This is jdmaster.c in view mode; [Download] [Up]
/* * jdmaster.c * * Copyright (C) 1991-1995, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains master control logic for the JPEG decompressor. * These routines are concerned with selecting the modules to be executed * and with determining the number of passes and the work to be done in each * pass. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Private state */ typedef enum { main_pass, /* read and process a single-scan file */ preread_pass, /* read one scan of a multi-scan file */ output_pass, /* primary processing pass for multi-scan */ post_pass /* optional post-pass for 2-pass quant. */ } D_PASS_TYPE; typedef struct { struct jpeg_decomp_master pub; /* public fields */ boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ D_PASS_TYPE pass_type; /* the type of the current pass */ int pass_number; /* # of passes completed */ int total_passes; /* estimated total # of passes needed */ boolean need_post_pass; /* are we using full two-pass quantization? */ } my_decomp_master; typedef my_decomp_master * my_master_ptr; /* * Determine whether merged upsample/color conversion should be used. * CRUCIAL: this must match the actual capabilities of jdmerge.c! */ LOCAL boolean use_merged_upsample (j_decompress_ptr cinfo) { #ifdef UPSAMPLE_MERGING_SUPPORTED /* Merging is the equivalent of plain box-filter upsampling */ if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) return FALSE; /* jdmerge.c only supports YCC=>RGB color conversion */ if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || cinfo->out_color_space != JCS_RGB || cinfo->out_color_components != RGB_PIXELSIZE) return FALSE; /* and it only handles 2h1v or 2h2v sampling ratios */ if (cinfo->comp_info[0].h_samp_factor != 2 || cinfo->comp_info[1].h_samp_factor != 1 || cinfo->comp_info[2].h_samp_factor != 1 || cinfo->comp_info[0].v_samp_factor > 2 || cinfo->comp_info[1].v_samp_factor != 1 || cinfo->comp_info[2].v_samp_factor != 1) return FALSE; /* furthermore, it doesn't work if we've scaled the IDCTs differently */ if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size || cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size || cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size) return FALSE; /* ??? also need to test for upsample-time rescaling, when & if supported */ /* by golly, it'll work... */ return TRUE; #else return FALSE; #endif } /* * Support routines that do various essential calculations. * * jpeg_calc_output_dimensions is exported for possible use by application. * Hence it mustn't do anything that can't be done twice. */ GLOBAL void jpeg_calc_output_dimensions (j_decompress_ptr cinfo) /* Do computations that are needed before master selection phase */ { int ci; jpeg_component_info *compptr; /* Compute maximum sampling factors; check factor validity */ cinfo->max_h_samp_factor = 1; cinfo->max_v_samp_factor = 1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) ERREXIT(cinfo, JERR_BAD_SAMPLING); cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, compptr->h_samp_factor); cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, compptr->v_samp_factor); } /* Compute actual output image dimensions and DCT scaling choices. */ #ifdef IDCT_SCALING_SUPPORTED if (cinfo->scale_num * 8 <= cinfo->scale_denom) { /* Provide 1/8 scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width, 8L); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, 8L); cinfo->min_DCT_scaled_size = 1; } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) { /* Provide 1/4 scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width, 4L); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, 4L); cinfo->min_DCT_scaled_size = 2; } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) { /* Provide 1/2 scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width, 2L); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, 2L); cinfo->min_DCT_scaled_size = 4; } else { /* Provide 1/1 scaling */ cinfo->output_width = cinfo->image_width; cinfo->output_height = cinfo->image_height; cinfo->min_DCT_scaled_size = DCTSIZE; } /* In selecting the actual DCT scaling for each component, we try to * scale up the chroma components via IDCT scaling rather than upsampling. * This saves time if the upsampler gets to use 1:1 scaling. * Note this code assumes that the supported DCT scalings are powers of 2. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { int ssize = cinfo->min_DCT_scaled_size; while (ssize < DCTSIZE && (compptr->h_samp_factor * ssize * 2 <= cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) && (compptr->v_samp_factor * ssize * 2 <= cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) { ssize = ssize * 2; } compptr->DCT_scaled_size = ssize; } #else /* !IDCT_SCALING_SUPPORTED */ /* Hardwire it to "no scaling" */ cinfo->output_width = cinfo->image_width; cinfo->output_height = cinfo->image_height; cinfo->min_DCT_scaled_size = DCTSIZE; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { compptr->DCT_scaled_size = DCTSIZE; } #endif /* IDCT_SCALING_SUPPORTED */ /* Report number of components in selected colorspace. */ /* Probably this should be in the color conversion module... */ switch (cinfo->out_color_space) { case JCS_GRAYSCALE: cinfo->out_color_components = 1; break; case JCS_RGB: #if RGB_PIXELSIZE != 3 cinfo->out_color_components = RGB_PIXELSIZE; break; #endif /* else share code with YCbCr */ case JCS_YCbCr: cinfo->out_color_components = 3; break; case JCS_CMYK: case JCS_YCCK: cinfo->out_color_components = 4; break; default: /* else must be same colorspace as in file */ cinfo->out_color_components = cinfo->num_components; break; } cinfo->output_components = (cinfo->quantize_colors ? 1 : cinfo->out_color_components); /* See if upsampler will want to emit more than one row at a time */ if (use_merged_upsample(cinfo)) cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; else cinfo->rec_outbuf_height = 1; /* Compute various sampling-related dimensions. * Some of these are of interest to the application if it is dealing with * "raw" (not upsampled) output, so we do the calculations here. */ /* Compute dimensions of components */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Size in DCT blocks */ compptr->width_in_blocks = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, (long) (cinfo->max_h_samp_factor * DCTSIZE)); compptr->height_in_blocks = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, (long) (cinfo->max_v_samp_factor * DCTSIZE)); /* Size in samples, after IDCT scaling */ compptr->downsampled_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * (long) (compptr->h_samp_factor * compptr->DCT_scaled_size), (long) (cinfo->max_h_samp_factor * DCTSIZE)); compptr->downsampled_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * (long) (compptr->v_samp_factor * compptr->DCT_scaled_size), (long) (cinfo->max_v_samp_factor * DCTSIZE)); /* Mark component needed, until color conversion says otherwise */ compptr->component_needed = TRUE; } /* Compute number of fully interleaved MCU rows (number of times that * main controller will call coefficient controller). */ cinfo->total_iMCU_rows = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, (long) (cinfo->max_v_samp_factor*DCTSIZE)); } LOCAL void per_scan_setup (j_decompress_ptr cinfo) /* Do computations that are needed before processing a JPEG scan */ /* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */ { int ci, mcublks, tmp; jpeg_component_info *compptr; if (cinfo->comps_in_scan == 1) { /* Noninterleaved (single-component) scan */ compptr = cinfo->cur_comp_info[0]; /* Overall image size in MCUs */ cinfo->MCUs_per_row = compptr->width_in_blocks; cinfo->MCU_rows_in_scan = compptr->height_in_blocks; /* For noninterleaved scan, always one block per MCU */ compptr->MCU_width = 1; compptr->MCU_height = 1; compptr->MCU_blocks = 1; compptr->MCU_sample_width = compptr->DCT_scaled_size; compptr->last_col_width = 1; /* For noninterleaved scans, it is convenient to define last_row_height * as the number of block rows present in the last iMCU row. */ tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (tmp == 0) tmp = compptr->v_samp_factor; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ cinfo->blocks_in_MCU = 1; cinfo->MCU_membership[0] = 0; } else { /* Interleaved (multi-component) scan */ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, MAX_COMPS_IN_SCAN); /* Overall image size in MCUs */ cinfo->MCUs_per_row = (JDIMENSION) jdiv_round_up((long) cinfo->image_width, (long) (cinfo->max_h_samp_factor*DCTSIZE)); cinfo->MCU_rows_in_scan = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, (long) (cinfo->max_v_samp_factor*DCTSIZE)); cinfo->blocks_in_MCU = 0; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Sampling factors give # of blocks of component in each MCU */ compptr->MCU_width = compptr->h_samp_factor; compptr->MCU_height = compptr->v_samp_factor; compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size; /* Figure number of non-dummy blocks in last MCU column & row */ tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); if (tmp == 0) tmp = compptr->MCU_width; compptr->last_col_width = tmp; tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); if (tmp == 0) tmp = compptr->MCU_height; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ mcublks = compptr->MCU_blocks; if (cinfo->blocks_in_MCU + mcublks > MAX_BLOCKS_IN_MCU) ERREXIT(cinfo, JERR_BAD_MCU_SIZE); while (mcublks-- > 0) { cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; } } } } /* * Several decompression processes need to range-limit values to the range * 0..MAXJSAMPLE; the input value may fall somewhat outside this range * due to noise introduced by quantization, roundoff error, etc. These * processes are inner loops and need to be as fast as possible. On most * machines, particularly CPUs with pipelines or instruction prefetch, * a (subscript-check-less) C table lookup * x = sample_range_limit[x]; * is faster than explicit tests * if (x < 0) x = 0; * else if (x > MAXJSAMPLE) x = MAXJSAMPLE; * These processes all use a common table prepared by the routine below. * * For most steps we can mathematically guarantee that the initial value * of x is within MAXJSAMPLE+1 of the legal range, so a table running from * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial * limiting step (just after the IDCT), a wildly out-of-range value is * possible if the input data is corrupt. To avoid any chance of indexing * off the end of memory and getting a bad-pointer trap, we perform the * post-IDCT limiting thus: * x = range_limit[x & MASK]; * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit * samples. Under normal circumstances this is more than enough range and * a correct output will be generated; with bogus input data the mask will * cause wraparound, and we will safely generate a bogus-but-in-range output. * For the post-IDCT step, we want to convert the data from signed to unsigned * representation by adding CENTERJSAMPLE at the same time that we limit it. * So the post-IDCT limiting table ends up looking like this: * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), * 0,1,...,CENTERJSAMPLE-1 * Negative inputs select values from the upper half of the table after * masking. * * We can save some space by overlapping the start of the post-IDCT table * with the simpler range limiting table. The post-IDCT table begins at * sample_range_limit + CENTERJSAMPLE. * * Note that the table is allocated in near data space on PCs; it's small * enough and used often enough to justify this. */ LOCAL void prepare_range_limit_table (j_decompress_ptr cinfo) /* Allocate and fill in the sample_range_limit table */ { JSAMPLE * table; int i; table = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE)); table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ cinfo->sample_range_limit = table; /* First segment of "simple" table: limit[x] = 0 for x < 0 */ MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); /* Main part of "simple" table: limit[x] = x */ for (i = 0; i <= MAXJSAMPLE; i++) table[i] = (JSAMPLE) i; table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ /* End of simple table, rest of first half of post-IDCT table */ for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) table[i] = MAXJSAMPLE; /* Second half of post-IDCT table */ MEMZERO(table + (2 * (MAXJSAMPLE+1)), (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE)); MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE)); } /* * Master selection of decompression modules. * This is done once at the start of processing an image. We determine * which modules will be used and give them appropriate initialization calls. * * Note that this is called only after jpeg_read_header has finished. * We therefore know what is in the SOF and (first) SOS markers. */ LOCAL void master_selection (j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr) cinfo->master; long samplesperrow; JDIMENSION jd_samplesperrow; /* Initialize dimensions and other stuff */ jpeg_calc_output_dimensions(cinfo); prepare_range_limit_table(cinfo); /* Width of an output scanline must be representable as JDIMENSION. */ samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; jd_samplesperrow = (JDIMENSION) samplesperrow; if ((long) jd_samplesperrow != samplesperrow) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); /* Initialize my private state */ master->pub.eoi_processed = FALSE; master->pass_number = 0; master->need_post_pass = FALSE; if (cinfo->comps_in_scan == cinfo->num_components) { master->pass_type = main_pass; master->total_passes = 1; } else { #ifdef D_MULTISCAN_FILES_SUPPORTED master->pass_type = preread_pass; /* Assume there is a separate scan for each component; */ /* if partially interleaved, we'll increment pass_number appropriately */ master->total_passes = cinfo->num_components + 1; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } master->using_merged_upsample = use_merged_upsample(cinfo); /* There's not a lot of smarts here right now, but it'll get more * complicated when we have multiple implementations available... */ /* Color quantizer selection */ if (cinfo->quantize_colors) { if (cinfo->raw_data_out) ERREXIT(cinfo, JERR_NOTIMPL); #ifdef QUANT_2PASS_SUPPORTED /* 2-pass quantizer only works in 3-component color space. * We use the "2-pass" code in a single pass if a colormap is given. */ if (cinfo->out_color_components != 3) cinfo->two_pass_quantize = FALSE; else if (cinfo->colormap != NULL) cinfo->two_pass_quantize = TRUE; #else /* Force 1-pass quantize if we don't have 2-pass code compiled. */ cinfo->two_pass_quantize = FALSE; #endif if (cinfo->two_pass_quantize) { #ifdef QUANT_2PASS_SUPPORTED if (cinfo->colormap == NULL) { master->need_post_pass = TRUE; master->total_passes++; } jinit_2pass_quantizer(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { #ifdef QUANT_1PASS_SUPPORTED jinit_1pass_quantizer(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } } /* Post-processing: in particular, color conversion first */ if (! cinfo->raw_data_out) { if (master->using_merged_upsample) { #ifdef UPSAMPLE_MERGING_SUPPORTED jinit_merged_upsampler(cinfo); /* does color conversion too */ #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { jinit_color_deconverter(cinfo); jinit_upsampler(cinfo); } jinit_d_post_controller(cinfo, master->need_post_pass); } /* Inverse DCT */ jinit_inverse_dct(cinfo); /* Entropy decoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { #ifdef D_ARITH_CODING_SUPPORTED jinit_arith_decoder(cinfo); #else ERREXIT(cinfo, JERR_ARITH_NOTIMPL); #endif } else jinit_huff_decoder(cinfo); jinit_d_coef_controller(cinfo, (master->pass_type == preread_pass)); jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); /* Note that main controller is initialized even in raw-data mode. */ /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); } /* * Per-pass setup. * This is called at the beginning of each pass. We determine which modules * will be active during this pass and give them appropriate start_pass calls. * We also set is_last_pass to indicate whether any more passes will be * required. */ METHODDEF void prepare_for_pass (j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr) cinfo->master; switch (master->pass_type) { case main_pass: /* Set up to read and decompress single-scan file in one pass */ per_scan_setup(cinfo); master->pub.is_last_pass = ! master->need_post_pass; if (! cinfo->raw_data_out) { if (! master->using_merged_upsample) (*cinfo->cconvert->start_pass) (cinfo); (*cinfo->upsample->start_pass) (cinfo); if (cinfo->quantize_colors) (*cinfo->cquantize->start_pass) (cinfo, master->need_post_pass); (*cinfo->post->start_pass) (cinfo, (master->need_post_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); } (*cinfo->idct->start_input_pass) (cinfo); (*cinfo->idct->start_output_pass) (cinfo); (*cinfo->entropy->start_pass) (cinfo); (*cinfo->coef->start_pass) (cinfo, JBUF_PASS_THRU); (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); break; #ifdef D_MULTISCAN_FILES_SUPPORTED case preread_pass: /* Read (another) scan of a multi-scan file */ per_scan_setup(cinfo); master->pub.is_last_pass = FALSE; (*cinfo->idct->start_input_pass) (cinfo); (*cinfo->entropy->start_pass) (cinfo); (*cinfo->coef->start_pass) (cinfo, JBUF_SAVE_SOURCE); (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_SOURCE); break; case output_pass: /* All scans read, now do the IDCT and subsequent processing */ master->pub.is_last_pass = ! master->need_post_pass; if (! cinfo->raw_data_out) { if (! master->using_merged_upsample) (*cinfo->cconvert->start_pass) (cinfo); (*cinfo->upsample->start_pass) (cinfo); if (cinfo->quantize_colors) (*cinfo->cquantize->start_pass) (cinfo, master->need_post_pass); (*cinfo->post->start_pass) (cinfo, (master->need_post_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); } (*cinfo->idct->start_output_pass) (cinfo); (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); break; #endif /* D_MULTISCAN_FILES_SUPPORTED */ #ifdef QUANT_2PASS_SUPPORTED case post_pass: /* Final pass of 2-pass quantization */ master->pub.is_last_pass = TRUE; (*cinfo->cquantize->start_pass) (cinfo, FALSE); (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); break; #endif /* QUANT_2PASS_SUPPORTED */ default: ERREXIT(cinfo, JERR_NOT_COMPILED); } /* Set up progress monitor's pass info if present */ if (cinfo->progress != NULL) { cinfo->progress->completed_passes = master->pass_number; cinfo->progress->total_passes = master->total_passes; } } /* * Finish up at end of pass. * In multi-scan mode, we must read next scan header and set the next * pass_type correctly for prepare_for_pass. */ METHODDEF void finish_pass_master (j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr) cinfo->master; switch (master->pass_type) { case main_pass: case output_pass: if (cinfo->quantize_colors) (*cinfo->cquantize->finish_pass) (cinfo); master->pass_number++; master->pass_type = post_pass; /* in case need_post_pass is true */ break; #ifdef D_MULTISCAN_FILES_SUPPORTED case preread_pass: /* Count one pass done for each component in this scan */ master->pass_number += cinfo->comps_in_scan; switch ((*cinfo->marker->read_markers) (cinfo)) { case JPEG_HEADER_OK: /* Found SOS, do another preread pass */ break; case JPEG_HEADER_TABLES_ONLY: /* Found EOI, no more preread passes */ master->pub.eoi_processed = TRUE; master->pass_type = output_pass; break; case JPEG_SUSPENDED: ERREXIT(cinfo, JERR_CANT_SUSPEND); } break; #endif /* D_MULTISCAN_FILES_SUPPORTED */ #ifdef QUANT_2PASS_SUPPORTED case post_pass: (*cinfo->cquantize->finish_pass) (cinfo); /* there will be no more passes, don't bother to change state */ break; #endif /* QUANT_2PASS_SUPPORTED */ default: ERREXIT(cinfo, JERR_NOT_COMPILED); } } /* * Initialize master decompression control. * This creates my own subrecord and also performs the master selection phase, * which causes other modules to create their subrecords. */ GLOBAL void jinit_master_decompress (j_decompress_ptr cinfo) { my_master_ptr master; master = (my_master_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_decomp_master)); cinfo->master = (struct jpeg_decomp_master *) master; master->pub.prepare_for_pass = prepare_for_pass; master->pub.finish_pass = finish_pass_master; master_selection(cinfo); }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.