
Countering Abuse of Name{Based

Authentication

1

Christoph L. Schuba and Eugene H. Spa�ord

COAST Laboratory

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907-1398

fschuba,spafg@cs.purdue.edu

Abstract

Authentication for access control procedures is usually based on the iden-

tity of participating entities. In some communications systems, identities are

partially or wholly resolved using hostnames or machine addresses in the under-

lying protocol suite. Access control lists and revocation lists are often de�ned

on the basis of hostnames, whereby the communication subsystem at runtime

utilizes machine addresses.

After communications between two machines are established, hosts identify

each other by their protocol addresses. To map this address to a high{level

name, which can then be compared with access control or revocation lists to

grant or deny access, a resolution process is initiated. The abstraction from

protocol addresses to high{level hostnames is necessary to hide details of het-

erogeneous communication subsystems, and of dynamic network con�gurations

from the application layer where a uniform, high{level naming scheme is de-

sired.

If cryptographic capabilities are used that identify subject{object interac-

tions, authentication usually does not depend on host identi�cation. Where

host identi�cation is part of the authentication, a crucial link in the chain of

authentication is the association between hostnames and their respective ad-

dresses. The validity of the authentication can be trusted only as much as the

binding process itself.

In the Internet this name resolution is provided by a widely{implemented

distributed database system: the Domain Name System (DNS). Dynamic con-

�guration behavior, system e�ciency, and volume of binding requests demand

late binding between hostnames and addresses, and caching of the mappings.

Therefore, bindings are established \just in time" on a need basis and are kept

valid for a limited period of time.

1

submitted to the twenty-second annual Telecommunications Policy Research Conference



This paper describes problems of name{based authentication requiring late

binding such as that provided by the DNS for hostname{to{address associa-

tions. Because forward mappings (where the address is a relation of the host-

name) and reverse mappings are maintained in unrelated parts of the database,

three levels of modi�cation are possible: modi�ed forward mapping, modi�ed

backward mapping, or both. The modi�cation of associations enables the spoof-

ing of hostnames in sessions that depend on the DNS.

We state the problem in an abstract way and in the concrete case of the

DNS. We analyze the conditions that facilitate the exploitation of the problem

and explain the weaknesses that are present in the DNS.

We then explore some possible solutions to the problem. All our proposed

solutions are evaluated by a number of criteria to compare e�ects of the so-

lutions. Each of the solutions will either consist of mechanisms that enable

arbitrarily chosen policies, or it will require the implementation of a certain

policy. We emphasize the solutions to improve existing name servers by mod-

ifying them in a way that they rely on less trust, and to embed crytographic

methods into the name resolution process.

1 Introduction

The Internet is a widespread conglomeration of hundreds of thousands of intercon-

nected heterogeneous networks and hosts. The design of the Internet is based on a

protocol hierarchy. There exist multiple implementations of these protocols.

Computers communicate with each other on the basis of di�erent types of ad-

dresses; on the physical layer using low{level physical addresses according to the

hardware devices used, on the data link to presentation layer on a �rst{level abstrac-

tion using host addresses such as IP addresses

2

, and on the application layer on a

second{level abstraction using high{level, pronounceable hostnames.

The task of naming hosts and network domains is addressed by creating a hi-

erarchical relation between domains, with hosts as the furthest descendants from an

arti�cial root domain. By appending the domain labels one after the other to the host

labels on the path up to the root in the hierarchical tree, a unique, memorizable, and

usually pronounceable identi�er is created: the hostname. One of the management

tasks in the Internet is the mapping of lower{level addresses to these hostnames.

The mapping, or binding, of IP addresses to hostnames became a major problem

in the rapidly growing Internet. Note that this paper does not deal with the mapping

between addresses on the physical layer and transport layer, which is solved by ARP

3

in the TCP/IP Internet Protocol Suite, but with the mapping between hostnames

and IP addresses.

2

\32-bit addresses assigned to hosts that want to participate in a TCP/IP internet" [Com91]

3

\Address Resolution Protocol { used to dynamically bind a high{level IP address to a low{level

physical hardware address" [Com91]

2



This higher{level binding e�ort went through di�erent stages of development up

to the currently used Domain Name System (DNS). The DNS is a distributed naming

resolution system used by most network services available throughout the Internet. It

works transparently for the user who sends email, accesses another host via telnet or

rlogin, or transfers some �les via ftp between hosts. The DNS provides name binding

in both directions: given a hostname, it returns the appropriate IP addresses, and

vice versa.

Before hosts grant network services to users, an authentication process takes place,

where the users' access rights, and the identity of connecting hosts get scrutinized,

according to provider policies. There are many notions on how access rights can be

speci�ed. Examinations can be based on identi�cation by hostname, login name, and

login password. In some cases it su�ces to provide the right names, and access is

granted without specifying any password at all.

Some Berkeley r{commands (see [Ste90, chapter 14]) o�er network services for

which it is su�cient to verify user name and hostname to gain complete access.

As the remote user name is speci�ed by the connecting site, the authentication is

additionally based upon the name of the connecting machine. A machine that o�ers

services can acquire information about the socket that is used by the connecting site.

A socket is an abstraction for a network service access point (NSAP): in UNIX

4

a

tuple consisting of IP address, port, and protocol used by the remote site. To verify

the hostname, it is the task of the DNS to map the IP address to the hostname.

Because the DNS is distributed among many thousands of hosts, it can be a

critical mistake to blindly trust the resolved binding. This paper investigates policies

and mechanisms to solve the problem of trust in the Domain Name System. Some of

these policies and mechanisms might be abstractable to distributed naming services

in general.

Although this problem has been known for some years now, not many publications

deal with it. [Bel90] and [Sch93] are the principal accounts that we can mention as

related work. [Bel90] demonstrates the subversion of system security using the DNS

and discusses possible defenses against the attack and limitations on their applica-

bility. The paper follows suggestions from Paul V. Mockapetris, the designer of the

DNS. In [Sch93] the details of the exploitation of the weakness are worked out and

several approaches to solve the weakness in the DNS are discussed with emphasis on

hardening the name server implementations and the usage of strong cryptographic

methods for authentication.

4

UNIX is a trademark of Novell

3



2 The Problem

2.1 Statement of the Problem

Authenticity is based on the identity of some entity. This entity has to prove that

it is genuine. In many network applications the identity of participating entities is

simply determined by their names or addresses. High{level applications use mainly

names for authentication purposes, because address lists are much harder to create,

understand, and maintain than name lists.

Assuming an entity wants to spoof the identity of some other entity, it is in some

cases enough to change the mapping between its low{level address and its high{level

name. That means that an attacker can fake the name of someone by modifying the

association of his address from his own name to the name he wants to impersonate.

Once an attacker has done that, an authenticator can no longer distinguish between

the true and the faked entity. This describes the fundamental problem on which this

paper is based: If the binding process between names and addresses cannot be trusted

fully, no one can rely on an authentication process on a high{level.

2.2 The Problem in the DNS

To understand the method how to deceive the DNS we �rst give an example for

a valid name resolution in the DNS. The resolution is based on the client{server

paradigm. Any process that accepts a connection from another host receives from its

lower protocol layer the connecting host's IP address. The process then calls its local

resolver with this IP address as an argument and requests the according hostname.

The resolver forms a query for the given IP address and waits to retrieve the response

containing the answer to its query from the default name server. This name server

could be running on the same host with the resolver software, on a host in the local

domain of the resolver, or on a host outside the local domain. The selection of which

name server to contact depends on the name or address to be resolved. The decision

process about this choice is speci�ed in [Moc87, sections 4.3.2, 5.3.3].

Queries to name servers from a resolver come in two avors: recursive and itera-

tive. In recursive resolution, a resolver sends a recursive query to a name server. The

queried name server then has the obligation to respond with the answer to that query

or an error code. If a name server cannot resolve the query locally, it calls its resolver

and queries recursively another name server. This is repeated until one queried name

server supplies the answer or an error code that then travels the reverse path. In

iterative resolution, the contacted name server returns an answer to the query to the

requesting resolver. This is a referral to another name server that is more likely to

know the answer, or an error code to signal the occurrence of an exception or error.

The repeated resolution attempts are performed by the local resolver.

Many security problems of the TCP/IP protocol suite build on the ability of the

attacker to spoof the IP address of a trusted machine, as described in [Bel89]. As

4



boromiraragorn

attack.dom

defend.dom

user: alice bob

Hi! I am bob@boromir.defend.dom

user:

host:ns:

exchange of DNS packets

alice@aragorn trusts bob@boromir

caradhras dwimmerlaikhost:ns:

Figure 1: Example topology of machines

hosts trust each other, usually on the basis of hostnames, an attacker can take the

easier approach and spoof a host's name instead of its IP address. The process is

depicted in �gure 1.

Assume that user alice@aragorn.defend.dom trusts user bob@boromir.defend.

dom via the .rhosts mechanism. If a host named boromir.defend.dom accesses an-

other host named aragorn.defend.dom, host aragorn accepts the connection and

retrieves address information about the connecting host boromir. Host aragorn

reads host boromir's IP address and converts it into a regular hostname. To bind

the right name to the IP address, host aragorn starts a DNS query in the reverse

lookup tree, the database portion that contains the IP address to hostname mapping

information.

For a pair of machines caradhras.attack.dom and dwimmerlaik.attack.dom

under the power of an attacker, with caradhras running a primary name server for

a certain zone, and dwimmerlaik trying to fake boromir's identity, it is easy to make

aragorn believe dwimmerlaik was boromir. dwimmerlaik connects to aragorn and

claims to be boromir, aragorn retrieves dwimmerlaik's IP address 111.22.33.4 and

queries the name 4.33.22.111.in-addr.arpa from the DNS. One single entry in the

authoritative data for the reverse lookup tree for caradhras's zone speci�es the IP

address{to{name mapping between 4.33.22.111.in-addr.arpa and dwimmerlaik.

If the attacker replaces this line by a mapping between 4.33.22.111.in-addr.arpa

5



and boromir, aragorn's resolution attempt will �nally grant dwimmerlaik access to

aragorn.

This shows the simplicity of an attack that is based upon trust placed in the data

provided by DNS. It is based on a weakness in the DNS, not an easily �xable bug in

the implementation of a particular network service.

One widely accepted way of dealing with this problem is adding an additional DNS

query of the determined hostname to the server code and comparing the returned IP

addresses against the original IP address for a match. This only adds marginally

to the quality of security; it does not provide complete security. An attacker can

piggyback additional resource records to the answer packet to the �rst query. Doing

so, the attacker poisons the victim's cache with false information, such that the

forward lookup would not disclose the attack.

2.3 Weaknesses

In this paragraph we describe the conditions that facilitate a break{in. The DNS

is weak in several places. We examine the problems of name{based authentication

processes, trusting information that comes from an untrustworthy authority, and

accepting additional, possibly incorrect information that was not requested, but that

seems to provide advantages for runtime performance.

2.3.1 Assumptions to Facilitate Break{ins

In our setup we assume that the attacker has complete control over machine cara-

dhras.attack.dom running a legitimate primary name server for a DNS zone. This

strong assumption does not always need to be satis�ed. It is simply the easiest way

for an attacker if he controls a primary name server, because of its capabilities and

the fact that other machines believe name servers.

Depending on the topology of a real network it is su�cient if an attacker controls

one of the authoritative name servers for the particular zone: the one that is queried

�rst by the remote resolver. It is not much more di�cult for an attacker to satisfy

this second assumption than the �rst one.

The control must include the ability to update the associated inverse mapping

tree. The attacker might have successfully subverted such a machine or simply be the

legitimate owner of it. In the following discussion we will assume that the attacker

has such access to a primary name server.

2.3.2 Authentication via Hostnames

We explained in the introduction that users need to be authorized by network service

providers before they can use the service. This authentication is usually based on

the veri�cation of the user's login name along with the associated password and the

hostname of the machine on which the user starts his requests. Networks (as well

6



as systems in general) may be classi�ed into di�erent partitions: Closed Networks,

Open Networks, and Trusted Networks [PL91].

Closed Networks can be accessed only within certain boundaries. Sessions are

controlled and secured in accordance with the rules implied by an organization's

policy. In a Closed Network, the locations of all resources are well known and speci�ed.

Open Networks are regions separated by boundaries from their surroundings, but

the transfer of information across these boundaries is allowed. They are augmented

by publicly accessible parts or connections to networks owned by other companies or

organizations. These two extensions make this type of network vulnerable to external

threats.

Trusted Networks introduce the concept that network access is controlled at the

entry node. In the case of large international networks, maintainability and con-

trollability are important issues. Adopting the Trusted Network concept allows the

decomposition of a large network, growing towards an unmanageable complexity, into

relatively small national or regional networks, each supported by local sta�, and each

provided with its own network access control. The advantages are increased control-

lability, maintainability, manageability, and simpli�cation of change management. A

Trusted Network can be regarded globally as a single Closed Network, but from a local

point of view, the interconnected networks stand widely open with all the applicable

security threats.

The Internet is a system of Trusted Networks within Open Networks. This allows

the danger that once someone has falsely gained access to one machine, it is much sim-

pler to subvert others. The term net{sur�ng describes the journey through a number

of subverted systems with the goal of subverting others. Within Trusted Networks

users are authenticated solely by their login name and connecting hostname. The

login name is speci�ed by the connecting site, and therefore can be falsi�ed, such

that the only reliable information left for the addressed machine is the connecting

machine's IP address. The addressed machine then maps the IP address into a host-

name using the DNS. If an attacker manages to subvert this name binding call, he

can falsify the name of a machine within the Trusted Network and therefore succeed

in his attack.

2.3.3 Trusting a Not Trustworthy Source

Using the DNS to map the IP address provided by lower{level protocol layers into

the applicable hostname, the addressed host blindly trusts the information that is

provided by the DNS. Information that comes from sources outside of the trusted

area is trusted. That is a severe violation of the partitioning concept. Only truly

authoritative information should be trusted.

7



2.3.4 Believing Additional, Not Authoritative Information

E�ciency is one of the stated goals of the DNS. The DNS protocol packets contain

an additional answer section. Using this, name servers can provide resource records

containing information that could be useful in future requests, but that were not

explicitly requested. There are situations where these additional records aid system

e�ciency. If the answer to a query is a referral to another name server, then it

is bene�cial to add that name server's IP addresses to the response. That saves

the lookup of the name server's associated IP addresses, once its name is found.

Additional resource records are cached for future use.

As we rely on the correctness of these additional records once we use them, we

trust information that comes from a source possibly outside of the trusted scope.

That is another violation of the partitioning concept.

3 Policies and Mechanisms as Solutions

We identify policies and mechanisms that serve as solutions or that simply augment

the level of security of the authentication process. Because many factors contribute

to the security breach encountered in this paper and all of them are necessary for

the weakness to exist, it is su�cient to eliminate at least one of them. That sounds

easy to accomplish, but is a di�cult task in practice, because eliminating any one of

the factors brings with it a disadvantageous trade{o� with functionality, e�ciency,

or convenience.

We describe evaluation criteria and present for each of our solutions necessary

additional background, followed by a description of the idea of the solution. We

make the distinction between mechanisms that enable the implementation of policies

and solutions that consist solely of the implementation of a certain policy. Each

solution is examined and discussed using applicable evaluation criteria.

It is important not to view these solutions as stand{alone. In di�erent combi-

nations they achieve several degrees of security. It is a good idea to implement a

combination of the presented solutions, to obtain a greater level of con�dence in the

security of the DNS.

3.1 Evaluation Criteria

In solving the problem we are striving for compatibility with the original design goals.

In the case of the DNS these goals are data consistency (to provide a consistent view

of the name space to be used to refer to resources), e�ciency (to handle the immense

volume of data and resolution requests), a distributed character of the implementation

(to provide fault tolerance and distributed authority and maintenance), generality (to

provide a general usefulness that satis�es pragmatic reasons like implementation costs

and administrative e�ort), and independence (to provide a portable system that does

8



not depend on underlying hardware or communication technology.) Each of these

goals represents a criterion in itself. Indeed, the ultimate goal is to guarantee data

consistency, but not only in the data base but also during the mapping process. That

means that we want to prevent the possibility of malicious software introducing wrong

associations without the data base ever seeing changes. The correctness of this run

time behavior is much harder to ensure than the integrity of the data base.

We consider the quality of a solution to be a measurement of the radius of ap-

plicability of the solution. The feasibility of an implementation of a solution de-

termines how much e�ort is needed to apply the solution to an unmodi�ed version

of a state{of{the{art name server. The complexity of its implementation denotes if

modi�cations in di�erent areas are involved and how complicated their interaction

is. Solutions might not be suitable in every organizational environment. We call this

criterion applicability in an organization. The transparency of the solution involves

the software interface and the user interface to the system. A solution that does not

require changes to the DNS protocol is preferable over one that does. User approval

of any modi�cation that is not transparent is a crucial point. We combine these as-

pects in the term acceptability by the user. An important point in the introduction

of changes to systems is the transition process from the original state (before the

solution is applied) to the new state.

3.2 The Berkeley Patch

We briey explained the Berkeley software patch in section 1 without calling it the

Berkeley patch. This �rst attempted defense, developed at the University of Berkeley,

CA , consists of modi�cations of the r-command daemons. The idea is to validate the

inverse mapping tree by looking at the corresponding node on the forward mapping

tree. S. Bellovin describes the method used by the patch in [Bel92] as follows:

To detect this, we perform a cross{check; using the returned name, we

do a forward check to learn the legal address for that host. If that name

is not listed, or if the addresses do not match, alarms, gongs, and tocsins

are sounded.

The �x is easily installed and not very complex. Its compatibility with the existing

DNS protocol is another advantage. The transition process to move to services that

contain the patch is not di�cult, but requires some work. Although we regard this

patch as an obligatory modi�cation to daemons like rlogind and rshd, it is limited

in its scope. The cache of a running name server can still be poisoned by supplying

additional unrequested records as the experiments described in [Sch93, section 3.5]

prove.

The Berkeley patch utilizes a principle that can be applied outside of the UNIX

domain. The idea is to perform a cross-check of the �rst mapping in the reverse order.

In a consistent state, forward and backward mapping data are managed by the same

9



authority. Thus tampering with only one of the two directions of mapping can be

detected.

The patch is a solution if trust can be extended only within the scope of author-

itative data, and if the attacker does not use the more sophisticated attack method.

If the attacker supplies the additional address record with the answer to the reverse

lookup, it means that he controls both lookup directions, and that trust is extended

to possibly untrustworthy sources.

3.3 Examining Berkeley r{Commands

In this paragraph we discuss the UNIX{speci�c way of implementing a Trusted Net-

work. The Berkeley r{commands extensively use the .rhosts and /etc/hosts.equiv �les

to increase convenient network access. In paragraph 2.3.2, we discussed the Trusted

Network concept. R{commands such as remote login and remote shell o�er the pos-

sibility to extend trust to other machines. Users and system administrators can build

individual networks of trust. This proves dangerous in some cases. [GS91, chapter

11] discusses security problems with the UNIX trust mechanism.

The existence of these structures of trust is necessary for the break{in to happen.

Obviously, the break{in is prevented if we prohibit the usage of trusted hosts or

trusted users completely. It is technically possible to disallow the usage of trust

in Berkeley r{commands. The choice can be made by the system administrator at

compile time. However, being able to access other machines without passwords makes

the work in a networking environment easier. Once used to the comfort, not many

users agree to sacri�ce their convenience for the prevention of hypothetical security

concerns. The trade{o� hereby would contain the loss of convenient, and in many

cases, necessary tools for trouble free connection to hosts that are accessed frequently.

A less safe solution would be to limit trust to locally administered zones, i.e.

authoritative zones, where the Berkeley patch works reliably. As we discovered in

paragraph 3.2, limiting trust to certain zones �xes the aw. An organization could

issue the policy that only local trust is allowed. In some organizations this can be

considered a reasonable approach if hardly any remote accesses that are directed to

hosts in the local zone are originated outside of the local zone. Additional mecha-

nisms would be necessary to enforce the policy, such as periodical checks of .rhosts

or a modi�ed r{command implementation where users cannot directly modify their

database of trusted machines, but have to use a special program. The trust asso-

ciations must then be kept in a protected data area of the operating system. This

program could �lter out{of{zone entries at the time the user wanted to enter them. It

would also contain the possibility of managing setup changes centrally. This solution

actually proposes an automatized procedure to implement an organization's policy.

If the nature of connections allows a policy such as described above, implementing

it is a major e�ort. Some system scripts have to be written to ensure proper usage,

operating system code and r{command code must be modi�ed, and a new user in-

10



terface has to be developed. Users have to be trained on how to apply the changed

facility and have to be made familiar with the new policy and the new user interface.

Advantages of this new approach are compatibility with the existing DNS protocol

and additional bene�ts in further security related issues.

Although we concentrate on the Berkeley r{commands in this paragraph, we do

not forget that there are other ways to exploit the aw. For example, intercepting

electronic mail is a target of attackers; especially electronic mail that is exchanged by

security agencies and security related organizations. Electronic mail depends on the

DNS.

The Massachusetts Institute of Technology, together with IBM and Digital Equip-

ment Corporation developed in 1983 Kerberos, an authentication system that uses

Data Encryption Standard (see [NBS77]) cryptography to transmit sensitive informa-

tion on a network, such as clear-text passwords. Although Kerberos is an excellent

solution to several di�cult problems, it has shortcomings that limit its usefulness in

respect to our problem. A discussion of its shortcomings can be found in [GS91].

Overall, a very weak point in Berkeley derived UNIX systems is the usage of trust.

This paper exploits only one of several known aws based upon trust. Using trust{

based mechanisms requires thinking about a change in individual policies in dealing

with granting trust to others. We can conclude, by citing S. Bellovin ([Bel90]):

If a host trusts another host not named in a local zone, its name server

cannot protect it.

3.4 Restricting Public Information Access

What makes the break{in possible in the �rst place is gathering necessary information

about hostnames of trusting machines and user names on di�erent systems trusting

each other.

We are not discussing random patterns of trust that might exist between hosts, but

common patterns using a systematic approach. In a cluster of time{sharing machines,

each machine is likely to extend trust to all its peers. This pattern is not common

to the general user population, but it is applicable to systems programming and

operational sta�. Another typical pattern is the occurrence of �le servers that trust

their clients, who serve as a source of extra CPU cycles. Dataless clients will frequently

trust administrative machines to permit software maintenance. Some systems still use

the same /etc/hosts.equiv �les on many hosts just to simplify systems administration.

Generally accessable programs can aid in discovering the desired information:

there are network monitoring and information tools (such as snmptnetstat, traceroute,

or the DNS itself), user information services (such as �nger), and UNIX services in

general (such as ftp, smtp, or rpcinfo.) Other sources of information might include

published material describing network topology that is available for example from

some academic departments.

The mentioned collection of tools shows that it is a di�cult task to limit in-

11



formation access without sacri�cing the legitimate utilization of network services.

Preventing someone from gathering information is nearly impossible. Too many ser-

vices rely on address information, and we conjecture that most users would not be

happy if they were deprived of useful tools such as electronic mail or news readers.

The idea of open systems requires open access to information services and address

information. Therefore, most system administrators have decided that the bene�ts

of these utilities outweigh the risks.

3.5 Adjusting DNS Update Intervals

Some sites have connections chiey with machines outside of their zones that stay

stable in the sense that hostname to IP address mapping will stay the same for a long

time. The idea is to enter long time{to{live values into the resource records, values

that exceed the currently implemented threshold of 1 week. Limits could be increased

up to 6, 12 months, or even longer, depending on the situation. If this data is entered

with great care to ensure correctness of the mappings, the DNS based break{in is

prevented.

This approach is limited by its scope of applicability, but it is a solution with

many advantages. It goes with the current DNS protocol and can be implemented

without much e�ort by simply changing the constant in the name server code that

determines the maximum time{to{live for cache entries and recompiling the system.

As all necessary entries are kept in the local cache, the system provides very quick

replies to queries. It hardly ever uses the network and therefore saves bandwidth on

the medium for other tasks.

This approach has the problem of validating mappings before they are cached.

How can it be ensured that the mappings are correct in the �rst place? Certainly,

a false entry would stay for a long time, and the attacker's address would be �nally

noted. But does that really help, once mischief is done? It might aid in prosecution

e�orts, but only little in prevention.

Extending TTL values to a long period of time is a safe and feasible method in

environments where the additional condition of static mappings with long lifetimes is

given. However, in this scenario the DNS seems not to be the right approach, but a

locally well{administered static mapping mechanism.

One of the original reasons to introduce the DNS was to manage the dynamic

behavior of changes in the data base. This approach �xes mappings for a long time

and uses a powerful distributed database system for an infrequently occuring update

process. Although we are not talking about a static mapping in this paragraph, a

well{maintained HOSTS.TXT �le or a hybrid approach would have the functionality

required with less overhead.

It could be suggested to abandon the DNS and either return to the previous

system with a static host table, or move on to another system that has yet to be

developed. We are not going to discuss possible future development of the DNS here,

12



but returning to the previous system.

In this approach, mappings can change frequently, but changes have to be reported

to a central authority that manages the whole DNS space in contrast to the DNS

approach of managing zones through delegated local authorities. This would not

solve the problem, because the problem is not the DNS, but inadequate methods of

host authentication. IP addresses of trusted machines could still be imitated. This

is a somewhat harder task, but the techniques have been known for quite some time

(see [Mor85]).

Would it be safer to transmit updates to a central site? Electronic mail, telephone

calls, or conventional paper are not necessarily a reliable way to transmit mapping in-

formation updates. The long time delay until centrally made changes are propagated

through the network would condemn the database to be in an inherently inconsistent

state. The system would again contain all the disadvantages which were the reasons

for developing the current DNS.

But besides these obvious, technical, and well{known reasons, there is a signi�cant

argument why no one can possibly be in favor of reinstalling the previous system: the

sheer size of the Internet. HOSTS.TXT was abandoned because 200,000 hosts was

too much to be managed. Are currently over 2.2 million (see [Lot94]) easier to handle?

Certainly not.

Abandoning the DNS would drag the name resolution task in the Internet out of a

functioning state with a not easily exploitable security breach, into an unmanageable,

not working state of prehistoric system design. We think that would do more harm

than ignoring the problem.

3.6 Hardening Name Servers

3.6.1 Keeping Additional Information

A �rst idea is to extensively log remote login attempts with all associated address

and name information. Or even more: to tag cache entries with their origin. The

latter is an easily achieved modi�cation that costs additional memory space in the

cache. This method makes it easier to track false database entries for the purpose of

debugging wrong zone data or investigating a DNS based break{in.

3.6.2 Prevention of Cache Poisoning

Preventing the cache from contamination is not feasible from within the name server

code, as there is no way of a priori determining if any given additional record is

trustworthy or not. We could start treating special cases of when to allow or disallow

additional information.

The default safe behavior would be to disallow the caching of unrequested infor-

mation, and to allow it only in cases where the information is necessary, and then

only for the current resolution.

13



3.6.3 Context Cache

There are other, more sophisticated approaches possible: if some additional or author-

itative records are returned together with a resource record, they could be interpreted

only in the context of that resource record. The di�erence between the default safe

behavior approach and this one is that in the former, resource records are only cached

when they were requested or necessary additional information, whereas in the latter

approach the new entries get cached, but can be retrieved from the cache only in the

same context in which they were entered. For example, an address record in the

additional section of a response to a mail exchange record request should only be

used for delivering mail. The information would not be acceptable for a remote login

to another host, or generally usable for other services. A glue address record coming

along with a name server record would only be used for follow{up queries, because

that is the context in which it was supplied. Address records along with pointer

records should never be cached, because there is no legal context in which they have

to be returned in a single response.

This whole approach leads to the question of whether we still need the addi-

tional section at all. If only certain combinations of resource records are allowed as

a response to a query, why not consequently eliminate the idea of additional, un-

requested information completely, and adapt the protocol to accommodate the new

ideas, namely a certain limited number of types of associations?

First of all, that would require a protocol change, which is something we try to

avoid. Some of the original design goals of the DNS also imply that eliminating

the additional section would not be a good approach. The system would lose some

of its generality, because the additional section might become very useful in future

applications of the DNS without containing any security threats. The system would

certainly lose e�ciency. Here we see again an important trade-o� that we have already

mentioned in previous sections: an increase in systems security and a decline in system

performance vs. good system performance and a possible lack of security.

It is therefore justi�able to take the approach of hardening the name server by

treating more special cases, and by increasing the complexity of the internal data

bases, instead of hardening it by implementing the same ideas accepting protocol

changes.

3.6.4 Authority Cache

A further approach would be to cache data only if the source of a record is known to

be authoritative for that zone. We give an example for that: If a name server ara-

gorn.defend.dom receives a pointer record from some host caradhras.attack.dom,

and the DNS message also contains an address record in its additional section, then

the name server aragorn would believe and cache this information only if it already

knows that the source name server caradhras is authoritative for the according zone.

A name server following this strategy would create its own tree of authoritative name

14



servers. This tree would have to lose subtrees according to the expiration of the

lifetime of some node (name server).

This approach however has a serious aw in it. Servers determine if DNS mes-

sages are genuine by checking a certain ag in the header of the DNS message: the

authoritative answer bit. This ag is only valid in responses and speci�es that the

responding name server is an authority for the domain name in question. Nothing

prevents any attacker who supplies speci�cally manufactured packets in the �rst place

from setting this bit regardless of its validity.

3.6.5 Conditional Cache Use

The Berkeley patch (see paragraph 3.2) can fail in the case that the cache is already

poisoned. An idea to strengthen the Berkeley patch is to provide the possibility to

resolve queries without using the cache. That could be used by the Berkeley patch.

The system call executing the forward lookup would for example set a ag to indicate

that the cache contents should not be used for the following resolution. This method

again decreases the e�ciency of the system, but it prevents the exploitation of the

weakness. One could also think of a system call to ush the cache followed by a reload

of the database, similar to the signal SIGHUP that a system administrator can send

to the BIND implementation of the name server to achieve the same.

3.6.6 Discussion

A very thorough analysis of the protocol is needed to determine the cases in which

additional resource records are legal and cannot do any harm, or have to be stored

in di�erent contexts.

One of the design goals of the DNS is hereby in danger: generality. The DNS

should not contain any unnecessary restrictions regarding its purpose or applications.

If the implementor of the DNS were to decide which combinations of resource records

would be allowed, the DNS might be constrained in a way that it is no longer useful

for certain applications. A decline in system performance would result from the fact

that name servers would believe and therefore cache less data | data that might be

needed later.

Hardening name servers consists of several possible modi�cations, some of which

seem promising, even though their application decreases the system's performance

and increases its complexity.

3.7 Cryptographic Methods for Authentication

In this paragraph we describe the architecture of an authentication system embed-

ded into the DNS. Note that the algorithms and methods described in the following

paragraphs yield as much security as possible. However they are not perfect. Most of

the algorithms rely at some point on conjectures in number theory that are neither

15



proven nor contradicted, or on the fact that brute force attacks are computationally

infeasible. For a discussion of this see [Den82].

We have to meet the requirements of data integrity of the message and of orig-

inator authentication. In the following we will elaborate on these two requirements

and present techniques for their possible implementation. The algorithms and cryp-

tosystems that we chose are typical representatives of the class of algorithms that are

applicable. They are by far not the only possible choice.

3.7.1 Data Integrity

Data integrity in a communication system prevents against active wiretapping, that

means a recipient is provided with the assurance that the content of a receivedmessage

is identical to the content of the message sent by its originator.

We want to ensure the integrity of transmitted DNS messages along with a time

stamp to protect against replay attacks. We concentrate on a certain technique to

detect unauthorized message alteration that is e�cient and considerably secure.

In case of alteration detection, recovery actions could be to ignore the received

DNS message and issue an additional query. Our approach is based on message

digest algorithms. Message digests, or synonymously �ngerprints or signatures, are

the result of the application of a one-way hash functions that computes a checksum

of its input data.

MD5 and the Snefru algorithm are examples for message digest algorithms (see

[Riv92, Mer89].) Message digest algorithms are easy to compute, are only a few bytes

per message, are computationally hard to invert, and usually require a certain size of

input data.

An originator would calculate the message digest of a DNS message immediately

before it is sent out. The recipient would recalculate the message digest and compare

the resulting value with the one calculated by the originator. In case of a mismatch,

the receiver would conclude that he received a modi�ed DNS message. He would

discard it.

But how does the message digest calculated by the originator reach the receiver

without modi�cation? The message digest algorithms are publicly known and any-

one tampering with a message could easily modify the associated message digest

accordingly. To show how this can be prevented we discuss a method for originator

authentication in the following paragraph. Message digests together with originator

authentication give a very strong guarantee for the detectability of active wiretapping.

3.7.2 Originator Authentication

Originator authentication permits the recipient of a message to reliably determine

if the originator of a message is who he claims to be.

We explain briey a procedure that guarantees the originator's authenticity. In an

asymmetric cryptosystem a pair of distinct but mathematically related keys is used for

16



Sender: Receiver:

hash value
=?

s’’K priv K pub

asymmetric encryption asymmetric decryption

s’

m
message received messagem

s’

m

encrypted message digest s’ received encrypted digest

message digest s message digest s

message digest algorithm message digest algorithm

Figure 2: Digital signature generation and validation

encryption and decryption. One key is private and kept secret by the sender, the other

one is publicly known. Data encrypted with a sender's private key can be decrypted

using his public key, and vice versa. These keys are usually large integer numbers,

several hundred decimal digits long with special, mathematical properties. Pohlig-

Hellman and RSA are examples of asymmetric cryptosystems (see [PH78, RSA78]).

Figure 2 depicts digital signature generation and validation; a more detailed ex-

planation can be found in [Sch94, section 17.6]. The sender digitally signs data m

by encrypting the hash value s of the data using his private key component K

priv

and sends (E

K

priv

(s),m). The receiver validates the data in a three step process. He

computes the hash value s of the data m, decrypts the hash s

0

that arrived using the

signer's public key K

pub

and compares the results D

K

pub

(s

0

) and s.

Why do we calculate a message digest at all and not simply encrypt and then

transmit the whole message? The main point here is the di�erence between the

runtime costs of creating a message digest and encrypting a message, depending on

the length of the original message.

Runtime costs for public key encryption are rather high. Many CPU cycles are

needed. Therefore we want to reduce the size of the data portion that has to be

encrypted: in our case the output of the message digest algorithm.

Runtime costs for the hash functions are rather small compared to those of public

key encryption. It is therefore important to note that it is more e�cient to pad a short

DNS message, calculate its �ngerprint, and then encrypt the �ngerprint, than simply

to encrypt the whole DNS message. Message digest lengths are generally shorter than

typical DNS messages.

17



3.7.3 Passing Credentials to Prove Authority

The crucial point in the previously described protocol is the importance of the public

key of the sender. If an attacker can convince the receiver to use keyK

0

public

instead of

K

public

, whereby the attacker possesses the related K

0

private

, the attacker can subvert

the protocol such that the receiver will be fooled into accepting the integrity and

origin of the message. This demonstrates that it is important to devise a scheme

that protects against this threat. We solve this problem by the implementation of a

distributed scheme for the validation of public key component certi�cates.

The name server sending the DNS message has to provide credentials signed by its

parent domain, to convince the recipient of its authority over the domain for which

it just resolved a mapping.

The use of such a certi�cate transforms the problem of establishing the credibility

of one entity into the problem of establishing the credibility of the entity issuing

the certi�cate. This problem is very closely related to the problem of distributing

public key certi�cates. The CCITT recommendation X.509 shows a way to solve this

problem. In X.509, a certi�cate binds a public key to a directory name and identi�es

a party that vouches for the binding.

We can adopt this mechanism, such that a certi�cate binds all name servers that

are authoritative for a certain zone to this zone of authority and identi�es the zone

that vouches for the binding. X.509 imposes no constraints on the semantic or syntac-

tic relationship between a certi�cate issuer and a subject. However, in our approach,

the certi�cation system takes the form of a single rooted tree. Each node represents

a zone. Several name servers serve as certi�cation authorities for each zone, because

all servers that were introduced to increase the reliability of the database system are

capable of valid and authoritative referrals.

A certi�cate for a zone consists of all IP addresses of authoritative name servers

for that zone, signed with the private key of the name servers for the parent domain.

Any resolver that receives a DNS message receives as part of it this certi�cate. After

obtaining the public key for the parent zone of the queried zone, the resolver can then

verify the validity of the referral. But to verify the authority of the parent zone, the

resolver has to ask this zone for credentials.

This validation process for certi�cates is done recursively up the zone hierarchy

tree that coincides with the certi�cation hierarchy, starting at the name server that

provides the queried mapping. The recursion will stop at some point, either at the

root, or at some intermediate node that was certi�ed before. The certi�cates that a

name server holds are subject to timeouts, just like the resource records that specify

bindings of this name server. The certi�cate for the root must be transmitted by some

trusted, out-of-band mechanism. For example, the root certi�cate could be published

in an international newspaper.

Even if an attacker manages to get a valid certi�cate of a name server it wants

to impersonate, and has the capability to also spoof this name server's IP address, it

is still not possible for the attacker to impersonate another host. As we saw in the

18



previous paragraph 3.7.2, a DNS message is encrypted with the name server's private

key before it is sent out. The credentials are part of the message and are therefore

also encrypted. An attacker cannot construct the correctly encrypted message without

breaking the asymmetric cryptosystem used.

3.7.4 Discussion

The validation of integrity and originator of the message, and its underlying pattern

of certi�cations stating trust, are the features that make this approach secure. The

following discussion shows its disadvantages. Some of them are serious enough to

restrain from an implementation of this approach at the current time.

The whole procedure is time and space consuming. Many rather long public

keys have to be stored (at least 200 decimal digits long each to make the public key

encryption reasonably strong.) Obtaining memory for them, as well as additional

cache memory for larger resource records, is not a problem in current architectures.

The keys must be obtained before they can be used. S. Kent describes in [Ken93]

certi�cate based key management for usage in Privacy Enhanced Mail (PEM).

We will not go into more detail regarding the key distribution process. The regis-

tration process that has to occur out{of{band is rather cumbersome. The calculations

to encrypt and decrypt message digests may take too long to support the e�ciency

goal of the DNS. The additional data that has to be transmitted would not degrade

performance too badly, especially if faster transmission media becomes broadly avail-

able, but the calculation overhead for encryption and decryption cannot easily be

amortized. However, the RSA cryptosystem is available in hardware and a dramatic

performance increase can be observed, compared with a software implementation of

the same algorithms.

The implementation of such a solution is a major e�ort. The whole key man-

agement problem is complex and it also requires additional administrative e�ort.

Resolver routines and name server routines have to be modi�ed, along with the DNS

protocol. The implementation is feasible, though very complex. Another drawback is

the transition phase that is necessary because of protocol changes. Decreased perfor-

mance because of calculations necessary to sign, encrypt and decrypt messages would

be noticeable by users and real-time applications.

Currently, the method seems to be infeasible, because of its large computational

overhead. Further drawbacks are the necessary protocol changes and the complexity

of proper key and certi�cate management. However with further advances in processor

speed and some reasonable relaxation on requirements for strong encryption (i.e.

shorter keys increase performance of RSA dramatically) this approach can become

very attractive in the near future.

19



4 Conclusions and Outlook

Where host identi�cation is part of the authentication between communicating en-

tities the validity of the authentication process can only be trusted as much as the

resolution process that supplies the bindings between high{level hostnames and low{

level host addresses.

This is a signi�cant problem, because it exposes probably hundreds of thousands

of hosts that are currently connected to the Internet to the threat of break-ins.

We discussed solutions to the problem with the concrete instance of the Domain

Name System. We stressed hardening current implementations of the name servers

and put emphasis on the development of a future scheme that uses cryptographic

methods to give a strong guarantee for detection of spoofed bindings.

Acknowledgements

We would like to thank COAST sponsors BNR, Trident Data Systems, and the US

Air Force, and the Fulbright Commission for support that aided, in part, this work.

Thanks to Steven Bellovin whose valuable comments are most appreciated, Dan Trin-

kle who showed us how to master some of the subtle di�culties of the DNS, and J.R.R.

Tolkien whose fantasy provided the hostnames.

References

[Bel89] Steven M. Bellovin. Security Problems in the TCP/IP Protocol Suite. AT&T

Bell Laboratories, Murray Hill, New Jersey, April 1989.

[Bel90] Steven M. Bellovin. Using the Domain Name System for System Break-

ins. AT&T Bell Laboratories, Murray Hill, New Jersey, 1990. (unpublished

technical report).

[Bel92] Steven M. Bellovin. There Be Dragons. In UNIX Security Symposium III

Proceedings, pages 1{16, Baltimore, MD, 1992.

[Com91] Douglas E. Comer. Internetworking with TCP/IP. Prentice-Hall, Englewood

Cli�s, New Jersey, second edition, 1991.

[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley

Publishing Company, Inc., 1982.

[GS91] Simson Gar�nkel and Gene Spa�ord. Practical UNIX Security. O'Reilley &

Associates, Inc. Sebastopol, CA., 1991.

20



[Ken93] Stephen T. Kent. RFC-1422 Privacy Enhancement for Internet Elec-

tronic Mail: Part II: Certi�cate-Based Key Management. Network Working

Group, February 1993.

[Lot94] Mark Lottor. Internet Domain Survey Jan 94. SRI International, January

1994.

[Mer89] Ralph C. Merkle. Snefru. Xerox Corporation, Palo Alto, CA, 1989.

[Moc87] Paul Mockapetris. RFC-1034 Domain Names - Concepts and Facilities.

Network Working Group, November 1987.

[Mor85] R. T. Morris. A Weakness in the 4.2BSD UNIX TCP/IP Software. Com-

puting Science Technical Report No. 117, AT&T Bell Laboratories, Murray

Hill, New Jersey, February 1985.

[NBS77] NBS. Data Encryption Standard. National Bureau of Standards, Washing-

ton D.C., Jan. 1977. FIPS PUB 46.

[PH78] S. Pohlig and M. Hellman. An Improved Algorithm for Computing Loga-

rithms over GF(p) and its Cryptographic Signi�cance. IEEE Transactions

on Information Theory, IT-24(1):106{10, January 1978.

[PL91] R. Paans and H. de Lange. Auditing the SNA/SNI Environment. Computer

& Security, 10(3):251{61, May 1991.

[Riv92] Ronald L. Rivest. RFC-1321 The MD5 Message-Digest Algorithm. Network

Working Group, April 1992.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital

Signatures and Public Key Cryptosystems. Communications of the ACM,

21(2):120{6, February 1978.

[Sch93] Christoph L. Schuba. Addressing Weaknesses in the Domain Name System

Protocol. Master's thesis, Purdue University, West Lafayette, IN, August

1993.

[Sch94] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., 1994.

[Ste90] Richard W. Stevens. UNIX Network Programming. Prentice-Hall, Engle-

wood Cli�s, New Jersey, 1990.

[Tol65] John R. R. Tolkien. The Lord of the Rings. Houghton Mi�in, Boston,

second edition, 1965.

21


