This is encode.c in view mode; [Download] [Up]
static char rcsid[] = "@(#)$Id: encode.c,v 5.2 1992/12/07 02:34:56 syd Exp $"; /******************************************************************************* * The Elm Mail System - $Revision: 5.2 $ $State: Exp $ * * Copyright (c) 1988-1992 USENET Community Trust * Copyright (c) 1986,1987 Dave Taylor ******************************************************************************* * Bug reports, patches, comments, suggestions should be sent to: * * Syd Weinstein, Elm Coordinator * elm@DSI.COM dsinc!elm * ******************************************************************************* * $Log: encode.c,v $ * Revision 5.2 1992/12/07 02:34:56 syd * Traditional C used 'unsigned preserving' rules when an integral data * value is widened to integer and ANSI C changed the rules to 'value * preserving'. This is one of the few things that the ANSI X3J11 comitte * did that might break existing programs. Casting to (int) * From: Bo.Asbjorn.Muldbak <bam@jutland.ColumbiaSC.NCR.COM> * * Revision 5.1 1992/10/03 22:58:40 syd * Initial checkin as of 2.4 Release at PL0 * * ******************************************************************************/ /** This is a heavily mangled version of the 'cypher' program written by person or persons unknown. **/ #include "headers.h" #include "s_elm.h" #define RTRSZ 94 #define RN 4 #define RMASK 0x7fff /* use only 15 bits */ /* * NOTICE: Some systems take a char as a signed value, * a byte wide int. For encryption to work you * absolutely need an unsigned char !! * According to K&R2 and ANSI it is always * permissible to specify unsigned with char. * (ukkonen@csc.fi) */ static unsigned char r[RTRSZ][RN]; /* rotors */ static unsigned char ir[RTRSZ][RN]; /* inverse rotors */ static unsigned char h[RTRSZ]; /* half rotor */ static unsigned char s[RTRSZ]; /* shuffle vector */ static int p[RN]; /* rotor indices */ static unsigned char the_key[SLEN]; /* unencrypted key */ static unsigned char *encrypted_key; /* encrypted key */ char *strncpy(), *strcpy(); unsigned long sleep(); static char *decrypt_prompt = NULL; static char *first_enc_prompt = NULL; static char *second_enc_prompt = NULL; #define PROMPT_LINE LINES-1 getkey(send) int send; { /** this routine prompts for and returns an encode/decode key for use in the rest of the program. **/ char buffer[2][NLEN]; if (decrypt_prompt == NULL) { decrypt_prompt = catgets(elm_msg_cat, ElmSet, ElmDecryptPrompt, "Enter decryption key: "); first_enc_prompt = catgets(elm_msg_cat, ElmSet, ElmFirstEncryptPrompt, "Enter encryption key: "); second_enc_prompt = catgets(elm_msg_cat, ElmSet, ElmSecondEncryptPrompt, "Please enter it again: "); } while (1) { PutLine0(PROMPT_LINE, 0, (send ? first_enc_prompt : decrypt_prompt)); CleartoEOLN(); optionally_enter(buffer[0], PROMPT_LINE, strlen(send ? first_enc_prompt : decrypt_prompt), FALSE, TRUE); if (send) { PutLine0(PROMPT_LINE, 0, second_enc_prompt); CleartoEOLN(); optionally_enter(buffer[1], PROMPT_LINE, strlen(second_enc_prompt), FALSE, TRUE); if(strcmp(buffer[0], buffer[1]) != 0) { error(catgets(elm_msg_cat, ElmSet, ElmKeysNotSame, "Your keys were not the same!")); sleep(1); clear_error(); continue; } } break; } strcpy((char *) the_key, buffer[0]); /* save unencrypted key */ makekey(buffer[0]); setup(); /** initialize the rotors etc. **/ ClearLine(PROMPT_LINE); clear_error(); } get_key_no_prompt() { /** This performs the same action as get_key, but assumes that the current value of 'the_key' is acceptable. This is used when a message is encrypted twice... **/ char buffer[SLEN]; strcpy(buffer, (char *) the_key); makekey( buffer ); setup(); } encode(line) char *line; { /** encrypt or decrypt the specified line. Uses the previously entered key... **/ register int i, j, ph = 0; for (; *line; line++) { i = (int) *line; if ( (i >= ' ') && (i < '~') ) { i -= ' '; for ( j = 0; j < RN; j++ ) /* rotor forwards */ i = r[(i+p[j])%RTRSZ][j]; i = (((int)h[(i+ph)%RTRSZ])-ph+RTRSZ)%RTRSZ; /* half rotor */ for ( j-- ; j >= 0; j-- ) /* rotor backwards */ i = ((int)ir[i][j]+RTRSZ-p[j])%RTRSZ; j = 0; /* rotate rotors */ p[0]++; while ( p[j] == RTRSZ ) { p[j] = 0; j++; if ( j == RN ) break; p[j]++; } if ( ++ph == RTRSZ ) ph = 0; i += ' '; } *line = (char) i; /* replace with altered one */ } } makekey( rkey) char *rkey; { /** encrypt the key using the system routine 'crypt' **/ static char key[9]; char salt[2]; unsigned char *crypt(); strncpy( key, rkey, 8); key[8] = '\0'; salt[0] = key[0]; salt[1] = key[1]; #ifdef CRYPT encrypted_key = crypt( key, salt); #else encrypted_key = (unsigned char *) key; #endif } /* * shuffle rotors. * shuffle each of the rotors indiscriminately. shuffle the half-rotor * using a special obvious and not very tricky algorithm which is not as * sophisticated as the one in crypt(1) and Oh God, I'm so depressed. * After all this is done build the inverses of the rotors. */ setup() { register long i, j, k, temp; long seed; for ( j = 0; j < RN; j++ ) { p[j] = 0; for ( i = 0; i < RTRSZ; i++ ) r[i][j] = i; } seed = 123; for ( i = 0; i < 13; i++) /* now personalize the seed */ seed = (seed*encrypted_key[i] + i) & RMASK; for ( i = 0; i < RTRSZ; i++ ) /* initialize shuffle vector */ h[i] = s[i] = i; for ( i = 0; i < RTRSZ; i++) { /* shuffle the vector */ seed = (5 * seed + encrypted_key[i%13]) & RMASK;; k = ((seed % 65521) & RMASK) % RTRSZ; temp = s[k]; s[k] = s[i]; s[i] = temp; } for ( i = 0; i < RTRSZ; i += 2 ) { /* scramble the half-rotor */ temp = h[s[i]]; /* swap rotor elements ONCE */ h[s[i]] = h[s[i+1]]; h[s[i+1]] = temp; } for ( j = 0; j < RN; j++) { /* select a rotor */ for ( i = 0; i < RTRSZ; i++) { /* shuffle the vector */ seed = (5 * seed + encrypted_key[i%13]) & RMASK;; k = ((seed % 65521) & RMASK) % RTRSZ; temp = r[i][j]; r[i][j] = r[k][j]; r[k][j] = temp; } for ( i = 0; i < RTRSZ; i++) /* create inverse rotors */ ir[r[i][j]][j] = i; } }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.