
IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

NAME
imintro - general information on the SDSC image library

SYNOPSIS
#include "im.h"

cc flags files -lsdsc -lim

DESCRIPTION
The SDSC Image Library libim.a is a collection of portable C-language image manipulation tools. These
tools allow image files in a variety of formats to be read in and written out and images to be manipulated
while in memory. Manipulations include rotating, scaling, filtering, converting to/from RGB and gray-
scale, cutting out pieces of images, changing color lookup tables, rolling color lookup tables, and so on.

The SDSC Image Library is made up of three sets of routines:

ImVfb Manipulates Virtual Frame Buffers (images) while in memory
ImClt Manipulates Color Lookup Tables while in memory
ImFile Reads and writes image files and streams

Each of these is discussed in sections that follow.

VIRTUAL FRAME BUFFERS
Many visualization tools operate on frame buffers either to convert them from one metafile representation
to another or to manipulate images, such as by clipping, filtering, or transformation. Each tool program
requires some internal data structure. It is desirable for all such programs to use the same internal
structure to allow sharing of techniques and code between applications. This shared data structure is
called a virtual frame buffer.

Virtual Frame Buffer Design Goals
• The data structure must be able to store all necessary pieces of frame buffer information. This includes

red, green, blue, color index, z-value, alpha-value, scalar data, as well as others.

• The data structure must be extensible to be able to hold more information when new situations arise.

• Programs must support multiple virtual frame buffers.

• The data structure should be as compact as possible, avoiding paging through a virtual frame buffer as
much as possible.

• The data structure should only be visible inside of an application. Because we may want to change the
internal format in the future, its structure should be hidden from the application with macros and
procedure calls. It makes more sense for an application to query a red value from a pixel location in a
virtual frame buffer with

r = ImVfbQRed(v,p);

instead of

r = ∗ ((unsigned char ∗) (p + v->v_roff));

In the former case, a change to the definition of ImVfbQRed would require only a recompilation of the
tools that use the redefinition.

San Diego Supercomputer Center Last change: September 24, 1991 1

IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

• For efficiency, pointer arithmetic should be used to address pixels. Thus, constructs like the following
should be possible when setting pixel color values:

ImVfb ∗ v;
ImVfbPtr p, p1, p2;

int x1, y1, x2, y2;

...

p1 = ImVfbQPtr(v, x1, y1);

p2 = ImVfbQPtr(v, x2, y2);

for(p = p1; p <= p2; ImVfbSInc(v,p))

{

ImVfbSRed(v, p, 64);

ImVfbSGreen(v, p, 128);

ImVfbSBlue(v, p, 255);

}

Allocating a Virtual Frame Buffer
A virtual frame buffer is allocated with a call to

ImVfb ∗ v;
...

v = ImVfbAlloc(width, height, fields);

where fields defines what information each pixel will hold. This value is specified by or’ing together one
or more of the following:

Constant Meaning__
IMVFBRGB Stores red, green, blue values (0-255)
IMVFBALPHA Stores an alpha value (0-255)
IMVFBWPROT Stores a write protection (0 or non-zero)
IMVFBINDEX8 Stores a color index (0-255)
IMVFBINDEX16 Stores a color index (0-65534)
IMVFBMONO Stores a monochrome (on/off) value
IMVFBZ Stores a z-value (full integer)
IMVFBGRAY Stores a gray scale value (0-255)
IMVFBGREY Stores a gray scale value (0-255)
IMVFBIDATA Stores an integer data value
IMVFBFDATA Stores a floating-point data value

ImVfbAlloc allocates enough memory to hold such a frame buffer and sets up some internal information.

Information about a particular virtual frame buffer can be Set with

Call Meaning___
ImVfbSClt(v,c) Attach (set) a pointer to a color lookup table

Information about a particular virtual frame buffer can be Queried with

2 Last change: September 24, 1991 San Diego Supercomputer Center

IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

Call Meaning__
ImVfbQWidth(v) Returns the number of columns
ImVfbQHeight(v) Returns the number of rows
ImVfbQFields(v) Returns the fields mask
ImVfbQNBytes(v) Returns the number of bytes per pixel
ImVfbQClt(v) Returns a pointer to the color lookup table

Freeing a Virtual Frame Buffer
A virtual frame buffer’s memory can be freed (deallocated) with a call to

ImVfb ∗ v;
...

ImVfbFree(v);

Per-Pixel Storage
The per-pixel storage is a packed array of values. The storage convention assumes that the top row is row
#0 and the left column is column #0. Pixels are stored like C-language 2D arrays: left-to-right across the
row. Various values can be Set into a particular pixel (pointed to by a pixel pointer) within a particular
virtual frame buffer by

Call Meaning__
ImVfbSRed(v,p,r) Red (byte)
ImVfbSGreen(v,p,g) Green (byte)
ImVfbSBlue(v,p,b) Blue (byte)
ImVfbSAlpha(v,p,a) Alpha-value (byte)
ImVfbSIndex8(v,p,i8) Color index (byte)
ImVfbSIndex16(v,p,i32) Color index (integer)
ImVfbSMono(v,p,m) Monochromatic value (zero or one)
ImVfbSIndex(v,p,i) ImVfbSIndex8 or ImVfbSIndex16
ImVfbSZ(v,p,z) Z-value (integer)
ImVfbSGray(v,p,g) Gray scale (byte)
ImVfbSGrey(v,p,g) Gray scale (byte)
ImVfbSFData(v,p,f) Floating-point data value
ImVfbSIData(v,p,i) Integer data value

Various pixel values can be Queried within a particular virtual frame buffer by

Call Meaning___
ImVfbQRed(v,p) Red (byte)
ImVfbQGreen(v,p) Green (byte)
ImVfbQBlue(v,p) Blue (byte)
ImVfbQAlpha(v,p) Alpha-value (byte)
ImVfbQIndex8(v,p) Color index (byte)
ImVfbQIndex16(v,p) Color index (integer)
ImVfbQMono(v,p,m) Monochromatic value (zero or one)
ImVfbQIndex(v,p) ImVfbQIndex8 or ImVfbQIndex16
ImVfbQZ(v,p) Z-value (integer)

San Diego Supercomputer Center Last change: September 24, 1991 3

IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

ImVfbQGray(v,p) Gray scale (byte)
ImVfbQGrey(v,p) Gray scale (byte)
ImVfbQFData(v,p) Floating-point data value
ImVfbQIData(v,p) Integer data value

Pixel pointers can be Queried and Set by

Call Meaning___
ImVfbQPtr(v,x,y) Returns a pointer to a particular pixel
ImVfbQFirst(v) Returns a pointer to the first (UL) pixel
ImVfbQLast(v) Returns a pointer to the last (LR) pixel
ImVfbQLeft(v,p) Returns a pointer to a pixel one column left
ImVfbQRight(v,p) Returns a pointer to a pixel one column right
ImVfbQUp(v,p) Returns a pointer to a pixel one row up
ImVfbQDown(v,p) Returns a pointer to a pixel one row down
ImVfbQNext(v,p) Same as ImVfbQRight(v,p)
ImVfbQPrev(v,p) Same as ImVfbQLeft(v,p)
ImVfbSInc(v,p) Same as p = ImVfbQRight(v,p)
ImVfbSDec(v,p) Same as p = ImVfbQLeft(v,p)

The pixel just to the ImVfbQRight of the right-most pixel in a scanline is the left-most pixel in the next
scanline down. The pixel just to the ImVfbQLeft of the left-most pixel in a scanline is the last pixel in the
previous scanline. No automatic wraparound occurs between the last pixel and the first pixel in the frame
buffer.

COLOR LOOKUP TABLES
A color lookup table (CLT) is an ordered list of colors. Each color is represented by three 8-bit values.
The first value gives the Red component, the second the Green, and the third the Blue component of the
color. The triplet is often referred to as an "RGB" value.

Images generally come in two types: pseudo-color and true-color. True-color images store the RGB
triplet for each pixel in the image itself. Pseudo-color images store an index into a color table. The RGB
triplet for the pixel’s color is found at that indexed location in the associated color table.

Allocating a Color Lookup Table
A color lookup table is allocated with a call to

ImClt ∗ c;
...

c = ImCltAlloc(numColors);

where numColors indicate how many color entries are to be allocated. Each color entry contains 8 bits of
red, 8 bits of green, and 8 bits of blue.

Freeing a Color Lookup Table
A color lookup table’s memory can be freed (deallocated) with a call to

ImClt ∗ c;
...

ImCltFree(c);

4 Last change: September 24, 1991 San Diego Supercomputer Center

IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

Freeing a virtual frame buffer with ImVfbFree does not free its color lookup table, if it has one.

Per-Color Storage
Information is Queried from a color lookup table by

Call Meaning__
ImCltQNColors(c) Queries the number of colors in this ImClt
ImCltQRed(p) Queries the Red component of a ImClt entry
ImCltQGreen(p) Queries the Green component of a ImClt entry
ImCltQBlue(p) Queries the Blue component of a ImClt entry

where c is the specific color lookup table and p is the pointer to a ImClt location.

Information is Set into a color lookup table by

Call Meaning___
ImCltSRed(p,r) Sets the Red component of a ImClt entry
ImCltSGreen(p,g) Sets the Green component of a ImClt entry
ImCltSBlue(p,b) Sets the Blue component of a ImClt entry

A color lookup table can be attached to a particular virtual frame buffer by

ImVfbSClt(v, c) ;

ImVfbQClt(v) can later be used to Query the pointer to the ImClt.

ImClt pointer values can be Queried and Set by

Call Meaning__
ImCltQPtr(c,i) Returns a pointer to a particular ImClt location
ImCltQFirst(c) Returns a pointer to the first ImClt location
ImCltQLast(c) Returns a pointer to the last ImClt location
ImCltQNext(c,p) Returns a pointer to the next ImClt location
ImCltQPrev(c,p) Returns a pointer to the previous ImClt location
ImCltSInc(c,p) Same as p = ImCltQNext(c,p)
ImCltSDec(c,p) Same as p = ImCltQPrev(c,p)

IMAGE FILE I/O
Image files are files that contain zero or more images, zero or more color lookup tables, and zero or more
other pieces of data such as the image‘s title, date of creation, and so on. Such image files are often the
output of proprietary graphics packages, such as Alias or Wavefront, or are graphics vendor standard
storage formats, such as Sun’s Rasterfile or Pixar’s PIC file. Many public domain graphics packages also
support their own image file formats, such as the Utah Raster Toolkit’s RLE format, or the X Window
System’s XWD format.

The ImFile routines of the SDSC image library recognize many of these formats and may be used to read
an image file into a tag table of virtual frame buffers, color lookup tables, and so on.

Reading an Image File
An image file may be read into a tag table with a call to ImFileRead or ImFileFRead:

ImFileRead(fd, format, flagsTable, dataTable);

ImFileFRead(fp, format, flagsTable, dataTable);

where fd is a UNIX file descriptor, fp is a UNIX FILE pointer, format is the name of the recognized
formats (see ImFileRead(3IM) for a list), flagsTable is a table of input control flags, and dataTable is the

San Diego Supercomputer Center Last change: September 24, 1991 5

IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

table to fill with tag-value pairs of data read in from the file.

For both read calls, the input may be either a file or a pipe.

Writing an Image File
An image file may be written out from a tag table with a call to ImFileWrite or ImFileFWrite:

ImFileWrite(fd, format, flagsTable, dataTable);

ImFileFWrite(fp, format, flagsTable, dataTable);

where fd is a UNIX file descriptor, fp is a UNIX FILE pointer, format is the name of the recognized
formats (see ImFileWrite(3IM) for a list), flagsTable is a table of output control flags, and dataTable is the
table of tag-value pairs of data to be written out to the file.

For both write calls, the output may be either a file or a pipe.

NOTES
Frame buffer information can be allocated either on a per-pixel or on a per-plane basis. The per-pixel basis
is better to reduce paging. The per-plane allocation is better to reduce overall storage. For a per-pixel
allocation, one might call

v = ImVfbAlloc(1280, 1024, IMVFBRGB | IMVFBZ);

For a per-plane allocation, one might call

vc = ImVfbAlloc(1280, 1024, IMVFBRGB);

vz = ImVfbAlloc(1280, 1024, IMVFBZ);

RETURNED VALUES
Many of the image library procedures return values that are pointers to a new ImVfb or ImClt. For Vfb
routines, the source Vfb, sourceVfb, is used as an input frame buffer. If the value of destVfb is equal to
IMVFBNEW, then an entirely new Vfb will be created and returned. Otherwise, the Vfb indicated by
destVfb is modified and the value of destVfb is returned. sourceVfb and destVfb can be the same Vfb
without negative side effects.

For ImClt routines, the source ImClt, sourceClt, is used as an input lookup table. If the value of destClt is
equal to IMCLTNEW, then an entirely new ImClt will be created and returned. Otherwise, the ImClt
indicated by destClt is modified and the value of destClt is returned. sourceClt, and destClt can be the
same ImClt without negative side effects.

RETURNS
On an error, calls returning pointers to ImVfb structures return IMVFBNULL, calls returning ImClt
structures return IMCLTNULL, and character string functions return NULL. Non-pointer functions
return a -1 on errors.

In all cases, on an error, the global ImErrNo is set to an error code indicating the cause of the error. A
description of the error can be printed with ImPError (3IM).

SUMMARY OF IM ROUTINES
char ∗ ImFileQFFormat(fp, fileName)

6 Last change: September 24, 1991 San Diego Supercomputer Center

IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

char ∗ ImFileQFormat(fd, fileName)
char ∗ ImQError()

ImClt ∗ ImCltAlloc(numColors)
ImClt ∗ ImCltDup(srcClt)

void ImCltFree(srcClt)
int ImCltQBlue(p)

ImCltPtr ImCltQFirst(srcClt)
int ImCltQGreen(p)

ImCltPtr ImCltQLast(srcClt)
int ImCltQNColors(srcClt)

ImCltPtr ImCltQNext(srcClt, p)
ImCltPtr ImCltQPrev(srcClt, p)
ImCltPtr ImCltQPtr(srcClt, i)

int ImCltQRed(p)
void ImCltSBlue(p, b)
void ImCltSDec(srcClt, p)
void ImCltSGreen(p, g)
void ImCltSInc(srcClt, p)
void ImCltSRed(p, r)

int ImFileFRead(fp, "gif", flagsTable, dataTable)
int ImFileFRead(fp, "hdf", flagsTable, dataTable)
int ImFileFRead(fp, "icon", flagsTable, dataTable)
int ImFileFRead(fp, "iff", flagsTable, dataTable)
int ImFileFRead(fp, "mpnt", flagsTable, dataTable)
int ImFileFRead(fp, "pbm", flagsTable, dataTable)
int ImFileFRead(fp, "pcx", flagsTable, dataTable)
int ImFileFRead(fp, "pgm", flagsTable, dataTable)
int ImFileFRead(fp, "pic", flagsTable, dataTable)
int ImFileFRead(fp, "pict", flagsTable, dataTable)
int ImFileFRead(fp, "pix", flagsTable, dataTable)
int ImFileFRead(fp, "pnm", flagsTable, dataTable)
int ImFileFRead(fp, "ppm", flagsTable, dataTable)
int ImFileFRead(fp, "ras", flagsTable, dataTable)
int ImFileFRead(fp, "rgb", flagsTable, dataTable)
int ImFileFRead(fp, "rla", flagsTable, dataTable)
int ImFileFRead(fp, "rle", flagsTable, dataTable)
int ImFileFRead(fp, "rpbm", flagsTable, dataTable)
int ImFileFRead(fp, "rpgm", flagsTable, dataTable)
int ImFileFRead(fp, "rpnm", flagsTable, dataTable)
int ImFileFRead(fp, "rppm", flagsTable, dataTable)
int ImFileFRead(fp, "synu", flagsTable, dataTable)
int ImFileFRead(fp, "tiff", flagsTable, dataTable)
int ImFileFRead(fp, "x", flagsTable, dataTable)
int ImFileFRead(fp, "xbm", flagsTable, dataTable)
int ImFileFRead(fp, "xwd", flagsTable, dataTable)
int ImFileFRead(fp, format, flagsTable, dataTable)

San Diego Supercomputer Center Last change: September 24, 1991 7

IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

int ImFileFWrite(fp, "eps", flagsTable, dataTable)
int ImFileFWrite(fp, "gif", flagsTable, dataTable)
int ImFileFWrite(fp, "hdf", flagsTable, dataTable)
int ImFileFWrite(fp, "icon", flagsTable, dataTable)
int ImFileFWrite(fp, "iff", flagsTable, dataTable)
int ImFileFWrite(fp, "mpnt", flagsTable, dataTable)
int ImFileFWrite(fp, "pbm", flagsTable, dataTable)
int ImFileFWrite(fp, "pcx", flagsTable, dataTable)
int ImFileFWrite(fp, "pgm", flagsTable, dataTable)
int ImFileFWrite(fp, "pic", flagsTable, dataTable)
int ImFileFWrite(fp, "pict", flagsTable, dataTable)
int ImFileFWrite(fp, "pix", flagsTable, dataTable)
int ImFileFWrite(fp, "pnm", flagsTable, dataTable)
int ImFileFWrite(fp, "ppm", flagsTable, dataTable)
int ImFileFWrite(fp, "ps", flagsTable, dataTable)
int ImFileFWrite(fp, "ras", flagsTable, dataTable)
int ImFileFWrite(fp, "rgb", flagsTable, dataTable)
int ImFileFWrite(fp, "rla", flagsTable, dataTable)
int ImFileFWrite(fp, "rle", flagsTable, dataTable)
int ImFileFWrite(fp, "rpbm", flagsTable, dataTable)
int ImFileFWrite(fp, "rpgm", flagsTable, dataTable)
int ImFileFWrite(fp, "rpnm", flagsTable, dataTable)
int ImFileFWrite(fp, "rppm", flagsTable, dataTable)
int ImFileFWrite(fp, "synu", flagsTable, dataTable)
int ImFileFWrite(fp, "tiff", flagsTable, dataTable)
int ImFileFWrite(fp, "x", flagsTable, dataTable)
int ImFileFWrite(fp, "xbm", flagsTable, dataTable)
int ImFileFWrite(fp, "xwd", flagsTable, dataTable)
int ImFileFWrite(fp, format, flagsTable, dataTable)
int ImFileFormatEquivs(baseNEquivs, baseEquivs, totalEquivs)
int ImFileFormatOptions(baseNOptions, baseOptions, totalOptions)
int ImFileQNFormat()
int ImFileRead(fd, "gif", flagsTable, dataTable)
int ImFileRead(fd, "hdf", flagsTable, dataTable)
int ImFileRead(fd, "icon", flagsTable, dataTable)
int ImFileRead(fd, "iff", flagsTable, dataTable)
int ImFileRead(fd, "mpnt", flagsTable, dataTable)
int ImFileRead(fd, "pbm", flagsTable, dataTable)
int ImFileRead(fd, "pcx", flagsTable, dataTable)
int ImFileRead(fd, "pgm", flagsTable, dataTable)
int ImFileRead(fd, "pic", flagsTable, dataTable)
int ImFileRead(fd, "pict", flagsTable, dataTable)
int ImFileRead(fd, "pix", flagsTable, dataTable)
int ImFileRead(fd, "pnm", flagsTable, dataTable)
int ImFileRead(fd, "ppm", flagsTable, dataTable)
int ImFileRead(fd, "ras", flagsTable, dataTable)

8 Last change: September 24, 1991 San Diego Supercomputer Center

IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

int ImFileRead(fd, "rgb", flagsTable, dataTable)
int ImFileRead(fd, "rla", flagsTable, dataTable)
int ImFileRead(fd, "rle", flagsTable, dataTable)
int ImFileRead(fd, "rpbm", flagsTable, dataTable)
int ImFileRead(fd, "rpgm", flagsTable, dataTable)
int ImFileRead(fd, "rpnm", flagsTable, dataTable)
int ImFileRead(fd, "rppm", flagsTable, dataTable)
int ImFileRead(fd, "synu", flagsTable, dataTable)
int ImFileRead(fd, "tiff", flagsTable, dataTable)
int ImFileRead(fd, "x", flagsTable, dataTable)
int ImFileRead(fd, "xbm", flagsTable, dataTable)
int ImFileRead(fd, "xwd", flagsTable, dataTable)
int ImFileRead(fd, format, flagsTable, dataTable)
int ImFileWrite(fd, "eps", flagsTable, dataTable)
int ImFileWrite(fd, "gif", flagsTable, dataTable)
int ImFileWrite(fd, "hdf", flagsTable, dataTable)
int ImFileWrite(fd, "icon", flagsTable, dataTable)
int ImFileWrite(fd, "iff", flagsTable, dataTable)
int ImFileWrite(fd, "mpnt", flagsTable, dataTable)
int ImFileWrite(fd, "pbm", flagsTable, dataTable)
int ImFileWrite(fd, "pcx", flagsTable, dataTable)
int ImFileWrite(fd, "pgm", flagsTable, dataTable)
int ImFileWrite(fd, "pic", flagsTable, dataTable)
int ImFileWrite(fd, "pict", flagsTable, dataTable)
int ImFileWrite(fd, "pix", flagsTable, dataTable)
int ImFileWrite(fd, "pnm", flagsTable, dataTable)
int ImFileWrite(fd, "ppm", flagsTable, dataTable)
int ImFileWrite(fd, "ps", flagsTable, dataTable)
int ImFileWrite(fd, "ras", flagsTable, dataTable)
int ImFileWrite(fd, "rgb", flagsTable, dataTable)
int ImFileWrite(fd, "rla", flagsTable, dataTable)
int ImFileWrite(fd, "rle", flagsTable, dataTable)
int ImFileWrite(fd, "rpbm", flagsTable, dataTable)
int ImFileWrite(fd, "rpgm", flagsTable, dataTable)
int ImFileWrite(fd, "rpnm", flagsTable, dataTable)
int ImFileWrite(fd, "rppm", flagsTable, dataTable)
int ImFileWrite(fd, "synu", flagsTable, dataTable)
int ImFileWrite(fd, "tiff", flagsTable, dataTable)
int ImFileWrite(fd, "x", flagsTable, dataTable)
int ImFileWrite(fd, "xbm", flagsTable, dataTable)
int ImFileWrite(fd, "xwd", flagsTable, dataTable)
int ImFileWrite(fd, format, flagsTable, dataTable)

void ImPError(str)
ImVfb ∗ ImVfbAlloc(width, height, fields)
ImVfb ∗ ImVfbCopy(srcVfb, srcXLeft, srcYTop, srcDX, srcDY, fieldMask, dstVfb, dstXLeft, dstYTop)
ImVfb ∗ ImVfbDup(srcVfb)

San Diego Supercomputer Center Last change: September 24, 1991 9

IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

ImVfb ∗ ImVfbFlip(srcVfb, flipDirection, dstVfb)
void ImVfbFree(srcVfb)

int ImVfbQAlpha(srcVfb, p)
int ImVfbQBlue(srcVfb, p)

ImClt ∗ ImVfbQClt(srcVfb)
ImVfbPtr ImVfbQDown(srcVfb, p)

float ImVfbQFData(srcVfb, p)
int ImVfbQFields(srcVfb)

ImVfbPtr ImVfbQFirst(srcVfb)
int ImVfbQGray(srcVfb, p)
int ImVfbQGreen(srcVfb, p)
int ImVfbQGrey(srcVfb, p)
int ImVfbQHeight(srcVfb)
int ImVfbQIData(srcVfb, p)
int ImVfbQIndex(srcVfb, p)
int ImVfbQIndex16(srcVfb, p)
int ImVfbQIndex8(srcVfb, p)

ImVfbPtr ImVfbQLast(srcVfb)
ImVfbPtr ImVfbQLeft(srcVfb, p)

int ImVfbQNBytes(srcVfb)
ImVfbPtr ImVfbQNext(srcVfb, p)
ImVfbPtr ImVfbQPrev(srcVfb, p)
ImVfbPtr ImVfbQPtr(srcVfb, x, y)

int ImVfbQRed(srcVfb, p)
ImVfbPtr ImVfbQRight(srcVfb, p)
ImVfbPtr ImVfbQUp(srcVfb, p)

int ImVfbQWidth(srcVfb)
int ImVfbQZ(srcVfb, p)

ImVfb ∗ ImVfbResize(srcVfb, algorithm, dstVfb, width, height)
void ImVfbSAlpha(srcVfb, p, a)
void ImVfbSBlue(srcVfb, p, b)
void ImVfbSClt(srcVfb, clt)
void ImVfbSDec(srcVfb, p)
void ImVfbSFData(srcVfb, p, f)
void ImVfbSGray(srcVfb, p, g)
void ImVfbSGreen(srcVfb, p, g)
void ImVfbSGrey(srcVfb, p, g)
void ImVfbSIData(srcVfb, p, i)
void ImVfbSInc(srcVfb, p)
void ImVfbSIndex(srcVfb, p, i)
void ImVfbSIndex16(srcVfb, p, i32)
void ImVfbSIndex8(srcVfb, p, i8)
void ImVfbSRed(srcVfb, p, r)
void ImVfbSZ(srcVfb, p, z)

ImVfb ∗ ImVfbToGray(srcVfb, dstVfb)
ImVfb ∗ ImVfbToGrey(srcVfb, dstVfb)

10 Last change: September 24, 1991 San Diego Supercomputer Center

IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

ImVfb ∗ ImVfbToIndex16(srcVfb, dstVfb)
ImVfb ∗ ImVfbToIndex8(srcVfb, dstVfb)
ImVfb ∗ ImVfbToMono(srcVfb, threshold, dstVfb)
ImVfb ∗ ImVfbToRgb(srcVfb, dstVfb)

AUTHORS
Mike Bailey, T. Todd Elvins, and Dave Nadeau,
with Don Doering, Jesus Ferrer, Soraya Gonzalez, Jim McLeod, Phil Mercurio, John Moreland,
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 11

IMINTRO (3IM) SDSC IMAGE LIBRARY IMINTRO (3IM)

Notes

12 Last change: September 24, 1991 San Diego Supercomputer Center

IMCLTALLOC (3IM) SDSC IMAGE LIBRARY IMCLTALLOC (3IM)

NAME
ImCltAlloc - allocate a color lookup table

SYNOPSIS
#include "im.h"

ImClt ∗∗ ImCltAlloc(numColors)
int numColors ;

DESCRIPTION
ImCltAlloc allocates a color lookup table with numColors entries and returns a pointer to the new ImClt.
Each color lookup table entry represents a color using 8 bits of red, 8 bits of green, and 8 bits of blue.

The new color table is not initialized (colors will be random).

NOTES
Color lookup table entries are accessed by obtaining a pointer to a specific entry using

Macro Meaning__
ImCltQPtr(c, i) Returns a pointer to a particular ImClt entry

ImCltQFirst(c) Returns a pointer to the first ImClt entry
ImCltQLast(c) Returns a pointer to the last ImClt entry

ImCltQNext(c, p) Returns a pointer to the next ImClt entry
ImCltQPrev(c, p) Returns a pointer to the previous ImClt entry

ImCltSInc(c, p) Same as p = ImCltQNext(c, p)
ImCltSDec(c, p) Same as p = ImCltQPrev(c, p)

where c is the specific color lookup table, i is an entry number (first entry is entry number 0), and p is a
pointer to a ImClt entry.

Using an ImClt entry pointer, entries in a color lookup table may be set and queried using:

Macro Meaning__
ImCltSRed(p, r) Sets red component of a ImClt location
ImCltQRed(p) Queries the red component of a ImClt location

ImCltSGreen(p, g) Sets green component of a ImClt location
ImCltQGreen(p) Queries the green component of a ImClt location

ImCltSBlue(p, b) Sets blue component of a ImClt location
ImCltQBlue(p) Queries the blue component of a ImClt location

The number of entries in a color lookup table may queried using:

Macro Meaning___
ImCltQNColors(c) Queries the number of colors in this ImClt

A color lookup table may be attached to a virtual frame buffer (see ImVfbAlloc(3IM)). To attach (set) the
virtual frame buffer’s color lookup table, use ImVfbSClt(3IM). To query a virtual frame buffer’s currently
attached color lookup table, use ImVfbQClt(3IM).

San Diego Supercomputer Center Last change: September 24, 1991 13

IMCLTALLOC (3IM) SDSC IMAGE LIBRARY IMCLTALLOC (3IM)

Macro Meaning___
ImVfbSClt(v, c) Attaches (set) the ImClt for an ImVfb
ImVfbQClt(v) Queries the ImClt for an ImVfb

RETURNS
Upon success, ImCltAlloc returns a new ImClt. On failure, IMCLTNULL is returned and ImErrNo set
to the following:

IMEMALLOC Cannot allocate enough memory for the new ImClt

SEE ALSO
ImIntro (3IM), ImErrNo (3IM), ImCltDup (3IM), ImCltFree (3IM), ImCltGrayRamp (3IM),
ImCltQBlue (3IM), ImCltQFirst (3IM), ImCltQGreen (3IM), ImCltQLast (3IM), ImCltQNColors
(3IM), ImCltQNext (3IM), ImCltQPrev (3IM), ImCltQPtr (3IM), ImCltQRed (3IM), ImCltSBlue
(3IM), ImCltSDec (3IM), ImCltSGreen (3IM), ImCltSInc (3IM), ImCltSRed (3IM), ImVfbQClt (3IM),
ImVfbSClt (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

14 Last change: September 24, 1991 San Diego Supercomputer Center

IMCLTDUP (3IM) SDSC IMAGE LIBRARY IMCLTDUP (3IM)

NAME
ImCltDup - duplicate a color lookup table

SYNOPSIS
#include "im.h"

ImClt ∗∗ ImCltDup(srcClt)
ImClt ∗∗ srcClt ;

DESCRIPTION
ImCltDup duplicates a color lookup table srcClt and returns a pointer to the new ImClt. The srcClt is not
changed by this operation.

RETURNS
Upon success, ImCltDup returns a new ImClt. On failure, IMCLTNULL is returned and ImErrNo set to
one of the following:

IMEMALLOC Cannot allocate enough memory for the new ImClt

SEE ALSO
ImIntro (3IM), ImErrNo (3IM), ImCltAlloc (3IM), ImCltFree (3IM), ImCltGrayRamp (3IM),
ImCltQBlue (3IM), ImCltQFirst (3IM), ImCltQGreen (3IM), ImCltQLast (3IM), ImCltQNColors
(3IM), ImCltQNext (3IM), ImCltQPrev (3IM), ImCltQPtr (3IM), ImCltQRed (3IM), ImCltSBlue
(3IM), ImCltSDec (3IM), ImCltSGreen (3IM), ImCltSInc (3IM), ImCltSRed (3IM), ImVfbQClt (3IM),
ImVfbSClt (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 15

IMCLTDUP (3IM) SDSC IMAGE LIBRARY IMCLTDUP (3IM)

Notes

16 Last change: September 24, 1991 San Diego Supercomputer Center

IMCLTFREE (3IM) SDSC IMAGE LIBRARY IMCLTFREE (3IM)

NAME
ImCltFree - free the storage for a color lookup table

SYNOPSIS
#include "im.h"

void ImCltFree(srcClt)
ImClt ∗∗ srcClt ;

DESCRIPTION
ImCltFree frees the dynamic storage for color lookup table srcClt. srcClt is no longer valid after this call
and should not be used.

NOTES
It is assumed that srcClt was originally allocated with ImCltAlloc (3IM).

If srcClt is attached to a virtual frame buffer (see ImVfbSClt (3IM)), it should be freed using ImCltFree
prior to freeing the virtual frame buffer using ImVfbFree (3IM).

RETURNS
ImCltFree returns nothing.

SEE ALSO
ImIntro (3IM), ImErrNo (3IM), ImCltAlloc (3IM), ImCltDup (3IM), ImCltGrayRamp (3IM),
ImCltQBlue (3IM), ImCltQFirst (3IM), ImCltQGreen (3IM), ImCltQLast (3IM), ImCltQNColors
(3IM), ImCltQNext (3IM), ImCltQPrev (3IM), ImCltQPtr (3IM), ImCltQRed (3IM), ImCltSBlue
(3IM), ImCltSDec (3IM), ImCltSGreen (3IM), ImCltSInc (3IM), ImCltSRed (3IM), ImVfbQClt (3IM),
ImVfbSClt (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 23, 1991 17

IMCLTFREE (3IM) SDSC IMAGE LIBRARY IMCLTFREE (3IM)

Notes

18 Last change: September 23, 1991 San Diego Supercomputer Center

IMCLTQNCOLORS (3IM) SDSC IMAGE LIBRARY IMCLTQNCOLORS (3IM)

NAME
ImCltQNColors - query the number of colors in a color lookup table

SYNOPSIS
#include "im.h"

int ImCltQNColors(srcClt)
ImClt ∗∗ srcClt ;

DESCRIPTION
ImCltQNColors queries the number of color entries within srcClt.

NOTES
ImCltQNColors is a C macro.

RETURNS
ImCltQNColors returns the number of entries in the color lookup table.

SEE ALSO
ImIntro (3IM), ImErrNo (3IM), ImCltAlloc (3IM), ImCltDup (3IM), ImCltFree (3IM),
ImCltGrayRamp (3IM), ImCltQBlue (3IM), ImCltQFirst (3IM), ImCltQGreen (3IM), ImCltQLast
(3IM), ImCltQNext (3IM), ImCltQPrev (3IM), ImCltQPtr (3IM), ImCltQRed (3IM), ImCltSBlue
(3IM), ImCltSDec (3IM), ImCltSGreen (3IM), ImCltSInc (3IM), ImCltSRed (3IM), ImVfbQClt (3IM),
ImVfbSClt (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 23, 1991 19

IMCLTQNCOLORS (3IM) SDSC IMAGE LIBRARY IMCLTQNCOLORS (3IM)

Notes

20 Last change: September 23, 1991 San Diego Supercomputer Center

IMCLTQPTR (3IM) SDSC IMAGE LIBRARY IMCLTQPTR (3IM)

NAME
ImCltQPtr - query the pointer to a particular entry in a color lookup table
ImCltQFirst - query the pointer to the first entry in a color lookup table
ImCltQLast - query the pointer to the last entry in a color lookup table
ImCltQNext - query a pointer to the next entry in a color lookup table
ImCltQPrev - query a pointer to the previous entry in a color lookup table
ImCltSInc - increment a pointer to point to the next entry in a color lookup table
ImCltSDec - decrement a pointer to point to the previous entry in a color lookup table

SYNOPSIS
#include "im.h"

ImCltPtr ImCltQPtr(srcClt, i)
ImClt ∗∗ srcClt ;
int i ;

ImCltPtr ImCltQFirst(srcClt)
ImClt ∗∗ srcClt ;

ImCltPtr ImCltQLast(srcClt)
ImClt ∗∗ srcClt ;

ImCltPtr ImCltQNext(srcClt, p)
ImClt ∗∗ srcClt ;
ImCltPtr p ;

ImCltPtr ImCltQPrev(srcClt, p)
ImClt ∗∗ srcClt ;
ImCltPtr p ;

void ImCltSInc(srcClt, p)
ImClt ∗∗ srcClt ;
ImCltPtr p ;

void ImCltSDec(srcClt, p)
ImClt ∗∗ srcClt ;
ImCltPtr p ;

DESCRIPTION
These macros query and set pointers to color lookup table entries.

ImCltQPtr returns a pointer to the i-th entry in srcClt. Entries are numbered from 0 for the first entry.

ImCltQFirst returns a pointer to the first entry in srcClt and is a synonym for ImCltQPtr(srcClt, 0).

ImCltQLast returns a pointer to the last entry in srcClt and is a synonym for ImCltQPtr(srcClt,
ImCltQNColors(srcClt) - 1).

San Diego Supercomputer Center Last change: September 24, 1991 21

IMCLTQPTR (3IM) SDSC IMAGE LIBRARY IMCLTQPTR (3IM)

ImCltQNext returns a pointer to the srcClt entry following p.

ImCltQPrev returns a pointer to the srcClt entry preceding p.

ImCltSInc increments the pointer p to advance it to the next entry in srcClt. This is the same as p =
ImCltQNext(srcClt, p).

ImCltSDec decrements the pointer p to advance it to the previous entry in srcClt. This is the same as p =
ImCltQPrev(srcClt, p).

NOTES
Each of these are C macros.

RETURNS
ImCltQPtr, ImCltQFirst, ImCltQLast, ImCltQNext, and ImCltQPrev return a pointer to a color
lookup table entry.

ImCltSInc and ImCltSDec return nothing.

SEE ALSO
ImIntro (3IM), ImErrNo (3IM), ImCltAlloc (3IM), ImCltDup (3IM), ImCltFree (3IM),
ImCltGrayRamp (3IM), ImCltQBlue (3IM), ImCltQGreen (3IM), ImCltQNColors (3IM), ImCltQRed
(3IM), ImCltSBlue (3IM), ImCltSGreen (3IM), ImCltSRed (3IM), ImVfbQClt (3IM), ImVfbSClt
(3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

22 Last change: September 24, 1991 San Diego Supercomputer Center

IMCLTQRED (3IM) SDSC IMAGE LIBRARY IMCLTQRED (3IM)

NAME
ImCltQRed - query the red component of a color in a color lookup table
ImCltQGreen - query the green component of a color in a color lookup table
ImCltQBlue - query the blue component of a color in a color lookup table
ImCltSRed - set the red component of a color in a color lookup table
ImCltSGreen - set the green component of a color in a color lookup table
ImCltSBlue - set the blue component of a color in a color lookup table

SYNOPSIS
#include "im.h"

int ImCltQRed(p)
ImCltPtr p ;

int ImCltQGreen(p)
ImCltPtr p ;

int ImCltQBlue(p)
ImCltPtr p ;

void ImCltSRed(p, r)
ImCltPtr p ;
int r ;

void ImCltSGreen(p, g)
ImCltPtr p ;
int g ;

void ImCltSBlue(p, b)
ImCltPtr p ;
int b ;

DESCRIPTION
These macros set and query color entry information for a color lookup table.

ImCltQRed, ImVfbQGreen, and ImVfbQBlue query the red, green, and blue components of a color
lookup table entry pointed to by p. The specific 8-bit color component is returned as the function’s value.

ImCltSRed, ImVfbSGreen, and ImVfbSBlue set the red, green, and blue components of a color lookup
table entry pointed to by p. r, g, and b arguments are the 8-bit values to use to set the color component.

NOTES
Color lookup table entry pointers may be obtained using

Macro Meaning__
ImCltQPtr(c, i) Returns a pointer to a particular ImClt entry

ImCltQFirst(c) Returns a pointer to the first ImClt entry

San Diego Supercomputer Center Last change: September 24, 1991 23

IMCLTQRED (3IM) SDSC IMAGE LIBRARY IMCLTQRED (3IM)

ImCltQLast(c) Returns a pointer to the last ImClt entry

ImCltQNext(c, p) Returns a pointer to the next ImClt entry
ImCltQPrev(c, p) Returns a pointer to the previous ImClt entry

ImCltSInc(c, p) Same as p = ImCltQNext(c, p)
ImCltSDec(c, p) Same as p = ImCltQPrev(c, p)

where c is the specific color lookup table, i is an entry number (first entry is entry number 0), and p is a
pointer to a ImClt entry.

Each of these are C macros.

RETURNS
ImCltQRed, ImVfbQGreen, and ImVfbQBlue each return an integer containing, in its lowest 8 bits, the
color component queried.

ImCltSRed, ImVfbSGreen, and ImVfbSBlue return nothing.

SEE ALSO
ImIntro (3IM), ImErrNo (3IM), ImCltAlloc (3IM), ImCltDup (3IM), ImCltFree (3IM),
ImCltGrayRamp (3IM), ImCltQFirst (3IM), ImCltQLast (3IM), ImCltQNColors (3IM), ImCltQNext
(3IM), ImCltQPrev (3IM), ImCltQPtr (3IM), ImCltSDec (3IM), ImCltSInc (3IM), ImVfbQClt (3IM),
ImVfbSClt (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

24 Last change: September 24, 1991 San Diego Supercomputer Center

IMEPS (3IM) SDSC IMAGE LIBRARY IMEPS (3IM)

NAME
imeps - SDSC Encapsulated PostScript file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileWrite(fd, "eps", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "eps", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
Encapsulated PostScript color, grayscale, and black-and-white image files are used by a variety of
PostScript tools in order to include PostScript diagrams and images within other documents.

FILE RECOGNITION
Encapsulated PostScript files are recognized by the following filename suffixes: .eps, .epi, .epsi, and .epsf.

NOTES
SDSC image library support of Encapsulated PostScript does not require use of any windowing system
libraries or PostScript interpreters, and contains no proprietary code. Encapsulated PostScript format
handling is available on any machine for which the SDSC image library is available.

PostScript is a reverse polish notation-style, FORTH-like programming language used to describe text and
pictures to be rendered by a PostScript interpreter embedded within a laser printer (such as Apple’s
LaserWriter printers), windowing system (such as Sun’s NeWS or NeXT’s NeXTstep), or other display
tool. The language contains numerous basic programming language constructs and lots of drawing
operations.

PostScript was designed for ease of parsing, not ease of programming. As a result, most people use
PostScript as a "blackbox" file format that describes their picture. It is left up to software, such as the
SDSC image library, to figure out how to deal with PostScript.

Encapsulated PostScript (EPS) is a file format for the import and export of PostScript language files among
applications. EPS files contain a PostScript program fragment that draws a diagram or renders an image
when printed to a PostScript printer or displayed in a windowing system using a PostScript interpreter
application. EPS files are intended to be used by applications that wish to embed complex PostScript
drawings within non-PostScript data, such as a word processing document, or a spreadsheet.

EPS files may contain an optional grayscale "Preview image" of the same size and shape as the image
rendered by the main PostScript program in the file. The "Preview image" is used by non-PostScript
applications to display to the user a rough approximation of the EPS file’s image. The user may position,
orient, and scale the "Preview image" within the including document. When the including application
prints the full document, the EPS file’s contents are substituted for the "Preview image". The user’s
position, orient, and scale operations are applied to the EPS data and the completed PostScript file sent to
the printer.

San Diego Supercomputer Center Last change: October 1, 1991 25

IMEPS (3IM) SDSC IMAGE LIBRARY IMEPS (3IM)

The EPS "Preview image" may be provided in a variety of ways:

not given Simple EPS file.
No "Preview image".

DVI image Device-independent EPS file.
Grayscale bitmap "Preview image" in header.

Metafile image IBM PC EPS file.
MS Windows Metafile "Preview image" in header.

PICT image Mac EPS file.
PICT "Preview image" in resource fork.

TIFF image Portable EPS file.
TIFF "Preview image" in header.

EPS files with a device-independent bitmap as a "Preview image" are generally refered to as EPSI or EPI
files. Each of the other EPS file types are known as EPSF files.

Mac EPS files include a PICT image in the resource fork of the file. Since non-Mac systems do not
support the Mac notion of data and resource forks, it is not possible to generate Mac EPS files on anything
but a Mac.

IBM PC EPS files include either a TIFF or MS Windows Metafile image in the header of the file.
However, inclusion of either image type prevents the EPS file from being sent directly to a PostScript laser
printer for a quick printout. IBM PC EPS files must first be included in a document and stripped of their
"Preview image" headers before they may be printed.

Device-independent EPS files are straight PostScript. The EPSI "Preview image" is included as a
PostScript comment in the file’s header. This allows EPSI files to be sent directly to a PostScript laser
printer without any extra processing.

Encapsulated PostScript support within the SDSC Image Library generates EPSI (device-independent)
files.

Reading Encapsulated PostScript files
Reading of Encapsulated PostScript is not supported by the SDSC image library.

Support for EPS file reading would require one of two approaches: 1. interpret the EPS file’s PostScript, or
2. interpret the "Preview image" in the header.

Inclusion of a full PostScript language interpreter in order to read an EPS file would require a great deal of
code. This approach is not really practical.

Users needing to read in PostScript data should investigate PostScript interpreters, such as Sun
Microsystem’s NeWS window system and its image viewer PageView(1), or GNU’s GostScript
PostScript-clone interpreter.

Interpretation of an EPSI file’s "Preview image" is not of much use within an imaging tool set. EPSI file
"Preview images" are strictly grayscale, regardless of possible color content in the EPSI file’s actual
PostScript image. To claim to read EPSI files, yet only read the crude grayscale "Preview image" would be
inappropriate.

26 Last change: October 1, 1991 San Diego Supercomputer Center

IMEPS (3IM) SDSC IMAGE LIBRARY IMEPS (3IM)

Writing Encapsulated PostScript files
The SDSC image library writes color, grayscale, or monochrome VFBs as EPSI Encapsulated PostScript
files. In each case the generated Encapsulated PostScript consists of a header followed by the image data
as ASCII hex numbers. The choice of header and the format of the hex numbers depends upon the type of
image being written.

IMVFBMONO VFBs are written with an Encapsulated PostScript header that renders the image in
black-and-white on black-and-white or color devices. Image data is written as two hex characters for each
group of eight adjacent monochrome pixels (as required by the PostScript image operator).

IMVFBINDEX8 VFBs without color lookup tables are written with a Encapsulated PostScript header that
renders the image in shades of gray on black-and-white or color devices. Image data is written as two hex
characters for each grayscale pixel (as required by the PostScript image operator).

IMVFBINDEX8 VFBs with a color lookup table and IMVFBRGB VFBs are written with an
Encapsulated PostScript header that renders the image in color on color devices and in shades of gray on
black-and-white devices. The PostScript header code checks the device’s systemdict for support of the
colorimage operator. If the operator exists, the device supports color. In both cases, image data is written
as six hex characters at two characters each for the red, green, and blue color component of each pixel (as
required by the PostScript colorimage operator). On color devices, this color pixel data generates a color
image. On monochrome devices, the header code automatically converts the color pixel data to shades of
gray as it is being rendered. This allows the same color PostScript file to be sent to color or black-and-
white printers without any change to the file.

Other image library VFB types are converted to one of the above prior to being written out. See the
ImFileWrite(3IM) man page for details.

Image data is always generated for pixels in left to right order, from the top of the image to the bottom.

In all cases a grayscale "Preview image" comment is placed at the top of the file.

Encapsulated PostScript generated by the SDSC image library conforms to Adobe’s version 3.0 document
structuring conventions.

Warning: All PostScript laser printers have a fixed amount of memory in which to buffer incoming data
and build up the image prior to printing. Large images converted to PostScript and then sent to a laser
printer may exceed the buffering and image-building memory limitations of the printer. Results vary from
printer to printer: some lock up and require a reset, while others silently ignore the images and do not
print anything.

ERRORS
In addition to those listed for ImFileWrite(3IM), Encapsulated PostScript file writing returns the
following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
PostScript Language - Tutorial and Cookbook, Adobe Systems Incorporated.

PostScript Language - Reference Manual, Second Edition, Adobe Systems Incorporated.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

San Diego Supercomputer Center Last change: October 1, 1991 27

IMEPS (3IM) SDSC IMAGE LIBRARY IMEPS (3IM)

AUTHORS
Dave Nadeau
San Diego Supercomputer Center

Loren "Buck" Buchanan
Naval Research Laboratory
Kestrel Associates, Inc.

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

28 Last change: October 1, 1991 San Diego Supercomputer Center

IMFILEFORMATOPTIONS (3IM) SDSC IMAGE LIBRARY IMFILEFORMATOPTIONS (3IM)

NAME
ImFileFormatOptions - add file format names to an ArgOption list
ImFileFormatEquivs - add file format equivalent names to an ArgEquiv list

SYNOPSIS
#include "im.h"
#include "arg.h"

int ImFileFormatOptions(baseNOptions, baseOptions, totalOptions)
int baseNOptions;
ArgOption ∗∗ baseOptions;
ArgOption ∗∗∗∗ totalOptions;

int ImFileFormatEquivs(baseNEquivs, baseEquivs, totalEquivs)
int baseNOEquivs;
ArgEquiv ∗∗ baseEquivs;
ArgEquiv ∗∗∗∗ totalEquivs;

DESCRIPTION
These functions are used to help set up argument parsing option and equivalent keyword lists for use with
ArgParse(3ARG).

ImFileFormatOptions creates a new list of ArgOption structures containing the baseNOptions basic
options in baseOptions, plus one option for each image file format supported by the image library. Each
file format option entry has the following attributes:

arg_keyword = file format’s name
arg_valuenames = NULL
arg_help = format’s help information
arg_flags = ARGFMULTIPLE
arg_minvalues = 0
arg_maxvalues = 0
arg_type = ARGTNONE

The new option list is returned in totalOptions, and the number of options in that list returned as the
function’s value.

ImFileFormatEquivs creates a new list of ArgEquiv structures containing the baseNEquivs basic
equivalent keywords in baseEquivs, plus one equivalent keyword entry for each equivalent file format
name for each image file format supported by the image library. Each new equivalent keyword entry is
equivalenced to the name of the image file format.

The new equivalent keyword list is returned in totalEquivs, and the number of equivalent keywords in that
list returned as the function value.

NOTES
Information on the SDSC argument parsing package and its data structures is in ArgIntro(3ARG). We
assume the user is familiar with the package.

Tools that have one command-line option per image file format name use these routines. Such options
typically select the type of image file to read in or write out (see imconv(1IM)).

San Diego Supercomputer Center Last change: September 24, 1991 29

IMFILEFORMATOPTIONS (3IM) SDSC IMAGE LIBRARY IMFILEFORMATOPTIONS (3IM)

To keep image library tools uniform and consistent, we suggest tools that use ImFileFormatOptions also
use ImFileFormatEquivs to add the equivalent file format names to the option set as well.

ImFileFormatEquivs format equivalences assume that there is one keyword per format and that it is the
format name (as done by ImFileFormatOptions).

EXAMPLES
The following code declares and initializes an ArgOption array with options for a mythical tool immyth.
Within main, ImFileFormatOptions and ImFileFormatEquivs are called to create new ArgOption and
ArgEquiv arrays that incorporate both the basic immyth options and the image file format name options.
These new arrays are then passed to ArgParse(3ARG) as complete descriptions of the argument set
available to the immyth.

#include "im.h"

#include "arg.h"

/∗ Describe the command. ∗ /
ArgCommand mythCommand =

{

"immyth", 1, 0, 0,

"%command is a demo program that does nothing.",

NULL,

NULL, NULL,

ARGFNONE,

NULL, NULL,

"SDSC Image Tools, October 1991.",

"Copyright (c) 1989-1991 San Diego Supercomputer Center (SDSC), CA, USA",

NULL, NULL

};

/∗ Describe the command-specific options. ∗ /
ArgOption mythBaseOptions[] =

{

{ "infile", "image_filename", "Specify an input image file name",

ARGFREQUIRED | ARGFIMPKEYWORD, 1, 1, ARGTSTRING },

{ "outfile", "image_filename", "Specify an output image file name",

ARGFREQUIRED | ARGFIMPKEYWORD, 1, 1, ARGTSTRING },

{ "debug", NULL, "Enable debug mode",

ARGFHIDDEN, 0, 0, ARGTNONE }

};

#define MYTHNBASEOPTIONS 3

/∗ Describe the command-specific equivalent keywords. ∗ /
ArgEquiv mythBaseEquivs[] =

{

{ "debug", "dbg" }

};

#define MYTHNBASEEQUIVS 1

30 Last change: September 24, 1991 San Diego Supercomputer Center

IMFILEFORMATOPTIONS (3IM) SDSC IMAGE LIBRARY IMFILEFORMATOPTIONS (3IM)

main(argc, argv)

int argc;

char ∗ argv[];

{

ArgOption ∗ totalOptions;
ArgEquiv ∗ totalEquivs;
int totalNOptions;

int totalNEquivs;

/∗ Add image file names to option set. ∗ /
totalNOptions = ImFileFormatOptions(MYTHNBASEOPTIONS, mythBaseOptions,

&totalOptions);

/∗ Add image file equivalent names to equivalence set. ∗ /
totalNEquivs = ImFileFormatEquivs(MYTHNBASEEQUIVS, mythBaseEquivs,

&totalEquivs);

/∗ Parse the arguments. ∗ /
ArgParse(argc, argv, &mythCommand,

totalNOptions, totalOptions,

totalNEquivs, totalEquivs);

/∗ Do work. ∗ /
...

}

RETURNS
On success, ImFileFormatOptions returns the number of ArgOption structures in the new totalOptions
list. On failure, a -1 is returned and ImErrNo set to

IMEMALLOC Cannot allocate memory

On success, ImFileFormatEquivs returns the number of ArgEquiv structures in the new totalEquivs list.
On failure, a -1 is returned and ImErrNo set to

IMEMALLOC Cannot allocate memory

SEE ALSO
ImIntro (3IM), ImFileRead (3IM), ImFileWrite (3IM) ArgIntro (3ARG), ArgParse (3ARG)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 31

IMFILEFORMATOPTIONS (3IM) SDSC IMAGE LIBRARY IMFILEFORMATOPTIONS (3IM)

Notes

32 Last change: September 24, 1991 San Diego Supercomputer Center

IMFILEQFORMAT (3IM) SDSC IMAGE LIBRARY IMFILEQFORMAT (3IM)

NAME
ImFileQFormat, ImFileQFFormat - query file’s image format

SYNOPSIS
#include "im.h"

char ∗∗ ImFileQFormat(fd, fileName)
int fd;
char ∗∗ fileName;

char ∗∗ ImFileQFFormat(fp, fileName)
FILE ∗∗ fp;
char ∗∗ fileName;

DESCRIPTION
ImFileQFormat and ImFileQFFormat determine the image file format in use by the stream selected by
fd or fp, respectively. The name of the format is returned.

NOTES
If the stream is a pipe or device, or a file opened for writing, the stream is left untouched with no data read
in. The input’s image file format is determined by matching the fileName extension (characters after the
last "." in name) against a list of formats supported by the image library. If no match is found, a NULL
character string is returned by both functions.

If the stream is a file opened for reading, data is read in and checked against a list of magic numbers for
formats supported by the image library. If no match is found, the fileName extension is checked, as above.
If no match is found here either, a NULL character string is returned by both functions. In any case, the
stream is reset to point to the first byte of the file.

If a match is found, a character pointer to the name of the matched image file format is returned as the
function’s value. The returned pointer points to internal table space that should not be modified by the
user.

RETURNS
Upon success, the name of the format used by the stream is returned. On failure, a NULL character pointer
is returned and IImErrNo set to

IMESYS System call error
IMEFORMAT Unknown image file format

SEE ALSO
ImIntro (3IM), ImFileRead (3IM), ImFileWrite (3IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 33

IMFILEQFORMAT (3IM) SDSC IMAGE LIBRARY IMFILEQFORMAT (3IM)

Notes

34 Last change: September 24, 1991 San Diego Supercomputer Center

IMFILEQNFORMAT (3IM) SDSC IMAGE LIBRARY IMFILEQNFORMAT (3IM)

NAME
ImFileQNFormat - query number of supported image file formats

SYNOPSIS
#include "im.h"

int ImFileQNFormat()

DESCRIPTION
ImFileQNFormat returns the number of image file formats supported by the image library.

NOTES
ImFileQNFormat is typically called to obtain a loop count when searching the image library’s
ImFileFormats file format information table.

RETURNS
The number of formats in the ImFileFormats table is returned. If there are no formats in the table, 0 is
returned.

SEE ALSO
ImIntro (3IM), ImFileRead (3IM), ImFileWrite (3IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 35

IMFILEQNFORMAT (3IM) SDSC IMAGE LIBRARY IMFILEQNFORMAT (3IM)

Notes

36 Last change: September 24, 1991 San Diego Supercomputer Center

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

NAME
ImFileRead, ImFileFRead - Read an image format input stream into a Vfb
ImFileWrite, ImFileFWrite - Write a Vfb onto an image format output stream

SYNOPSIS
#include "im.h"

int ImFileRead(fd, format, flagsTable, dataTable)
int fd;
char ∗∗ format;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, format, flagsTable, dataTable)
FILE ∗∗ fp;
char ∗∗ format;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, format, flagsTable, dataTable)
int fd;
char ∗∗ format;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, format, flagsTable, dataTable)
FILE ∗∗ fp;
char ∗∗ format;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
ImFileRead and ImFileFRead read image data of type format from the input stream selected by fd or fp,
respectively. Format-specific flags in flagsTable may modify the behavior of the read operation. Data read
from the stream is appended to dataTable.

ImFileWrite and ImFileFWrite write image data of type format onto the output stream selected by fd or
fp, respectively. Format-specific flags in flagsTable may modify the behavior of the write operation. Data
to write is taken from the dataTable.

NOTES
The image file I/O routines handle the input and output of image data in a variety of image file formats.
Read and write routines read or write using file descriptors (unbuffered I/O) or file pointers (buffered I/O),
allowing both files and pipes to be handled identically.

Image Formats
Format names are NULL-terminated character strings giving the name, or any of the equivalent names for
any supported image file format. The list of image file formats supported is ever-growing. As of this
writing, the format list includes the following:

San Diego Supercomputer Center Last change: September 25, 1991 37

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

Primary Equivalent
Name Names Description__
gif giff CompuServe Graphics Image Format file
hdf df, ncsa Hierarchical Data Format file
icon cursor, pr Sun Icon and Cursor file
iff suniff, taac Sun TAAC Image File Format
mpnt macp, pntg Apple Macintosh MacPaint file
pbm - Portable Bit Map file
pcx pcc ZSoft PC Paintbrush file
pgm - Portable Grayscale Map file
pic picio, pixar PIXAR PICture file
pict pict2 Apple Macintosh QuickDraw/PICT picture file
pix alias Alias PIXel image file
pnm - Portable aNy Map file
ppm - Portable Pixel Map file
ps postscript PostScript image file
ras sun, sr, scr Sun RASterfile
rgb iris, sgi Silicon Graphics RGB image file
rla rlb Wavefront raster image file
rle - Utah Run-Length-Encoded image file
rpbm - Raw Portable Bit Map file
rpgm - Raw Portable Grayscale Map file
rpnm - Raw Portable aNy Map file
rppm - Raw Portable Pixel Map file
synu - Synu image file
tiff tif Tagged Image File
x avs Stardent AVS X image file
xbm bm X11 Bit Map file
xwd x11 X11 Window Dump image file

For a current list of image format names supported by the library, execute the imformats(1IM) command,
or scan the global ImFileFormats table of format information.

Individual man pages are available for each of the above file formats. The naming convention is primary
name with im prefix. For instance, the man page on image library support of the Sun RASterfile format is
imras(3IM).

Data Tag Table Entries
Image file data read in by ImFileRead or ImFileFRead is appended to the dataTable in the order in which
it is encountered in the file. Each piece of information is given its own table entry and tagged with a
standard or custom tag name. Standard tags are given below. Custom tags are format-specific and are
discussed in the individual format man pages.

Data written by ImFileWrite or ImFileFWrite is written in the same order as tags encountered in the
dataTable. Table entries with tags applicable to the format are used, while the rest are ignored.

The following standard dataTable tags are recognized by most file format read and write handlers:

38 Last change: September 25, 1991 San Diego Supercomputer Center

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

image vfb
ImVfb pointer to an image.

When reading multi-image files, each image is given its own entry in the dataTable, in the same
order as the images occur in the file.

When writing multi-image dataTables, images are written to the file in the same order as they
occur in the dataTable. If the format does not support multiple images per file, the format handler
returns an error and does not write the file.

image clt
ImClt pointer to a color lookup table.

When reading a color lookup table (CLT) and image from a file, both the CLT and the image are
listed in the dataTable; the CLT first and the image second. If it is clear from the format’s
specification that the CLT is to be associated with the image, the CLT also is attached to the
image virtual frame buffer using ImVfbSClt(3IM).

When reading multi-image files, the CLT (if any) for each image immediately precedes the image
when placed into the dataTable.

When writing a CLT and image from a dataTable, the CLT (if any) associated with the image
virtual frame buffer takes precedence over any in the dataTable. image clt tags are ignored.

Format Flags
The flagsTable argument on read and write calls may contain flags that select format-specific options. A
flagsTable flag may request a particular image compression scheme, may block output of an image’s CLT,
may request that the image be output without its alpha channel, and so on. In all cases, flagsTable entries
direct format output handlers how to output information. What to output is the domain of the dataTable.

A NULL pointer for the flagsTable indicates no flags are provided.

Standard flagsTable tags are given below. Custom format-specific tags are discussed in the individual
format man pages. Examples and interdependency explanations follow in later sections of this man page.

error handler
Integer function pointer for the function to be called and passed an error message. If not given,
there is no error handler.

See below for usage of the error handler.

error stream
FILE pointer for the stream to which error messages should be output, such as stderr. If not
given, there is no error stream. See below for usage of the error stream.

file name
Character string name of the input or output file. If not given, the file name defaults to file. If
input or output is to a stream instead of a file, the strings stdin or stdout should be used.

File name is used when constructing error message text to be printed to the error stream and
passed to the error handler (see below). File name has no other significance and is not opened
directly.

San Diego Supercomputer Center Last change: September 25, 1991 39

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

image alpha request
Integer flag to block or force an alpha plane to be output. If not given, an alpha plane is output if
the image has one and the format can support it. If the tag forces output when a file format cannot
support it or blocks output when a format must have it, an error is returned.

This tag is only used by image write handlers. A value of IMALPHADUMP forces alpha plane
output. A value of IMALPHANODUMP blocks output.

image channel number request
Integer number of image channels to output. If not given, each channel in each incoming image
is output or the closest number supported by the output file format. If this tag specifies a number
of channels that cannot be supported by the image file format, an error is returned.

This tag is only used by image write handlers.

Channel numbers are typically 1 or 3. Channel image number 1 corresponds to a monochrome,
grayscale, or color index image where 1 integer per pixel is stored. Channel image number 3
corresponds to an RGB image. Note that an alpha channel for the image is not included. See the
separate tag "image alpha request" for control of alpha channel output.

image channel depth request
Integer number of bits per channel to output. If not given, the bit depth per channel is the one that
most closely matches each image to be output and is available to the image file format.

This tag is only used by image write handlers.

Bit depth values are typically between 1 and 32. 8-bit depths are the most common.

image clt request
Integer flag to block or force a color lookup table to be output. If not given, a color lookup table
is output, if the image has one and the format can support it. If the tag forces output when a file
format cannot support it or blocks output when a format must have it, an error is returned.

This tag is only used by image write handlers. A value of IMCLTDUMP forces color lookup
table output. A value of IMCLTNODUMP blocks output.

image compression request
Integer compression mode to use. If not given, the most common or best compression scheme
available to the format is used. If the tag specifies a compression scheme not available to the
format, an error is returned.

This tag is only used by image write handlers. The compression scheme selects how pixel data is
compressed in order to save space in the output file. Available compression schemes include:

Value Meaning__
IMCOMPNONE Don’t compress
IMCOMPRLE Run-length encode
IMCOMPLZW Lempel-Ziv Welsh encoding
IMCOMPPACKBITS Apple PackBits

40 Last change: September 25, 1991 San Diego Supercomputer Center

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

Uncompressed images store each image pixel as a separate value in the file.

Run-length encoded images denote runs of adjacent pixels with the same color. Such runs are
reduced to a run length and a run value (the pixel’s color) and write these two values to the file
instead of the (potentially) much longer run itself. This usually gains about a 30% reduction in
storage space. Most image file formats support some form of run-length encoding, but they differ
in the exact mechanics.

Lempel-Ziv Welsh and Apple PackBits encoding are bit-wise run-length encoding schemes that
are more time-consuming to process but achieve even higher compression ratios. Both schemes
are available for only a few image file formats.

image interlace request
Integer RGB image interlace mode to use. If not given, the most common or most easily
compressed RGB interlacing scheme is used. If the tag specifies that an interlace mode be used
that the image file format cannot support, an error is returned.

This tag is only used by image write handlers, and only if the image to be written is an RGB
image. The interlace mode specifies how RGB images should be stored in the file. Available
interlace modes include

Value Meaning________________________________
IMINTERNONE Don’t interlace
IMINTERLINE Scanline interlace
IMINTERPLANE Plane interlace

Non-interlaced RGB images are stored with each pixel’s red, green, and blue components as
adjacent data in the file. For instance, an RGB image would be stored as: RGBRGBRGBRGB.

Scanline interlaced images store all of the scanline’s red components first, then the scanline’s
green, then blue components. The next scanline starts over again with just its red components,
and so on.

Plane interlaced images store the red components for all of the image pixels, followed by all of
the green, then all of the blue.

When compressing images, plane interlacing usually produces the best compression.

image mono threshold
Integer pixel value threshold beyond which grayscale pixel values are considered black, and
below which pixel values are considered white when mapping grayscale images to monochrome.
If not given, the default is 127.

This tag is only used by image write handlers. The monochrome threshold is used only if the
output of the image into the selected file format requires reducing it from color or grayscale to
monochrome. Color images are converted to grayscale prior to monochrome thresholding.

See also ImVfbToMono(3IM).

San Diego Supercomputer Center Last change: September 25, 1991 41

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

image type request
Integer image type to output. If not given, the image type is that of the image being written or
one as close to it as supported by the selected output image file format. If this tag is given and the
requested type is not available to the format, an error is returned.

This tag is only used by image write handlers. Available image types include

Value Meaning__________________________________
IMTYPEINDEX Color index per pixel
IMTYPERGB RGB color per pixel

Color index images correspond to IMVFBINDEX8, IMVFBINDEX16, and IMVFBMONO
virtual frame buffer field values. RGB images correspond to IMVFBRGB virtual frame buffers.

If the selected image type differs from that of an image to be written, the image is converted into a
temporary virtual frame buffer before being output.

See also ImVfbToIndex8(3IM), ImVfbToIndex16(3IM), ImVfbToRgb(3IM),
ImVfbToGray(3IM), and ImVfbToMono(3IM).

program name
Character string name of the program, such as the value in argv[0] passed into main. If not given,
the program name defaults to "program."

Program name is used when constructing error message text to be printed to the error stream
passed to the error handler (see below).

Error Handling
Upon encountering an error, the image file read and write routines use the following algorithm to decide
how to report the error and whether or not to return or try and continue:

if an error handler has been defined in the flagsTable,
if the error is fatal,

call the error handler with the error message text
set ImErrNo and return an error

call the error handler with the error message text
if the error handler returned a -1,

set ImErrNo and return an error
else if an error stream has been defined in the flagsTable,

print the error message text to the stream
if the error is fatal,

set ImErrNo and return an error
else if the error is fatal or a warning,

set ImErrNo and return an error

Fatal errors are errors that cannot be recovered from. If a handler has been given, it is called before the
read/write routine returns. If a stream has been defined instead, it is printed to before returning.
Otherwise, the routine just returns an error code.

Warning errors are errors that somebody should see but don’t require aborting the read or write operation.
If a handler has been given, it is called and its return value checked. If it returns a -1, the read/write
routine returns. Otherwise it tries to continue. If a stream has been defined instead, the error text is
printed without returning. Otherwise, the warning reverts to a fatal error and the routine returns with an
error code.

42 Last change: September 25, 1991 San Diego Supercomputer Center

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

Information errors are messages that should be displayed, but don’t require aborting the operation. If a
handler has been given, it is called and its return value checked. If it returns -1, the operation is aborted.
Otherwise, it is continued. If a stream has been defined instead, the information text is printed out.

Error handlers may be declared as follows:

int MyHandler(severity, errno, message)

int severity;

int errno;

char ∗ message;

severity can be one of these three error severity types:

severity Meaning_____________________________________
IMERRORFATAL Fatal error
IMERRORWARNING Warning error
IMERRORINFO Information only

The errno argument to the handler gives the ImErrNo code for the error. See ImErrNo(3IM) for
information on error numbers and generic error message texts for each.

The message argument to the handler is the same as that printed to the error stream, if any, and has the
form:

program_name: file_name: text

The program_name and file_name are those specified by flags in the flagsTable (if given). The text of the
message describes the error and may or may not be more informative than the generic message available
based on the errno error code. The error message is not terminated with a carriage return.

The error handler should return -1 if the read or write operation is to be aborted because of the error or 0 if
it should be continued. A typical error handler in a windowing-based application would use the severity
code to decide how to display a dialog box on the screen:

IMERRORFATAL
Dialog box containing the error message text and an "Abort" button is displayed. Pressing
"Abort" takes down the dialog box and returns -1 from the handler.

IMERRORWARNING and IMERRORINFO
Dialog box containing the error message text and "Abort" and "Continue" buttons are displayed.
Pressing "Abort" takes down the dialog box and returns -1 from the handler; pressing "Continue"
takes down the dialog box and returns 0 from the handler.

Automatic Conversions
Most of the flagsTable flags having names beginning with "image" direct how automatic image
conversions should take place when writing an image file. In most cases, the programmer need never use
any of these. Automatic conversion takes place and does the "right thing." These flags are only necessary
if the programmer wishes to steer automatic conversion a particular way.

Automatic image conversion is necessary when an image to be written out is not in a format acceptable for
the image file format. For instance, if an RGB image is to be written out as a MacPaint file, the image
must first be converted to monochrome. This is an automatic image conversion.

San Diego Supercomputer Center Last change: September 25, 1991 43

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

Image conversions could be done by the user prior to calling ImFileWrite or ImFileFWrite, but the added
hassle makes it convenient for the write routines themselves to handle image conversion.

Image conversion must alter an image’s attributes to match those of the output file format. An image has a
type (color index or RGB), a number of channels of color data per pixel (usually 1 or 3), and a bit depth for
each of those channels (usually 8 bits). The three flagsTable flags "image type request," "image channel
number request," and "image channel depth request" allow you to constrain automatic conversion to a
particular value for these attributes.

If an attribute is not constrained, automatic conversion chooses values that most closely match the image
to be written. If those values specify an image that the output image file format cannot support (such as an
RGB image in a monochrome MacPaint file), then automatic conversion makes the closest match to what
the file format can support. The image to be written is then converted (in a temporary virtual frame buffer)
to that match and output.

If an attribute is constrained, automatic conversion restricts its matching algorithm to require the image
attribute match the user’s request. If this prevents the algorithm from creating a match between an image
to be written and an output image file format’s supported abilities, then an error is returned and the image
is not output.

For instance, an RGB image is to be output into a MacPaint file. With no constraints, automatic
conversion will convert the image to 1-bit monochrome and output it. If image type is constrained to be
RGB, then automatic conversion cannot make a match (RGB cannot be stored in MacPaint files), and an
error is returned.

Automatic conversion contraints are most useful when a particular variant of an output file format is
desired. For instance, a Sun rasterfile can support 1-bit monochrome, 8-bit color index, and 24-bit RGB
image storage. Without contraints, an incomming RGB image will be written out as an RGB rasterfile (the
closest automatic match). If the user wishes to display the image on an 8-bit frame buffer, the "image type
request" flag could be used to constrain output conversion to a IMTYPEINDEX, color index image. This
would force automatic conversion to output an 8-bit color index Sun rasterfile.

Output Constraints
Many image file formats support multiple variants on image compression, RGB image interlacing, and the
inclusion of color lookup tables and alpha channels. Many of the flagsTable flags having names beginning
with "image" direct format output to use a particular variant of the file format.

If not given, these flags default to the "right thing." Image compression defaults to the best or most
common compression scheme. RGB image interlace defaults to the most common or most easily
compressed interlace mode. Color lookup tables are written if the image has one and the format can store
it. The same applies to alpha plane output.

Pipe Handling
When reading from or writing to pipes, some image file formats require that the data be stored in a
temporary file. Such a file is created and later destroyed. If there is insufficient space in /usr/tmp for this
file, an error is returned.

EXAMPLES
The following code opens and reads in a Sun RASterfile and retrieves the new virtual frame buffer image
from the dataTable. Note that a NULL pointer is given instead of a flagsTable.

#include <stdio.h>

#include "im.h"

main()

44 Last change: September 25, 1991 San Diego Supercomputer Center

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

{

FILE ∗ rasFile;
ImVfb ∗ image;
TagTable ∗ dataTable;
TagEntry ∗ imageEntry;

/∗ Get space for the data list. ∗ /
dataTable = TagTableAlloc();

/∗ Open the Sun rasterfile. ∗ /
rasFile = fopen("myfile.ras", "r");

/∗ Read in its images. ∗ /
ImFileFRead(rasFile, "ras", NULL, dataTable);

/∗ Get the virtual frame buffer. ∗ /
imageEntry = TagTableQDirect(dataTable, "image vfb");

TagEntryQValue(imageEntry, &image);

/∗ Do something with it. ∗ /
...

}

The following code accepts command-line arguments to specify an input format name and filename and an
output format name and filename. The input file is opened and read in as the selected image file format.
The output file is opened and the image data written back out in the new format.

#include <stdio.h>

#include "im.h"

main(argc, argv)

int argc;

char ∗ argv[];

{

FILE ∗ file;
TagTable ∗ dataTable;

/∗ Get space for the data list. ∗ /
dataTable = TagTableAlloc();

/∗ Open the input file and read it in. ∗ /
file = fopen(argv[2], "r");

ImFileFRead(file, argv[1], NULL, dataTable);

fclose(file);

/∗ Open the output file and write it out. ∗ /
file = fopen(argv[4], "w");

ImFileFWrite(file, argv[3], NULL, dataTable);

fclose(file);

San Diego Supercomputer Center Last change: September 25, 1991 45

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

}

The above program is a complete generic image file converter that can read in any selected image file and
output a new one in any desired format. The above code is the basis for the SDSC image conversion tool
imconv(1IM).

The following code outputs an image stored in a virtual frame buffer and constrains it to be RGB and
include an alpha plane.

writeImage(image, fileName)

ImVfb ∗ image;
char ∗ fileName;

{

FILE ∗ file;
TagTable ∗ dataTable;
TagTable ∗ flagsTable;
int tmp;

/∗ Get space for the data and flags tables. ∗ /
dataTable = TagTableAlloc();

flagsTable = TagTableAlloc();

/∗ Add image to data table. ∗ /
TagTableAppend(dataTable,

TagEntryAlloc("image vfb", POINTER, &image));

/∗ Add constraint flags. ∗ /
tmp = IMTYPERGB;

TagTableAppend(flagsTable,

TagEntryAlloc("image type request", INT, &tmp));

tmp = IMALPHADUMP;

TagTableAppend(flagsTable,

TagEntryAlloc("image alpha request", INT, &tmp));

/∗ Open the output file and write the data. ∗ /
file = fopen(fileName, "w");

ImFileFWrite(file, "rlb", flagsTable, dataTable);

fclose(file);

/∗ Clean up. ∗ /
TagTableFree(dataTable);

TagTableFree(flagsTable);

}

RETURNS
On successful completion, the read calls return the number of entries added to the dataTable and the write
calls return the number of entries used from the dataTable.

46 Last change: September 25, 1991 San Diego Supercomputer Center

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

On failure, the read calls return -1 and set ImErrNo to

IMESYS System call error
IMEMALLOC Cannot allocate memory
IMEFORMAT Bad format
IMENOREAD Read not supported on format
IMEMAGIC Bad magic number in image file
IMEDEPTH Unknown image depth

On failure, the read calls return -1 and set ImErrNo to

IMESYS System call error
IMEMANYVFB Too many VFBs for image write
IMENOVFB No VFB given for image write
IMEMALLOC Cannot allocate memory

FILES
/usr/tmp/im.XXXXXX Temporary file for pipe handling

SEE ALSO
ImIntro (3IM), ImFileQFormat (3IM), TagIntro (3TAG)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 25, 1991 47

IMFILEREAD (3IM) SDSC IMAGE LIBRARY IMFILEREAD (3IM)

Notes

48 Last change: September 25, 1991 San Diego Supercomputer Center

IMGIF (3IM) SDSC IMAGE LIBRARY IMGIF (3IM)

NAME
imgif - SDSC CompuServe GIF (Graphics Interchange Format) file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "gif", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "gif", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "gif", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "gif", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
GIF (Graphics Interchange Format) is CompuServe’s standard for generalized color raster images. This
standard is a mechanism to exchange and display high-quality, high-resolution graphics images.

FILE RECOGNITION
CompuServe gif files are recognized by the filename suffixes: .gif and .giff.

NOTES
SDSC image library support of CompuServe’s gif format contains no proprietary code. CompuServe gif
format handling is available on any machine for which the SDSC image library is available.

Reading CompuServe GIF files
The SDSC image library reads LZW (Limpel-Ziv Welsh) compressed color index images with depths of 1
through 8 bits, with or without a CLT. 1-bit images are stored as IMVFBMONO VFBs, while 2- through
8-bit color index images are stored as IMVFBINDEX8 VFBs.

If the gif file contains multiple images, multiple VFBs are created and appended to the dataTable.

Writing CompuServe GIF files
SDSC image library IMVFBMONO VFBs are written as LZW compressed 1-bit images, with or without a
CLT. IMVFBINDEX8 VFBs are written as LZW compressed 8-bit images, with or without a CLT.

San Diego Supercomputer Center Last change: September 25, 1991 49

IMGIF (3IM) SDSC IMAGE LIBRARY IMGIF (3IM)

Other image library VFB types are converted to IMVFBMONO or IMVFBINDEX8 VFBs prior to being
written out. See the ImFileWrite(3IM) man page for details.

The gif format can support multiple images in a single file, with the restriction that all such images have
the same depth. The SDSC image library currently does not support storage of more than one image in a
single gif file.

ERRORS
In addition to those listed for ImFileRead(3IM), CompuServe gif file reading returns the following error
codes:

IMEMAGIC Bad magic number of GIF file
IMEMALLOC Cannot allocate enough memory
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), CompuServe gif file writing returns the following error
codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
GIF Graphics Interchange Format: A standard defining a mechanism for the storage and transmission of
raster-based graphics information, CompuServe, June 15, 1987.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Soraya Gonzalez

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

50 Last change: September 25, 1991 San Diego Supercomputer Center

IMHDF (3IM) SDSC IMAGE LIBRARY IMHDF (3IM)

NAME
imhdf - SDSC HDF image file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "hdf", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "hdf", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "hdf", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "hdf", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
hdf is a generic, tagged Hierarchical Data File format developed by the National Center for
Supercomputing Applications (NCSA). hdf files may contain images, scientific data sets, and
miscellaneous data items. Such files may be created by several NCSA tools. See the NCSA
documentation for details on how to use these tools.

hdf format handling within the SDSC image library is limited to images of certain depths and storage
methods.

FILE RECOGNITION
hdf files are recognized by these filename suffixes: .hdf, .df, and .ncsa.

NOTES
SDSC image library support of the hdf format does not require use of NCSA’s HDF library libdf.a and
contains no proprietary code. hdf is available on any machine for which the SDSC image library is
available.

Reading HDF image files
The SDSC image library can read hdf image files with one or more images and map them to VFBs as
follows:

San Diego Supercomputer Center Last change: September 25, 1991 51

IMHDF (3IM) SDSC IMAGE LIBRARY IMHDF (3IM)

Depth/color Type of compression Mapped to VFB
8-bit color index un- and RLE-compressed IMVFBINDEX8
16-bit color index uncompressed only IMVFBINDEX16
24-bit color index uncompressed only IMVFBINDEX24
32-bit color index uncompressed only IMVFBINDEX32
24-bit RGB un- and RLE-compressed IMVFBRGB

All depths except 24-bit RGB may or may not contain a color lookup table (CLT).

RGB images may be non-interlaced, scanline-interlaced, or plane-interlaced.

Note that 24-bit and 32-bit color indexes are truncated to the lower 16 bits when the file is read into an
IMVFBINDEX16 VFB.

The HDF IMCOMP compression scheme is not supported. HDF’s byte-based RLE compression scheme is
only supported on 8-bit color index and 24-bit RGB images.

Administrative header information for hdf files is required in MBF (most-significant byte first) byte order
by the HDF specification. Images, color tables, and other information in the file may be in either MBF or
LBF (least-significant byte first) byte order. Note: hdf documentation refers to MBF as DFNTI_MBO
(Motorola byte order) and LBF as either DFNTI_VBO (VAX byte order) or DFNTI_IBO (Intel byte
order).

Floating-point file data may use IEEE, VAX, or CRAY floating-point formats. Character-string file data
must be ASCII. EBCDIC is not supported.

If the file’s image has a color map, the image library VFB includes a CLT.

If the file contains multiple images, multiple VFBs are appended to the dataTable.

Writing HDF image files
Images to be written out are mapped from image library VFBs as follows:

Mapped from VFB Depth/color Type of compression
IMVFBINDEX8 8-bit color index un- or RLE-compressed
IMVFBINDEX16 16-bit color index uncompressed only
IMVFBRGB 24-bit RGB uncompressed only

If the incoming VFB has a CLT, the image written to the hdf file contains a CLT.

RGB images may be stored in non-interlaced, scanline-interlaced, and plane-interlaced modes.

Note: Previous versions of this code supported writing of compressed RGB images. This feature has been
temporarily removed pending full support for such images by the NCSA and SpyGlass tools. Macintosh-
based HDF tools currently do not support 24-bit RGB images. The NCSA UNIX-based HDF tools reliably
handle uncompressed RGB images only.

Other image library VFB types are converted to one of the above types prior to being written out. See the
ImFileWrite(3IM) man page for details.

Administrative header information for hdf files is written in MBF byte order as required by the HDF
specification. Images, color tables, and other information in the file is written in the same byte order as the
host writing the file (MBF or LBF), which ensures the quickest possible I/O for the host. Note: hdf
documentation refers to MBF as DFNTI_MBO (Motorola byte order) and LBF as either DFNTI_VBO
(VAX byte order) or DFNTI_IBO (Intel byte order).

52 Last change: September 25, 1991 San Diego Supercomputer Center

IMHDF (3IM) SDSC IMAGE LIBRARY IMHDF (3IM)

Floating-point file data is written using the same floating-point format as the host writing the file (IEEE,
VAX, or CRAY). Character-string file data is always ASCII. EBCDIC is not supported.

If the dataTable contains multiple images, the output hdf file also contains multiple images.

ERRORS
In addition to those listed for ImFileRead(3IM), hdf file reading returns the following error codes:

IMEMAGIC Bad Magic number in image file
IMEMALLOC Cannot allocate enough memory
IMESYNTAX Syntax error in HDF file
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), hdf file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
NCSA HDF, National Center for Supercomputing Applications.

NCSA HDF Calling Interfaces and Utilities, Version 3.1, July 1990, National Center for Supercomputing
Applications.

NCSA HDF Specifications, March 1989, National Center for Supercomputing Applications.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 25, 1991 53

IMHDF (3IM) SDSC IMAGE LIBRARY IMHDF (3IM)

Notes

54 Last change: September 25, 1991 San Diego Supercomputer Center

IMICON (3IM) SDSC IMAGE LIBRARY IMICON (3IM)

NAME
imicon - SDSC Sun ICON file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "icon", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "icon", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "icon", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "icon", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
icon image files are used by Sun Microsystem’s SunView window system, NeWS window system,
OpenWindows NeWS tool set, and X11 XView tool set for the storage of icons, cursors, fill patterns, and
pieces of widgets (like button check-marks).

Sun icon files can be most easily generated using Sun’s iconedit(1) icon and cursor editor. The Sun
operating system release includes a directory of standard icons, cursors, background patterns, and widget
pieces in icon format in the directory /usr/include/images. See the Sun documentation set for details on
how to use the tools dealing with Sun icon files.

FILE RECOGNITION
Sun icon files are recognized by these filename suffixes: .icon, .cursor, and .pr.

NOTES
SDSC image library support of the Sun icon format does not require use of Sun libraries and contains no
proprietary code. Sun icon format handling is available on any machine for which the SDSC image library
is available.

icon files contain a C-language array initialization starting with a comment header giving the width and
height of the icon, followed by ASCII hex data giving the icon’s bitmap. For example,

San Diego Supercomputer Center Last change: September 25, 1991 55

IMICON (3IM) SDSC IMAGE LIBRARY IMICON (3IM)

/∗∗ Format_version=1, Width=16, Height=16, Depth=1, Valid_bits_per_item=16
∗∗ /

0x0000,0x0000,0x0000,0x0000,0x6200,0x920C,0x1392,0x7250,
0x9252,0x7B8C,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000

Format_version must be 1; there are no other versions at this time.

Width and Height are the width and height of the icon, in pixels. Sun’s iconedit(1) tool requires that the
icon width be a multiple of 16. The SDSC image library similarly constrains the icon width for
consistency with Sun tools and common usage.

Depth must be 1; there are no other depths in common use.

Valid_bits_per_item must be 16; there are no other sizes in common use.

Icon pixel data is given immediately following the comment header. Monochrome pixels are packed 16 to
an integer and written out as a string of 4 hex characters. Image data is given from left to right, top to
bottom. Values are comma-separated.

Reading Sun ICON files
The SDSC image library reads Sun icon bitmaps and maps them to IMVFBMONO VFBs without color
lookup tables (CLTs).

Writing Sun ICON files
The SDSC image library writes IMVFBMONO VFBs as Sun icon bitmaps.

Other image library VFB types are converted to IMVFBMONO VFBs prior to being written out. See the
ImFileWrite(3IM) man page for details.

Image width and height fields in the comment header are based on the VFB’s width and height. Image
width is rounded up to the next multiple of 16 bits. If padding is necessary, pad bits are set to 0 (white).

Warning: The Sun icon editor iconedit(1) was designed to edit small bitmaps, like icons and cursors.
Consequently, it tends to have severe difficulty with large bitmaps, such as those that can be generated
using the SDSC image library.

ERRORS
In addition to those listed for ImFileRead(3IM), Sun icon file reading returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYNTAX Syntax error in parsing icon file
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), Sun icon file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
iconedit(1) from the Sun OpenWindows man page set.

Pixrect Reference Manual, Sun Microsystems.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

56 Last change: September 25, 1991 San Diego Supercomputer Center

IMICON (3IM) SDSC IMAGE LIBRARY IMICON (3IM)

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 25, 1991 57

IMICON (3IM) SDSC IMAGE LIBRARY IMICON (3IM)

Notes

58 Last change: September 25, 1991 San Diego Supercomputer Center

IMIFF (3IM) SDSC IMAGE LIBRARY IMIFF (3IM)

NAME
imiff - SDSC Sun-TAAC file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "iff", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "iff", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "iff", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "iff", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
iff image files are generated by Sun Microsystems TAAC software such as voxvu(1) and cloudvu(1). See
the TAAC-1 Application Accelerator: Software Reference Manual for information on how to use these
programs.

Note that image files compressed with the Sun-TAAC utility make_movie(1) cannot be read by the SDSC
image library.

FILE RECOGNITION
iff files are recognized by the following filename suffix: .iff.

NOTES
SDSC image library support of the Sun-TAAC iff format does not require use of Sun-TAAC tools or
hardware and contains no proprietary code. Sun-TAAC iff format handling is available on any machine for
which the SDSC image library is available.

Reading Sun-TAAC IFF files
The SDSC image library reads unencoded, non-interlaced, 24-bit RGB and 32-bit RGB+Alpha Sun-TAAC
iff file images and maps them to IMVFBRGB or (IMVFBRGB | IMVFBALPHA) VFBs without CLTs.

The library reads unencoded, 8-bit color index Sun-TAAC iff images with CLTs and maps them to
IMVFBINDEX8 VFBs with CLTs. Note that color index images never have an alpha plane.

San Diego Supercomputer Center Last change: September 25, 1991 59

IMIFF (3IM) SDSC IMAGE LIBRARY IMIFF (3IM)

Writing Sun-TAAC IFF files
The SDSC image library writes IMVFBRGB and (IMVFBRGB | IMVFBALPHA) VFBs to unencoded,
non-interlaced 24-bit RGB or 32-bit RGB+Alpha Sun-TAAC iff files. Scanline- and plane-interlaced
modes are not available in iff files.

The image library writes IMVFBINDEX8 VFBs with CLTs as unencoded, 8-bit color index images with
CLTs in Sun-TAAC iff files.

Other image library VFB types are converted to IMVFBRGB or IMVFBINDEX8 VFBs prior to being
written out. See the ImFileWrite(3IM) man page for details.

iff does not support any form of image compression.

ERRORS
In addition to those listed for ImFileRead(3IM), Sun-TAAC iff file reading returns the following error
codes:

IMEDEPTH Unknown image depth
IMEFORMAT Bad format
IMEMAGIC Bad magic number
IMEMALLOC Cannot allocate enough memory
IMESYS System call error in read operation
IMESYNTAX Syntax error

In addition to those listed for ImFileWrite(3IM), Sun-TAAC iff file writing returns the following error
codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
Sun-TAAC User Manual, Volume Rendering Package, Sun Microsystems.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
T. Todd Elvins
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

60 Last change: September 25, 1991 San Diego Supercomputer Center

IMMPNT (3IM) SDSC IMAGE LIBRARY IMMPNT (3IM)

NAME
immpnt - SDSC Apple Macintosh MacPaint translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "mpnt", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "mpnt", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "mpnt", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "mpnt", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
The MacPaint mpnt file is the standard Apple Macintosh monochrome bitmap image file format. It can be
read by many Macintosh graphics applications, and many Macintosh applications that can export bitmap
graphics do so in the MacPaint mpnt file format.

FILE RECOGNITION
mpnt files are recognized by these filename suffixes: .mpnt, .macp, and .pntg.

NOTES
SDSC image library support of the Apple MacPaint mpnt format does not require use of Apple tools or
hardware and contains no proprietary code. MacPaint mpnt format handling is available on any machine
for which the SDSC image library is available.

Reading MacPaint MPNT files
The SDSC image library reads 1-bit MacPaint mpnt PackBits compressed images and stores them as
IMVFBMONO VFBs without a CLT. MacPaint images are always 576 pixels wide by 720 pixels high.

Writing MacPaint MPNT files
SDSC image library IMVFBMONO VFBs are written out as 1-bit monochrome MacPaint mpnt images.
MacPaint images are always compressed using Apples Macintosh PackBits compression scheme.

The MacPaint mpnt format requires that images be exactly 576 x 720 pixels. If an image to be written is
smaller, the image will be oriented in the upper left corner of the MacPaint image, and the remainder filled
with white. If the image to be written is larger, the image will be clipped to keep the upper left corner and
warning messages output.

San Diego Supercomputer Center Last change: September 25, 1991 61

IMMPNT (3IM) SDSC IMAGE LIBRARY IMMPNT (3IM)

ERRORS
In addition to those listed for ImFileRead(3IM), MacPaint mpnt file reading returns the following error
codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), MacPaint mpnt file writing returns the following error
codes:

IMEHEIGHT Image too tall; clipped to 720 pixels high
IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation
IMEWIDTH Image too wide; clipped to 576 pixels wide

DOCUMENTATION
Inside Macintosh, Volumes I-V, Apple Computer, Inc.

SEE ALSO
imconv (1IM), imfile (1IM), imformats (1IM), impict (3IM)

AUTHOR
John Moreland
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

62 Last change: September 25, 1991 San Diego Supercomputer Center

IMPBM (3IM) SDSC IMAGE LIBRARY IMPBM (3IM)

NAME
impbm - SDSC PBM+ suite PBM file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "pbm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "pbm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "pbm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "pbm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
pbm image files are used by various tools in Jef Poskanzer’s PBM+ tool suite. See the PBM
documentation set for details on how to use these tools.

FILE RECOGNITION
pbm files are recognized by the filename suffix: .pbm.

NOTES
SDSC image library support of the pbm format does not require use of the PBM+ libraries and tools. It
does not contain proprietary code or any code from Jef Poskanzer’s original PBM+ suite. pbm format
handling is available on any machine for which the SDSC image library is available.

PBM (Portable Bit Map) started with support for 1-bit monochrome images. Support was added for 8-bit
grayscale images (see impgm(3IM)), also called PGM (Portable Grayscale Map), and 24-bit RGB images
(see imppm(3IM)), also called PPM (Portable Pixel Map). Each of these defined a new file format.

The original file formats were ASCII. To reduce the disk space required to store such files, three additional
"raw" formats were defined. The raw formats stored the same information as their ASCII counterparts but
in binary, reducing the disk space requirement by around 60%.

Today the PBM+ suite contains six related file formats:

San Diego Supercomputer Center Last change: September 25, 1991 63

IMPBM (3IM) SDSC IMAGE LIBRARY IMPBM (3IM)

PBM ASCII 1-bit bitmaps
PGM ASCII 8-bit grayscale pixel maps
PPM ASCII 24-bit RGB color pixel maps
RPBM Raw binary 1-bit bitmaps
RPGM Raw binary 8-bit grayscale pixel maps
RPPM Raw binary 24-bit RGB color pixel maps

The original PBM suite included several tools. Some handled PBM files but not PGM or PPM. Others
handled PGM files, but not PBM or PPM. Then the newer PBM+ distribution introduced a set of tools that
recognized all six file formats. These tools generically referred to image files as PNM (Portable aNy Map)
files.

The SDSC image library treats the six PBM+ file formats separately. This man page only discusses the
PBM file format (ASCII monochrome). The remaining file formats are disucussed in their own man
pages.

Reading PBM image files
For compatibility with the PBM+ suite, the SDSC image library can read any of the PBM+ file formats
when the pbm format name is used. PBM+ files are read in and mapped to VFBs as follows:

File format Depth/color Mapped to VFB
PBM 1-bit monochrome IMVFBMONO without a CLT
PGM 8-bit color index IMVFBINDEX8 without a CLT
PPM 24-bit RGB IMVFBRGB without a CLT
RPBM 1-bit monochrome IMVFBMONO without a CLT
RPGM 8-bit color index IMVFBINDEX8 without a CLT
RPPM 24-bit RGB IMVFBRGB without a CLT

White space and comments (lines starting with # and extending to the end of the line) are ignored. White
space and comments are not allowed within the raw binary image body.

Writing PBM image files
The SDSC image library writes IMVFBMONO VFBs as pbm monochrome ASCII bitmap files.

pbm files support no compression schemes.

Other image library VFB types are converted to IMVFBMONO VFBs prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), pbm file reading returns the following error codes:

IMEMAGIC Bad magic number in image file
IMEMALLOC Cannot allocate enough memory
IMESYNTAX Premature EOF
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), pbm file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
pbm(5), pgm(5), and ppm(5) from the PBM+ man page set.

64 Last change: September 25, 1991 San Diego Supercomputer Center

IMPBM (3IM) SDSC IMAGE LIBRARY IMPBM (3IM)

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM), impgm(3IM), impnm(3IM), imppm(3IM), imrpbm(3IM),
imrpgm(3IM), imrpnm(3IM), imrppm(3IM)

AUTHORS
Dave Nadeau and Don Doering
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 25, 1991 65

IMPBM (3IM) SDSC IMAGE LIBRARY IMPBM (3IM)

Notes

66 Last change: September 25, 1991 San Diego Supercomputer Center

IMPCX (3IM) SDSC IMAGE LIBRARY IMPCX (3IM)

NAME
impcx - SDSC ZSoft IBM PC Paintbrush file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "pcx", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "pcx", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "pcx", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "pcx", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
The pcx image file format was invented by ZSoft for use in its IBM PC PC Paintbrush tool series. It has
become a defacto standard in the IBM PC world and is regularly used for the storage of monochrome and
color pixel information by paint-type tools.

See the documentation for each of the IBM PC tools for details on how to use them.

FILE RECOGNITION
ZSoft pcx files are recognized by these filename suffixes: .pcx and .pcc.

NOTES
SDSC image library support of the ZSoft pcx format does not require use of IBM PC graphics or compute
hardware and contains no proprietary code. ZSoft pcx format handling is available on any machine for
which the SDSC image library is available.

Reading ZSoft PCX files
The SDSC image library can read ZSoft pcx files and map them to VFBs are as follows:

Depth/color Mapped to VFB
1-bit monochrome IMVFBMONO without CLT
2-bit color index IMVFBINDEX8 with or without CLT

San Diego Supercomputer Center Last change: September 25, 1991 67

IMPCX (3IM) SDSC IMAGE LIBRARY IMPCX (3IM)

3-bit color index IMVFBINDEX8 with or without CLT
4-bit color index IMVFBINDEX8 with or without CLT
8-bit color index IMVFBINDEX8 with or without CLT

2-, 3-, 4- and 8-bit depths may or may not contain a pallete (color lookup table).

Writing ZSoft PCX files
Images to be written out are mapped from image library VFBs are as follows:

Mapped from VFB Depth/color
IMVFBMONO 1-bit monochrome
IMVFBINDEX8 8-bit color index

If the incoming VFB has a CLT, the image written to the pcx file contains a pallete.

pcx files are always compressed with a variant of RLE encoding. However, ZSoft’s pcx RLE encoding
scheme was poorly designed. In the worst case, a compressed pcx file may require double the disk space
that an uncompressed image would occupy. Unfortunately, ZSoft’s pcx file format does not allow for
uncompressed images or compression schemes other than their faulty RLE scheme.

Other image library VFB types are converted to one of the above types prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), ZSoft pcx file reading returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYNTAX Unknown parameter in file header
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), ZSoft pcx file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
Technical Reference Manual, ZSoft Corporation, 1988.

Bit-Mapped Graphics, Steve Rimmer, Windcrest/McGraw-Hill publishing, 1990.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

68 Last change: September 25, 1991 San Diego Supercomputer Center

IMPERROR (3IM) SDSC IMAGE LIBRARY IMPERROR (3IM)

NAME
ImPError - print an error message from a virtual frame buffer routine
ImQError - query the error message for the current error number
ImErrNo - give the error number that came from a virtual frame buffer routine

SYNOPSIS
#include "im.h"

extern int ImErrNo ;
extern int ImNErr ;
extern char ∗∗ ImErrList[] ;

void ImPError(str)
char ∗∗ str ;

char ∗∗ ImQError()

DESCRIPTION
ImPError produces a short message on stderr describing the last error encountered during a call to an IM
package procedure. The argument string str is printed first, then a colon and a blank, then the message and
a new line. To be of most use, the argument string should include the name of the program or routine that
incurred the error. The error number is taken from the external variable ImErrNo, which is set when IM
errors occur, but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings ImErrList is provided;
ImErrNo can be used as an index into this table to get the message string without the newline. ImNErr is
the number of messages provided for in the table; it should be checked because new error codes might be
added to the system before they are added to the table.

ImQError may be used to query the error message list and return a pointer to the error text associated
with the error value of ImErrNo.

EXAMPLE
ImPError should be called when an error condition is detected upon return from an IM routine. For
example:

ReadFb()

{

ImVfb ∗ srcVfb ;

...

srcVfb = ImVfbAlloc(1280, 1024, IMVFBRGB) ;

if(srcVfb == IMVFBNULL)

{

ImPError("ReadFb") ;

exit(1) ;

}

...

}

San Diego Supercomputer Center Last change: September 25, 1991 69

IMPERROR (3IM) SDSC IMAGE LIBRARY IMPERROR (3IM)

RETURNS
ImPError returns nothing.

ImQError returns the character string message for the current value of ImErrNo, or "Unknown error" if
there is no message for the error number.

NOTES
If ImErrNo is IMESYS, indicating a system call error occurred, ImPError calls perror(3) to print the
system call’s error message instead of IMESYS, and ImQError returns the error text associated with
errno.

SEE ALSO
imintro (3IM), errno (2), perror (3)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

70 Last change: September 25, 1991 San Diego Supercomputer Center

IMPGM (3IM) SDSC IMAGE LIBRARY IMPGM (3IM)

NAME
impgm - SDSC PBM+ suite PGM file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "pgm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "pgm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "pgm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "pgm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
pgm image files are used by various tools in Jef Poskanzer’s PBM+ tool suite. See the PBM
documentation set for details on how to use these tools.

FILE RECOGNITION
pgm files are recognized by the filename suffix: .pgm.

NOTES
SDSC image library support of the pgm format does not require use of the PBM+ libraries and tools. It
does not contain proprietary code or any code from Jef Poskanzer’s original PBM+ suite. pgm format
handling is available on any machine for which the SDSC image library is available.

PBM (Portable Bit Map) started with support for 1-bit monochrome images (see impbm(3IM)). Support
was added for 8-bit grayscale images, also called PGM (Portable Grayscale Map), and 24-bit RGB images
(see imppm(3IM)), also called PPM (Portable Pixel Map). Each of these defined a new file format.

The original file formats were ASCII. To reduce the disk space required to store such files, three additional
"raw" formats were defined. The raw formats stored the same information as their ASCII counterparts but
in binary, reducing the disk space requirement by around 60%.

Today the PBM+ suite contains six related file formats:

San Diego Supercomputer Center Last change: September 25, 1991 71

IMPGM (3IM) SDSC IMAGE LIBRARY IMPGM (3IM)

PBM ASCII 1-bit bitmaps
PGM ASCII 8-bit grayscale pixel maps
PPM ASCII 24-bit RGB color pixel maps
RPBM Raw binary 1-bit bitmaps
RPGM Raw binary 8-bit grayscale pixel maps
RPPM Raw binary 24-bit RGB color pixel maps

The original PBM suite included several tools. Some handled PBM files but not PGM or PPM. Others
handled PGM files but not PBM or PPM. Then the newer PBM+ distribution introduced a set of tools that
recognized all six file formats. These tools generically referred to image files as PNM (Portable aNy Map)
files.

The SDSC image library treats the six PBM+ file formats separately. This man page discusses only the
PGM file format (ASCII grayscale). The remaining file formats are disucussed in their own man pages.

Reading PGM image files
For compatibility with the PBM+ suite, the SDSC image library can read any of the PBM+ file formats
when the pgm format name is used. PBM+ files are read in and mapped to VFBs as follows:

File format Depth/color Mapped to VFB
PBM 1-bit monochrome IMVFBMONO without a CLT
PGM 8-bit color index IMVFBINDEX8 without a CLT
PPM 24-bit RGB IMVFBRGB without a CLT
RPBM 1-bit monochrome IMVFBMONO without a CLT
RPGM 8-bit color index IMVFBINDEX8 without a CLT
RPPM 24-bit RGB IMVFBRGB without a CLT

White space and comments (lines starting with # and extending to the end of the line) are ignored. White
space and comments are not allowed within the raw binary image body.

Writing PGM image files
The SDSC image library writes IMVFBINDEX8 VFBs without CLTs as pgm grayscale bitmap files.

pgm files support no compression schemes.

Other image library VFB types are converted to IMVFBINDEX8 VFBs prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), pgm file reading returns the following error codes:

IMEMAGIC Bad Magic number in image file
IMEMALLOC Cannot allocate enough memory
IMESYNTAX Premature EOF
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), pgm file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
pbm(5), pgm(5), and ppm(5) from the PBM+ man page set.

72 Last change: September 25, 1991 San Diego Supercomputer Center

IMPGM (3IM) SDSC IMAGE LIBRARY IMPGM (3IM)

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM), impbm(3IM), impnm(3IM), imppm(3IM), imrpbm(3IM),
imrpgm(3IM), imrpnm(3IM), imrppm(3IM)

AUTHORS
Dave Nadeau and Don Doering
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 25, 1991 73

IMPGM (3IM) SDSC IMAGE LIBRARY IMPGM (3IM)

Notes

74 Last change: September 25, 1991 San Diego Supercomputer Center

IMPIC (3IM) SDSC IMAGE LIBRARY IMPIC (3IM)

NAME
impic - SDSC PIXAR PIC file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "pic", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "pic", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "pic", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "pic", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
pic image files are generated by PIXAR programming software, such as ChapVolumes and ChapReyes,
the PIXAR Image Runtime Library called Pirl, and the PIXAR rendering tool RenderMan. See the
PIXAR documentation set for details on how to use these applications and tools.

PIXAR’s pic file format is sometimes referred to as PICIO in PIXAR documentation. pic and PICIO mean
the same thing.

PIXAR’s xpic is not the same as pic and is not supported by the SDSC image library.

Note: PIXAR’s RenderMan always saves its image files with .pic filename suffixes. However, depending
upon output defaults, RenderMan can generate .pic files with PICIO (same as pic) data or TIFF data. .pic
files with TIFF data will confuse the SDSC image library. For you to avoid generating this type of file, we
recommend that you configure RenderMan defaults to generate .pic files with PICIO data.

FILE RECOGNITION
PIXAR pic files are recognized by the following filename suffixes: .pic, .picio, and .pixar.

NOTES
SDSC image library support of the PIXAR pic format does not require use of PIXAR’s tools, libraries, or
hardware and contains no proprietary code. PIXAR pic format handling is available on any machine for
which the SDSC image library is available.

San Diego Supercomputer Center Last change: March 4, 1991 75

IMPIC (3IM) SDSC IMAGE LIBRARY IMPIC (3IM)

Reading PIXAR image files
The SDSC image library can read PIXAR pic files and map them to VFBs as follows:

Depth/color Type of compression Mapped to VFB
8-bit R Dump and encoded IMVFBINDEX8 without CLT
12-bit R Dump and encoded IMVFBINDEX16 without CLT
24-bit RGB Dump and encoded IMVFBRGB without CLT
36-bit RGB Dump and encoded IMVFBRGB without CLT
32-bit RGB-Alpha Dump and encoded (IMVFBRGB | IMVFBALPHA) without CLT
48-bit RGB-Alpha Dump and encoded (IMVFBRGB | IMVFBALPHA) without CLT

Single-channel images in 8- and 12-bit depths store the channel’s data as the red image channel. The pic
code treats such images as grayscale images without color lookup tables (CLTs).

Dump format images are stored uncompressed; encoded format images are stored using a variant of run-
length-encoded (RLE) compression.

A PIXAR pic image can be represented in files as a series of tiles, each one containing a part of the image.
Such image tiling is not supported by the SDSC image library.

Note: RGB images with 12-bit data channels (i.e., 36-bit RGB and 48-bit RGB-Alpha) are reduced to 8-
bit data channels when read in.

Writing PIXAR image files
SDSC image library VFBs are written to pic files as follows:

Mapped from VFB Depth/color Type of compression
IMVFBINDEX8 8-bit R dump and encoded
IMVFBINDEX16 8-bit R dump and encoded
IMVFBRGB 24-bit RGB dump and encoded
(IMVFBRGB | IMVFBALPHA) 32-bit RGB-Alpha dump and encoded

None of the output formats supports storing a CLT with the image in the file.

Other image library VFB types, or VFBs with CLTs, are converted to one of the above types prior to being
written out. See the ImFileWrite(3IM) man page for details.

In SDSC image library terminology, dump files are uncompressed; encoded files use a variant of run-
length-encoded (RLE) compression.

RGB and RGB-Alpha images are always stored non-interlaced (i.e., RGBRGBRGB...). Scanline- and
plane-interlaced modes are not supported.

ERRORS
In addition to those listed for ImFileRead(3IM), PIXAR pic file reading returns the following error codes:

IMEMAGIC Bad magic number in image file
IMEMALLOC Cannot allocate enough memory
IMESYNTAX Unknown image type, mode, or multiple tiles
IMESYS System call error in read operation

In addition to those listed for ImFileWrite, PIXAR pic file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

76 Last change: March 4, 1991 San Diego Supercomputer Center

IMPIC (3IM) SDSC IMAGE LIBRARY IMPIC (3IM)

DOCUMENTATION
PIXAR Image Computer Programmer’s Manual, PIXAR.

PIXAR Image Computer ChapLibraries User’s Guide, PIXAR.

The RenderMan Companion, Steve Upstill, PIXAR.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Jim McLeod
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: March 4, 1991 77

IMPIC (3IM) SDSC IMAGE LIBRARY IMPIC (3IM)

Notes

78 Last change: March 4, 1991 San Diego Supercomputer Center

IMPICT (3IM) SDSC IMAGE LIBRARY IMPICT (3IM)

NAME
impict - SDSC Apple Macintosh PICT translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "pict", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "pict", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "pict", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "pict", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
The PICT file is the standard Apple Macintosh image file format. It can be read by almost any Macintosh
graphics application. Most Macintosh applications that can export graphics do so in the PICT file format.

FILE RECOGNITION
pict files are recognized by these filename suffixes: .pict and .pict2.

NOTES
SDSC image library support of the Apple pict format does not require use of Apple tools or hardware and
contains no proprietary code. Apple pict format handling is available on any machine for which the SDSC
image library is available.

Reading Apple PICT files
The SDSC image library reads 1-, 2-, 4-, 8-, and 16-bit color index images, with or without a CLT,
compressed using Apple’s PackBits, and maps them into IMVFBRGB VFBs.

Note that all pict images are read into IMVFBRGB VFBs. This is necessary because of a pict feature that
allows each piece of an image to have its own CLT. This can easily exceed any reasonable size color
index image CLT very quickly. To avoid this, incoming image pieces in a pict file are always converted
and stored into an RGB VFB.

Both type 1 (monochrome and "old" color) and type 2 (full color) pict files are handled.

San Diego Supercomputer Center Last change: September 25, 1991 79

IMPICT (3IM) SDSC IMAGE LIBRARY IMPICT (3IM)

Writing Apple PICT files
SDSC image library IMVFBINDEX8 VFBs are written out to Apple pict files as 8-bit color index images
with a CLT and compressed using Apple’s PackBits compression. Written images are always type 2 pict
files.

ERRORS
In addition to those listed for ImFileRead(3IM), Apple pict file reading returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYNTAX Syntax error
IMESYS System call error in read operation
IMEUNSUPPORTED Unsupported opcode

In addition to those listed for ImFileWrite(3IM), Apple pict file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
Inside Macintosh, Volumes I-V, Apple Computer, Inc.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM), immpnt(3IM)

AUTHOR
John Moreland
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

80 Last change: September 25, 1991 San Diego Supercomputer Center

IMPIX (3IM) SDSC IMAGE LIBRARY IMPIX (3IM)

NAME
impix - SDSC Alias PIX file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "pix", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "pix", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "pix", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "pix", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
pix image files are generated by the rendering and painting tools of Alias Research, Inc., such as renderer,
raytracer, and paint. See the Alias documentation set for details on how to use these tools.

Note: Alias quickpaint, available on Silicon Graphics, Inc., IRIS workstations, uses Silicon Graphic’s rgb
image file format rather than the Alias pix image file format. See the imrgb(3IM) man page for details on
the rgb format.

FILE RECOGNITION
Alias pix files are recognized by these following filename suffixes: .alias and .pix.

NOTES
SDSC image library support of the Alias pix format does not require use of Alias tools and contains no
proprietary code. Alias pix format handling is available on any machine for which the SDSC image
library is available.

Reading Alias PIX files
The SDSC image library reads run-length-encoded (RLE), noninterlaced, 24-bit RGB Alias pix files and
maps them to IMVFBRGB VFBs without color lookup tables (CLTs).

Writing Alias PIX files
Image library IMVFBRGB VFBs are written to run-length-encoded, noninterlaced, 24-bit RGB Alias pix
files. Scanline- and plane-interlaced modes are not supported by Alias pix files.

San Diego Supercomputer Center Last change: September 25, 1991 81

IMPIX (3IM) SDSC IMAGE LIBRARY IMPIX (3IM)

Other image library VFB types are converted to IMVFBRGB VFBs prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), Alias pix file reading returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), Alias pix file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
Alias Reference Manual, Alias Research, Inc.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

82 Last change: September 25, 1991 San Diego Supercomputer Center

IMPNM (3IM) SDSC IMAGE LIBRARY IMPNM (3IM)

NAME
impnm - SDSC Jef Poskanzer’s PBM+ suite PNM file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "pnm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "pnm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "pnm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "pnm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
pnm image files are used by various tools in Jef Poskanzer’s PBM+ tool suite. See the PBM
documentation set for details on how to use these tools.

FILE RECOGNITION
pnm files are recognized by the filename suffix: .pnm.

NOTES
SDSC image library support of the pnm format does not require use of the PBM+ libraries and tools. It
does not contain proprietary code or any code from Jef Poskanzer’s original PBM+ suite. pnm format
handling is available on any machine for which the SDSC image library is available.

PBM (Portable Bit Map) started with support for 1-bit monochrome images (see impbm(3IM)). Support
was added for 8-bit grayscale images (see impgm(3IM)), also called PGM (Portable Grayscale Map), and
24-bit RGB images (see imppm(3IM)), also called PPM (Portable Pixel Map). Each of these defined a
new file format.

The original file formats were ASCII. To reduce the disk space required to store such files, three additional
"raw" formats were defined. The raw formats stored the same information as their ASCII counterparts but
in binary, reducing the disk space requirement by around 60%.

San Diego Supercomputer Center Last change: September 25, 1991 83

IMPNM (3IM) SDSC IMAGE LIBRARY IMPNM (3IM)

Today the PBM+ suite contains six related file formats:

PBM ASCII 1-bit bitmaps
PGM ASCII 8-bit grayscale pixel maps
PPM ASCII 24-bit RGB color pixel maps
RPBM Raw binary 1-bit bitmaps
RPGM Raw binary 8-bit grayscale pixel maps
RPPM Raw binary 24-bit RGB color pixel maps

The original PBM suite included several tools. Some handled PBM files but not PGM or PPM. Others
handled PGM files but not PBM or PPM. Then the newer PBM+ distribution introduced a set of tools that
recognized all six file formats. These tools generically referred to image files as PNM (Portable aNy Map)
files.

The SDSC image library treats the six PBM+ file formats separately. However, in order to be compatible
with the apparent trend in the PBM+ tool set, the new generic pnm and rpnm names mean "any of the
PBM+ formats." This man page only discusses the PNM generic file name. The remaining file formats
are disucussed in their own man pages.

Reading PNM image files
The SDSC image library can read any of the PBM+ file formats when the pnm format name is used. This
includes the raw binary variants as well as the ASCII format variants. PBM+ files are read in and mapped
to VFBs as follows:

File format Depth/color Mapped to VFB
PBM 1-bit monochrome IMVFBMONO without a CLT
PGM 8-bit color index IMVFBINDEX8 without a CLT
PPM 24-bit RGB IMVFBRGB without a CLT
RPBM 1-bit monochrome IMVFBMONO without a CLT
RPGM 8-bit color index IMVFBINDEX8 without a CLT
RPPM 24-bit RGB IMVFBRGB without a CLT

Header white space and comments (lines starting with # and extending to the end of the line) are ignored.
White space and comments are not allowed within the raw binary image body.

Writing PNM image files
The SDSC image library can write PBM+ suite files in the following configurations:

Mapped from VFB Depth/color File format
IMVFBMONO without a CLT 1-bit monochrome PBM
IMVFBINDEX8 without a CLT 8-bit color index PGM
IMVFBRGB without a CLT 24-bit RGB PPM

RGB images are always stored noninterlaced (i.e., RGBRGBRGB...). Scanline- and plane-interlaced
modes are not available in PPM.

All PBM+ suite files support no compression schemes.

Other image library VFB types are converted to one of the above types prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), pnm file reading returns the following error codes:

84 Last change: September 25, 1991 San Diego Supercomputer Center

IMPNM (3IM) SDSC IMAGE LIBRARY IMPNM (3IM)

IMEMAGIC Bad magic number in image file
IMEMALLOC Cannot allocate enough memory
IMESYNTAX Premature EOF
IMESYS System call error in read operation

In addition to those for ImFileWrite(3IM), pnm file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
pbm(5), pgm(5), and ppm(5) from the PBM+ man page set.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM), impbm(3IM), impgm(3IM), imppm(3IM), imrpbm(3IM),
imrpgm(3IM), imrpnm(3IM), imrppm(3IM)

AUTHORS
Dave Nadeau and Don Doering
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 25, 1991 85

IMPNM (3IM) SDSC IMAGE LIBRARY IMPNM (3IM)

Notes

86 Last change: September 25, 1991 San Diego Supercomputer Center

IMPPM (3IM) SDSC IMAGE LIBRARY IMPPM (3IM)

NAME
imppm - SDSC PBM+ suite PPM file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "ppm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "ppm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "ppm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "ppm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
ppm image files are used by various tools in Jef Poskanzer’s PBM+ tool suite. See the PBM
documentation set for details on how to use these tools.

FILE RECOGNITION
ppm files are recognized by the filename suffix: .ppm.

NOTES
SDSC image library support of the ppm format does not require use of the PBM+ libraries and tools. It
does not contain proprietary code or any code from Jef Poskanzer’s original PBM+ suite. ppm format
handling is available on any machine for which the SDSC image library is available.

PBM (Portable Bit Map) started with support for 1-bit monochrome images (see impbm(3IM)). Support
was added for 8-bit grayscale images (see impgm(3IM)), also called PGM (Portable Grayscale Map), and
24-bit RGB images, also called PPM (Portable Pixel Map). Each of these defined a new file format.

The original file formats were ASCII. To reduce the disk space required to store such files, three additional
"raw" formats were defined. The raw formats stored the same information as their ASCII counterparts but
in binary, reducing the disk space requirement by around 60%.

Today the PBM+ suite contains six related file formats:

San Diego Supercomputer Center Last change: September 24, 1991 87

IMPPM (3IM) SDSC IMAGE LIBRARY IMPPM (3IM)

PBM ASCII 1-bit bitmaps
PGM ASCII 8-bit grayscale pixel maps
PPM ASCII 24-bit RGB color pixel maps
RPBM Raw binary 1-bit bitmaps
RPGM Raw binary 8-bit grayscale pixel maps
RPPM Raw binary 24-bit RGB color pixel maps

The original PBM suite included a variety of tools. Some handled PBM files, but not PGM or PPM.
Others handled PGM files, but not PBM or PPM. Then the newer PBM+ distribution introduced a set of
tools that recognized all six file formats. These tools generically referred to image files as PNM files,
which stands for "Portable aNy Map."

The SDSC image library treats the six PBM+ file formats separately. This man page only discusses the
PPM file format (ASCII RGB). The remaining file formats are discussed in their own man pages.

Reading PPM image files
For compatibility with the PBM+ suite, the SDSC image library can read any of the PBM+ file formats
when the ppm format name is used. PBM+ files are read in and mapped to VFBs as follows:

File format Depth/color Mapped to VFB
PBM 1-bit monochrome IMVFBMONO without a CLT
PGM 8-bit color index IMVFBINDEX8 without a CLT
PPM 24-bit RGB IMVFBRGB without a CLT
RPBM 1-bit monochrome IMVFBMONO without a CLT
RPGM 8-bit color index IMVFBINDEX8 without a CLT
RPPM 24-bit RGB IMVFBRGB without a CLT

White space, and comments starting with # and extending to the end of the line are ignored. White space
and comments are not allowed within the raw binary image body.

Writing PPM image files
The SDSC image library writes IMVFBRGB VFBs as ppm RGB files.

ppm images are always stored noninterlaced (i.e., RGBRGBRGB...). Scanline- and plane-interlaced
modes are not available in ppm files.

ppm files support no compression schemes.

Other image library VFB types are converted to IMVFBRGB VFBs prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), ppm file reading returns the following error codes:

IMEMAGIC Bad magic number in image file
IMEMALLOC Cannot allocate enough memory
IMESYNTAX Premature EOF
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), ppm file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

88 Last change: September 24, 1991 San Diego Supercomputer Center

IMPPM (3IM) SDSC IMAGE LIBRARY IMPPM (3IM)

DOCUMENTATION
pbm(5), pgm(5), and ppm(5) from the PBM+ man page set.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM), impbm(3IM), impgm(3IM), impnm(3IM), imrpbm(3IM),
imrpgm(3IM), imrpnm(3IM), imrppm(3IM)

AUTHORS
Dave Nadeau and Don Doering
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 89

IMPPM (3IM) SDSC IMAGE LIBRARY IMPPM (3IM)

Notes

90 Last change: September 24, 1991 San Diego Supercomputer Center

IMPS (3IM) SDSC IMAGE LIBRARY IMPS (3IM)

NAME
imps - SDSC PostScript file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileWrite(fd, "ps", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "ps", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
PostScript color, grayscale, and black-and-white image files are used by a variety of PostScript laser
printers and windowing system tools.

FILE RECOGNITION
PostScript files are recognized by the following filename suffixes: .ps and .postscript.

NOTES
SDSC image library support of PostScript does not require use of any windowing system libraries or
PostScript interpreters, and contains no proprietary code. PostScript format handling is available on any
machine for which the SDSC image library is available.

PostScript is a reverse polish notation-style, FORTH-like programming language used to describe text and
pictures to be rendered by a PostScript interpreter embedded within a laser printer (such as Apple’s
LaserWriter printers), windowing system (such as Sun’s NeWS or NeXT’s NeXTstep), or other display
tool. The language contains numerous basic programming language constructs and lots of drawing
operations.

PostScript was designed for ease of parsing, not ease of programming. As a result, most people use
PostScript as a "blackbox" file format that describes their picture. It is left up to software, such as the
SDSC image library, to figure out how to deal with PostScript.

Reading PostScript files
Reading of PostScript is not supported by the SDSC image library. Inclusion of a full PostScript language
interpreter in order to read PostScript files would require a great deal of code. This approach is not really
practical.

Users needing to read in PostScript data should investigate PostScript interpreters, such as Sun
Microsystem’s NeWS window system and its image viewer PageView(1), or GNU’s GostScript
PostScript-clone interpreter.

Writing PostScript files
The SDSC image library writes color, grayscale, or monochrome VFBs as PostScript. In each case the
generated PostScript consists of a header followed by the image data as ASCII hex numbers. The choice
of header and the format of the hex numbers depends upon the type of image being written.

San Diego Supercomputer Center Last change: September 24, 1991 91

IMPS (3IM) SDSC IMAGE LIBRARY IMPS (3IM)

IMVFBMONO VFBs are written with a PostScript header that displays the image in black-and-white on
black-and-white or color devices. Image data is written as two hex characters for each group of eight
adjacent monochrome pixels (as required by the PostScript image operator).

IMVFBINDEX8 VFBs without color lookup tables are written with a PostScript header that displays the
image in shades of gray on black-and-white or color devices. Image data is written as two hex characters
for each grayscale pixel (as required by the PostScript image operator).

IMVFBINDEX8 VFBs with a color lookup table and IMVFBRGB VFBs are written with a PostScript
header that displays the image in color on color devices and in shades of gray on black-and-white devices.
The PostScript header code checks the device’s systemdict for support of the colorimage operator. If the
operator exists, the device supports color. In both cases, image data is written as six hex characters at two
characters each for the red, green, and blue color component of each pixel (as required by the PostScript
colorimage operator). On color devices, this color pixel data generates a color image. On monochrome
devices, the header code automatically converts the color pixel data to shades of gray as it is being
displayed or printed. This allows the same color PostScript file to be sent to color or black-and-white
printers without any change to the file.

Other image library VFB types are converted to one of the above prior to being written out. See the
ImFileWrite(3IM) man page for details.

Image data is always generated for pixels in left to right order, from the top of the image to the bottom.

In all cases the image is rotated and scaled up automatically to fill a maximum page area without distorting
the image. You can override this automatic orientation and sizing by editing the generated PostScript file.
The header of the file contains comments describing how to do this.

PostScript generated by the SDSC image library conforms to Adobe’s version 3.0 document structuring
conventions.

Warning: All PostScript laser printers have a fixed amount of memory in which to buffer incoming data
and build up the image prior to printing. Large images converted to PostScript and then sent to a laser
printer may exceed the buffering and image-building memory limitations of the printer. Results vary from
printer to printer: some lock up and require a reset, while others silently ignore the images and do not
print anything.

ERRORS
In addition to those listed for ImFileWrite(3IM), PostScript file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
PostScript Language - Tutorial and Cookbook, Adobe Systems Incorporated.

PostScript Language - Reference Manual, Second Edition, Adobe Systems Incorporated.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHORS
Dave Nadeau
San Diego Supercomputer Center

92 Last change: September 24, 1991 San Diego Supercomputer Center

IMPS (3IM) SDSC IMAGE LIBRARY IMPS (3IM)

Loren "Buck" Buchanan
Naval Research Laboratory
Kestrel Associates, Inc.

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 93

IMPS (3IM) SDSC IMAGE LIBRARY IMPS (3IM)

Notes

94 Last change: September 24, 1991 San Diego Supercomputer Center

IMRAS (3IM) SDSC IMAGE LIBRARY IMRAS (3IM)

NAME
imras - SDSC Sun Rasterfile translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "ras", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "ras", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "ras", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "ras", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
ras image files are used by various Sun Microsystems Inc. tools, such as screendump(1) and
screenload(1). See the Sun documentation set for details on how to use these tools.

FILE RECOGNITION
Sun ras files are recognized by any of the following filename suffixes: .ras, .scr, .sr, and .sun.

NOTES
SDSC image library support of the Sun ras format does not require use of Sun’s pixrect library or
hardware, and contains no proprietary code. Sun ras format handling is available on any machine for
which the SDSC image library is available.

Reading Sun Rasterfiles
The SDSC image library can read Sun ras files and map them to VFBs as follows:

Depth/color Type of compression Mapped to VFB
1-bit monochrome RT_OLD, RT_STANDARD, IMVFBMONO

or RT_BYTE_ENCODED

8-bit color index RT_OLD, RT_STANDARD, IMVFBINDEX8

San Diego Supercomputer Center Last change: September 24, 1991 95

IMRAS (3IM) SDSC IMAGE LIBRARY IMRAS (3IM)

or RT_BYTE_ENCODED

24-bit RGB RT_OLD, RT_STANDARD, IMVFBRGB
or RT_BYTE_ENCODED

32-bit RGB-Alpha RT_OLD, RT_STANDARD, (IMVFBRGB | IMVFBALPHA)
or RT_BYTE_ENCODED

All depths may or may not contain a color map (color lookup table, or CLT), though, normally, only 8-bit
images include one.

In SDSC image library terminology, RT_STANDARD and RT_OLD files are uncompressed;
RT_BYTE_ENCODED files use runlength-encoded RLE compression.

If the file’s image has a color map, the image library VFB includes a CLT.

Writing Sun Rasterfiles
Images to be written out are mapped from image library VFBs as follows:

Mapped from VFB Depth/color Types of compression
IMVFBMONO 1-bit monochrome RT_STANDARD, RT_BYTE_ENCODED
IMVFBINDEX8 8-bit color index RT_STANDARD, RT_BYTE_ENCODED
IMVFBRGB 24-bit RGB RT_STANDARD, RT_BYTE_ENCODED
(IMVFBRGB | IMVFBALPHA) 32-bit RGB-Alpha RT_STANDARD, RT_BYTE_ENCODED

If the incoming VFB has a CLT, the image written to the raster file contains a color map.

In SDSC image library terminology, RT_STANDARD and RT_OLD files are uncompressed;
RT_BYTE_ENCODED files use runlength-encoded RLE compression. RT_OLD raster files cannot be
generated.

RGB and RGB-Alpha images are always stored noninterlaced (i.e., RGBRGBRGB...). Scanline- and
plane-interlaced modes are not available in the ras format.

Other image library VFB types are converted to one of the above types prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), Sun ras file reading returns the following error codes:

IMECLTLENGTH CLT length in file header is strange
IMEDEPTH Unknown image depth in file header
IMEIMAGETYPE Unknown image type in file header
IMEMAGIC Bad magic number in image file
IMEMALLOC Cannot allocate enough memory
IMESYNTAX Unknown CLT type in file header
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), Sun ras file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
See the comments in /usr/include/rasterfile.h on Sun systems.

96 Last change: September 24, 1991 San Diego Supercomputer Center

IMRAS (3IM) SDSC IMAGE LIBRARY IMRAS (3IM)

Pixrect Reference Manual, Sun Microsystems.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 97

IMRAS (3IM) SDSC IMAGE LIBRARY IMRAS (3IM)

Notes

98 Last change: September 24, 1991 San Diego Supercomputer Center

IMRGB (3IM) SDSC IMAGE LIBRARY IMRGB (3IM)

NAME
imrgb - SDSC Silicon Graphics RGB file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "rgb", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "rgb", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "rgb", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "rgb", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
rgb image files are generated by Silicon Graphics, Inc., software such as icut(1) and snapshot(1). See the
Silicon Graphics documentation for information on how to use these and other Silicon Graphics programs.

FILE RECOGNITION
Silicon Graphics rgb files are recognized by the following filename suffixes: .rgb, .iris, and .sgi.

NOTES
SDSC image library support of the Silicon Graphics rgb format does not require use of any Silicon
Graphics library or hardware and contains no proprietary code. Silicon Graphics rgb format handling is
available on any machine for which the SDSC image library is available.

Reading Silicon Graphics RGB files
The SDSC image library reads uncompressed and runlength-encoded (RLE), scanline-interlaced, 24-bit
RGB Silicon Graphics rgb images and stores them as IMVFBRGB VFBs without CLTs.

rgb greyscale images are not supported.

Writing Silicon Graphics RGB files
Image library IMVFBRGB VFBs are written to uncompressed or runlength-encoded, scanline-interlaced,
24-bit RGB Silicon Graphics rgb files. Noninterlaced and plane-interlaced modes are not available in the
Silicon Graphics rgb format.

San Diego Supercomputer Center Last change: September 24, 1991 99

IMRGB (3IM) SDSC IMAGE LIBRARY IMRGB (3IM)

Other image library VFB types are converted to IMVFBRGB VFBs prior to being written out. See the
ImFileWrite(3IM) man page for details.

rgb greyscale images are not supported.

ERRORS
In addition to those listed for ImFileRead(3IM), Silicon Graphics rgb file reading returns the following
error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), Silicon Graphics rgb file writing returns the following
error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
Silicon Graphics RGB Specification, Silicon Graphics Inc.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Jesus Ferrer and T. Todd Elvins
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

100 Last change: September 24, 1991 San Diego Supercomputer Center

IMRLA (3IM) SDSC IMAGE LIBRARY IMRLA (3IM)

NAME
imrla - SDSC Wavefront RLA and RLB file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "rla", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "rla", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "rla", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "rla", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
rla image files are generated by Wavefront Technologies, Inc., software such as image and tdv. See the
Wavefront documentation for information on how to use these and other Wavefront programs.

rla is a subset of the newer Wavefront rlb specification. Programs that can read and write rlb files can
also read and write rla files. The SDSC image library reader/writer is written to accommodate both types
of files.

FILE RECOGNITION
Wavefront rla files are recognized by the following filename suffixes: .rla and .rlb.

NOTES
SDSC image library support of the Wavefront rla format does not require use of any Wavefront tools and
contains no proprietary code. Wavefront rla is available on any machine for which the SDSC image
library is available.

Reading Wavefront RLA files
The SDSC image library reads runlength-encoded (RLE), scanline-interlaced, 24-bit RGB and 32-bit
RGB-Alpha Wavefront files and maps them to IMVFBRGB and (IMVFBRGB | IMVFBALPHA) VFBs
without color lookup tables (CLTs).

San Diego Supercomputer Center Last change: September 24, 1991 101

IMRLA (3IM) SDSC IMAGE LIBRARY IMRLA (3IM)

Writing Wavefront RLA files
Image library IMVFBRGB VFBs with or without alpha planes are written to runlength-encoded,
scanline-interlaced, 32-bit RGB-Alpha Wavefront rla files. If the incoming VFB does not have an alpha
plane, outgoing image file alpha values are all set to 255. Noninterlaced and plane-interlaced modes are
not supported by Wavefront rla files.

Other image library VFB types are converted to (IMVFBRGB | IMVFBALPHA) prior to being written
out. See the ImFileWrite(3IM) man page for details.

Note that the Wavefront rla specification requires the presence of an alpha channel in an rla image file,
yet at least one of the Wavefront programs does not include alpha channels in the images that it writes to
files.

ERRORS
In addition to those listed for ImFileRead(3IM), Wavefront rla file reading returns the following error
codes:

IMEMALLOC Cannot allocate enough memory
IMESYNTAX Syntax error
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), Wavefront rla file writing returns the following error
codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
Wavefront RLA Specification, Wavefront Technologies, Inc.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
T. Todd Elvins
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

102 Last change: September 24, 1991 San Diego Supercomputer Center

IMRLE (3IM) SDSC IMAGE LIBRARY IMRLE (3IM)

NAME
imrle - SDSC Utah RLE file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "rle", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "rle", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "rle", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "rle", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
rle image files are generated by the tools of Utah’s Raster Toolkit. See the Utah documentation set for
details on how to use these tools.

FILE RECOGNITION
Utah rle files are only recognized by the following filename suffix: .rle

NOTES
SDSC image library support of the Utah rle format does not require use of any Utah tools and contains no
proprietary code. Utah rle format handling is available on any machine for which the SDSC image library
is available.

The Utah rle format is very flexible and allows the definition of a wide range of image depths. Depth
parameters include two ways to define color channels:

1. Each pixel has a number of "channels" of information, such as one channel for color index images, and
three channels for red-green-blue (RGB) images. The rle format puts no restriction on the number of pixel
"color channels" an image may have.

2. If a color lookup table (CLT) is present, each entry has a number of "channels" of information, such as
three channels for a red-green-blue (RGB) color table (the only well-defined case). The rle format puts no
restrictions on the number of CLT "color map channels" an image may have. Such a flexible file format
design allows for the standard image types:

San Diego Supercomputer Center Last change: September 24, 1991 103

IMRLE (3IM) SDSC IMAGE LIBRARY IMRLE (3IM)

Color index 1 channel/pixel Stores color index
3 channels/map entry Stores RGB value

RGB 3 channels/pixel Stores RGB value
no color map

Unfortunately, such a flexible file format can also specify a very wide range of implausible image types.
So, clearly, restrictions have to be made. The image library’s support of Utah rle image files restricts
images to either 8-bit color index images (1 color channel, 3 color map color channels) or 24-bit RGB
images (3 color channels, 0 or 3 color map color channels).

Reading Utah RLE files
The SDSC image library can read Utah rle files and map them to VFBs as follows:

Depth/color Mapped to VFB
8-bit color index, with or without CLT IMVFBINDEX8
8-bit color index + alpha, with or without CLT (IMVFBINDEX8 | IMVFBALPHA)
24-bit RGB, with or without CLT IMVFBRGB
24-bit RGB + alpha, with or without CLT (IMVFBRGB | IMVFBALPHA)

If the image has a color map, the VFB includes a CLT.

Writing Utah RLE files
Images to be written out are mapped from image library VFBs as follows:

Mapped from VFB Depth/color
IMVFBINDEX8 8-bit color index, with or without CLT
IMVFBRGB 24-bit RGB, with or without CLT

If the incoming VFB has a CLT, the image written to the Utah rle file contains a CLT.

Other image library VFB types are converted to one of the above types prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), Utah rle file reading returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYNTAX Syntax error in incoming file
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), Utah rle file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
Design of the Utah RLE Format, Spencer W. Thomas, University of Utah, Department of Computer
Science

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

104 Last change: September 24, 1991 San Diego Supercomputer Center

IMRLE (3IM) SDSC IMAGE LIBRARY IMRLE (3IM)

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 105

IMRLE (3IM) SDSC IMAGE LIBRARY IMRLE (3IM)

Notes

106 Last change: September 24, 1991 San Diego Supercomputer Center

IMRPBM (3IM) SDSC IMAGE LIBRARY IMRPBM (3IM)

NAME
imrpbm - SDSC Jef Poskanzer’s PBM+ suite RPBM file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "rpbm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "rpbm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "rpbm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "rpbm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
rpbm image files are used by various tools in Jef Poskanzer’s PBM+ tool suite. See the PBM
documentation set for details on how to use these tools.

FILE RECOGNITION
rpbm files are recognized by the filename suffix: .rpbm.

NOTES
SDSC image library support of the rpbm format does not require use of the PBM+ libraries and tools. It
does not contain proprietary code or any code from Jef Poskanzer’s original PBM+ suite. rpbm format
handling is available on any machine for which the SDSC image library is available.

PBM (Portable Bit Map) started with support for 1-bit monochrome images. Support was added for 8-bit
grayscale images (see impgm(3IM)), also called PGM (Portable Grayscale Map). Support was also added
for 24-bit RGB images (see imppm(3IM)), also called PPM (Portable Pixel Map). Each of these defined a
new file format.

The original file formats were ASCII. To reduce the disk space required to store such files, three additional
"raw" formats were defined. The raw formats stored the same information as their ASCII counterparts but
in binary, reducing the disk space requirement by around 60%.

San Diego Supercomputer Center Last change: September 24, 1991 107

IMRPBM (3IM) SDSC IMAGE LIBRARY IMRPBM (3IM)

Today the PBM+ suite contains six related file formats:

PBM ASCII 1-bit bitmaps
PGM ASCII 8-bit grayscale pixel maps
PPM ASCII 24-bit RGB color pixel maps
RPBM Raw binary 1-bit bitmaps
RPGM Raw binary 8-bit grayscale pixel maps
RPPM Raw binary 24-bit RGB color pixel maps

The original PBM suite included a variety of tools. Some handled PBM files, but not PGM or PPM.
Others handled PGM files, but not PBM or PPM. Then the newer PBM+ distribution introduced a set of
tools that recognized all six file formats. These tools generically referred to image files as PNM (Portable
aNy Map) files.

The SDSC image library treats the six PBM+ file formats separately. This man page only discusses the
RPBM (raw monochrome) file format. The remaining file formats are discussed in their own man pages.

Reading RPBM image files
For compatibility with the PBM+ suite, the SDSC image library can read any of the PBM+ file formats
when the rpbm format name is used. PBM+ files are read in and mapped to VFBs as follows:

File format Depth/color Mapped to VFB
PBM 1-bit monochrome IMVFBMONO without a CLT
PGM 8-bit color index IMVFBINDEX8 without a CLT
PPM 24-bit RGB IMVFBRGB without a CLT
RPBM 1-bit monochrome IMVFBMONO without a CLT
RPGM 8-bit color index IMVFBINDEX8 without a CLT
RPPM 24-bit RGB IMVFBRGB without a CLT

Header white space, and comments starting with # and extending to the end of the line are ignored. White
space and comments are not allowed within the raw binary image body.

Writing RPBM image files
The SDSC image library writes IMVFBMONO VFBs as rpbm monochrome raw bitmap files.

rpbm files support no compression schemes.

Other image library VFB types are converted to IMVFBMONO VFBs prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), rpbm file reading returns the following error codes:

IMEMAGIC Bad magic number in image file
IMEMALLOC Cannot allocate enough memory
IMESYNTAX Premature EOF
IMESYS System call error in read operation

In addition to those for ImFileWrite(3IM), rpbm file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
pbm(5), pgm(5), and ppm(5) from the PBM+ man page set.

108 Last change: September 24, 1991 San Diego Supercomputer Center

IMRPBM (3IM) SDSC IMAGE LIBRARY IMRPBM (3IM)

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM), impbm(3IM), impgm(3IM), impnm(3IM), imppm(3IM),
imrpgm(3IM), imrpnm(3IM), imrppm(3IM)

AUTHORS
Dave Nadeau and Don Doering
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 109

IMRPBM (3IM) SDSC IMAGE LIBRARY IMRPBM (3IM)

Notes

110 Last change: September 24, 1991 San Diego Supercomputer Center

IMRPGM (3IM) SDSC IMAGE LIBRARY IMRPGM (3IM)

NAME
imrpgm - SDSC Jef Poskanzer’s PBM+ suite RPGM file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "rpgm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "rpgm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "rpgm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "rpgm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
rpgm image files are used by various tools in Jef Poskanzer’s PBM+ tool suite. See the PBM
documentation set for details on how to use these tools.

FILE RECOGNITION
rpgm files are recognized by the filename suffix: .rpgm.

NOTES
SDSC image library support of the rpgm format does not require use of the PBM+ libraries and tools. It
does not contain proprietary code or any code from Jef Poskanzer’s original PBM+ suite. rpgm format
handling is available on any machine for which the SDSC image library is available.

PBM (Portable Bit Map) started with support for 1-bit monochrome images (see impbm(3IM)). Support
was added for 8-bit grayscale images, also called PGM (Portable Grayscale Map), and 24-bit RGB images
(see imppm(3IM)), also called PPM (Portable Pixel Map). Each of these defined a new file format.

The original file formats were ASCII. To reduce the disk space required to store such files, three additional
"raw" formats were defined. The raw formats stored the same information as their ASCII counterparts but
in binary, reducing the disk space requirement by around 60%.

Today the PBM+ suite contains six related file formats:

San Diego Supercomputer Center Last change: September 24, 1991 111

IMRPGM (3IM) SDSC IMAGE LIBRARY IMRPGM (3IM)

PBM ASCII 1-bit bitmaps
PGM ASCII 8-bit grayscale pixel maps
PPM ASCII 24-bit RGB color pixel maps
RPBM Raw binary 1-bit bitmaps
RPGM Raw binary 8-bit grayscale pixel maps
RPPM Raw binary 24-bit RGB color pixel maps

The original PBM suite included a variety of tools. Some handled PBM files, but not PGM or PPM.
Others handled PGM files, but not PBM or PPM. Then the newer PBM+ distribution introduced a set of
tools that recognized all six file formats. These tools generically referred to image files as PNM (Portable
aNy Map) files.

The SDSC image library treats the six PBM+ file formats separately. This man page only discusses the
RPGM (raw grayscale) file format. The remaining file formats are discussed in their own man pages.

Reading RPGM image files
For compatibility with the PBM+ suite, the SDSC image library can read any of the PBM+ file formats
when the rpgm format name is used. PBM+ files are read in and mapped to VFBs as follows:

File format Depth/color Mapped to VFB
PBM 1-bit monochrome IMVFBMONO without a CLT
PGM 8-bit color index IMVFBINDEX8 without a CLT
PPM 24-bit RGB IMVFBRGB without a CLT
RPBM 1-bit monochrome IMVFBMONO without a CLT
RPGM 8-bit color index IMVFBINDEX8 without a CLT
RPPM 24-bit RGB IMVFBRGB without a CLT

Header white space, and comments starting with # and extending to the end of the line are ignored. White
space and comments are not allowed within the raw binary image body.

Writing RPGM image files
The SDSC image library writes IMVFBINDEX8 VFBs without CLTs as rpgm grayscale raw bitmap files.

rpgm files support no compression schemes.

Other image library VFB types are converted to IMVFBINDEX8 VFBs prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), rpgm file reading returns the following error codes:

IMEMAGIC Bad magic number in image file
IMEMALLOC Cannot allocate enough memory
IMESYNTAX Premature EOF
IMESYS System call error in read operation

In addition to those for ImFileWrite(3IM), rpgm file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
pbm(5), pgm(5), and ppm(5) from the PBM+ man page set.

112 Last change: September 24, 1991 San Diego Supercomputer Center

IMRPGM (3IM) SDSC IMAGE LIBRARY IMRPGM (3IM)

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM), impbm(3IM), impgm(3IM), impnm(3IM), imppm(3IM),
imrpbm(3IM), imrpnm(3IM), imrppm(3IM)

AUTHORS
Dave Nadeau and Don Doering
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 113

IMRPGM (3IM) SDSC IMAGE LIBRARY IMRPGM (3IM)

Notes

114 Last change: September 24, 1991 San Diego Supercomputer Center

IMRPNM (3IM) SDSC IMAGE LIBRARY IMRPNM (3IM)

NAME
imrpnm - SDSC Jef Poskanzer’s PBM+ suite RPNM file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "rpnm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "rpnm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "rpnm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "rpnm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
rpnm image files are used by various tools in Jef Poskanzer’s PBM+ tool suite. See the PBM
documentation set for details on how to use these tools.

FILE RECOGNITION
rpnm files are recognized by the filename suffix: .rpnm.

NOTES
SDSC image library support of the rpnm format does not require use of the PBM+ libraries and tools. It
does not contain proprietary code or any code from Jef Poskanzer’s original PBM+ suite. rpnm format
handling is available on any machine for which the SDSC image library is available.

PBM (Portable Bit Map) started with support for 1-bit monochrome images (see impbm(3IM)). Support
was added for 8-bit grayscale images (see impgm(3IM)), also called PGM (Portable Grayscale Map), and
24-bit RGB images (see imppm(3IM)), also called PPM (Portable Pixel Map). Each of these defined a
new file format.

The original file formats were ASCII. To reduce the disk space required to store such files, three additional
"raw" formats were defined. The raw formats stored the same information as their ASCII counterparts but
in binary, reducing the disk space requirement by around 60%.

San Diego Supercomputer Center Last change: September 24, 1991 115

IMRPNM (3IM) SDSC IMAGE LIBRARY IMRPNM (3IM)

Today the PBM+ suite contains six related file formats:

PBM ASCII 1-bit bitmaps
PGM ASCII 8-bit grayscale pixel maps
PPM ASCII 24-bit RGB color pixel maps
RPBM Raw binary 1-bit bitmaps
RPGM Raw binary 8-bit grayscale pixel maps
RPPM Raw binary 24-bit RGB color pixel maps

The original PBM suite included a variety of tools. Some handled PBM files, but not PGM or PPM.
Others handled PGM files, but not PBM or PPM. Then the newer PBM+ distribution introduced a set of
tools that recognized all six file formats. These tools generically referred to image files as PNM files,
which stands for "Portable aNy Map."

The SDSC image library treats the six PBM+ file formats separately. However, to be compatible with the
apparent trend in the PBM+ toolset, the new generic pnm and rpnm names mean "any of the PBM+
formats." This man page only discusses the RPNM generic filename. The remaining file formats are
discussed in their own man pages.

Reading RPNM image files
The SDSC image library can read any of the PBM+ file formats when the rpnm format name is used,
including the ASCII format variants and the raw binary variants. PBM+ files are read in and mapped to
VFBs as follows:

File format Depth/color Mapped to VFB
PBM 1-bit monochrome IMVFBMONO without a CLT
PGM 8-bit color index IMVFBINDEX8 without a CLT
PPM 24-bit RGB IMVFBRGB without a CLT
RPBM 1-bit monochrome IMVFBMONO without a CLT
RPGM 8-bit color index IMVFBINDEX8 without a CLT
RPPM 24-bit RGB IMVFBRGB without a CLT

Header white space, and comments starting with # and extending to the end of the line are ignored. White
space and comments are not allowed within the raw binary image body.

Writing RPNM image files
The SDSC image library can write PBM+ suite files in the following configurations:

Mapped from VFB Depth/color File format
IMVFBMONO without a CLT 1-bit monochrome RPBM
IMVFBINDEX8 without a CLT 8-bit color index RPGM
IMVFBRGB without a CLT 24-bit RGB RPPM

RGB images are always stored noninterlaced (i.e., RGBRGBRGB...). Scanline- and plane-interlaced
modes are not available in RPPM.

The PBM+ suite files support no compression schemes.

Other image library VFB types are converted to one of the above types prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), rpnm file reading returns the following error codes:

116 Last change: September 24, 1991 San Diego Supercomputer Center

IMRPNM (3IM) SDSC IMAGE LIBRARY IMRPNM (3IM)

IMEMAGIC Bad magic number in image file
IMEMALLOC Cannot allocate enough memory
IMESYNTAX Premature EOF
IMESYS System call error in read operation

In addition to those for ImFileWrite(3IM), rpnm file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
pbm(5), pgm(5), and ppm(5) from the PBM+ man page set.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM), impbm(3IM), impgm(3IM), impnm(3IM), imppm(3IM),
imrpbm(3IM), imrpgm(3IM), imrppm(3IM)

AUTHORS
Dave Nadeau and Don Doering
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 117

IMRPNM (3IM) SDSC IMAGE LIBRARY IMRPNM (3IM)

Notes

118 Last change: September 24, 1991 San Diego Supercomputer Center

IMRPPM (3IM) SDSC IMAGE LIBRARY IMRPPM (3IM)

NAME
imrppm - SDSC Jef Poskanzer’s PBM+ suite RPPM file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "rppm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "rppm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "rppm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "rppm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
rppm image files are used by various tools in Jef Poskanzer’s PBM+ tool suite. See the PBM
documentation set for details on how to use these tools.

FILE RECOGNITION
rppm files are recognized by the filename suffix: .rppm.

NOTES
SDSC image library support of the rppm format does not require use of the PBM+ libraries and tools. It
does not contain proprietary code or any code from Jef Poskanzer’s original PBM+ suite. rppm format
handling is available on any machine for which the SDSC image library is available.

PBM (Portable Bit Map) started with support for 1-bit monochrome images (see impbm(3IM)). Support
was added for 8-bit grayscale images (see impgm(3IM)), also called PGM (Portable Grayscale Map), and
24-bit RGB images (see imppm(3IM)), also called PPM (Portable Pixel Map). Each of these defined a new
file format.

The original file formats were ASCII. To reduce the disk space required to store such files, three additional
"raw" formats were defined. The raw formats stored the same information as their ASCII counterparts but
in binary, reducing the disk space requirement by around 60%.

San Diego Supercomputer Center Last change: September 24, 1991 119

IMRPPM (3IM) SDSC IMAGE LIBRARY IMRPPM (3IM)

Today the PBM+ suite contains six related file formats:

PBM ASCII 1-bit bitmaps
PGM ASCII 8-bit grayscale pixel maps
PPM ASCII 24-bit RGB color pixel maps
RPBM Raw binary 1-bit bitmaps
RPGM Raw binary 8-bit grayscale pixel maps
RPPM Raw binary 24-bit RGB color pixel maps

The original PBM suite included a variety of tools. Some handled PBM files, but not PGM or PPM.
Others handled PGM files, but not PBM or PPM. Then the newer PBM+ distribution introduced a set of
tools that recognized all six file formats. These tools generically referred to image files as PNM (Portable
aNy Map) files.

The SDSC image library treats the six PBM+ file formats separately. This man page only discusses the
RPPM (raw RGB color pixel maps) file format. The remaining file formats are discussed in their own man
pages.

Reading RPPM image files
For compatibility with the PBM+ suite, the SDSC image library can read any of the PBM+ file formats
when the rppm format name is used. PBM+ files are read in and mapped to VFBs as follows:

File format Depth/color Mapped to VFB
PBM 1-bit monochrome IMVFBMONO without a CLT
PGM 8-bit color index IMVFBINDEX8 without a CLT
PPM 24-bit RGB IMVFBRGB without a CLT
RPBM 1-bit monochrome IMVFBMONO without a CLT
RPGM 8-bit color index IMVFBINDEX8 without a CLT
RPPM 24-bit RGB IMVFBRGB without a CLT

Header white space, and comments starting with # and extending to the end of the line are ignored. White
space and comments are not allowed within the raw binary image body.

Writing RPPM image files
The SDSC image library writes IMVFBRGB VFBs as rppm RGB raw bitmap files.

rppm images are always stored noninterlaced (i.e., RGBRGBRGB...). Scanline- and plane-interlaced
modes are not available in rppm files.

rppm files support no compression schemes.

Other image library VFB types are converted to IMVFBRGB VFBs prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), rppm file reading returns the following error codes:

IMEMAGIC Bad magic number in image file
IMEMALLOC Cannot allocate enough memory
IMESYNTAX Premature EOF
IMESYS System call error in read operation

In addition to those for ImFileWrite(3IM), rppm file writing returns the following error codes:

120 Last change: September 24, 1991 San Diego Supercomputer Center

IMRPPM (3IM) SDSC IMAGE LIBRARY IMRPPM (3IM)

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
pbm(5), pgm(5), and ppm(5) from the PBM+ man page set.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM), impbm(3IM), impgm(3IM), impnm(3IM), imppm(3IM),
imrpbm(3IM), imrpgm(3IM), imrpnm(3IM)

AUTHORS
Dave Nadeau and Don Doering
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 121

IMRPPM (3IM) SDSC IMAGE LIBRARY IMRPPM (3IM)

Notes

122 Last change: September 24, 1991 San Diego Supercomputer Center

IMSYNU (3IM) SDSC IMAGE LIBRARY IMSYNU (3IM)

NAME
imsynu - SDSC Synu (Synthetic Universe) file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "synu", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "synu", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "synu", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "synu", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
synu is the image file format output by SDSC’s synu (Synthetic Universe) portable renderer.

FILE RECOGNITION
synu files are recognized only by the following filename suffix:

NOTES
SDSC image library support of the SDSC synu format does not require use of any other SDSC tools and
contains no proprietary code. SDSC synu format handling is available on any machine for which the
SDSC image library is available.

synu files contain "objects" of many types, such as grayscale images, RGB images, and various forms of
geometry. SDSC image library translation of synu files is limited to the handling of grayscale and RGB
objects. All other synu objects are ignored during reads and cannot be generated during writes.

Reading Synu files
The SDSC image library reads one or more uncompressed, 8-bit, grayscale and 24-bit, RGB synu images
and maps them to IMVFBINDEX8 and IMVFBRGB VFBs, respectively, both without color lookup
tables.

Writing Synu files
Image library IMVFBINDEX8 VFBs without color lookup tables are written as 8-bit grayscale synu files.
IMVFBRGB VFBs without color lookup tables are written as 24-bit RGB synu files. Both image types are
uncompressed. RGB images are noninterlaced. Scanline- and plane-interlaced modes are not supported
by synu image files.

San Diego Supercomputer Center Last change: September 24, 1991 123

IMSYNU (3IM) SDSC IMAGE LIBRARY IMSYNU (3IM)

Other image library VFB types are converted to IMVFBINDEX8 or IMVFBRGB VFBs without color
lookup tables prior to being written out. See the ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), synu file reading returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), synu file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
Synu Reference Manual, San Diego Supercomputer Center

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHORS
Phil Mercurio and Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

124 Last change: September 24, 1991 San Diego Supercomputer Center

IMTIFF (3IM) SDSC IMAGE LIBRARY IMTIFF (3IM)

NAME
imtiff - SDSC TIFF (Tagged Image File Format) translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "tiff", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "tiff", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "tiff", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "tiff", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
tiff is a generic Tagged Image File Format developed by Aldus and Microsoft in conjunction with leading
scanner and printer manufacturers. tiff files may contain images and miscellaneous other image-related
items. Such files may be created and manipulated by a variety of Tagged Image File Format tools. See the
Tagged Image File Format documentation for details on how to use these tools.

tiff support within the SDSC image library is limited to images of certain depths and storage methods.

FILE RECOGNITION
tiff files are recognized by the following filename suffixes: .tiff and .tif.

NOTES
SDSC image library support of the tiff format adheres to tiff Specification 5.0 and tiff Software Release
2.3. In particular tiff Classes B, G, P, R, are all supported for read and write with the following exceptions:

tiff directories that are written do not include NewSubfileType tags. NewSubfileType indicates
how one image within a tiff file is related to other images in the file.

tiff directories that are written do not include ResolutionUnit tags. ResolutionUnit indicates
whether the unit of pixel measure is none, inch, or centimeter.

tiff R image files that are written do not include the new 5.0 colorimetric information tags.

San Diego Supercomputer Center Last change: September 24, 1991 125

IMTIFF (3IM) SDSC IMAGE LIBRARY IMTIFF (3IM)

Tags not recognized on reading are ignored unless the calling program has requested verbosity.

SDSC image library support of the tiff format does not require use of the Tagged Image File Format’s tiff
library libtiff.a and contains no proprietary code. tiff format handling is available on any machine for
which the SDSC image library is available.

Reading TIFF image files
The SDSC image library can read tiff image files with one or more images and map them to VFBs as
follows:

Depth/color Types of compression Mapped to VFB
1-bit monochrome Uncompressed, LZW, IMVFBMONO

Mac PackBits

4-bit color index Uncompressed, LZW, IMVFBINDEX8
Mac PackBits

8-bit color index Uncompressed, LZW, IMVFBINDEX8
Mac PackBits

16-bit color index Uncompressed, LZW, IMVFBINDEX16
Mac PackBits

24-bit RGB Uncompressed, LZW, IMVFBRGB
Mac PackBits

32-bit RGB+Alpha Uncompressed, LZW, (IMVFBRGB | IMVFBALPHA)
Mac PackBits

8-bit and 16-bit images may have associated color lookup tables.

RGB images may be scanline-interlaced or plane-interlaced. (In tiff terminology, this is called
"contiguous" or "separate" planar configuration.)

Lempel-Ziv Welch compression (LZW) and Macintosh PackBit compression schemes are supported.
CCITT, NEXT, THUNDERSCAN, SGIRLE, and PICIO image compression are not supported.

tiff files may be in MBF (most-significant byte first) or LBF (least-significant byte first) byte order. Note:
tiff documentation refers to MBF as TIFF_BIGENDIAN and LBF as TIFF_LITTLEENDIAN.
TIFF_VERSION is 42.

Bottom right and top right image orientations are not supported.

If the file’s image has a color map, the image library VFB includes a color lookup table.

Note that 24-bit and 32-bit color indexes are truncated to the lower 16 bits when the file is stored as an
IMVFBINDEX16 VFB.

Writing TIFF image files
Images to be written out are mapped from image library VFBs as follows:

Mapped from VFB Depth/color Types of compression
IMVFBMONO 1-bit color index Uncompressed, LZW,

126 Last change: September 24, 1991 San Diego Supercomputer Center

IMTIFF (3IM) SDSC IMAGE LIBRARY IMTIFF (3IM)

Mac PackBits
IMVFBINDEX8 8-bit color index Uncompressed, LZW,

Mac PackBits
IMVFBINDEX16 16-bit color index Uncompressed, LZW,

Mac PackBits
IMVFBRGB 24-bit RGB Uncompressed, LZW,

Mac PackBits
(IMVFBRGB|IMVFBALPHA) 32-bit RGB+Alpha Uncompressed, LZW,

Mac PackBits

If the incoming VFB has a color lookup table, the image written to the tiff file contains one.

RGB images may be stored in scanline-interlaced and plane-interlaced modes. The tiff format does not
supprt noninterlaced RGB image storage.

Other image library VFB types are converted to one of the above types prior to being written out. See the
ImFileWrite(3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead(3IM), tiff file reading returns the following error codes:

IMECONFLICT Conflicting information in image header
IMEDEPTH Unknown image depth
IMEHEIGHT Zero or negative image height
IMEMAGIC Bad magic number in image file
IMEMALLOC Cannot allocate enough memory
IMEORIENTATION Unsupported image orientation
IMEOUTOFRANGE Header value out of legal range
IMEPLANES Unknown image plane configuration
IMESYNTAX Syntax error in tiff file
IMESYS System call error in read operation
IMEUNSUPPORTED Unsupported VFB type
IMEVERSION Bad version number
IMEWIDTH Zero or negative image width

In addition to those listed for ImFileWrite(3IM), tiff file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
Tag Image File Format Rev 5.0, August 8, 1988, Tim Davenport, Aldus Corporation, and Manny Vellon,
Microsoft Corporation.

See also the man pages with the tiff standard distribution.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
T. Todd Elvins
San Diego Supercomputer Center

San Diego Supercomputer Center Last change: September 24, 1991 127

IMTIFF (3IM) SDSC IMAGE LIBRARY IMTIFF (3IM)

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

128 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBALLOC (3IM) SDSC IMAGE LIBRARY IMVFBALLOC (3IM)

NAME
ImVfbAlloc - Allocate a virtual frame buffer

SYNOPSIS
#include "im.h"

ImVfb ∗∗ ImVfbAlloc(width, height, fields)
int width, height ;
int fields ;

DESCRIPTION
ImVfbAlloc allocates a virtual frame buffer and returns a pointer to the new Vfb.

width and height are the x and y dimensions, respectively, of the desired Vfb.

fields is a bitmask that specifies what items of information need to be stored in each pixel. fields is formed
by or’ing together one or more of:

Constant Meaning___
IMVFBRGB Store red, green, blue values (0-255)
IMVFBALPHA Store an alpha value (0-255)
IMVFBINDEX8 Store a color index (0-255)
IMVFBWPROT Store a write protection (0 or non-zero)
IMVFBINDEX16 Store a color index (full integer)
IMVFBMONO Store a monochrome (on/off) value
IMVFBZ Store a z-value (full integer)
IMVFBIDATA Store an integer data value
IMVFBFDATA Store a floating-point data value

NOTES
Information about a particular virtual frame buffer can be Set with:

Call Meaning__
ImVfbSClt(v, c) Set (assign) a color lookup table to the Vfb

Information about a particular virtual frame buffer can be Queried by:

Call Meaning__
ImVfbQWidth(v) Return the number of columns
ImVfbQHeight(v) Return the number of rows
ImVfbQFields(v) Return the fields mask
ImVfbQNBytes(v) Return the number of bytes per pixel
ImVfbQClt(v) Return a pointer to a color lookup table

Frame buffer information can be allocated on a per-pixel or a per-plane basis. The per-pixel basis is better
to reduce paging. The per-plane basis reduces overall storage. For a per-pixel allocation, one might call:

v = ImVfbAlloc(1280, 1024, IMVFBRGB | IMVFBZ);

For a per-plane allocation, one might call:

vc = ImVfbAlloc(1280, 1024, IMVFBRGB);

vz = ImVfbAlloc(1280, 1024, IMVFBZ);

San Diego Supercomputer Center Last change: September 24, 1991 129

IMVFBALLOC (3IM) SDSC IMAGE LIBRARY IMVFBALLOC (3IM)

Per-pixel storage is a packed array of values. The storage convention assumes that the top row is row #0
and the left column is column #0. Pixels are stored like C-language 2D arrays: left-to-right across the row.
Values can be Set into a particular pixel (pointed to by a pixel pointer) within a particular virtual frame
buffer by:

Call Meaning__
ImVfbSRed(v,p,r) Red (byte)
ImVfbSGreen(v,p,g) Green (byte)
ImVfbSBlue(v,p,b) Blue (byte)
ImVfbSAlpha(v,p,a) Alpha-value (byte)
ImVfbSIndex8(v,p,i8) Color index (byte)
ImVfbSIndex16(v,p,i32) Color index (integer)
ImVfbSMono(v,p,m) Monochromatic value (zero or non-zero)
ImVfbSIndex(v,p,i) ImVfbSIndex8 or ImVfbSIndex16
ImVfbSZ(v,p,z) Z-value (integer)
ImVfbSGray(v,p,g) Gray scale (byte)
ImVfbSGrey(v,p,g) Gray scale (byte)
ImVfbSFData(v,p,f) Floating-point data value
ImVfbSIData(v,p,i) Integer data value

Various values can be Queried within a particular virtual frame buffer by:

Call Meaning___
ImVfbQRed(v,p) Red (byte)
ImVfbQGreen(v,p) Green (byte)
ImVfbQBlue(v,p) Blue (byte)
ImVfbQAlpha(v,p) Alpha-value (byte)
ImVfbQIndex8(v,p) Color index (byte)
ImVfbQIndex16(v,p) Color index (integer)
ImVfbQMono(v,p,m) Monochromatic value (zero or non-zero)
ImVfbQIndex(v,p) ImVfbQIndex8 or ImVfbQIndex16
ImVfbQZ(v,p) Z-value (integer)
ImVfbQGray(v,p) Gray scale (byte)
ImVfbQGrey(v,p) Gray scale (byte)
ImVfbQFData(v,p) Floating-point data value
ImVfbQIData(v,p) Integer data value

Pixel pointer values can be Queried and Set by:

Call Meaning__
ImVfbQPtr(v,r,c) Return a pointer to a particular pixel
ImVfbQFirst(v) Return a pointer to the first (UL) pixel
ImVfbQLast(v) Return a pointer to the last (LR) pixel
ImVfbQLeft(v,p) Return a pointer to a pixel one column left
ImVfbQRight(v,p) Return a pointer to a pixel one column right
ImVfbQUp(v,p) Return a pointer to a pixel one row up
ImVfbQDown(v,p) Return a pointer to a pixel one row down
ImVfbQNext(v,p) Same as ImVfbQRight(v,p)

130 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBALLOC (3IM) SDSC IMAGE LIBRARY IMVFBALLOC (3IM)

ImVfbQPrev(v,p) Same as ImVfbQLeft(v,p)
ImVfbSInc(v,p) Same as p = ImVfbQRight(v,p)
ImVfbSDec(v,p) Same as p = ImVfbQLeft(v,p)

The pixel just to the ImVfbQRight of the right-most pixel in a scanline is the left-most pixel in the next
scanline. The pixel just to the ImVfbQLeft of the left-most pixel in a scanline is the last pixel in the
previous scanline. No automatic wraparound occurs between the last pixel and the first pixel in the
framebuffer.

RETURNS
An error causes IMVFBNULL to be returned and the value of ImErrNo to be set to one of the following:

IMEMALLOC Cannot allocate enough memory for the new Vfb
IMENOFIELDS The fields mask is zero

SEE ALSO
imintro (3IM), ImVfbFree (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 131

IMVFBALLOC (3IM) SDSC IMAGE LIBRARY IMVFBALLOC (3IM)

Notes

132 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBCOPY (3IM) SDSC IMAGE LIBRARY IMVFBCOPY (3IM)

NAME
ImVfbCopy - Copy a subarea within a virtual frame buffer

SYNOPSIS
#include "im.h"

ImVfb ∗∗ ImVfbCopy(srcVfb, srcXLeft, srcYTop, srcDX, srcDY, fieldMask, dstVfb, dstXLeft, dstYTop)
ImVfb ∗∗ srcVfb ;
int srcXLeft, srcYTop ;
int srcDX, srcDY ;
int fieldMask ;
ImVfb ∗∗ dstVfb ;
int dstXLeft, dstYTop ;

DESCRIPTION
ImVfbCopy copies a portion of a virtual frame buffer to another virtual frame buffer. A pointer to the
destination virtual frame buffer is returned.

srcVfb is the Vfb whose subarea is to be copied.

srcXLeft, srcYTop indicate the top-left corner of the area of the Vfb to be copied.

srcDX, srcDY are the dimensions of the subarea of the Vfb to be copied.

fieldMask is a mask of field constants (see ImVfbAlloc (3IM)) that selects the fields in srcVfb to be copied
into dstVfb.

dstVfb is the Vfb to receive the copied area.

dstXLeft, dstYTop indicate the top-left corner of the area to which the subarea will be copied.

NOTES
If dstVfb is the constant IMVFBNEW, a new Vfb is allocated for the copied data. The Vfb has the same
size as the region being copied, and the fields are selected by fieldMask. A pointer to the new Vfb is
returned.

Portions of the copied data that would extend beyond the borders of the dstVfb are skipped.

The srcVfb and dstVfb may be the same Vfb. The source and destination areas can overlap with no
unpleasant side effects.

RETURNS
Upon success, ImVfbCopy returns a pointer to the destination Vfb. Upon failure, IMVFBNULL is
returned and ImErrNo set to the following:

IMEMALLOC Cannot allocate enough memory for the new Vfb

SEE ALSO
ImVfbAlloc (3IM), ImVfbDup (3IM)

AUTHORS
Mike Bailey, Dave Nadeau
San Diego Supercomputer Center

San Diego Supercomputer Center Last change: September 24, 1991 133

IMVFBCOPY (3IM) SDSC IMAGE LIBRARY IMVFBCOPY (3IM)

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

134 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBDUP (3IM) SDSC IMAGE LIBRARY IMVFBDUP (3IM)

NAME
ImVfbDup - Duplicate a virtual frame buffer

SYNOPSIS
#include "im.h"

ImVfb ∗∗ ImVfbDup(srcVfb)
ImVfb ∗∗ srcVfb ;

DESCRIPTION
ImVfbDup duplicates a virtual frame buffer and returns a pointer to the new Vfb. srcVfb is the Vfb to be
duplicated. It is not changed by this operation.

RETURNS
An error causes IMVFBNULL to be returned and the value of ImErrNo to be set to the following:

IMEMALLOC Cannot allocate enough memory for the new Vfb

SEE ALSO
ImVfbAlloc (3IM), ImVfbCopy (3IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 135

IMVFBDUP (3IM) SDSC IMAGE LIBRARY IMVFBDUP (3IM)

Notes

136 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBFLIP (3IM) SDSC IMAGE LIBRARY IMVFBFLIP (3IM)

NAME
ImVfbFlip - Flip a virtual frame buffer vertically, horizontally, or both

SYNOPSIS
#include "im.h"

ImVfb ∗∗ ImVfbFlip(srcVfb, flipDirection, dstVfb)
ImVfb ∗∗ srcVfb ;
int flipDirection ;
ImVfb ∗∗ dstVfb ;

DESCRIPTION
ImVfbFlip flips a virtual frame buffer about the horizontal and/or vertical axis and returns a pointer to the
flipped Vfb.

srcVfb is the Vfb to be flipped.

flipDirection is the direction(s) about which to flip. Possible values for flipDirection are:

Value Meaning______________________________
IMVFBXFLIP Flip in X
IMVFBYFLIP Flip in Y
IMVFBXYFLIP Flip in X and Y

Note that specifying IMVFBXYFLIP causes a complete pixel transpose.

dstVfb is the Vfb to contain the flipped image. If dstVfb is the constant IMVFBNEW, a new Vfb is
allocated with the same size and the same fields as srcVfb. A pointer to the new Vfb is returned.

RETURNS
Upon success, ImVfbDup returns a pointer to the destination Vfb. Upon failure, IMVFBNULL is
returned and ImErrNo set to one of the following:

IMEMALLOC Cannot allocate enough memory for the new Vfb
IMEBADFLIP flipDirection is not one of the legal values

SEE ALSO
ImVfbResize (3IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 137

IMVFBFLIP (3IM) SDSC IMAGE LIBRARY IMVFBFLIP (3IM)

Notes

138 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBFREE (3IM) SDSC IMAGE LIBRARY IMVFBFREE (3IM)

NAME
ImVfbFree - Free the storage for a virtual frame buffer

SYNOPSIS
#include "im.h"

void ImVfbFree(srcVfb)
ImVfb ∗∗ srcVfb ;

DESCRIPTION
ImVfbFree frees the dynamic storage for a virtual frame buffer.

srcVfb is the Vfb whose storage is to be freed. srcVfb is no longer valid after this call.

NOTES
ImVfbFree does not free the storage of any ImClt that might be attached to it.

SEE ALSO
ImCltAlloc (3IM), ImCltFree (3IM), ImVfbAlloc (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 139

IMVFBFREE (3IM) SDSC IMAGE LIBRARY IMVFBFREE (3IM)

Notes

140 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBQCLT (3IM) SDSC IMAGE LIBRARY IMVFBQCLT (3IM)

NAME
ImVfbQClt - Query the CLT (color lookup table) that is attached to a virtual frame buffer
ImVfbSClt - Set the CLT attached to a virtual frame buffer

SYNOPSIS
#include "im.h"

ImClt ∗∗ ImVfbQClt(srcVfb)
ImVfb ∗∗ srcVfb ;

void ImVfbSClt(srcVfb, clt)
ImVfb ∗∗ srcVfb ;
ImClt ∗∗ clt ;

DESCRIPTION
ImVfbSClt attaches the color lookup table clt to the virtual frame buffer srcVfb. Thereafter, color index
information in the virtual frame buffer is looked up in clt to obtain RGB color triplets.

ImVfbQClt returns a pointer to the color lookup table attached to the srcVfb. A return value of
IMCLTNULL indicates the Vfb currently has no color lookup table.

NOTES
Setting a Vfb’s CLT to IMCLTNULL unattaches any CLT from the Vfb.

Both ImVfbSClt and ImVfbQClt are macros.

RETURNS
ImVfbQClt returns the srcVfb’s CLT.

ImVfbSClt returns nothing.

SEE ALSO
ImCltAlloc (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 141

IMVFBQCLT (3IM) SDSC IMAGE LIBRARY IMVFBQCLT (3IM)

Notes

142 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBQFIELDS (3IM) SDSC IMAGE LIBRARY IMVFBQFIELDS (3IM)

LIBRARY"

NAME
ImVfbQFields - Query the pixel fields of a virtual frame buffer

SYNOPSIS
#include "im.h"

int ImVfbQFields(srcVfb)
ImVfb ∗∗ srcVfb ;

DESCRIPTION
ImVfbQFields returns a bitmask specifying the fields stored in srcVfb.

NOTES
fields specifies what information is to be stored in each pixel of the Vfb. fields is a bitmask formed by
or’ing together one or more of the same constants used by the fields parameter in ImVfbAlloc (3IM).

ImVfbQFields is a macro.

RETURNS
ImVfbQFields returns the fields mask of the srcVfb.

SEE ALSO
ImVfbAlloc (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 143

IMVFBQFIELDS (3IM) SDSC IMAGE LIBRARY IMVFBQFIELDS (3IM)

Notes

144 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBQNBYTES (3IM) SDSC IMAGE LIBRARY IMVFBQNBYTES (3IM)

LIBRARY"

NAME
ImVfbQNBytes - Query the number of bytes per pixel being stored in a virtual frame buffer
ImVfbQWidth - Query the width of a virtual frame buffer
ImVfbQHeight - Query the height of a virtual frame buffer

SYNOPSIS
#include "im.h"

int ImVfbQNBytes(srcVfb)
ImVfb ∗∗ srcVfb ;

int ImVfbQWidth(srcVfb)
ImVfb ∗∗ srcVfb ;

int ImVfbQHeight(srcVfb)
ImVfb ∗∗ srcVfb ;

DESCRIPTION
ImVfbQNBytes returns the number of bytes per pixel used by the srcVfb.

ImVfbQWidth returns the width of the srcVfb in pixels.

ImVfbQHeight returns the height of the srcVfb in pixels.

NOTES
All are C macros.

SEE ALSO
ImVfbAlloc (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 145

IMVFBQNBYTES (3IM) SDSC IMAGE LIBRARY IMVFBQNBYTES (3IM)

Notes

146 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBQPTR (3IM) SDSC IMAGE LIBRARY IMVFBQPTR (3IM)

NAME
ImVfbQPtr - Query the pointer to a pixel location in a virtual frame buffer
ImVfbQFirst - Query the pointer to the first pixel location in a virtual frame buffer
ImVfbQLast - Query the pointer to the last pixel location in a virtual frame buffer
ImVfbQLeft - Query the pointer to the next pixel to the left in a virtual frame buffer
ImVfbQRight - Query the pointer to the next pixel to the right in a virtual frame buffer
ImVfbQUp - Query the pointer to the next pixel up in a virtual frame buffer
ImVfbQDown - Query the pointer to the next pixel down in a virtual frame buffer
ImVfbQNext - Query the pointer to the next pixel in a virtual frame buffer
ImVfbQPrev - Query the pointer to the previous pixel in a virtual frame buffer
ImVfbSInc - Increment the pointer to point to the next pixel in a virtual frame buffer
ImVfbSDec - Decrement the pointer to point to the previous pixel in a virtual frame buffer

SYNOPSIS
#include "im.h"

ImVfbPtr ImVfbQPtr(srcVfb, x, y)
ImVfb ∗∗ srcVfb ;
int x, y ;

ImVfbPtr ImVfbQFirst(srcVfb)
ImVfb ∗∗ srcVfb ;

ImVfbPtr ImVfbQLast(srcVfb)
ImVfb ∗∗ srcVfb ;

ImVfbPtr ImVfbQLeft(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

ImVfbPtr ImVfbQRight(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

ImVfbPtr ImVfbQUp(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

ImVfbPtr ImVfbQDown(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

ImVfbPtr ImVfbQNext(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

ImVfbPtr ImVfbQPrev(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

San Diego Supercomputer Center Last change: September 24, 1991 147

IMVFBQPTR (3IM) SDSC IMAGE LIBRARY IMVFBQPTR (3IM)

void ImVfbSInc(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

void ImVfbSDec(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

DESCRIPTION
ImVfbQPtr returns the pointer to the srcVfb pixel at coordinate (x,y). (0,0) is the upper left corner of the
image.

ImVfbQFirst returns the pointer to the first pixel in the srcVfb and is equivalent to ImVfbQPtr(srcVfb, 0,
0).

ImVfbQLast returns the pointer to the last pixel in the srcVfb and is equivalent to ImVfbQPtr(srcVfb,
ImVfbQWidth(srcVfb), ImVfbQHeight(srcVfb)).

ImVfbQLeft returns the pointer to the pixel in the srcVfb, just to the left of the pixel pointed to by p. If p
points to the left-most pixel of a scanline, ImVfbQLeft wraps around to the end of the previous scanline.

ImVfbQRight returns the pointer to the pixel in the srcVfb, just to the right of the pixel pointed to by p. If
p points to the right-most pixel of a scanline, ImVfbQRight wraps around to the start of the next scanline.

ImVfbQUp returns the pointer to the pixel in the srcVfb, which is just above the pixel pointed to by p.

ImVfbQDown returns the pointer to the pixel in the srcVfb, which is just below the pixel pointed to by p.

ImVfbQNext returns the pointer to the pixel in the srcVfb just to the right of the pixel pointed to by p
(identical to ImVfbQRight).

ImVfbQPrev returns the pointer to the pixel in the srcVfb just to the left of the pixel pointed to by p
(identical to ImVfbQLeft).

ImVfbSInc increments pointer p by one and is equivalent to p = ImVfbQNext(srcVfb, p).

ImVfbSDec decrements pointer p by one and is equivalent to p = ImVfbQPrev(srcVfb, p).

NOTES
The pixel just to the ImVfbQRight of the right-most pixel in a scanline is the left-most pixel in the next
scanline down. The pixel just to the ImVfbQLeft of the left-most pixel in a scanline is the last pixel in the
previous scanline.

No automatic wraparound occurs between the last pixel and the first pixel in the frame buffer.

All are C macros.

SEE ALSO
ImVfbAlloc (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

148 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBQRED (3IM) SDSC IMAGE LIBRARY IMVFBQRED (3IM)

NAME
ImVfbQRed - Query the red value of a pixel in a virtual frame buffer
ImVfbQGreen - Query the green value of a pixel in a virtual frame buffer
ImVfbQBlue - Query the blue value of a pixel in a virtual frame buffer
ImVfbQAlpha - Query the alpha value of a pixel in a virtual frame buffer
ImVfbQIndex8 - Query the 8-bit index value of a pixel in a virtual frame buffer
ImVfbQIndex16 - Query the 32-bit index value of a pixel in a virtual frame buffer
ImVfbQIndex - Query the index value of a pixel in a virtual frame buffer
ImVfbQZ - Query the z-buffer value of a pixel in a virtual frame buffer
ImVfbQGray, ImVfbQGrey - Query the gray scale value of a pixel in a virtual frame buffer
ImVfbQFData - Query the floating-point data value of a pixel in a virtual frame buffer
ImVfbQIData - Query the integer data value of a pixel in a virtual frame buffer
ImVfbSRed - Set the red value of a pixel in a virtual frame buffer
ImVfbSGreen - Set the green value of a pixel in a virtual frame buffer
ImVfbSBlue - Set the blue value of a pixel in a virtual frame buffer
ImVfbSAlpha - Set the alpha value of a pixel in a virtual frame buffer
ImVfbSIndex8 - Set the 8-bit index value of a pixel in a virtual frame buffer
ImVfbSIndex16 - Set the 32-bit index value of a pixel in a virtual frame buffer
ImVfbSIndex - Set the index value of a pixel in a virtual frame buffer
ImVfbSZ - Set the z-buffer value of a pixel in a virtual frame buffer
ImVfbSGray, ImVfbSGrey - Set the gray scale value of a pixel in a virtual frame buffer
ImVfbSFData - Set the floating-point data value of a pixel in a virtual frame buffer
ImVfbSIData - set the integer data value of a pixel in a virtual frame buffer

SYNOPSIS
#include "im.h"

int ImVfbQRed(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

int ImVfbQGreen(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

int ImVfbQBlue(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

int ImVfbQAlpha(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

int ImVfbQIndex8(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

int ImVfbQIndex16(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

San Diego Supercomputer Center Last change: September 24, 1991 149

IMVFBQRED (3IM) SDSC IMAGE LIBRARY IMVFBQRED (3IM)

int ImVfbQIndex(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

int ImVfbQZ(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

int ImVfbQGray(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

int ImVfbQGrey(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

float ImVfbQFData(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
float f ;

int ImVfbQIData(srcVfb, p)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;

void ImVfbSRed(srcVfb, p, r)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
int r ;

void ImVfbSGreen(srcVfb, p, g)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
int g ;

void ImVfbSBlue(srcVfb, p, b)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
int b ;

void ImVfbSAlpha(srcVfb, p, a)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
int a ;

void ImVfbSIndex8(srcVfb, p, i8)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
int i8 ;

150 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBQRED (3IM) SDSC IMAGE LIBRARY IMVFBQRED (3IM)

void ImVfbSIndex16(srcVfb, p, i32)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
int i32 ;

void ImVfbSIndex(srcVfb, p, i)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
int i ;

void ImVfbSZ(srcVfb, p, z)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
int z ;

void ImVfbSGray(srcVfb, p, g)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
int g ;

void ImVfbSGrey(srcVfb, p, g)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
int g ;

void ImVfbSFData(srcVfb, p, f)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
float f ;

void ImVfbSIData(srcVfb, p, i)
ImVfb ∗∗ srcVfb ;
ImVfbPtr p ;
int i ;

DESCRIPTION
These routines store information into and query information from a pixel (pointed to by p) in Vfb srcVfb.

ImVfbSRed, ImVfbSGreen, and ImVfbSBlue set RGB information into a Vfb. They are only valid if the
Vfb was ImVfbAlloced with IMVFBRGB in the field mask. ImVfbQRed, ImVfbQGreen, and
ImVfbQBlue query the RGB information.

ImVfbSAlpha sets an alpha-channel value. It is only valid if the Vfb was ImVfbAlloced with
IMVFBALPHA in the field mask. ImVfbQAlpha queries the alpha-channel value.

ImVfbSIndex8 sets an 8-bit ImClt index. It is only valid if the Vfb was ImVfbAlloced with
IMVFBINDEX8 in the field mask. ImVfbQIndex8 queries the 8-bit ImClt index.

San Diego Supercomputer Center Last change: September 24, 1991 151

IMVFBQRED (3IM) SDSC IMAGE LIBRARY IMVFBQRED (3IM)

ImVfbSIndex16 sets a 16-bit ImClt index. It is only valid if the Vfb was ImVfbAlloced with
IMVFBINDEX16 in the field mask. ImVfbQIndex16 queries the 16-bit ImClt index.

ImVfbSIndex sets an 8- or 16-bit ImClt index. It is only valid if the Vfb was ImVfbAlloced with
IMVFBINDEX8 or IMVFBINDEX16 in the field mask. ImVfbSIndex uses whichever type of index is
being used in srcVfb. ImVfbQIndex queries the ImClt index.

ImVfbSZ sets the z-buffer value. It is only valid if the Vfb was ImVfbAlloced with IMVFBZ in the field
mask. ImVfbQZ queries the z-buffer value.

ImVfbSGray and ImVfbSGrey are identical to ImVfbSIndex8, and ImVfbQGray and ImVfbQGrey are
identical to ImVfbQIndex8.

ImVfbSFData sets an arbitrary floating-point value. It is only valid if the Vfb was ImVfbAlloced with
IMVFBFDATA in the field mask. ImVfbQFData queries the floating-point value.

ImVfbSIData sets an arbitrary integer value. It is only valid if the Vfb was ImVfbAlloced with
IMVFBIDATA in the field mask. ImVfbQIData queries the integer value.

NOTES
All of these routines are C macros.

SEE ALSO
ImVfbAlloc (3IM)

AUTHOR
Mike Bailey
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

152 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBRESIZE (3IM) SDSC IMAGE LIBRARY IMVFBRESIZE (3IM)

NAME
ImVfbResize - Change the resolution of a virtual frame buffer

SYNOPSIS
#include "im.h"

ImVfb ∗∗ ImVfbResize(srcVfb, algorithm, dstVfb, width, height)
ImVfb ∗∗ srcVfb ;
int algorithm ;
ImVfb ∗∗ dstVfb ;
int width, height ;

DESCRIPTION
ImVfbResize changes the resolution of a virtual frame buffer and returns a pointer to the resized
destination Vfb.

srcVfb is the Vfb to be copied and resized. srcVfb is unaltered by the operation.

width and height are the dimensions of the destination resized Vfb.

algorithm is what algorithm to use to change the resolution. Legal values of algorithm are:

Value Meaning__
IMVFBBILINEAR Perform bilinear interpolation
IMVFBPIXELREP Perform pixel replication

dstVfb is the Vfb to contain the resized image. If dstVfb is the constant IMVFBNEW, a new Vfb is
allocated as width x height pixels with the same fields as the srcVfb. The new Vfb is returned.

If dstVfb is not IMVFBNEW, it must be width x height in size and have the same fields as srcVfb.

NOTES
The new Vfb contains the same picture as did the original, but it is represented with more or fewer pixels
than the original.

RETURNS
Upon success, ImVfbResize returns a pointer to the destination Vfb. Upon failure, IMVFBNULL is
returned, and ImErrNo set to one of the following:

IMEMALLOC Cannot allocate enough memory for the new Vfb
IMEBADALGORITHM A legal algorithm was not specified

SEE ALSO
ImVfbFlip (3IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 153

IMVFBRESIZE (3IM) SDSC IMAGE LIBRARY IMVFBRESIZE (3IM)

Notes

154 Last change: September 24, 1991 San Diego Supercomputer Center

IMVFBTOINDEX8 (3IM) SDSC IMAGE LIBRARY IMVFBTOINDEX8 (3IM)

NAME
ImVfbToIndex8 - Convert a virtual frame buffer to an 8-bit index image
ImVfbToIndex16 - Convert a virtual frame buffer to a 16-bit index image
ImVfbToRgb - Convert a virtual frame buffer to an RGB image
ImVfbToGray - Convert a virtual frame buffer to a grayscale image
ImVfbToGrey - Convert a virtual frame buffer to a grayscale image
ImVfbToMono - Convert a virtual frame buffer to a monochrome image

SYNOPSIS
#include "im.h"

ImVfb ∗∗ ImVfbToIndex8(srcVfb, dstVfb)
ImVfb ∗∗ srcVfb ;
ImVfb ∗∗ dstVfb ;

ImVfb ∗∗ ImVfbToIndex16(srcVfb, dstVfb)
ImVfb ∗∗ srcVfb ;
ImVfb ∗∗ dstVfb ;

ImVfb ∗∗ ImVfbToRgb(srcVfb, dstVfb)
ImVfb ∗∗ srcVfb ;
ImVfb ∗∗ dstVfb ;

ImVfb ∗∗ ImVfbToGray(srcVfb, dstVfb)
ImVfb ∗∗ srcVfb ;
ImVfb ∗∗ dstVfb ;

ImVfb ∗∗ ImVfbToGrey(srcVfb, dstVfb)
ImVfb ∗∗ srcVfb ;
ImVfb ∗∗ dstVfb ;

ImVfb ∗∗ ImVfbToMono(srcVfb, threshold, dstVfb)
ImVfb ∗∗ srcVfb ;
int threshold ;
ImVfb ∗∗ dstVfb ;

DESCRIPTION
Each of these routines convert an image stored in srcVfb into an image of a different type and store it in
dstVfb. A pointer to the converted destination Vfb is returned.

ImVfbToIndex8 converts a virtual frame buffer to an 8-bit image.

ImVfbToIndex16 converts a virtual frame buffer to a 16-bit image.

ImVfbToRgb converts a virtual frame buffer to an RGB image.

ImVfbToGray and ImVfbToGrey convert a virtual frame buffer to an 8-bit gray scale image.

ImVfbToMono converts a virtual frame buffer to a monochrome image. Each monochromatic pixel value,
queried by ImVfbQMono (3IM), is 0 (white) or 1 (black).

San Diego Supercomputer Center Last change: September 24, 1991 155

IMVFBTOINDEX8 (3IM) SDSC IMAGE LIBRARY IMVFBTOINDEX8 (3IM)

NOTES
The srcVfb and dstVfb may be the same Vfb without unpleasant side effects.

When ImVfbToGray is called, the resulting gray scale values are placed in the IMVFBINDEX8 field of
the destination virtual frame buffer.

Conversion from grayscale to monochrome uses the threshold value as the breakpoint between white and
black values. Grayscale pixels with values less than the threshold are converted to white; those equal to or
greater than the threshold are converted to black.

Conversion from color to grayscale computes the gray value for each pixel using the NTSC Y equation:

Gray = 0.30∗ R + 0.59∗ G + 0.11∗ B

Conversion from a color index image to an RGB image uses the srcVfb’s color lookup table to look up
each pixel value to obtain its RGB color. If the srcVfb has no color lookup table, a grayscale ramp is used.

Conversion from an RGB image to a color index image scans the RGB image to build a color lookup table.
ImVfbToIndex8 builds a new 256-entry (or fewer) color lookup table, while ImVfbToIndex16 builds a
65536-entry (or fewer) color lookup table. If the RGB image uses more colors than may be stored in such
color tables, then color approximations are made to minimize color oddities.

RETURNS
Upon success, all functions return a pointer to the converted destination Vfb. An error causes
IMVFBNULL to be returned and the value of ImErrNo to be set to one of the following:

IMEMALLOC Cannot allocate enough memory for the new Vfb
IMENOTINFO There is not enough information in srcVfb

for the operation

SEE ALSO
ImVfbAlloc (3IM)

AUTHORS
Mike Bailey, Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

156 Last change: September 24, 1991 San Diego Supercomputer Center

IMX (3IM) SDSC IMAGE LIBRARY IMX (3IM)

NAME
imx - SDSC AVS X file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "x", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "x", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "x", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "x", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
x image files are generated by Stardent Computer, Inc.’s Application Visualization System (AVS). See the
AVS documentation set for details on how to use these tools.

FILE RECOGNITION
AVS x files are recognized by the following filename suffixes: .x and .avs.

NOTES
SDSC image library support of the AVS x format does not require use of any AVS tools or Stardent
hardware and contains no proprietary code. AVS x format handling is available on any machine for which
the SDSC image library is available.

Reading AVS X files
The SDSC image library reads uncompressed, noninterlaced, 32-bit RGB-Alpha AVS x files and maps
them to (IMVFBRGB | IMVFBALPHA) VFBs without color lookup tables (CLTs).

Writing AVS X files
Image library IMVFBRGB and (IMVFBRGB | IMVFBALPHA) VFBs are written to uncompressed,
noninterlaced, 32-bit RGB-Alpha AVS x files. The AVS x format does not support scanline- and plane-
interlaced modes.

San Diego Supercomputer Center Last change: September 24, 1991 157

IMX (3IM) SDSC IMAGE LIBRARY IMX (3IM)

Other image library VFB types are converted to IMVFBRGB VFBs prior to being written out. See the
ImFileWrite (3IM) man page for details.

ERRORS
In addition to those listed for ImFileRead (3IM), AVS x file reading returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in read operation

In addition to those listed for ImFileWrite (3IM), AVS x file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
AVS User’s Guide, Appendix E, p. E-3, Stardent Computer Inc.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

158 Last change: September 24, 1991 San Diego Supercomputer Center

IMXBM (3IM) SDSC IMAGE LIBRARY IMXBM (3IM)

NAME
imxbm - SDSC X11 XBM file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "xbm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "xbm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "xbm", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "xbm", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
xbm bitmap image files are generated by MIT’s X Window System, version 11 (hereafter referred to as
X11). xbm files are generated by the X11 bitmap(1) bitmap editor and used by most X11 tools to define
cursors, icons, and other monochrome glyphs. See the X11 documentation set for details on how to use
tools and subroutines dealing with X11 bitmaps.

FILE RECOGNITION
X11 xbm files are recognized by the following filename suffixes: .xbm and .bm.

NOTES
SDSC image library support of the X11 xbm format does not require use of any X11 libraries and contains
no proprietary code. X11 xbm format handling is available on any machine for which the SDSC image
library is available.

xbm files contain simple C code with two #define’s for the width and height of the image, two optional
#define’s for the X and Y location of the cursor hot spot, and one static character array declaration and
initialization for the image bits as follows:

#define name_width xxx
#define name_height yyy
#define name_x_hot xhot
#define name_y_hot yhot
static char name_bits[] = {

... ASCII hex data ...

San Diego Supercomputer Center Last change: September 24, 1991 159

IMXBM (3IM) SDSC IMAGE LIBRARY IMXBM (3IM)

};

xxx and yyy define the width and height of the image stored in the static character array.

xhot and yhot define the hot spot location if the image is to be used as a cursor.

The array is initialized with hex byte values, with each byte holding 8 1-bit pixel values.

Reading X11 XBM files
The SDSC image library reads X11 xbm bitmap glyphs and maps them to IMVFBMONO VFBs without
color lookup tables (CLTs).

xbm hot spot locations, if present, are ignored.

Writing X11 XBM files
The SDSC image library writes IMVFBMONO VFBs as X11 xbm bitmap glyphs.

Other image library VFB types are converted to IMVFBMONO VFBs prior to being written out. See the
ImFileWrite(3IM) man page for details.

Image width and height #define’s are based on the VFB’s width and height.

Warning: The X11 bitmap editor bitmap(1) was designed to edit small glyphs, like icons and cursors. It
tends to be have severe difficulty with large bitmaps, such as those that can be generated using the SDSC
image library.

Hot spot #define’s are not output.

The name portion of the #define and static array names are determined as follows:

If the filename tag is not present in the flagsTable argument to ImFileWrite(3IM), name defaults
to stream.

If the filename tag is present, the name is stripped of any leading path (up to the last /).
Characters up to the first character not in the set 0-9a-zA-Z_ are used to construct the name. If
the first character is numeric, a leading x is prepended. For example,

flagsTable filename Name replacement
myfile.xbm myfile
/this/that/the_other.xbm the_other
42.xbm x42
blurtˆ&#$$.xbm blurt

ERRORS
In addition to those listed for ImFileRead(3IM), X11 xbm file reading returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYNTAX Syntax error in parsing xbm file
IMESYS System call error in read operation

In addition to those listed for ImFileWrite(3IM), X11 xbm file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
bitmap(1) from the X11 man page set.

Xlib - C Language X Interface, MIT X Window System, Version 11.

160 Last change: September 24, 1991 San Diego Supercomputer Center

IMXBM (3IM) SDSC IMAGE LIBRARY IMXBM (3IM)

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: September 24, 1991 161

IMXBM (3IM) SDSC IMAGE LIBRARY IMXBM (3IM)

Notes

162 Last change: September 24, 1991 San Diego Supercomputer Center

IMXWD (3IM) SDSC IMAGE LIBRARY IMXWD (3IM)

NAME
imxwd - SDSC X11 XWD file translation

SYNOPSIS
#include <stdio.h>
#include "sdsc.h"
#include "im.h"

int ImFileRead(fd, "xwd", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFRead(fp, "xwd", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileWrite(fd, "xwd", flagsTable, dataTable)
int fd;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

int ImFileFWrite(fp, "xwd", flagsTable, dataTable)
FILE ∗∗ fp;
TagTable ∗∗ flagsTable;
TagTable ∗∗ dataTable;

DESCRIPTION
xwd window dump image files are used by the xwd(1) and xwud(1) tools of MIT’s X Window System,
version 11 (hereafter referred to as X11). See the X11 documentation set for details on how to use these
tools.

FILE RECOGNITION
X11 xwd files are recognized by the following filename suffixes: .xwd and .x11.

NOTES
SDSC image library support of the X11 xwd format does not require use of any X11 libraries and contains
no proprietary code. X11 xwd format handling is available on any machine for which the SDSC image
library is available.

Reading X11 XWD files
The SDSC image library supports reading of xwd files that have the following file format features:

Version 7 format (X Window system, version 11).

Z-format pixmaps only.

8-bit color index images with or without color maps and 24-bit RGB images with or without color
maps.

San Diego Supercomputer Center Last change: October 1, 1991 163

IMXWD (3IM) SDSC IMAGE LIBRARY IMXWD (3IM)

Pixel values stored in 8-bit, 16-bit, or 32-bit bitmap units in MBF (most-significant byte first) or
LBF (least-significant byte first) byte order.

The SDSC image library does not support reading of xwd files that have the following file format features:

Version 6 format or older (obsolete X Window System, version 10).

XY bitmaps or XY pixmaps. Primarily used for monochrome images.

xwd fields meant for use to display the image on an X display are ignored. These fields include the
window width, height, and (x,y) location; and border width.

Incoming 8-bit xwd images are mapped to image library IMVFBINDEX8 VFBs. If the xwd file includes
a color map, the VFB contains a color lookup table (CLT).

Incomming 24-bit xwd images are mapped to image library IMVFBRGB VFBs. If the xwd file includes a
color map (DirectColor visual class), the color map is automatically applied to incoming RGB data as
pixels are stored into the VFB. The returned VFB will not contain the xwd file’s color map.

Writing X11 XWD files
The SDSC image library writes IMVFBINDEX8 and IMVFBRGB VFBs as X11 xwd image files.
IMVFBINDEX8 VFBs with a CLT are written including a color map.

Other image library VFB types are converted to IMVFBINDEX8 or IMVFBRGB VFBs prior to being
written out. See the ImFileWrite(3IM) man page for further details.

xwd files written by the SDSC image library are always version 7 (X11), Z-format pixmaps. 8-bit images
are written with 8-bits per pixel and an 8-bit bitmap unit. 24-bit images are written with 32-bits per pixel
and a 32-bit bitmap unit. Byte and bit order are always MBF (most-significant byte first).

Window display attributes are set to use a pseudo-color (8-bit) or true-color (24-bit) visual class, a window
height and width the same as the image height and width, a window (x,y) location of (0,0) and a 0 border
width. The window name is set to xwdump if no "image name" tag is found in the dataTable.

ERRORS
In addition to those listed for ImFileWrite(3IM), X11 xwd file reading returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYNTAX Syntax error in parsing xwd file
IMESYS System call error in read operation
IMEUNSUPPORTED Unsupported feature of xwd file format

In addition to those listed for ImFileWrite(3IM), X11 xwd file writing returns the following error codes:

IMEMALLOC Cannot allocate enough memory
IMESYS System call error in write operation

DOCUMENTATION
xwd(1) and xwud(1) from the X11 man page set.

Xlib - C Language X Interface, MIT X Window System, Version 11.

SEE ALSO
imconv(1IM), imfile(1IM), imformats(1IM)

AUTHOR
Dave Nadeau
San Diego Supercomputer Center

164 Last change: October 1, 1991 San Diego Supercomputer Center

IMXWD (3IM) SDSC IMAGE LIBRARY IMXWD (3IM)

CONTACT
SDSC consultants, (619)534-5100, consult@y1.sdsc.edu

San Diego Supercomputer Center Last change: October 1, 1991 165

