This is xcharts.c in view mode; [Download] [Up]
/* ** Astrolog (Version 4.10) File: xcharts.c ** ** IMPORTANT NOTICE: the graphics database and chart display routines ** used in this program are Copyright (C) 1991-1994 by Walter D. Pullen ** (cruiser1@stein.u.washington.edu). Permission is granted to freely ** use and distribute these routines provided one doesn't sell, ** restrict, or profit from them in any way. Modification is allowed ** provided these notices remain with any altered or edited versions of ** the program. ** ** The main planetary calculation routines used in this program have ** been Copyrighted and the core of this program is basically a ** conversion to C of the routines created by James Neely as listed in ** Michael Erlewine's 'Manual of Computer Programming for Astrologers', ** available from Matrix Software. The copyright gives us permission to ** use the routines for personal use but not to sell them or profit from ** them in any way. ** ** The PostScript code within the core graphics routines are programmed ** and Copyright (C) 1992-1993 by Brian D. Willoughby ** (brianw@sounds.wa.com). Conditions are identical to those above. ** ** The extended accurate ephemeris databases and formulas are from the ** calculation routines in the program "Placalc" and are programmed and ** Copyright (C) 1989,1991,1993 by Astrodienst AG and Alois Treindl ** (alois@azur.ch). The use of that source code is subject to ** regulations made by Astrodienst Zurich, and the code is not in the ** public domain. This copyright notice must not be changed or removed ** by any user of this program. ** ** Initial programming 8/28,30, 9/10,13,16,20,23, 10/3,6,7, 11/7,10,21/1991. ** X Window graphics initially programmed 10/23-29/1991. ** PostScript graphics initially programmed 11/29-30/1992. ** Last code change made 3/19/1994. */ #include "astrolog.h" #ifdef GRAPH /* ****************************************************************************** ** Single Chart Graphics Subprograms. ****************************************************************************** */ /* Given a string, draw it on the screen using the given color. The */ /* position of the text is based the saved positions of where we drew the */ /* text the last time the routine was called, being either directly below */ /* in the same column or in the same row just to the right. This is used */ /* by the sidebar drawing routine to print a list of text on the chart. */ int DrawPrint(string, m, n) char *string; int m, n; { static int x0, x, y; if (string == NULL) { /* Null string means just initialize position. */ x0 = x = m; y = n; return y; } if (y >= charty) /* Don't draw if we've scrolled off the chart bottom. */ return y; DrawColor(m); DrawText(string, x, y, -1); /* If the second parameter is TRUE, we stay on the same line, otherwise */ /* when FALSE we go to the next line at the original column setting. */ if (n) x += StringLen(string)*FONTX*scalet; else { x = x0; n = y; y += FONTY*scalet; } return y; } /* Print text showing the chart information and house and planet positions */ /* of a chart in a "sidebar" to the right of the chart in question. This */ /* is always done for the -v and -w graphic wheel charts unless the -v0 */ /* switch flag is also set, in which case none of the stuff here is done. */ void DrawInfo() { char string[STRING]; int elemode[4][3], elem[4], mo[3], tot, pos, abo, lef, lea, i, y, a, s; #ifdef INTERPRET /* Hack: Just for fun, if interpretation is active (which normally has */ /* no effect whatsoever on graphics) we'll decorate the chart a little. */ if (interpret) { if (screenwidth & 1) { /* If screenwidth value is odd, draw a moire pattern in each corner. */ abo = charty/(screenwidth/10); lef = chartx/(screenwidth/10); for (y = 0; y <= 1; y++) for (i = 0; i <= 1; i++) for (s = 0; s <= 1; s++) for (a = 1; a < (s ? lef : abo)*2; a++) { DrawColor(a & 1 ? gray : off); DrawLine(i ? chartx-1-lef : lef, y ? charty-1-abo : abo, s ? (i ? chartx-1-a : a) : i*(chartx-1), s ? y*(charty-1) : (y ? charty-1-a : a)); } } else { /* If screenwidth is even, draw spider web lines in each corner. */ DrawColor(gray); tot = screenwidth*3/20; abo = charty/4; lef = chartx/4; for (y = 0; y <= 1; y++) for (i = 0; i <= 1; i++) for (a = 1; a < tot; a++) DrawLine(i*(chartx-1), y ? (charty-1-a*abo/tot) : a*abo/tot, i ? chartx-1-lef+a*lef/tot : lef-a*lef/tot, y*(charty-1)); } } #endif if (!xtext || (exdisplay & DASHv0) > 0) /* Don't draw sidebar if */ return; /* -v0 flag is set. */ a = ansi; ansi = FALSE; seconds = -seconds; DrawColor(hilite); if (xborder) DrawLine(chartx-1, 0, chartx-1, charty-1); chartx += SIDET; DrawPrint(NULL, chartx-SIDET+FONTX*scalet, FONTY*7/5*scalet); /* Print chart header and setting information. */ sprintf(string, "%s %s", appname, VERSION); DrawPrint(string, on, FALSE); if (Mon == -1) sprintf(string, "No time or space."); else if (relation == DASHrc) sprintf(string, "Composite chart."); else { sprintf(string, "%c%c%c %s", DAYNAM(DayOfWeek(Mon, Day, Yea)), CharDate(Mon, Day, Yea, TRUE)); DrawPrint(string, hilite, FALSE); DrawPrint(CharTime((int)floor(Tim), (int)(FRACT(dabs(Tim))*100.0+ROUND/60.0)), hilite, TRUE); sprintf(string, " (%s GMT)", CharZone(Zon)); } DrawPrint(string, hilite, FALSE); DrawPrint(CharLocation(Lon, Lat, 100.0), hilite, FALSE); sprintf(string, "%s houses.", systemname[housesystem]); DrawPrint(string, hilite, FALSE); sprintf(string, "%s zodiac.", operation & DASHs ? "Siderial" : "Tropical"); DrawPrint(string, hilite, FALSE); sprintf(string, "Julian Day = %10.3f", JulianDayFromTime(T)); DrawPrint(string, hilite, FALSE); /* Print house cusp positions. */ DrawPrint("", hilite, FALSE); for (i = 1; i <= SIGNS; i++) { sprintf(string, "%2d%s house: ", i, post[i]); y = DrawPrint(string, signcolor(i), TRUE); if (!seconds && (scale == 100 || !xfont || !xfile) && y < charty) { s = scale; scale = 100*scalet; DrawSign(i, chartx-12*scalet, y-(FONTY/2-1)*scalet); scale = s; } DrawPrint(CharZodiac(house[i]), signcolor(ZTOS(house[i])), FALSE); } /* Print planet positions. */ DrawPrint("", hilite, FALSE); for (i = 1; i <= BASE; i++) if (!ignore[i] && !IsCusp(i)) { sprintf(string, seconds ? "%3.3s: " : "%4.4s: ", objectname[i]); DrawPrint(string, objectcolor[i], TRUE); y = DrawPrint(CharZodiac(planet[i]), signcolor(ZTOS(planet[i])), TRUE); if (!seconds && i < S_LO && (scale == 100 || !xfont || !xfile) && y < charty) { s = scale; scale = 100*scalet; DrawObject(i, chartx-12*scalet, y-(FONTY/2-1)*scalet); scale = s; } sprintf(string, "%c ", ret[i] < 0.0 ? 'R' : ' '); s = IsThing(i); DrawPrint(string, on, s); if (s) DrawPrint(CharAltitude(planetalt[i]), hilite, FALSE); } /* Print star positions. */ for (i = S_LO; i <= S_HI; i++) if (!ignore[i]) { s = BASE+starname[i-BASE]; sprintf(string, seconds ? "%3.3s: " : "%4.4s: ", objectname[s]); DrawPrint(string, objectcolor[s], TRUE); DrawPrint(CharZodiac(planet[s]), signcolor(ZTOS(planet[s])), TRUE); DrawPrint(" ", on, TRUE); DrawPrint(CharAltitude(planetalt[s]), hilite, FALSE); } /* Print element table information. */ DrawPrint("", hilite, FALSE); CreateElemTable(elemode, elem, mo, &tot, &pos, &abo, &lef, &lea); sprintf(string, "Fire: %d, Earth: %d,", elem[_FIR], elem[_EAR]); DrawPrint(string, hilite, FALSE); sprintf(string, "Air : %d, Water: %d", elem[_AIR], elem[_WAT]); DrawPrint(string, hilite, FALSE); sprintf(string, "Car: %d, Fix: %d, Mut: %d", mo[0], mo[1], mo[2]); DrawPrint(string, hilite, FALSE); sprintf(string, "Yang: %d, Yin: %d", pos, tot-pos); DrawPrint(string, hilite, FALSE); sprintf(string, "N: %d, S: %d, W: %d, E: %d", abo, tot-abo, tot-lef, lef); DrawPrint(string, hilite, FALSE); seconds = -seconds; ansi = a; } /* Draw a wheel chart, in which the 12 signs and houses are delineated, and */ /* the planets are inserted in their proper places. This is the default */ /* graphics chart to generate, as is done when the -v or -w (or no) switches */ /* are included with -X. Draw the aspects in the middle of chart, too. */ void XChartWheel() { real xsign[SIGNS+1], xhouse[SIGNS+1], xplanet[TOTAL+1], symbol[TOTAL+1]; int cx, cy, i, j; real asc, unitx, unity, px, py, temp; /* Set up variables and temporarily automatically decrease the horizontal */ /* chart size to leave room for the sidebar if that mode is in effect. */ if (xtext && !(exdisplay & DASHv0)) chartx -= SIDET; cx = chartx/2 - 1; cy = charty/2 - 1; unitx = (real)cx; unity = (real)cy; asc = xeast ? planet[abs(xeast)]+90*(xeast < 0) : house[1]; InitCircle(); /* Fill out arrays with the angular degree on the circle of where to */ /* place each object, cusp, and sign glyph based on how the chart mode. */ if (modex == MODEv) { for (i = 1; i <= SIGNS; i++) xhouse[i] = PZ(house[i]); } else { asc -= house[1]; for (i = 1; i <= SIGNS; i++) xhouse[i] = PZ(STOZ(i)); } for (i = 1; i <= SIGNS; i++) xsign[i] = PZ(XHousePlaceIn(STOZ(i))); for (i = 1; i <= total; i++) xplanet[i] = PZ(XHousePlaceIn(planet[i])); /* Draw Ascendant/Descendant and Midheaven/Nadir lines across whole chart. */ DrawColor(hilite); DrawDash(cx+POINT(unitx, 0.99, PX(xhouse[1])), cy+POINT(unity, 0.99, PY(xhouse[1])), cx+POINT(unitx, 0.99, PX(xhouse[7])), cy+POINT(unity, 0.99, PY(xhouse[7])), !xcolor); DrawDash(cx+POINT(unitx, 0.99, PX(xhouse[10])), cy+POINT(unity, 0.99, PY(xhouse[10])), cx+POINT(unitx, 0.99, PX(xhouse[4])), cy+POINT(unity, 0.99, PY(xhouse[4])), !xcolor); /* Draw small five or one degree increments around the zodiac sign ring. */ for (i = 0; i < DEGD; i += 5-(xcolor || psfile || metafile)*4) { temp = PZ(XHousePlaceIn((real)i)); px = PX(temp); py = PY(temp); DrawColor(i%5 ? gray : on); DrawDash(cx+POINT(unitx, 0.75, px), cy+POINT(unity, 0.75, py), cx+POINT(unitx, 0.80, px), cy+POINT(unity, 0.80, py), ((psfile || metafile) && i%5)*2); } /* Draw circles for the zodiac sign and house rings. */ DrawColor(on); DrawCircle(cx, cy, (int)(unitx*0.95+ROUND), (int)(unity*0.95+ROUND)); DrawCircle(cx, cy, (int)(unitx*0.80+ROUND), (int)(unity*0.80+ROUND)); DrawCircle(cx, cy, (int)(unitx*0.75+ROUND), (int)(unity*0.75+ROUND)); DrawCircle(cx, cy, (int)(unitx*0.65+ROUND), (int)(unity*0.65+ROUND)); /* Draw the glyphs for the signs and houses themselves. */ for (i = 1; i <= SIGNS; i++) { temp = xsign[i]; DrawColor(on); DrawLine(cx+POINT(unitx, 0.95, PX(temp)), /* Draw lines separating */ cy+POINT(unity, 0.95, PY(temp)), /* each sign and house */ cx+POINT(unitx, 0.80, PX(temp)), /* from each other. */ cy+POINT(unity, 0.80, PY(temp))); DrawLine(cx+POINT(unitx, 0.75, PX(xhouse[i])), cy+POINT(unity, 0.75, PY(xhouse[i])), cx+POINT(unitx, 0.65, PX(xhouse[i])), cy+POINT(unity, 0.65, PY(xhouse[i]))); if (xcolor && i%3 != 1) { /* Lines from */ DrawColor(gray); /* each house */ DrawDash(cx, cy, cx+POINT(unitx, 0.65, PX(xhouse[i])), /* to center */ cy+POINT(unity, 0.65, PY(xhouse[i])), 1); /* of wheel. */ } temp = Midpoint(temp, xsign[Mod12(i+1)]); DrawColor(signcolor(i)); DrawSign(i, cx+POINT(unitx, 0.875, PX(temp)), cy+POINT(unity, 0.875, PY(temp))); temp = Midpoint(xhouse[i], xhouse[Mod12(i+1)]); DrawHouse(i, cx+POINT(unitx, 0.70, PX(temp)), cy+POINT(unity, 0.70, PY(temp))); } for (i = 1; i <= total; i++) /* Figure out where to put planet glyphs. */ symbol[i] = xplanet[i]; FillSymbolRing(symbol); /* For each planet, draw a small dot indicating where it is, and then */ /* a line from that point to the planet's glyph. */ for (i = total; i >= 1; i--) if (Proper(i)) { if (xlabel) { temp = symbol[i]; DrawColor(ret[i] < 0.0 ? gray : on); DrawDash(cx+POINT(unitx, 0.52, PX(xplanet[i])), cy+POINT(unity, 0.52, PY(xplanet[i])), cx+POINT(unitx, 0.56, PX(temp)), cy+POINT(unity, 0.56, PY(temp)), (ret[i] < 0.0 ? 1 : 0) - xcolor); DrawObject(i, cx+POINT(unitx, 0.60, PX(temp)), cy+POINT(unity, 0.60, PY(temp))); } else DrawColor(objectcolor[i]); DrawPoint(cx+POINT(unitx, 0.50, PX(xplanet[i])), cy+POINT(unity, 0.50, PY(xplanet[i]))); } /* Draw lines connecting planets which have aspects between them. */ if (!xbonus) { /* Don't draw aspects in bonus mode. */ CreateGrid(FALSE); for (j = total; j >= 2; j--) for (i = j-1; i >= 1; i--) if (grid->n[i][j] && Proper(i) && Proper(j)) { DrawColor(aspectcolor[grid->n[i][j]]); DrawDash(cx+POINT(unitx, 0.48, PX(xplanet[i])), cy+POINT(unity, 0.48, PY(xplanet[i])), cx+POINT(unitx, 0.48, PX(xplanet[j])), cy+POINT(unity, 0.48, PY(xplanet[j])), abs(grid->v[i][j]/60/2)); } } /* Go draw sidebar with chart information and positions if need be. */ DrawInfo(); } /* Draw an astro-graph chart on a map of the world, i.e. the draw the */ /* Ascendant, Descendant, Midheaven, and Nadir lines corresponding to the */ /* time in the chart. This chart is done when the -L switch is combined */ /* with the -X switch. */ void XChartAstroGraph() { real planet1[TOTAL+1], planet2[TOTAL+1], end1[TOTAL*2+1], end2[TOTAL*2+1], symbol1[TOTAL*2+1], symbol2[TOTAL*2+1], lon = Lon, longm, x, y, z, ad, oa, am, od, dm, lat; int unit = SCALE, stroke, lat1 = -60, lat2 = 75, y1, y2, xold1, xold2, i, j, k, l; /* Erase top and bottom parts of map. We don't draw the astro-graph lines */ /* above certain latitudes, and this gives us room for glyph labels, too. */ y1 = (91-lat1)*SCALE; y2 = (91-lat2)*SCALE; DrawColor(off); DrawBlock(1, 1, chartx-2, y2-1); DrawBlock(1, charty-2, chartx-2, y1+1); DrawColor(hilite); DrawDash(0, charty/2, chartx-2, charty/2, 4); /* Draw equator. */ DrawColor(on); DrawLine(1, y2, chartx-2, y2); DrawLine(1, y1, chartx-2, y1); for (i = 1; i <= total*2; i++) end1[i] = end2[i] = -LARGE; /* Draw small hatches every 5 degrees along edges of world map. */ DrawColor(hilite); for (i = lat1; i <= lat2; i += 5) { j = (91-i)*SCALE; k = (2+(i%10 == 0)+2*(i%30 == 0))*scalet; DrawLine(1, j, k, j); DrawLine(chartx-2, j, chartx-1-k, j); } for (i = -180; i < 180; i += 5) { j = (180-i)*SCALE; k = (2+(i%10 == 0)+2*(i%30 == 0)+(i%90 == 0))*scalet; DrawLine(j, y2+1, j, y2+k); DrawLine(j, y1-1, j, y1-k); } #ifdef MATRIX /* Calculate zenith locations of each planet. */ for (i = 1; i <= total; i++) { planet1[i] = DTOR(planet[i]); planet2[i] = DTOR(planetalt[i]); EclToEqu(&planet1[i], &planet2[i]); } /* Draw the Midheaven lines and zenith location markings. */ if (lon < 0.0) lon += DEGREES; for (i = 1; i <= total; i++) if (Proper(i)) { x = DTOR(MC)-planet1[i]; if (x < 0.0) x += 2.0*PI; if (x > PI) x -= 2.0*PI; z = lon+RTOD(x); if (z > DEGHALF) z -= DEGREES; j = (int) (Mod(DEGHALF-z+degree)*(real)SCALE); DrawColor(elemcolor[_EAR]); DrawLine(j, y1+unit*4, j, y2-unit*1); end2[i*2-1] = (real) j; y = RTOD(planet2[i]); k = (int) ((91.0-y)*(real)SCALE); DrawColor(hilite); DrawBlock(j-1, k-1, j+1, k+1); DrawColor(off); DrawBlock(j, k, j, k); /* Draw Nadir lines assuming we aren't in bonus chart mode. */ if (!xbonus) { j += 180*SCALE; if (j > chartx-2) j -= (chartx-2); end1[i*2-1] = (real) j; DrawColor(elemcolor[_WAT]); DrawLine(j, y1+unit*2, j, y2-unit*2); } } /* Now, normally, unless we are in bonus chart mode, we will go on to draw */ /* the Ascendant and Descendant lines here. */ longm = DTOR(Mod(MC+lon)); if (!xbonus) for (i = 1; i <= total; i++) if (Proper(i)) { xold1 = xold2 = -1000; /* Hack: Normally we draw the Ascendant and Descendant line segments */ /* simultaneously. However, for the PostScript and metafile stroke */ /* graphics, this will case the file to get inordinately large due to */ /* the constant thrashing between the Asc and Desc colors. Hence for */ /* these charts only, we'll do two passes for Asc and Desc. */ stroke = psfile || metafile; for (l = 0; l <= stroke; l++) for (lat = (real)lat1; lat <= (real)lat2; lat += 1.0/(real)(SCALE/scalet)) { /* First compute and draw the current segment of Ascendant line. */ j = (int) ((91.0-lat)*(real)SCALE); ad = tan(planet2[i])*tan(DTOR(lat)); if (ad*ad > 1.0) ad = LARGE; else { ad = ASIN(ad); oa = planet1[i]-ad; if (oa < 0.0) oa += 2.0*PI; am = oa-PI/2.0; if (am < 0.0) am += 2.0*PI; z = longm-am; if (z < 0.0) z += 2.0*PI; if (z > PI) z -= 2.0*PI; z = RTOD(z); k = (int) (Mod(DEGHALF-z+degree)*(real)SCALE); if (!stroke || !l) { DrawColor(elemcolor[_FIR]); DrawWrap(xold1, j+scalet, k, j, 1, chartx-2); if (lat == (real) lat1) { /* Line segment */ DrawLine(k, y1, k, y1+unit*4); /* pointing to */ end2[i*2] = (real) k; /* Ascendant. */ } } else if (lat == (real) lat1) end2[i*2] = (real) k; xold1 = k; } /* The curving Ascendant and Descendant lines actually touch each at */ /* low latitudes. Sometimes when we start out, a particular planet's */ /* lines haven't appeared yet, i.e. we are scanning at a latitude */ /* where our planet's lines don't exist. If this is the case, then */ /* when they finally do start, draw a thin horizontal line connecting */ /* the Ascendant and Descendant lines so they don't just start in */ /* space. Note that these connected lines aren't labeled with glyphs. */ if (ad == LARGE) { if (xold1 >= 0) { if (!stroke || !l) { DrawColor(gray); DrawWrap(xold1, j+1, xold2, j+1, 1, chartx-2); } lat = DEGQUAD; } } else { /* Then compute and draw corresponding segment of Descendant line. */ od = planet1[i]+ad; dm = od+PI/2.0; z = longm-dm; if (z < 0.0) z += 2.0*PI; if (z > PI) z -= 2.0*PI; z = RTOD(z); k = (int) (Mod(DEGHALF-z+degree)*(real)SCALE); if (xold2 < 0 && lat > (real)lat1 && (!stroke || l)) { DrawColor(gray); DrawWrap(xold1, j, k, j, 1, chartx-2); } if (!stroke || l) { DrawColor(elemcolor[_AIR]); DrawWrap(xold2, j+scalet, k, j, 1, chartx-2); if (lat == (real)lat1) /* Line segment */ DrawLine(k, y1, k, y1+unit*2); /* pointing to */ } /* Descendant. */ xold2 = k; } } #endif /* MATRIX */ /* Draw segments pointing to top of Ascendant and Descendant lines. */ if (ad != LARGE) { DrawColor(elemcolor[_FIR]); DrawLine(xold1, y2, xold1, y2-unit*1); DrawColor(elemcolor[_AIR]); DrawLine(k, y2, k, y2-unit*2); end1[i*2] = (real) k; } } DrawColor(maincolor[5]); DrawPoint((int)((181.0-Lon)*(real)SCALE), (int)((91.0-Lat)*(real)SCALE)); /* Determine where to draw the planet glyphs. We have four sets of each */ /* planet - each planet's glyph appearing in the chart up to four times - */ /* one for each type of line. The Midheaven and Ascendant lines are always */ /* labeled at the bottom of the chart, while the Nadir and Midheaven lines */ /* at the top. Therefore we need to place two sets of glyphs, twice. */ for (i = 1; i <= total*2; i++) { symbol1[i] = end1[i]; symbol2[i] = end2[i]; } FillSymbolLine(symbol1); FillSymbolLine(symbol2); /* Now actually draw the planet glyphs. */ for (i = 1; i <= total*2; i++) { j = (i+1)/2; if (Proper(j)) { if ((turtlex = (int) symbol1[i]) > 0 && xlabel) { DrawColor(ret[j] < 0.0 ? gray : on); DrawDash((int) end1[i], y2-unit*2, (int) symbol1[i], y2-unit*4, (ret[i] < 0.0 ? 1 : 0) - xcolor); DrawObject(j, turtlex, y2-unit*10); } if ((turtlex = (int) symbol2[i]) > 0) { DrawColor(ret[j] < 0.0 ? gray : on); DrawDash((int) end2[i], y1+unit*4, (int) symbol2[i], y1+unit*8, (ret[i] < 0.0 ? 1 : 0) - xcolor); DrawObject(j, turtlex, y1+unit*14); DrawTurtle(objectdraw[i & 1 ? _MC : _ASC], (int) symbol2[i], y1+unit*24); } } } } /* Draw an aspect and midpoint grid in the window, with planets labeled down */ /* the diagonal. This chart is done when the -g switch is combined with the */ /* -X switch. The chart always has a certain number of cells; hence based */ /* how the restrictions are set up, there may be blank columns and rows, */ /* or else only the first number of unrestricted objects will be included. */ void XChartGrid() { char string[STRING]; int unit, siz, x, y, i, j, k; colpal c; unit = CELLSIZE*SCALE; siz = gridobjects*unit; CreateGrid(xbonus); /* Loop through each cell in each row and column of grid. */ for (y = 1, j = 0; y <= gridobjects; y++) { do { j++; } while (ignore[j] && j <= total); DrawColor(gray); DrawDash(0, y*unit, siz, y*unit, !xcolor); DrawDash(y*unit, 0, y*unit, siz, !xcolor); if (j <= total) for (x = 1, i = 0; x <= gridobjects; x++) { do { i++; } while (ignore[i] && i <= total); if (i <= total) { turtlex = x*unit-unit/2; turtley = y*unit-unit/2 - (SCALE/scalet > 2 ? 5*scalet : 0); /* If this is an aspect cell, draw glyph of aspect in effect. */ if (xbonus ? x > y : x < y) { DrawColor(c = aspectcolor[grid->n[i][j]]); DrawAspect(grid->n[i][j], turtlex, turtley); /* If this is a midpoint cell, draw glyph of sign of midpoint. */ } else if (xbonus ? x < y : x > y) { DrawColor(c = signcolor(grid->n[i][j])); DrawSign(grid->n[i][j], turtlex, turtley); /* For cells on main diagonal, draw glyph of planet. */ } else { DrawColor(hilite); DrawEdge((y-1)*unit, (y-1)*unit, y*unit, y*unit); DrawObject(i, turtlex, turtley); } /* When the scale size is 300+, we can print text in each cell: */ if (SCALE/scalet > 2 && xlabel) { k = abs(grid->v[i][j]); /* For the aspect portion, print the orb in degrees and minutes. */ if (xbonus ? x > y : x < y) { if (grid->n[i][j]) sprintf(string, "%c%d %02d'", k != grid->v[i][j] ? '-' : '+', k/60, k%60); else sprintf(string, ""); /* For the midpoint portion, print the degrees and minutes. */ } else if (xbonus ? x < y : x > y) sprintf(string, "%2d %02d'", k/60, k%60); /* For the main diagonal, print degree and sign of each planet. */ else { c = signcolor(grid->n[i][j]); sprintf(string, "%c%c%c %02d", SIGNAM(grid->n[i][j]), k); } DrawColor(c); DrawText(string, x*unit-unit/2, y*unit-3*scalet, TRUE); } } } } } /* Draw the local horizon, and draw in the planets where they are at the */ /* time in question, as done when the -Z is combined with the -X switch. */ void XChartHorizon() { real lon, lat, lonz[TOTAL+1], latz[TOTAL+1], azi[TOTAL+1], alt[TOTAL+1]; int x[TOTAL+1], y[TOTAL+1], m[TOTAL+1], n[TOTAL+1], cx, cy, unit, x1, y1, x2, y2, xs, ys, i, j, k, l; char string[2]; unit = MAX(12, 6*SCALE); x1 = unit; y1 = unit; x2 = chartx-1-unit; y2 = charty-1-unit; unit = 12*SCALE; xs = x2-x1; ys = y2-y1; cx = (x1+x2)/2; cy = (y1+y2)/2; /* Make a slightly smaller rectangle within the window to draw the planets */ /* in. Make segments on all four edges marking 5 degree increments. */ DrawColor(hilite); for (i = 0; i <= 180; i += 5) { j = y1+(int)((real)i*(real)ys/DEGHALF); k = (2+(i%10 == 0)+2*(i%30 == 0))*scalet; DrawLine(x1+1, j, x1+1+k, j); DrawLine(x2-1, j, x2-1-k, j); } string[1] = '\0'; for (i = 0; i <= DEGD; i += 5) { j = x1+(int)((real)i*(real)xs/DEGREES); k = (2+(i%10 == 0)+2*(i%30 == 0))*scalet; DrawLine(j, y1+1, j, y1+1+k); DrawLine(j, y2-1, j, y2-1-k); if (i % 90 == 0) { *string = *dirname[i/90 & 3]; DrawText(string, j, y1-2*scalet, TRUE); } } /* Draw vertical lines dividing our rectangle into four areas. In our */ /* local space chart, the middle line represents due south, the left line */ /* due east, the right line due west, and the edges due north. A fourth */ /* horizontal line divides that which is above and below the horizon. */ DrawColor(gray); DrawDash(cx, y1, cx, y2, 1); DrawDash((cx+x1)/2, y1, (cx+x1)/2, y2, 1); DrawDash((cx+x2)/2, y1, (cx+x2)/2, y2, 1); DrawColor(on); DrawEdge(x1, y1, x2, y2); DrawDash(x1, cy, x2, cy, 1); /* Calculate the local horizon coordinates of each planet. First convert */ /* zodiac position and declination to zenith longitude and latitude. */ lon = DTOR(Mod(Lon)); lat = DTOR(Lat); for (i = 1; i <= total; i++) { lonz[i] = DTOR(planet[i]); latz[i] = DTOR(planetalt[i]); EclToEqu(&lonz[i], &latz[i]); } for (i = 1; i <= total; i++) if (Proper(i)) { lonz[i] = DTOR(Mod(RTOD(lonz[_MC]-lonz[i]+PI/2.0))); EquToLocal(&lonz[i], &latz[i], PI/2.0-lat); azi[i] = DEGREES-RTOD(lonz[i]); alt[i] = RTOD(latz[i]); x[i] = x1+(int)((real)xs*(Mod(DEGQUAD-azi[i]))/DEGREES+ROUND); y[i] = y1+(int)((real)ys*(DEGQUAD-alt[i])/DEGHALF+ROUND); m[i] = x[i]; n[i] = y[i]+unit/2; } /* As in the DrawGlobe() routine, we now determine where to draw the */ /* glyphs in relation to the actual points, so that the glyphs aren't */ /* drawn on top of each other if possible. Again, we assume that we'll */ /* put the glyph right under the point, unless there would be some */ /* overlap and the above position is better off. */ for (i = 1; i <= total; i++) if (Proper(i)) { k = l = chartx+charty; for (j = 1; j < i; j++) if (Proper(j)) { k = MIN(k, abs(m[i]-m[j])+abs(n[i]-n[j])); l = MIN(l, abs(m[i]-m[j])+abs(n[i]-unit-n[j])); } if (k < unit || l < unit) if (k < l) n[i] -= unit; } for (i = total; i >= 1; i--) if (Proper(i)) /* Draw planet's glyph. */ DrawObject(i, m[i], n[i]); for (i = total; i >= 1; i--) if (Proper(i)) { DrawColor(objectcolor[i]); if (!xbonus || i > BASE) DrawPoint(x[i], y[i]); /* Draw small or large dot */ else /* near glyph indicating */ DrawSpot(x[i], y[i]); /* exact local location. */ } } /* Draw the local horizon, and draw in the planets where they are at the */ /* time in question. This chart is done when the -Z0 is combined with the */ /* -X switch. This is an identical function to XChartHorizon(); however, */ /* that routine's chart is entered on the horizon and meridian. Here we */ /* center the chart around the center of the sky straight up from the */ /* local horizon, with the horizon itself being an encompassing circle. */ void XChartHorizonSky() { real lat, rx, ry, s, a, sqr2, lonz[TOTAL+1], latz[TOTAL+1], azi[TOTAL+1], alt[TOTAL+1]; int x[TOTAL+1], y[TOTAL+1], m[TOTAL+1], n[TOTAL+1], cx, cy, unit, x1, y1, x2, y2, xs, ys, i, j, k, l; unit = MAX(12, 6*SCALE); x1 = unit; y1 = unit; x2 = chartx-1-unit; y2 = charty-1-unit; unit = 12*SCALE; xs = x2-x1; ys = y2-y1; cx = (x1+x2)/2; cy = (y1+y2)/2; /* Draw a circle in window to indicate horizon line, lines dividing */ /* the window into quadrants to indicate n/s and w/e meridians, and */ /* segments on these lines and the edges marking 5 degree increments. */ sqr2 = sqrt(2.0); DrawColor(gray); DrawDash(cx, y1, cx, y2, 1); DrawDash(x1, cy, x2, cy, 1); DrawColor(hilite); for (i = -125; i <= 125; i += 5) { k = (2+(i/10*10 == i ? 1 : 0)+(i/30*30 == i ? 2 : 0))*scalet; s = 1.0/(DEGQUAD*sqr2); j = cy+(int)(s*ys/2*i); DrawLine(cx-k, j, cx+k, j); j = cx+(int)(s*xs/2*i); DrawLine(j, cy-k, j, cy+k); } for (i = 5; i < 55; i += 5) { k = (2+(i/10*10 == i ? 1 : 0)+(i/30*30 == i ? 2 : 0))*scalet; s = 1.0/(DEGHALF-DEGQUAD*sqr2); j = (int)(s*ys/2*i); DrawLine(x1, y1+j, x1+k, y1+j); DrawLine(x1, y2-j, x1+k, y2-j); DrawLine(x2, y1+j, x2-k, y1+j); DrawLine(x2, y2-j, x2-k, y2-j); j = (int)(s*xs/2*i); DrawLine(x1+j, y1, x1+j, y1+k); DrawLine(x2-j, y1, x2-j, y1+k); DrawLine(x1+j, y2, x1+j, y2-k); DrawLine(x2-j, y2, x2-j, y2-k); } DrawText("N", cx, y1-2*scalet, TRUE); DrawText("E", x1/2, cy+2*scalet, FALSE); DrawText("W", (chartx+x2)/2, cy+2*scalet, FALSE); if (!xtext) DrawText("S", cx, charty-3*scalet, TRUE); rx = xs/2/sqr2; ry = ys/2/sqr2; DrawColor(on); DrawEdge(x1, y1, x2, y2); DrawCircle(cx, cy, (int)rx, (int)ry); InitCircle(); for (i = 0; i < DEGD; i += 5) { k = (2+(i/10*10 == i ? 1 : 0)+(i/30*30 == i ? 2 : 0))*scalet; DrawLine(cx+(int)((rx-k)*circ->x[i]), cy+(int)((ry-k)*circ->y[i]), cx+(int)((rx+k)*circ->x[i]), cy+(int)((ry+k)*circ->y[i])); } /* Calculate the local horizon coordinates of each planet. First convert */ /* zodiac position and declination to zenith longitude and latitude. */ lat = DTOR(Lat); for (i = 1; i <= total; i++) { lonz[i] = DTOR(planet[i]); latz[i] = DTOR(planetalt[i]); EclToEqu(&lonz[i], &latz[i]); } for (i = 1; i <= total; i++) if (Proper(i)) { lonz[i] = DTOR(Mod(RTOD(lonz[_MC]-lonz[i]+PI/2.0))); EquToLocal(&lonz[i], &latz[i], PI/2.0-lat); azi[i] = a = DEGREES-RTOD(lonz[i]); alt[i] = DEGQUAD-RTOD(latz[i]); s = alt[i]/DEGQUAD; x[i] = cx+(int)(rx*s*COSD(DEGHALF+azi[i])+ROUND); y[i] = cy+(int)(ry*s*SIND(DEGHALF+azi[i])+ROUND); if (!ISCHART(x[i], y[i])) x[i] = -1000; m[i] = x[i]; n[i] = y[i]+unit/2; } /* As in the DrawGlobe() routine, we now determine where to draw the */ /* glyphs in relation to the actual points, so that the glyphs aren't */ /* drawn on top of each other if possible. Again, we assume that we'll */ /* put the glyph right under the point, unless there would be some */ /* overlap and the above position is better off. */ for (i = 1; i <= total; i++) if (Proper(i)) { k = l = chartx+charty; for (j = 1; j < i; j++) if (Proper(j)) { k = MIN(k, abs(m[i]-m[j])+abs(n[i]-n[j])); l = MIN(l, abs(m[i]-m[j])+abs(n[i]-unit-n[j])); } if (k < unit || l < unit) if (k < l) n[i] -= unit; } for (i = total; i >= 1; i--) if (m[i] >= x1 && Proper(i)) /* Draw glyph. */ DrawObject(i, m[i], n[i]); for (i = total; i >= 1; i--) if (x[i] >= y1 && Proper(i)) { DrawColor(objectcolor[i]); if (!xbonus || i > BASE) DrawPoint(x[i], y[i]); /* Draw small or large dot */ else /* near glyph indicating */ DrawSpot(x[i], y[i]); /* exact local location. */ } } /* Draw a chart depicting an aerial view of the solar system in space, with */ /* all the planets drawn around the Sun, and the specified central planet */ /* in the middle, as done when the -S is combined with the -X switch. */ void XChartSpace() { int x[TOTAL+1], y[TOTAL+1], m[TOTAL+1], n[TOTAL+1], cx = chartx / 2, cy = charty / 2, unit, x1, y1, x2, y2, i, j, k, l; real sx, sy, sz = 30.0, xp, yp, a; unit = MAX(xtext*12, 6*SCALE); x1 = unit; y1 = unit; x2 = chartx-1-unit; y2 = charty-1-unit; unit = 12*SCALE; /* Determine the scale of the chart. For a scale size of 400+, make the */ /* graphic 1 AU in radius (just out to Earth's orbit). For 300, make */ /* the chart 6 AU in radius (enough for inner planets out to asteroid */ /* belt). For a scale of 200, make window 30 AU in radius (enough for */ /* planets out to Neptune). For scale of 100, make it 90 AU in radius */ /* (enough for all planets including the orbits of the uranians.) */ if (SCALE < 2) sz = 90.0; else if (SCALE == 3) sz = 6.0; else if (SCALE > 3) sz = 1.0; sx = (real)(cx-x1)/sz; sy = (real)(cy-y1)/sz; for (i = 0; i <= BASE; i++) if (Proper(i)) { /* Determine what glyph corresponds to our current planet. Normally the */ /* array indices are the same, however we have to do some swapping for */ /* non-geocentric based charts where a planet gets replaced with Earth. */ if (centerplanet == 0) j = i < _MOO ? 1-i : i; else if (centerplanet == 1) j = i; else j = i == 0 ? centerplanet : (i == centerplanet ? 0 : i); xp = spacex[j]; yp = spacey[j]; x[i] = cx-(int)(xp*sx); y[i] = cy+(int)(yp*sy); m[i] = x[i]; n[i] = y[i]+unit/2; } /* As in the DrawGlobe() routine, we now determine where to draw the */ /* glyphs in relation to the actual points, so that the glyphs aren't */ /* drawn on top of each other if possible. Again, we assume that we'll */ /* put the glyph right under the point, unless there would be some */ /* overlap and the above position is better off. */ for (i = 0; i <= BASE; i++) if (Proper(i)) { k = l = chartx+charty; for (j = 0; j < i; j++) if (Proper(j)) { k = MIN(k, abs(m[i]-m[j])+abs(n[i]-n[j])); l = MIN(l, abs(m[i]-m[j])+abs(n[i]-unit-n[j])); } if (k < unit || l < unit) if (k < l) n[i] -= unit; } /* Draw the 12 sign boundaries from the center body to edges of screen. */ a = Mod(RTOD(Angle(spacex[_JUP], spacey[_JUP]))-planet[_JUP]); DrawColor(gray); for (i = 0; i < SIGNS; i++) { k = cx+2*(int)((real)cx*COSD((real)i*30.0+a)); l = cy+2*(int)((real)cy*SIND((real)i*30.0+a)); DrawClip(cx, cy, k, l, x1, y1, x2, y2, 1); } DrawColor(hilite); DrawEdge(x1, y1, x2, y2); for (i = BASE; i >= 0; i--) if (Proper(i) && ISLEGAL(m[i], n[i], x1, y1, x2, y2)) DrawObject(i, m[i], n[i]); for (i = BASE; i >= 0; i--) if (Proper(i) && ISLEGAL(x[i], y[i], x1, y1, x2, y2)) { DrawColor(objectcolor[i]); if (!xbonus || i > BASE) DrawPoint(x[i], y[i]); /* Draw small or large dot */ else /* near glyph indicating */ DrawSpot(x[i], y[i]); /* exact local location. */ } } /* Draw a chart showing a graphical ephemeris for the given month (or year */ /* if -Ey in effect), with the date on the vertical access and the zodiac */ /* on the horizontal, as done when the -E is combined with the -X switch. */ void XChartEphemeris() { real symbol[TOTAL*2+1]; char string[4]; int yea, unit = 6*SCALE, daytot, d = 1, day, mon, monsiz, x1, y1, x2, y2, xs, ys, m, n, u, v, i, j; yea = (exdisplay & DASHEy) > 0; /* Is this -Ey -X or just -E -X? */ if (yea) { daytot = DayInYear(Yea); day = 1; mon = 1; monsiz = 31; } else daytot = DayInMonth(Mon, Yea); x1 = yea ? 30 : 24; y1 = unit*2; x2 = chartx - x1; y2 = charty - y1; xs = x2 - x1; ys = y2 - y1; /* Display glyphs of the zodiac along the bottom axis. */ for (i = 1; i <= SIGNS+1; i++) { m = x1 + xs * (i-1) / 12; j = i > SIGNS ? 1 : i; DrawColor(signcolor(j)); DrawSign(j, m, y2 + unit); DrawColor(gray); DrawDash(m, y1, m, y2, 2); } /* Loop and display planet movements for one day segment. */ while (d <= daytot + 1) { n = v; v = y1 + MULTDIV(ys, d-1, daytot); if (!yea || day == 1) { DrawColor(gray); DrawDash(x1, v, x2, v, 1); /* Marker line for day or month. */ } if (d > 1) for (i = 1; i <= total; i++) planet1[i] = planet[i]; if (yea) { MM = mon; DD = day; } else { MM = Mon; DD = d; } YY = Yea; TT = 0.0; ZZ = defzone; OO = deflong; AA = deflat; CastChart(TRUE); /* Draw planet glyphs along top of chart. */ if (d < 2) { for (i = 1; i <= total; i++) { symbol[i*2-1] = -LARGE; if (!Proper(i) || (i == _MOO && xbonus)) symbol[i*2] = -LARGE; else symbol[i*2] = planet[i]; } FillSymbolLine(symbol); for (i = total; i >= 1; i--) if (symbol[i*2] >= 0.0) DrawObject(i, x1 + (int)((real)xs * symbol[i*2] / DEGREES), unit); /* Draw a line segment for each object during this time section. */ } else for (i = total; i >= 1; i--) { if (!Proper(i) || (i == _MOO && xbonus)) continue; m = x1 + (int)((real)xs * planet1[i] / DEGREES); u = x1 + (int)((real)xs * planet[i] / DEGREES); DrawColor(objectcolor[i]); DrawWrap(m, n, u, v, x1, x2); } /* Label months or days in the month along the left and right edges. */ if (d <= daytot && (!yea || day == 1)) { if (yea) { sprintf(string, "%c%c%c", MONNAM(mon)); i = (mon == Mon); } else { sprintf(string, "%2d", d); i = (d == Day); } DrawColor(i ? on : hilite); DrawText(string, FONTX *scalet, v + (FONTY-2)*scalet, -1); DrawText(string, x2+(FONTX-1)*scalet, v + (FONTY-2)*scalet, -1); } /* Now increment the day counter. For a month we always go up by one. */ /* For a year we go up by four or until the end of the month reached. */ if (yea) { day += 4; if (day > monsiz) { d += 4-(day-monsiz-1); if (d <= daytot + 1) { mon++; monsiz = DayInMonth(mon, Yea); day = 1; } } else d += 4; } else d++; } DrawColor(hilite); DrawEdge(x1, y1, x2, y2); MM = Mon; DD = Day; TT = Tim; /* Recast original chart. */ CastChart(TRUE); } #endif /* GRAPH */ /* xcharts.c */
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.