RRsets
with an appropriate error (“name unknown” or “no data,”
depending.)

Sending nonrecursive queries is a fine way to find
out what a name server already knows, since, otherwise,
you will get an answer even if the name server had to go
searching for it at the time of your query.

4.4. Referrals

If a name server receives a query for a <name,class,type>
tuple that it knows it has delegated, it answers with
what’s called a “referral.” A referral response has an
empty answer section but a nonempty authority section;
the intent of this message is to tell another server “the
name you asked for exists, but I don’t have the answer,
go try these other servers.” Bogus referrals are a fine
way to pollute a cache indirectly – if you can snoop on
a forwarded query and then inject a referral response,
you can make the forwarding server effectively believe
thatyou are the delegated server for an entire subtree of
theDNS name space. This is actually the easiest way to
pollute a cache since there’s no guessing involved: You
know the source address, sourceUDP port, and queryID
by inspection. You even know the query name. The only
trick is in breaking into a host on a network backbone so
that you can actually see the queries being forwarded to
the root servers. This has been done1, but not often.

4.5. Authority: Masters and Slaves

To be “authoritative” means that a name server has an
entire “zone” loaded, either via a “master file” that was
created by the name server administrator, or via a “zone
transfer,” which is aTCPsession with another name server.
The former kind of server is called the “master” and the
latter is a “slave.” Slaves generally do their zone transfers
from the master, but sometimes firewalls are interposed
and it becomes necessary to have slaves pull their data
from other slaves, which are themselves stationed at the
border, perhaps even on the firewall itself.

Masters and slaves will set theAA flag on any
response whose answer section contains only RRsets
from authoritive zones. TheAA flag will be clear if any
RRset in the answer section came from the the “cache,”

1No, we’re not going to name names.

which is what we call the portion of theDNS name space
that is outside all of a server’s zones of authority. If a
server has no zones of authority, then all of its answers
will be nonauthoritative since all it has is a cache. This
kind of server is sometimes called a “caching only” or
“forwarding” server.

4.6. Forwarding -vs- Recursion

When a name server receives a query for data it doesn’t
have, it can either send back an error response (if it is
authoritative for the name’s zone, it knows that either
the name or data doesn’t exist), send back a referral
(if running in “nonrecursive mode” as the root servers
all do, or if theRD flag is clear in the query), or it can
forward the query. This last possibility is of interest to us
in our security study, because of what will happen when
some response finally comes back. Forwarding is not a
three-party transaction – a forwarded query results in a
response to the forwarder who must then complete the
original transaction by forwarding the response back to
the originator.

BIND takes its forwarding duties one step further, as
an optimization attempt: It caches all the RRsets in the
forwarded response. This promiscuity is the source of
most ofBIND’s bad reputation in both the operations and
the security fields. Other servers are free to put almost
anything into the response, even if it has nothing to do
with the query. As shown in [Bel95a], this has disasterous
effects on security.

It is worth noting that the first query handled by a
forwarding or recursive name server for a given RRset
is likely to result, ultimately, in it forwarding back an
answer obtained from an authoritative name server –
thus theAA flag will be set in the response, even though
the forwarder is not itself authoritative for the name.
Subsequent queries to the same name server for the same
RRset will probably be satisfied from the cache, and in
that case theAA flag will not be set in the response. You
can see this in action using theISI dig tool from theBIND

kit.

4.7. Forwarding -vs- Timeouts

When BIND’s resolver needs to forward a query, it
chooses the next name server address from its statically
configured list, sends the query, waits a short time for
an answer, chooses the next name server address, sends
and waits, and so on.BIND’s timeouts are fairly short; It
will often send a query to name server #1, then to name
server #2, then the response will come in from name
server #1, and the resolver will close its socket such that
when name server #2’s response comes in a second or
so later the kernel sends back anICMP Port Unreachable



message. We wish there were a way to ask the kernel not
to send these, other than keeping the socket open longer
(which would lead to resource starvation among kernel
protocol control blocks.) Lengthening the timeout would
lead to longer application-visible delays when a statically
configured name server goes off the air, but life is full of
hard choices.

4.8. Query IDs andUDP Ports

Each query sent out by a resolver will come from some
UDP port on some address of the resolver’s host, and its
header will contain a unique (in the context of the source
address and port number) queryID. UDPport numbers and
DNS queryIDs are both unsigned 16 bit quantities, giving
a range from 0 to 65535 for each. Port numbers could be
conserved and reused by the resolver, butBIND currently
opens a new socket for each query, and kernels tend to
use anLRU mechanism when assigning port numbers to
new sockets. The tuple <address,port,queryID> forms
a unique identifier that servers can use to keep track of
queries in progress. Resolvers should verify that the
queryID of the response matches that of their query.

4.9. Delegations, Zones, Domains, and Subdomains

Strictly speaking, everyDNS name is a domain. All
domains except the root are also “subdomains.” Any
time a subdomain is delegated to some other master name
server, a “zone cut” is said to exist. A zone consists of
all names from a zone cut downward to either terminal
names (sometimes called “leaf domains”) or other, deeper
zone cuts.

The most common case of a zone begins at a
subdomain and has no zone cuts beneath it. The most
famous zone is the root (“.”) which has no terminal
names, just delegations.

There are two views of a delegation: The parent
zone, which has someNS RRs at the cut, and the child
zone, which has a superset of thoseNS RRs and also an
SOA RR. When we say “superset” we mean that a child
will have at least theNS RRs known by its parent, and
perhaps some additionalNS RRs that the parent does not
know about.

4.10. Lame Delegations

If a delegation NS RR names a host which is not
authoritative for the zone, then that host when queried
nonrecursively for names in that zone will answer with a
delegation to a higher (that is, closer to the root) authority.
This is an error condition as perceived by the server that
forwarded a nonrecursive query – if a name server is
listed in anNS RR, it is supposed to have the zone. It is

reasonable to declare failure at this point, though perhaps
a bit severe.

BINDs from version 4.9 havesyslog’ed the condition
and gone on to try the other delegated servers. Thesyslog
volume generated by this condition is the cause of more
than half the questions we see aboutBIND from new name
server administrators. The only way to fix the condition
is to get someone to edit the delegation to remove the
nonauthoritative name server, or to get someone to
make the name server authoritative. Either way it’s
not something the detecting server’s administrator can
do anything about directly; we hope that the continued
syslogvolume will lead to more hate mail being sent
to the administrators of broken zones, thus ultimately
leading to a decline in the number of broken zones. We
have been accused of optimism in this matter.

4.11. Glue

When transmitting a zone via aTCP “zone transfer,” the
general rule is to send only the RRsets whose names lie
within the zone being transferred, which is to say starting
from the initial zone cut, and proceeding downward
(away from the root) to include all names which are not
further delegated. There is an exception to this, called
“glue.” Any address records (A RRs) which are referred
to by anNS RR inside the zone (at the initial cut or any
downward cuts) must be included, even if they lie beneath
one of the downward zone cuts.

If this information is not included in the zone
transfer, then referral responses won’t be able to include
those addresses in their additional data sections. In the
absence of that additional data, the name servers will not
be reachable except by servers who have the zone – and
that’s not very useful. It is important that a server only
send (or accept) relevant glue during zone transfers, since
otherwise this becomes an easy way for your cache to
become polluted.

5. What We Have Fixed

BINDs from version 4.9 have plugged a lot of holes with
respect to earlier versions. An incomplete list follows:

5.1. Cache Tagging

BIND now maintains for each cachedRR a “credibility”
level showing whether the data came from a zone, an
authoritative answer, an authority section, or additional
data section. When a more credible RRset comes in, the
old one is completely wiped out. OlderBINDs blindly
aggregated data from all sources, paying no attention to
the maxim that some sources are better than others.



EachRRalso has the address of the name server who
sent it to us. This can be seen in cache dump when you’re
looking at some bad data and wondering how it got to
you.

5.2. Additional Data Promiscuity

We accelerate theTTL decline for data which arrived as
additional data. We are considering not caching it at all
other than as necessary for forwarding the response – see
below.

5.3. Irrelevant Answers

We check the response to ensure that all RRsets in each
section have names and types that make sense in the
context of the query and answer sections. Including
spurious additional data won’t automatically pollute a
cache any more; As ofBIND 4.9.3 it is necessary that
the answer section contain aCNAME RR to introduce an
arbitrary name, after which it’s business as usual for cache
polluters. This is the best we can do without a protocol
change.

5.4. Nonmatching Answers

Believe it or not, olderBINDs did not check that the
answer name matched the query name. Now, within
the limits of CNAMEs and wildcard answers,BIND will
insist that a response answers the right question. This
error was particularly pernicious with respect to some
of the name↔ address symmetry checking, since the
answer’s RRname sets the name in the resolver’s response
structure, which meant that callers ofgethostbyname()
could end up comparing a foreign name to another
foreign name.

5.5. Logging

Many of the detectable conditions indicating a probable
break-in attempt were in the past either not detected, or
treated as protocol errors (which is to say, silently worked
around).BIND now fairly shrieks whenever it has even the
slightest cause for alarm, which is a mixed blessing since
the volume of its complaints is so high that most name
server administrators pay no attention.

The syslogdata is of greatest interest during the
post mortem analysis of a break-in attempt. The log of
unsolicited responses, for example, can show attempts
at cache pollution during the early stages – before the
attackers switched to whatever technology actually got
them in, or set off your alarms, or whatever. Be aware
while examining these logs that some systems (most
notably SunOS) cannot cause packets to come from a

particular address if they have more than one interface –
so if you’re on the wrong side of a multihomed SunOS
name server,all of its responses will appear to be
“unsolicited.”

5.6. Glue

BINDs from version 4.9 restrict glue to just theA RRs
under the delegation point, whereas previous versions
included all theA RRs referred to by a zone’sNS RRs –
even those above the zone. By “restrict” we mean that
BIND will be conservative both in what it generatesand
what it accepts. This may fly in the face of the Robustness
Principle1 of [RFC1123], but the old behaviour was just
simplywrong.

6. What We Cannot Fix

We are counting on theIETF DNSSEC effort to bring
us a DNS protocol revision that authoritatively signs
responses. With that in place we will all stop worrying
about attackers who spoof their source addresses, predict
our UDP port numbers and queryID numbers, and so on.
Response data will be objectively verifiable, independent
of whether it is even a response to some query we have
sent. UntilDNSSECis finished and in wide use, there are
some things we’re just going to have to live with.

6.1. Query ID Prediction

With only 16 bits worth of queryID and 16 bits worth
of UDP port number, it’s hard not to be predictable. A
determined attacker can try all the numbers in a very short
time and can use patterns derived from examination of the
freely availableBIND source code. Even if we had a white
noise generator to help randomize our numbers, it’s just
too easy to try them all.

6.1. CNAME Indirection

As mentioned previously, aCNAME response allows a
remote name server to introduce a new name for an RRset
of arbitrary type. Forwarders receiving such a response
should not cache those RRsets (asBIND currently does),
but even with that precaution it will be possible to use a
CNAME response to bypass the name/address symmetry
checking.

1“Be liberal in what you accept, and conservative in what you send.”



7. What We Would Like To Fix

Every change toBIND has the potential to push the
Internet into the final abyss. We are therefore quite
conservative about anything that looks like it could have
far reaching consequences, which is to say, just about
anything1.

7.1. Query Restarts

Some of the information needed to properly validate a
DNS response is expensive (in terms of bandwidth and
delay) to obtain, and for that reason it is inappropriate
for every resolver to exhaustively validate every response
it receives. Recursive or forwarding name servers, on
the other hand, have (or should be able to obtain) all
the information theDNS has to offer, and it would be a
good thing if the name server validated responses before
forwarding them to the client.BIND does not currently do
this, since it is not possible to edit responsesin situ and we
are uncomfortable with the idea ofBIND autonomously
deciding that certain responses should not be forwarded
at all.

Our current plan for circumventing this problem is to
restart all queries. To “restart” means that upon receiving
an answer from a forwarded query, a name server will
validate the response and insert “known good” data into
its cache, and then pretend that the original query had
“just now” been received. All the original RRsets would
be looked up again, and if any are still missing (either
because no response has yet included them, or because
the responses that included them were invalid in some
way), new queries would be generated to bring in the
missing data. Query restarts are theonly way to solve
certain other problems currently being encountered by
BIND2 – the security benefits will be a happy side effect.

One interesting question we’re pondering about
query restarts is whether to preserve theAA flag, which
as discussed earlier will tend to be set on forwarded
responses if those responses come from an authoritative
server, but will tend to be clear on responses satisfied from
the forwarder’s cache. We could maintain the current
semantics with the hierarchical cache described below,
but it’s not clear that theAA flag on forwarded responses
really matters that much.DNSv2 will probably have aAD

flag – authority desired – to force forwarding in spite of
any cache. The proposedAD flag will probably have to
bypass the query restart logic described here.

1A Usenet article once opined, “BIND is like a train wreck inside.”
2Out of zoneCNAMEs, for example.

7.2. Hierarchical Cache

We would like to segment the cache such that additional
data can be cached for the duration of a query’s restarts,
but not used to satisfy other queries (either as answer data,
authority data, or additional data). Ideally, the only things
we would ever cache would be the answer and authority
sections, and only those from authoritative answers (AA

flag set). BIND’s current cache design is not ready for
this kind of overloading – we’ve pushed it about as far
as it will go just by adding the credibility tags described
earlier. What’s needed is a multilevel translucent cache
such that each lookup can specify a stack of caches
to be searched, and each cache can be managed by an
appropriate purge policy.

7.3. Empty Nonterminal Names

One of the gaping holes inBIND’s new nonpromiscuous
policy towards cache data is that the credibility and zone
tags are held in theRR, not in the name. It is possible to
determine, knowing only a name, whether that name lies
within any of a server’s zones of authority.BIND doesn’t
do that right now, it currently checks theRRs looking for
any that have a zone tag, and if none are found it assumes
that it is in the cache. This is bad news in the case of
empty nonterminal names – those names which have no
RRs and are only present to keep two dots from smashing
into each other.

The ARPA domain was once empty other than for
its IN-ADDR.ARPA subdomain, and eventually someone
accidentally fed a root server someNS RRs at that name.
That root server told the other root servers, and those
root servers told every name server on the Internet, and
pretty soon nobody anywhere could do address→ name
translations. We quickly added someNS RRs at theARPA

domain and cold started the universe.

It would be better ifBIND did not need data to be
present at a name in order to know that that name was
inside a local zone of authority. Astute readers will note
that it’s really quite easy to add new names to someone
else’s authority zones – just keep in mind during your
experiments that these new names won’t appear in zone
transfers, so you will have to infect each authoritative
name server manually.

7.4. Unified Zone Cut View

Right now the answer you’ll get for anNS query for a
domain will depend on who you ask. If you ask a server
of the parent zone, you will get the delegation information
from “above” the zone cut. If you ask the a server of
the zone itself, you will get the actual authority data (an
NS RRset and anSOA.) We believe it would be better



in most cases to have the server for the parent zone use
its delegation data only as hints, and that it should go
out and ask the servers named therein for their view
of the real delegation data. This would prevent most
of the current instances of lame delegation, since the
lameness would be detected by the server for the parent
zone where it can most likely be fixed by the local name
server administrator. The lame data can be elided from
delegation responses, thus preventing other servers
from following it and having each other serversyslog
the lameness information to their local, helpless, name
server administrator. Naturallywe would extend the logic
so that the zone servers validate their own delegation
information and likewise elide lame information from
their responses.

This unification would put a stop to the unpleasant
question, “how can both the parent and child zones
answer authoritatively if they are allowed to answer
differently?” We may implement a stopgap whereby
parents stop setting theAA flag on referral responses –
since the child is really the authority. Unfortunately, last
time we changed the way we handed out referrals, some
major clients could not handle it and we had to back
out to older, broken behaviour. Keeping track of client
sensitivities has become a first order task for us.

What we’re wrestling with on the unification theory
is whether the root servers should try to verify their
delegation data. With millions of zones delegated, it
could take quite a while for each root server to get this
done at startup time, so if we do it, it’ll have to come after
we make the cache persistent.

8. DNSSEC– The IETF DNS Security WG

As we’ve mentioned several times in this paper, there
is presently work underway to add security toDNS. The
current model is something like a “web of trust,” using
public key technology. A newKEY RR holds the public
key and is added to the delegation data. This key is
sufficient to validate signed answers but not to actually
sign them. Signing is done by the authoritative servers,
and theSIG RRis used to carry the signature of any given
RRset.

Once DNSSEC is widely implemented, it will be
possible to determine from examination of aDNS

response whether its contents are authentic. This sounds
simple but it has deep reaching consequences in both the
protocol and the implementation – which is why it’s taken
more than a year to choose a security model and design a
solution. We expect it to be another year beforeDNSSEC

is in wide use on the leading edge, and at least a year after
that before its use is commonplace on the Internet.

9. Which BIND Version Plugs Which Hole?

Always assume that you need the latestBIND you can lay
your hands on. OurRCS libraries have the whole sordid
story, and from them we could derive a table of Versions
-vs- Vulnerabilities. You can bet that the upper class of
attackers can do this as well. Deriving that table would
be a lot of work and publishing it might do more harm
(giving folks the false idea that they don’t need to upgrade
their BIND) than good (letting folks see how bad things
really are.) When we took overBIND, the latest version
wasUCB 4.8.3. Our first release wasDECWRL 4.9, which
contained quite a few security related changes. Our
current release as of this writing isISC 4.9.31, and it also
contains quite a few security related changes.

References

[Bel95a] Steven M. Bellovin. Using the Domain
Name System for Syetem Break-ins. In
Proceedings of the Fifth Usenix UNIX

Security Syposium, Salt Lake City, UT.
AT&T Bell Laboratories, 1995.

[RFC1034] Paul V. Mockapetris (ISI). RFC 1034
– Domain Concepts and Facilities, IETF,
1987.

[RFC1035] Paul V. Mockapetris (ISI). RFC 1035 –
Domain Implementation and Specification,
IETF, 1987.

[RFC1123] R. Braden, Editor. RFC 1123 – Require-
ments for Internet Hosts – Application and
Support, IETF, 1989.

[RFC1510] John T. Kohl, et al. RFC 1510 – The
Kerberos Network Authentication Service
(V5), IETF, 1993.

[RFC1760] N. Haller. RFC 1760 – The S/KEY
One-Time Password System, IETF, 1995.

1seehttp://www.isc.org/isc/.


