ftp.nice.ch/pub/next/unix/games/astrolog.NIHS.bsd.tar.gz#/astrolog/Source/formulas.c

This is formulas.c in view mode; [Download] [Up]

/*
** Astrolog (Version 4.10) File: formulas.c
**
** IMPORTANT NOTICE: the graphics database and chart display routines
** used in this program are Copyright (C) 1991-1994 by Walter D. Pullen
** (cruiser1@stein.u.washington.edu). Permission is granted to freely
** use and distribute these routines provided one doesn't sell,
** restrict, or profit from them in any way. Modification is allowed
** provided these notices remain with any altered or edited versions of
** the program.
**
** The main planetary calculation routines used in this program have
** been Copyrighted and the core of this program is basically a
** conversion to C of the routines created by James Neely as listed in
** Michael Erlewine's 'Manual of Computer Programming for Astrologers',
** available from Matrix Software. The copyright gives us permission to
** use the routines for personal use but not to sell them or profit from
** them in any way.
**
** The PostScript code within the core graphics routines are programmed
** and Copyright (C) 1992-1993 by Brian D. Willoughby
** (brianw@sounds.wa.com). Conditions are identical to those above.
**
** The extended accurate ephemeris databases and formulas are from the
** calculation routines in the program "Placalc" and are programmed and
** Copyright (C) 1989,1991,1993 by Astrodienst AG and Alois Treindl
** (alois@azur.ch). The use of that source code is subject to
** regulations made by Astrodienst Zurich, and the code is not in the
** public domain. This copyright notice must not be changed or removed
** by any user of this program.
**
** Initial programming 8/28,30, 9/10,13,16,20,23, 10/3,6,7, 11/7,10,21/1991.
** X Window graphics initially programmed 10/23-29/1991.
** PostScript graphics initially programmed 11/29-30/1992.
** Last code change made 3/19/1994.
*/

#include "astrolog.h"

real MC, Asc, Vtx, RA, OB, X, Y, A;

real planet1[TOTAL+1], planet2[TOTAL+1],
  planetalt1[TOTAL+1], planetalt2[TOTAL+1],
  house1[SIGNS+1], house2[SIGNS+1], ret1[TOTAL+1], ret2[TOTAL+1];

real FAR *datapointer;


/*
******************************************************************************
** Specific Calculations.
******************************************************************************
*/

#ifdef MATRIX
/* Given a month, day, and year, convert it into a single Julian day value, */
/* i.e. the number of days passed since a fixed reference date.             */

long MdyToJulian(mon, day, yea)
int mon, day, yea;
{
#ifndef PLACALC
  long im, j;

  im = 12*((long)yea+4800)+(long)mon-3;
  j = (2*(im%12) + 7 + 365*im)/12;
  j += (long)day + im/48 - 32083;
  if (j > 2299171)                   /* Take care of dates in */
    j += im/4800 - im/1200 + 38;     /* Gregorian calendar.   */
  return j;
#else
  int greg = TRUE;

  if (yea < G2JYEA || (yea == G2JYEA &&
    (mon < G2JMON || (mon == G2JMON && day < 15))))
    greg = FALSE;
  return (long)floor(julday(mon, day, yea, 12.0, greg)+ROUND);
#endif
}


/* Take a Julian day value, and convert it back into the corresponding */
/* month, day, and year.                                               */

void JulianToMdy(JD, mon, day, yea)
real JD;
int *mon, *day, *yea;
{
#ifndef PLACALC
  long L, N, IT, JT, K, IK;

  L  = (long)floor(JD+ROUND)+68569L;
  N  = Dvd(4L*L, 146097L);
  L  -= Dvd(146097L*N + 3L, 4L);
  IT = Dvd(4000L*(L+1L), 1461001L);
  L  -= Dvd(1461L*IT, 4L) - 31L;
  JT = Dvd(80L*L, 2447L);
  K  = L-Dvd(2447L*JT, 80L);
  L  = Dvd(JT, 11L);
  JT += 2L - 12L*L;
  IK = 100L*(N-49L) + IT + L;
  *mon = (int)JT; *day = (int)K; *yea = (int)IK;
#else
  int greg = TRUE;
  double tim;

  if (JD < 2299171.0)    /* October 15, 1582 */
    greg = FALSE;
  revjul(JD, greg, mon, day, yea, &tim);
#endif
}


/* This is a subprocedure of CastChart(). Once we have the chart parameters, */
/* calculate a few important things related to the date, i.e. the Greenwich  */
/* time, the Julian day and fractional part of the day, the offset to the    */
/* sidereal, and a couple of other things.                                   */

real ProcessInput(var)
int var;
{
  real Off, Ln;

  TT = Sgn(TT)*floor(dabs(TT))+FRACT(dabs(TT))*100.0/60.0+DecToDeg(ZZ);
  OO = DecToDeg(OO);
  AA = MIN(AA, 89.9999);      /* Make sure the chart isn't being cast */
  AA = MAX(AA, -89.9999);     /* on the precise north or south pole.  */
  AA = DTOR(DecToDeg(AA));

  /* if parameter 'var' isn't set, then we can assume that the true time   */
  /* has already been determined (as in a -rm switch time midpoint chart). */

  if (var) {
    JD = (real)MdyToJulian(MM, DD, YY);
    if (!progress || (operation & DASHp0) > 0)
      T = ((JD-2415020.0)+TT/24.0-0.5)/36525.0;
    else

      /* Determine actual time that a progressed chart is to be cast for. */

      T = (((Jdp-JD)/progday+JD)-2415020.0+TT/24.0-0.5)/36525.0;
  }

  /* Compute angle that the ecliptic is inclined to the Celestial Equator */
  OB = DTOR(23.452294-0.0130125*T);

  Ln = Mod((933060-6962911*T+7.5*T*T)/3600.0);    /* Mean lunar node */
  Off = (259205536.0*T+2013816.0)/3600.0;         /* Mean Sun        */
  Off = 17.23*sin(DTOR(Ln))+1.27*sin(DTOR(Off))-(5025.64+1.11*T)*T;
  Off = (Off-84038.27)/3600.0;
  SD = ((operation & DASHs) ? Off : 0.0) + addfactor;
  return Off;
}


/* Convert polar to rectangular coordinates. */

void PolToRec(A, R, X, Y)
real A, R, *X, *Y;
{
  if (A == 0.0)
    A = SMALL;
  *X = R*cos(A);
  *Y = R*sin(A);
}


/* Convert rectangular to polar coordinates. */

void RecToPol(X, Y, A, R)
real X, Y, *A, *R;
{
  if (Y == 0.0)
    Y = SMALL;
  *R = sqrt(X*X+Y*Y);
  *A = Angle(X, Y);
}


/* Convert rectangular to spherical coordinates. */

real RecToSph(B, L, O)
real B, L, O;
{
  real R, Q, G;

  A = B; R = 1.0;
  PolToRec(A, R, &X, &Y);
  Q = Y; R = X; A = L;
  PolToRec(A, R, &X, &Y);
  G = X; X = Y; Y = Q;
  RecToPol(X, Y, &A, &R);
  A += O;
  PolToRec(A, R, &X, &Y);
  Q = ASIN(Y);
  Y = X; X = G;
  RecToPol(X, Y, &A, &R);
  if (A < 0.0)
    A += 2*PI;
  G = A;
  return G;
}


/* Do a coordinate transformation: Given a longitude and latitude value,    */
/* return the new longitude and latitude values that the same location      */
/* would have, were the equator tilted by a specified number of degrees.    */
/* In other words, do a pole shift! This is used to convert among ecliptic, */
/* equatorial, and local coordinates, each of which have zero declination   */
/* in different planes. In other words, take into account the Earth's axis. */

void CoorXform(azi, alt, tilt)
real *azi, *alt, tilt;
{
  real x, y, a1, l1;
  real sinalt, cosalt, sinazi, sintilt, costilt;

  sinalt = sin(*alt); cosalt = cos(*alt); sinazi = sin(*azi);
  sintilt = sin(tilt); costilt = cos(tilt);

  x = cosalt * sinazi * costilt;
  y = sinalt * sintilt;
  x -= y;
  a1 = cosalt;
  y = cosalt * cos(*azi);
  l1 = Angle(y, x);
  a1 = a1 * sinazi * sintilt + sinalt * costilt;
  a1 = ASIN(a1);
  *azi = l1; *alt = a1;
}


/* This is another subprocedure of CastChart(). Calculate a few variables */
/* corresponding to the chart parameters that are used later on. The      */
/* astrological vertex (object number twenty) is also calculated here.    */

void ComputeVariables()
{
  real R, R2, B, L, O, G;

  RA = DTOR(Mod((6.6460656+2400.0513*T+2.58E-5*T*T+TT)*15.0-OO));
  R2 = RA; O = -OB; B = AA; A = R2; R = 1.0;
  PolToRec(A, R, &X, &Y);
  X *= cos(O);
  RecToPol(X, Y, &A, &R);
  MC = Mod(SD+RTOD(A));            /* Midheaven */
  L = R2;
  G = RecToSph(B, L, O);
#if FALSE
  Asc = Mod(SD+Mod(G+PI/2.0));     /* Ascendant */
#endif
  L= R2+PI; B = PI/2.0-dabs(B);
  if (AA < 0.0)
    B = -B;
  G = RecToSph(B, L, O);
  Vtx = Mod(SD+RTOD(G+PI/2.0));    /* Vertex */
}
#endif /* MATRIX */


/*
******************************************************************************
** House Cusp Calculations.
******************************************************************************
*/

/* This is a subprocedure of HousePlace(). Given a zodiac position, return */
/* which of the twelve houses it falls in. Remember that a special check   */
/* has to be done for the house that spans 0 degrees Aries.                */

int HousePlaceIn(point)
real point;
{
  int i = 0;

  point = Mod(point + 0.5/60.0/60.0);
  do {
    i++;
  } while (!(i >= SIGNS ||
      (point >= house[i] && point < house[Mod12(i+1)]) ||
      (house[i] > house[Mod12(i+1)] &&
      (point >= house[i] || point < house[Mod12(i+1)]))));
  return i;
}


/* For each object in the chart, determine what house it belongs in. */

void HousePlace()
{
  int i;

  for (i = 1; i <= total; i++)
    inhouse[i] = HousePlaceIn(planet[i]);
}


#ifdef MATRIX
/* The following two functions calculate the midheaven and ascendant of  */
/* the chart in question, based on time and location. They are also used */
/* in some of the house cusp calculation routines as a quick way to get  */
/* the 10th and 1st house cusps.                                         */

real CuspMidheaven()
{
  real MC;

  MC = ATAN(tan(RA)/cos(OB));
  if (MC < 0.0)
    MC += PI;
  if (RA > PI)
    MC += PI;
  return Mod(RTOD(MC)+SD);
}

real CuspAscendant()
{
  real Asc;

  Asc = Angle(-sin(RA)*cos(OB)-tan(AA)*sin(OB), cos(RA));
  return Mod(RTOD(Asc)+SD);
}


/* These are various different algorithms for calculating the house cusps: */

real CuspPlacidus(deg, FF, neg)
real deg, FF;
bool neg;
{
  real LO, R1, R2, XS;
  int i;

  R1 = RA+DTOR(deg);
  if (neg)
    X = 1.0;
  else
    X = -1.0;
  for (i = 1; i <= 10; i++) {

    /* This formula works except at 0 latitude (AA == 0.0). */

    XS = X*sin(R1)*tan(OB)*tan(AA == 0.0 ? 0.0001 : AA);
    XS = ACOS(XS);
    if (XS < 0.0)
      XS += PI;
    if (neg)
      R2 = RA+PI-(XS/FF);
    else
      R2 = RA+(XS/FF);
    R1 = R2;
  }
  LO = ATAN(tan(R1)/cos(OB));
  if (LO < 0.0)
    LO += PI;
  if (sin(R1) < 0.0)
    LO += PI;
  return RTOD(LO);
}

void HousePlacidus()
{
  int i;

  house[1] = Mod(Asc-SD);
  house[4] = Mod(MC+DEGHALF-SD);
  house[5] = CuspPlacidus(30.0, 3.0, FALSE) + DEGHALF;
  house[6] = CuspPlacidus(60.0, 1.5, FALSE) + DEGHALF;
  house[2] = CuspPlacidus(120.0, 1.5, TRUE);
  house[3] = CuspPlacidus(150.0, 3.0, TRUE);
  for (i = 1; i <= SIGNS; i++) {
    if (i <= 6)
      house[i] = Mod(house[i]+SD);
    else
      house[i] = Mod(house[i-6]+DEGHALF);
  }
}

void HouseKoch()
{
  real A1, A2, A3, KN, D;
  int i;

  A1 = sin(RA)*tan(AA)*tan(OB);
  A1 = ASIN(A1);
  for (i = 1; i <= SIGNS; i++) {
    D = Mod(60.0+30.0*(real)i);
    A2 = D/DEGQUAD-1.0; KN = 1.0;
    if (D >= DEGHALF) {
      KN = -1.0;
      A2 = D/DEGQUAD-3.0;
    }
    A3 = DTOR(Mod(RTOD(RA)+D+A2*RTOD(A1)));
    X = Angle(cos(A3)*cos(OB)-KN*tan(AA)*sin(OB), sin(A3));
    house[i] = Mod(RTOD(X)+SD);
  }
}

void HouseEqual()
{
  int i;

  for (i = 1; i <= SIGNS; i++)
    house[i] = Mod(Asc-30.0+30.0*(real)i);
}

void HouseCampanus()
{
  real KO, DN;
  int i;

  for (i = 1; i <= SIGNS; i++) {
    KO = DTOR(60.000001+30.0*(real)i);
    DN = ATAN(tan(KO)*cos(AA));
    if (DN < 0.0)
      DN += PI;
    if (sin(KO) < 0.0)
      DN += PI;
    X = Angle(cos(RA+DN)*cos(OB)-sin(DN)*tan(AA)*sin(OB), sin(RA+DN));
    house[i] = Mod(RTOD(X)+SD);
  }
}

void HouseMeridian()
{
  real D;
  int i;

  for (i = 1; i <= SIGNS; i++) {
    D = DTOR(60.0+30.0*(real)i);
    X = Angle(cos(RA+D)*cos(OB), sin(RA+D));
    house[i] = Mod(RTOD(X)+SD);
  }
}

void HouseRegiomontanus()
{
  real D;
  int i;

  for (i = 1; i <= SIGNS; i++) {
    D = DTOR(60.0+30.0*(real)i);
    X = Angle(cos(RA+D)*cos(OB)-sin(D)*tan(AA)*sin(OB), sin(RA+D));
    house[i] = Mod(RTOD(X)+SD);
  }
}

void HousePorphyry()
{
  int i;

  X = Asc-MC;
  if (X < 0.0)
    X += DEGREES;
  Y = X/3.0;
  for (i = 1; i <= 2; i++)
    house[i+4] = Mod(DEGHALF+MC+i*Y);
  X = Mod(DEGHALF+MC)-Asc;
  if (X < 0.0)
    X += DEGREES;
  house[1]=Asc;
  Y = X/3.0;
  for (i = 1; i <= 3; i++)
    house[i+1] = Mod(Asc+i*Y);
  for (i = 1; i <= 6; i++)
    house[i+6] = Mod(house[i]+DEGHALF);
}

void HouseMorinus()
{
  real D;
  int i;

  for (i = 1; i <= SIGNS; i++) {
    D = DTOR(60.0+30.0*(real)i);
    X = Angle(cos(RA+D), sin(RA+D)*cos(OB));
    house[i] = Mod(RTOD(X)+SD);
  }
}

real CuspTopocentric(deg)
real deg;
{
  real OA, X, LO;

  OA = Mod(RA+DTOR(deg));
  X = ATAN(tan(AA)/cos(OA));
  LO = ATAN(cos(X)*tan(OA)/cos(X+OB));
  if (LO < 0.0)
    LO += PI;
  if (sin(OA) < 0.0)
    LO += PI;
  return LO;
}

void HouseTopocentric()
{
  real TL, P1, P2, LT;
  int i;

  modulus = 2.0*PI;
  house[4] = Mod(DTOR(MC+DEGHALF-SD));
  TL = tan(AA); P1 = ATAN(TL/3.0); P2 = ATAN(TL/1.5); LT = AA;
  AA = P1; house[5] = CuspTopocentric(30.0) + PI;
  AA = P2; house[6] = CuspTopocentric(60.0) + PI;
  AA = LT; house[1] = CuspTopocentric(90.0);
  AA = P2; house[2] = CuspTopocentric(120.0);
  AA = P1; house[3] = CuspTopocentric(150.0);
  AA = LT; modulus = DEGREES;
  for (i = 1; i <= 6; i++) {
    house[i] = Mod(RTOD(house[i])+SD);
    house[i+6] = Mod(house[i]+DEGHALF);
  }
}
#endif /* MATRIX */

/* This house system is just like the Equal system except that we start */
/* our 12 equal segments from the Midheaven instead of the Ascendant.   */

void HouseEqualMidheaven()
{
  int i;

  for (i = 1; i <= SIGNS; i++)
    house[i] = Mod(MC-270.0+30.0*(real)(i-1));
}

/* This is a new house system similar in philosophy to Porphyry houses.   */
/* Instead of just trisecting the difference in each quadrant, we do a    */
/* smooth sinusoidal distribution of the difference around all the cusps. */

void HousePorphyryNeo()
{
  real delta;
  int i;

  delta = (MinDistance(MC, Asc) - DEGQUAD)/4.0;
  house[_LIB] = Mod(Asc+DEGHALF); house[_CAP] = MC;
  house[_AQU] = Mod(house[_CAP] + 30.0 + delta   + SD);
  house[_PIS] = Mod(house[_AQU] + 30.0 + delta*2 + SD);
  house[_SAG] = Mod(house[_CAP] - 30.0 + delta   + SD);
  house[_SCO] = Mod(house[_SAG] - 30.0 + delta*2 + SD);
  for (i = _ARI; i < _LIB; i++)
    house[i] = Mod(house[i+6]-DEGHALF);
}

/* In "null" houses, the cusps are always fixed to start at their            */
/* corresponding sign, i.e. the 1st house is always at 0 degrees Aries, etc. */

void HouseNull()
{
  int i;

  for (i = 1; i <= SIGNS; i++)
    house[i] = Mod(STOZ(i)+SD);
}


/* Calculate the house cusp positions, using the specified algorithm. */

void ComputeHouses(housesystem)
int housesystem;
{
  char string[STRING];

  if (dabs(AA) > DTOR(DEGQUAD-TROPIC) && housesystem < 2) {
    sprintf(string,
      "The %s system of houses is not defined at extreme latitudes.",
      systemname[housesystem]);
    PrintError(string);
    Terminate(_FATAL);
  }
  switch (housesystem) {
  case  1: HouseKoch();           break;
  case  2: HouseEqual();          break;
  case  3: HouseCampanus();       break;
  case  4: HouseMeridian();       break;
  case  5: HouseRegiomontanus();  break;
  case  6: HousePorphyry();       break;
  case  7: HouseMorinus();        break;
  case  8: HouseTopocentric();    break;
  case  9: HouseEqualMidheaven(); break;
  case 10: HousePorphyryNeo();    break;
  case 11: HouseNull();           break;
  default: HousePlacidus();
  }
}


#ifdef MATRIX
/*
******************************************************************************
** Planetary Position Calculations.
******************************************************************************
*/

/* Read the next three values from the planet data stream, and return them */
/* combined as the coefficients of a quadratic equation in the chart time. */

real ReadThree()
{
  real S0, S1, S2;

  S0 = ReadPlanetData(); S1 = ReadPlanetData();
  S2 = ReadPlanetData();
  return S0 = DTOR(S0+S1*T+S2*T*T);
}


/* Another coordinate transformation. This is used by the ComputePlanets() */
/* procedure to rotate rectangular coordinates by a certain amount.        */

real RecToSph2(AP, AN, IN)
real AP, AN, IN;
{
  real R, D, G;

  RecToPol(X, Y, &A, &R); A += AP; PolToRec(A, R, &X, &Y);
  D = X; X = Y; Y = 0.0; RecToPol(X, Y, &A, &R);
  A += IN; PolToRec(A, R, &X, &Y);
  G = Y; Y = X; X = D; RecToPol(X, Y, &A, &R); A += AN;
  if (A < 0.0)
    A += 2.0*PI;
  PolToRec(A, R, &X, &Y);
  return G;
}


/* Calculate some harmonic delta error correction factors to add onto the */
/* coordinates of Jupiter through Pluto, for better accuracy.             */

void ErrorCorrect(ind, x, y, z)
int ind;
real *x, *y, *z;
{
  real U, V, W, S0, T0[4];
  int IK, IJ, errorindex;

  errorindex = errorcount[ind];
  for (IK = 1; IK <= 3; IK++) {
    if (ind == 6 && IK == 3) {
      T0[3] = 0.0;
      break;
    }
    if (IK == 3)
      errorindex--;
    S0 = ReadThree(); A = 0.0;
    for (IJ = 1; IJ <= errorindex; IJ++) {
      U = ReadPlanetData(); V = ReadPlanetData(); W = ReadPlanetData();
      A = A+DTOR(U)*cos((V*T+W)*PI/DEGHALF);
    }
    T0[IK] = RTOD(S0+A);
  }
  *x += T0[2]; *y += T0[1]; *z += T0[3];
}


/* Another subprocedure of the ComputePlanets() routine. Convert the final */
/* rectangular coordinates of a planet to zodiac position and declination. */

void ProcessPlanet(ind, aber)
int ind;
real aber;
{
  real ang, rad;

  RecToPol(spacex[ind], spacey[ind], &ang, &rad);
  planet[ind] = Mod(RTOD(ang) /*+ NU*/ - aber + SD);
  RecToPol(rad, spacez[ind], &ang, &rad);
  if (centerplanet == _SUN && ind == _SUN)
    ang = 0.0;
  planetalt[ind] = RTOD(ang);
}


/* This is probably the heart of the whole program of Astrolog. Calculate  */
/* the position of each body that orbits the Sun. A heliocentric chart is  */
/* most natural; extra calculation is needed to have other central bodies. */

void ComputePlanets()
{
  real helio[BASE+1], helioalt[BASE+1], helioret[BASE+1],
    heliox[BASE+1], helioy[BASE+1], helioz[BASE+1];
  real aber = 0.0, AU, E, EA, E1, M, XW, YW, AP, AN, IN, G, XS, YS, ZS;
  int ind = 1, i;

  datapointer = planetdata;
  while (ind <= (operation & DASHu ? BASE : PLANETS+1)) {
    modulus = 2.0*PI;
    EA = M = Mod(ReadThree());      /* Calculate mean anomaly */
    E = RTOD(ReadThree());          /* Calculate eccentricity */
    for (i = 1; i <= 5; i++)
      EA = M+E*sin(EA);             /* Solve Kepler's equation */
    AU = ReadPlanetData();          /* Semi-major axis         */
    E1 = 0.01720209/(pow(AU, 1.5)*
      (1.0-E*cos(EA)));                     /* Begin velocity coordinates */
    XW = -AU*E1*sin(EA);                    /* Perifocal coordinates      */
    YW = AU*E1*pow(1.0-E*E,0.5)*cos(EA);
    AP = ReadThree(); AN = ReadThree();
    IN = ReadThree();                           /* Calculate inclination  */
    X = XW; Y = YW; G = RecToSph2(AP, AN, IN);  /* Rotate velocity coords */
    heliox[ind] = X; helioy[ind] = Y;
    helioz[ind] = G;                       /* Helio ecliptic rectangtular */
    modulus = DEGREES;
    X = AU*(cos(EA)-E);                 /* Perifocal coordinates for        */
    Y = AU*sin(EA)*pow(1.0-E*E,0.5);    /* rectangular position coordinates */
    G = RecToSph2(AP, AN, IN);          /* Rotate for rectangular */
    XS = X; YS = Y; ZS = G;             /* position coordinates   */
    if (ind >= _JUP && ind <= _PLU)
      ErrorCorrect(ind, &XS, &YS, &ZS);
    ret[ind] =                                        /* Helio daily motion */
      (XS*helioy[ind]-YS*heliox[ind])/(XS*XS+YS*YS);
    spacex[ind] = XS; spacey[ind] = YS; spacez[ind] = ZS;
    ProcessPlanet(ind, 0.0);
    ind += (ind == 1 ? 2 : (ind != PLANETS+1 ? 1 : 10));
  }
  spacex[0] = spacey[0] = spacez[0] = 0.0;

  if (!centerplanet) {
    if (exdisplay & DASHv0)
      for (i = 0; i <= BASE; i++)    /* Use relative velocity */
        ret[i] = DTOR(1.0);          /* if -v0 is in effect   */
    return;
  }
#endif /* MATRIX */

  /* A second loop is needed for geocentric charts or central bodies other */
  /* than the Sun. For example, we can't find the position of Mercury in   */
  /* relation to Pluto until we know the position of Pluto in relation to  */
  /* the Sun, and since Mercury is calculated first, another pass needed.  */

  ind = centerplanet;
  for (i = 0; i <= BASE; i++) {
    helio[i]    = planet[i];
    helioalt[i] = planetalt[i];
    helioret[i] = ret[i];
    if (i != _MOO && i != ind) {
      spacex[i] -= spacex[ind];
      spacey[i] -= spacey[ind];
      spacez[i] -= spacez[ind];
    }
  }
  spacex[ind] = spacey[ind] = spacez[ind] = 0.0;
  SwapReal(&spacex[0], &spacex[ind]);
  SwapReal(&spacey[0], &spacey[ind]);    /* Do some swapping - we want   */
  SwapReal(&spacez[0], &spacez[ind]);    /* the central body to be in    */
  SwapReal(&spacex[1], &spacex[ind]);    /* object position number zero. */
  SwapReal(&spacey[1], &spacey[ind]);
  SwapReal(&spacez[1], &spacez[ind]);
  for (i = 1; i <= (operation & DASHu ? BASE : PLANETS+1);
      i += (i == 1 ? 2 : (i != PLANETS+1 ? 1 : 10))) {
    XS = spacex[i]; YS = spacey[i]; ZS = spacez[i];
    if (ind != _SUN || i != _SUN)
      ret[i] = (XS*(helioy[i]-helioy[ind])-YS*(heliox[i]-heliox[ind]))/
        (XS*XS+YS*YS);
    if (ind == _SUN)
      aber = 0.0057756*sqrt(XS*XS+YS*YS+ZS*ZS)*RTOD(ret[i]);  /* Aberration */
    ProcessPlanet(i, aber);
    if (exdisplay & DASHv0)                 /* Use relative velocity */
      ret[i] = DTOR(ret[i]/helioret[i]);    /* if -v0 is in effect   */
  }
}


#ifdef MATRIX
/*
******************************************************************************
** Lunar Position Calculations
******************************************************************************
*/

/* Calculate the position and declination of the Moon, and the Moon's North  */
/* Node. This has to be done separately from the other planets, because they */
/* all orbit the Sun, while the Moon orbits the Earth.                       */

void ComputeLunar(moonlo, moonla, nodelo, nodela)
real *moonlo, *moonla, *nodelo, *nodela;
{
  real LL, G, N, G1, D, L, ML, L1, MB, T1, M = 3600.0;

  LL = 973563.0+1732564379.0*T-4.0*T*T;  /* Compute mean lunar longitude     */
  G = 1012395.0+6189.0*T;                /* Sun's mean longitude of perigee  */
  N = 933060.0-6962911.0*T+7.5*T*T;      /* Compute mean lunar node          */
  G1 = 1203586.0+14648523.0*T-37.0*T*T;  /* Mean longitude of lunar perigee  */
  D = 1262655.0+1602961611.0*T-5.0*T*T;  /* Mean elongation of Moon from Sun */
  L = (LL-G1)/M; L1 = ((LL-D)-G)/M;      /* Some auxiliary angles            */
  T1 = (LL-N)/M; D = D/M; Y = 2.0*D;

  /* Compute Moon's perturbations. */

  ML = 22639.6*SIND(L)-4586.4*SIND(L-Y)+2369.9*SIND(Y)+769.0*SIND(2.0*L)-
    669.0*SIND(L1)-411.6*SIND(2.0*T1)-212.0*SIND(2.0*L-Y)-206.0*SIND(L+L1-Y);
  ML += 192.0*SIND(L+Y)-165.0*SIND(L1-Y)+148.0*SIND(L-L1)-125.0*SIND(D)-110.0*
    SIND(L+L1)-55.0*SIND(2.0*T1-Y)-45.0*SIND(L+2.0*T1)+40.0*SIND(L-2.0*T1);

  *moonlo = G = Mod((LL+ML)/M+SD);       /* Lunar longitude */

  /* Compute lunar latitude. */

  MB = 18461.5*SIND(T1)+1010.0*SIND(L+T1)-999.0*SIND(T1-L)-624.0*SIND(T1-Y)+
    199.0*SIND(T1+Y-L)-167.0*SIND(L+T1-Y);
  MB += 117.0*SIND(T1+Y)+62.0*SIND(2.0*L+T1)-
    33.0*SIND(T1-Y-L)-32.0*SIND(T1-2.0*L)-30.0*SIND(L1+T1-Y);
  *moonla = MB =
    Sgn(MB)*((dabs(MB)/M)/DEGREES-floor((dabs(MB)/M)/DEGREES))*DEGREES;

  /* Compute position of the north node. One can compute the true North */
  /* Node here if they like, but the Mean Node seems to be the one used */
  /* in astrology, so that's the one Astrolog returns by default.       */

#ifdef TRUENODE
  N = N+5392.0*SIND(2.0*T1-Y)-541.0*SIND(L1)-442.0*SIND(Y)+423.0*SIND(2.0*T1)-
    291.0*SIND(2.0*L-2.0*T1);
#endif
  *nodelo = Mod(N/M+SD);
  *nodela = 0.0;
}
#endif /* MATRIX */


/*
******************************************************************************
** Star Position Calculations
******************************************************************************
*/

/* This is used by the chart calculation routine to calculate the positions */
/* of the fixed stars. Since the stars don't move in the sky over time,     */
/* getting their positions is mostly just reading info from an array and    */
/* converting it to the correct reference frame. However, we have to add    */
/* in the correct precession for the tropical zodiac, and sort the final    */
/* index list based on what order the stars are supposed to be printed in.  */

void ComputeStars(SD)
real SD;
{
  int i, j;
  real x, y, z;

  /* Read in star positions. */

  for (i = 1; i <= STARS; i++) {
    x = stardata[i*6-6]; y = stardata[i*6-5]; z = stardata[i*6-4];
    planet[BASE+i] = DTOR(x*DEGREES/24.0+y*15.0/60.0+z*0.25/60.0);
    x = stardata[i*6-3]; y = stardata[i*6-2]; z = stardata[i*6-1];
    planetalt[BASE+i] = DTOR(x+y/60.0+z/60.0/60.0);
    EquToEcl(&planet[BASE+i], &planetalt[BASE+i]);           /* Convert to */
    planet[BASE+i] = Mod(RTOD(planet[BASE+i])+SD2000+SD);    /* ecliptic.  */
    planetalt[BASE+i] = RTOD(planetalt[BASE+i]);
    starname[i] = i;
  }

  /* Sort the index list if -Uz, -Ul, -Un, or -Ub switch in effect. */

  if (universe > 1) for (i = 2; i <= STARS; i++) {
    j = i-1;

    /* Compare star names for -Un switch. */

    if (universe == 'n') while (j > 0 && StringCmp(
      objectname[BASE+starname[j]], objectname[BASE+starname[j+1]]) > 0) {
      SWAP(starname[j], starname[j+1]);
      j--;

    /* Compare star brightnesses for -Ub switch. */

    } else if (universe == 'b') while (j > 0 &&
      starbright[starname[j]] > starbright[starname[j+1]]) {
      SWAP(starname[j], starname[j+1]);
      j--;

    /* Compare star zodiac locations for -Uz switch. */

    } else if (universe == 'z') while (j > 0 &&
      planet[BASE+starname[j]] > planet[BASE+starname[j+1]]) {
      SWAP(starname[j], starname[j+1]);
      j--;

    /* Compare star declinations for -Ul switch. */

    } else if (universe == 'l') while (j > 0 &&
      planetalt[BASE+starname[j]] < planetalt[BASE+starname[j+1]]) {
      SWAP(starname[j], starname[j+1]);
      j--;
    }
  }
}


/*
******************************************************************************
** Chart Calculation.
******************************************************************************
*/

#ifdef PLACALC
/* Compute the positions of the planets at a certain time using the Placalc */
/* accurate formulas and ephemeris. This will superseed the Matrix routine  */
/* values and is only called with the -b switch is in effect. Not all       */
/* objects or modes are available using this, but some additional values    */
/* such as Moon and Node velocities not available without -b are. (This is  */
/* the one place in Astrolog which calls the Placalc package functions.)    */

void ComputePlacalc(t)
real t;
{
  int i;
  real r1, r2, r3, r4, r;

  /* We can compute the positions of Sun through Pluto, Chiron, and the */
  /* North Node using Placalc. The other object must be done elsewhere. */

  for (i = _SUN; i <= _NOD; i++) if (i <= _CHI || i >= _NOD) {
    if (PlacalcPlanet(i, t*36525.0+2415020.0, centerplanet != _SUN,
      &r1, &r2, &r3, &r4)) {

      /* Note that this can't compute charts with central planets other */
      /* than the Sun or Earth or relative velocities in current state. */

      planet[i]    = Mod(r1 + SD);
      planetalt[i] = r2;
      ret[i]       = DTOR(r3);

      /* Compute x,y,z coordinates from azimuth, altitude, and distance. */

      spacez[i] = r4*SIND(planetalt[i]);
      r         = r4*COSD(planetalt[i]);
      spacex[i] = r*COSD(planet[i]);
      spacey[i] = r*SIND(planet[i]);
    }
  }
}
#endif


/* This is probably the main routine in all of Astrolog. It generates a   */
/* chart, calculating the positions of all the celestial bodies and house */
/* cusps, based on the current chart information, and saves them for use  */
/* by any of the display routines.                                        */

real CastChart(var)
int var;
{
  int i, k;
  real housetemp[SIGNS+1], Off = 0.0, j;

  if (MM == -1) {

    /* Hack: If month is negative, then we know chart was read in through a  */
    /* -o0 position file, so the planet positions are already in the arrays. */

    MC = planet[_MC]; Asc = planet[_ASC]; Vtx = planet[_VTX];
  } else {
    Off = ProcessInput(var);
    ComputeVariables();
    if (operation & DASHG)          /* Check for -G geodetic chart. */
      RA = DTOR(Mod(-OO));
    MC  = CuspMidheaven();          /* Calculate our Ascendant & Midheaven. */
    Asc = CuspAscendant();
    ComputeHouses(housesystem);     /* Go calculate house cusps. */
    for (i = 1; i <= total; i++) {
      planetalt[i] = 0.0;           /* Assume on ecliptic unless we say so.  */
      ret[i] = 1.0;                 /* Assume direct until we say otherwise. */
    }

    /* Go calculate planet, Moon, and North Node positions. */

    ComputePlanets();
    ComputeLunar(&planet[_MOO], &planetalt[_MOO],
      &planet[_NOD], &planetalt[_NOD]);
    ret[_NOD] = -1.0;

    /* Compute more accurate ephemeris positions for certain objects. */

#ifdef PLACALC
    if (placalc)
      ComputePlacalc(T);
#endif

    /* Calculate position of Part of Fortune. */

    j = planet[_MOO]-planet[_SUN];
    j = dabs(j) < DEGQUAD ? j : j - Sgn(j)*DEGREES;
    planet[_FOR] = Mod(j+Asc);

    /* Fill in "planet" positions corresponding to house cusps. */

    planet[_MC] = MC; planet[_ASC] = Asc; planet[_VTX] = Vtx;
    planet[C_LO]   = house[11]; planet[C_LO+1] = house[12];
    planet[C_LO+2] = house[2];  planet[C_LO+3] = house[3];
  }

  /* Go calculate star positions if -U switch in effect. */

  if (universe)
    ComputeStars(operation & DASHs ? 0.0 : -Off);

  /* Now, we may have to modify the base positions we calculated above based */
  /* on what type of chart we are generating.                                */

  if (operation & DASHp0) {         /* Are we doing a -p0 solar arc chart?   */
    for (i = 1; i <= total; i++)
      planet[i] = Mod(planet[i] + (Jdp - JD) / progday);
    for (i = 1; i <= SIGNS; i++)
      house[i]  = Mod(house[i]  + (Jdp - JD) / progday);
    }
  if (multiplyfactor > 1)           /* Are we doing a -x harmonic chart?     */
    for (i = 1; i <= total; i++)
      planet[i] = Mod(planet[i] * (real)multiplyfactor);
  if (onasc) {
    if (onasc > 0)                  /* Is -1 put on Ascendant in effect?     */
      j = planet[onasc]-Asc;
    else                            /* Or -2 put object on Midheaven switch? */
      j = planet[-onasc]-MC;
    for (i = 1; i <= SIGNS; i++)    /* If so, rotate the houses accordingly. */
      house[i] = Mod(house[i]+j);
  }

  /* Check to see if we are -F forcing any objects to be particular values. */

  for (i = 1; i <= total; i++)
    if (force[i] != 0.0) {
      planet[i] = force[i]-DEGREES;
      planetalt[i] = ret[i] = 0.0;
    }
  HousePlace();               /* Figure out what house everything falls in. */

  /* If -f domal chart switch in effect, switch planet and house positions. */

  if (operation & DASHf) {
    for (i = 1; i <= total; i++) {
      k = inhouse[i];
      inhouse[i] = ZTOS(planet[i]);
      planet[i] = STOZ(k)+MinDistance(house[k], planet[i]) /
        MinDistance(house[k], house[Mod12(k+1)])*30.0;
    }
    for (i = 1; i <= SIGNS; i++) {
      k = HousePlaceIn(STOZ(i));
      housetemp[i] = STOZ(k)+MinDistance(house[k], STOZ(i)) /
        MinDistance(house[k], house[Mod12(k+1)])*30.0;
    }
    for (i = 1; i <= SIGNS; i++)
      house[i] = housetemp[i];
  }

  /* If -3 decan chart switch in effect, edit planet positions accordingly. */

  if (operation & DASH3)
    for (i = 1; i <= total; i++) {
      k = ZTOS(planet[i]);
      j = planet[i] - STOZ(k);
      k = Mod12(k + 4*((int)floor(j/10.0)));
      j = (j - floor(j/10.0)*10.0)*3.0;
      planet[i] = STOZ(k)+j;
      HousePlace();
    }
  return T;
}

/* formulas.c */

These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.