ftp.nice.ch/pub/next/unix/editor/xemacs.19.13.s.tar.gz#/xemacs-19.13/src/search.c

This is search.c in view mode; [Download] [Up]

/* String search routines for XEmacs.
   Copyright (C) 1985, 1986, 1987, 1992, 1993, 1994
   Free Software Foundation, Inc.
   Copyright (C) 1994, 1995 Amdahl Corporation.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* Synched up with: FSF 19.28. */

/* Hacked on for Mule by Ben Wing, December 1994. */

#include <config.h>
#include "lisp.h"

#include "buffer.h"
#include "commands.h"
#include "insdel.h"
#include "mule.h"
#include <sys/types.h>
#include "regex.h"
#include "syntax.h"

#ifndef MULE_REGEXP
#define EXTENDED_REGEXP_P(x) 0
#endif


/* We compile regexps into this buffer and then use it for searching. */

struct re_pattern_buffer searchbuf;

static char search_fastmap[0400];

/* Last regexp we compiled */
static Lisp_Object last_regexp;

#ifdef MULE_REGEXP
/* Regular expressions used in forward/backward-word */
Lisp_Object Vforward_word_regexp, Vbackward_word_regexp;

/* Version number of system internal regexp compiler and interpreter. */

Lisp_Object Vregexp_version;
#endif /* MULE_REGEXP */

/* Every call to re_match, etc., must pass &search_regs as the regs argument
   unless you can show it is unnecessary (i.e., if re_match is certainly going
   to be called again before region-around-match can be called).  

   Since the registers are now dynamically allocated, we need to make
   sure not to refer to the Nth register before checking that it has
   been allocated by checking search_regs.num_regs.

   The regex code keeps track of whether it has allocated the search
   buffer using bits in searchbuf.  This means that whenever you
   compile a new pattern, it completely forgets whether it has
   allocated any registers, and will allocate new registers the next
   time you call a searching or matching function.  Therefore, we need
   to call re_set_registers after compiling a new pattern or after
   setting the match registers, so that the regex functions will be
   able to free or re-allocate it properly.  */
static struct re_registers search_regs;
#ifdef NEW_SYNTAX
# define SEARCH_NREGS(x) (x)->num_regs
#else
# define SEARCH_NREGS(x) RE_NREGS
#endif


/* The buffer in which the last search was performed, or
   Qt if the last search was done in a string;
   Qnil if no searching has been done yet.  */
static Lisp_Object last_thing_searched;

/* error condition signalled when regexp compile_pattern fails */
Lisp_Object Qinvalid_regexp;

static void set_search_regs (Bytind, Bytecount);

static void
matcher_overflow (void)
{
#if 0 /* This is too much of a compatibility problem. */ /* #### GAG! */
  error ("Stack overflow in regexp matcher");
#endif
}

/* Compile a regexp and signal a Lisp error if anything goes wrong.  */
int
compile_pattern (Lisp_Object pattern, struct re_pattern_buffer *bufp,
		 struct re_registers *regp, char *translate,
		 int backward, int no_error)
{
  /* !!#### This function has not been Mule-ized */
  CONST char *val;

  if (EQ (pattern, last_regexp)
      && translate == bufp->translate
#ifdef MULE_REGEXP
      && NILP (current_buffer->mc_flag) == !bufp->mc_flag
      && (!bufp->syntax_version
	  || bufp->syntax_version == syntax_table_version)
      && (!bufp->category_version
	  || bufp->category_version == category_table_version)
#endif /* MULE_REGEXP */
    )
    return 1;

#ifdef MULE_REGEXP
  if (CONSP (pattern))			/* pre-compiled regexp */
    {
      Lisp_Object compiled;

      val = 0;
      pattern = XCAR (pattern);
      if (CONSP (pattern)
	  && (compiled = backward ? XCDR (pattern) : XCAR (pattern))
	  && XTYPE (compiled) == Lisp_Vector
	  && XVECTOR (compiled)->size == 4)
	{
	  /* set_pattern will set bufp->allocated to NILP */
	  set_pattern (compiled, bufp, translate);
	  return 1;
	}

      val = "Invalid pre-compiled regexp";
      goto invalid_regexp;
    }
#endif /* MULE_REGEXP */

  if (no_error)
    {
      if (!STRINGP (pattern))
	return 0;
    }
  else
    CHECK_STRING (pattern, 0);

  last_regexp = Qnil;
  bufp->translate = translate;
#ifdef MULE_REGEXP
  bufp->syntax_version = bufp->category_version = 0;
  /* 
     'bufp->allocated == 0' means bufp->buffer points to pre-compiled pattern
     in a lisp string, which should not be 'realloc'ed. */
  if (bufp->allocated == 0) bufp->buffer = 0; 
#endif /* MULE_REGEXP */

  val = re_compile_pattern ((char *) string_data (XSTRING (pattern)),
			    string_length (XSTRING (pattern)),
			    bufp);
  if (val)
    {
#ifdef MULE_REGEXP
    invalid_regexp:
#endif /* MULE_REGEXP */
      if (no_error)
	return 0;
      else
	signal_error (Qinvalid_regexp, list1 (build_string (val)));
    }
  last_regexp = pattern;
#ifdef EMACS19_REGEXP
  /* Advise the searching functions about the space we have allocated
     for register data.  */
  if (regp)
    re_set_registers (bufp, regp, regp->num_regs, regp->start, regp->end);
#endif
  return 1;
}

#ifdef MULE_REGEXP
/* Set a pre-compiled pattern into a pattern buffer */
/* pattern is a list of strings:
	compiled_code, fastmap, syntax_fastmap, category_fastmap */
set_pattern (Lisp_Object pattern, struct re_pattern_buffer *bufp,
	     char *translate)
{
  /* !!#### This function has not been Mule-ized */
 Lisp_Object temp;

  if (bufp->allocated != 0)
    {
      /*
	Coming here means that this buffer was used to hold
	an old-style pattern.  Because new-style pattern is not
	self-destructive, we only have to set pointer.
	Instead, to avoid it being freed later,
	bufp->allocated should be set to 0.
	*/
      xfree (bufp->buffer);
      bufp->allocated = 0;
    }
  temp = vector_data (XVECTOR (pattern))[0];
  bufp->buffer = (char *) string_data (XSTRING (temp));
  bufp->used = string_length (XSTRING (temp));
  bufp->translate = translate;
  /* set fastmap */
  bufp->mc_flag = !NILP (current_buffer->mc_flag);

#ifdef EMACS19_REGEXP
  bufp->short_flag = 0;
  bufp->no_empty = 0;

  bufp->regs_allocated = REGS_UNALLOCATED;
  bufp->re_nsub = 0;				
  bufp->no_sub = 0;
  bufp->newline_anchor = 1;

  bufp->syntax = 0;
  bufp->not_bol = bufp->not_eol = 0;
#endif /* EMACS19_REGEXP */

  {
    Lisp_Object fmap, syntax_fmap, category_fmap;
    char *fastmap = bufp->fastmap;
    int i;
    unsigned char ch;

    bufp->fastmap_accurate = 1;

    fmap = vector_data (XVECTOR (pattern))[1];
    if (NILP (fmap) && NILP (syntax_fmap) && NILP (category_fmap))
      {
	bufp->can_be_null = 1;
      }
    else
      {
	bufp->can_be_null = 0;
	memset (fastmap, 0, 256);
	if (STRINGP (fmap))
	  memcpy (fastmap, string_data (XSTRING (fmap)),
		  string_length (XSTRING (fmap)));

	syntax_fmap = vector_data (XVECTOR (pattern))[2];
	if (STRINGP (syntax_fmap))
	  {
	    for (ch = 0; ch < 0x80; ch++)
	      if (!fastmap[ch]
		  && string_char (XSTRING (syntax_fmap),
				  syntax_code_spec[(char) SYNTAX (ch)]))
		fastmap[ch] = 1;
	    bufp->syntax_version = syntax_table_version;
	  }
	else
	  bufp->syntax_version = 0;

	category_fmap = vector_data (XVECTOR (pattern))[3];
	if (STRINGP (category_fmap))
	  {
	    char str[96], *p;
	    int not_category_spec = 0;

	    for (i = 32; i < 128; i++)
	      if (string_char (XSTRING (category_fmap), i) == 2)
		{
		  not_category_spec = 1;
		  break;
		}
	    for (ch = 0; ch < 0x80; ch++)
	      {
		if (!fastmap[ch])
		  {
		    pack_mnemonic_string
		      (char_category (ch, current_buffer->category_table),
		       str);
		    if (not_category_spec)
		      {
			for (p = str; *p; p++)
			  if (string_char (XSTRING (category_fmap), *p) != 2)
			    {
			      fastmap[ch] = 1;
			      break;
			    }
		      }
		    else
		      {
			for (p = str; *p; p++)
			  if (string_char (XSTRING (category_fmap), *p) == 1)
			    {
			      fastmap[ch] = 1;
			      break;
			    }
		      }
		  }
	      }
	    bufp->category_version = category_table_version;
	  }
	else
	  bufp->category_version = 0;

	if (bufp->mc_flag
	    && (STRINGP (syntax_fmap) || STRINGP (category_fmap))
	  {
	    for (ch = 0x80; ch < 0xA0; ch++)
	      fastmap[ch] = 1;
	  }
      }
  }
   Force 're-compile-pattern' when compile_pattern is called next time. */
  last_regexp = Qnil;
}
#endif /* MULE_REGEXP */

/* Error condition used for failing searches */
Lisp_Object Qsearch_failed;


DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 2, 0,
  "Return t if text after point matches regular expression PAT.\n\
This function modifies the match data that `match-beginning',\n\
`match-end' and `match-data' access; save and restore the match\n\
data if you want to preserve them.\n\
If support for Mule regexps was compiled into this Emacs, and optional\n\
second arg BACK is non-nil and PAT is a pre-compiled pattern,\n\
PAT is looked backward from point.")
  (string, back)
     Lisp_Object string, back;
{
  /* !!#### This function has not been Mule-ized */
  Lisp_Object val;
  Bytind p1, p2;
  Bytecount s1, s2;
  int i;
  struct buffer *buf = current_buffer;

  compile_pattern (string, &searchbuf, &search_regs,
		   (!NILP (buf->case_fold_search)
		    ? string_ext_data (XSTRING (buf->downcase_table))
                    : 0), !NILP (back), 0);

  /* Backward search requires extended regexp. */
  if (!NILP (back) && !EXTENDED_REGEXP_P (&searchbuf))
    error ("Can't look backward with this pattern");

  /* Get pointers and sizes of the two strings
     that make up the visible portion of the buffer. */

  p1 = BI_BUF_BEGV (buf);
  p2 = BI_BUF_CEILING_OF (buf, p1);
  s1 = p2 - p1;
  s2 = BI_BUF_ZV (buf) - p2;
  
  QUIT;

  /* mstop, the 8th arg of re_match_2 is offset from BEGV.  So, when */
  /* backward search, it should be BEGV - BEGV, ie. 0 */
  i = re_match_2 (&searchbuf, (unsigned char *) BI_BUF_BYTE_ADDRESS (buf, p1),
		  s1, BI_BUF_BYTE_ADDRESS (buf, p2), s2,
		  BI_BUF_PT (buf) - BI_BUF_BEGV (buf), &search_regs,
		  !NILP (back) ? 0 : BI_BUF_ZV (buf) - BI_BUF_BEGV (buf)
#ifdef MULE_REGEXP
		  , !NILP (back)
#endif
);
  if (i == -2)
    matcher_overflow ();

  val = (0 <= i ? Qt : Qnil);
  for (i = 0; i < SEARCH_NREGS (&search_regs); i++)
    if (search_regs.start[i] >= 0)
      {
	search_regs.start[i] += BI_BUF_BEGV (buf);
	search_regs.end[i] += BI_BUF_BEGV (buf);
      }
  XSETBUFFER (last_thing_searched, buf);
  return val;
}

DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
  "Return index of start of first match for REGEXP in STRING, or nil.\n\
If third arg START is non-nil, start search at that index in STRING.\n\
For index of first char beyond the match, do (match-end 0).\n\
`match-end' and `match-beginning' also give indices of substrings\n\
matched by parenthesis constructs in the pattern.")
  (regexp, string, start)
     Lisp_Object regexp, string, start;
{
  /* !!#### This function has not been Mule-ized */
  int val;
  int s;
  struct buffer *buf = current_buffer;

  CHECK_STRING (string, 1);

  if (NILP (start))
    s = 0;
  else
    {
      Bytecount len = string_length (XSTRING (string));

      CHECK_INT (start, 2);
      s = XINT (start);
      if (s < 0 && -s <= len)
	s = len + s;
      else if (0 > s || s > len)
	args_out_of_range (string, start);
    }

  compile_pattern (regexp, &searchbuf, &search_regs,
		   (!NILP (buf->case_fold_search)
                    ? (char *) string_data (XSTRING (buf->downcase_table))
                    : 0), 0, 0);
  QUIT;
  val = re_search (&searchbuf,
                   (char *) string_data (XSTRING (string)),
                   string_length (XSTRING (string)),
                   s,
                   string_length (XSTRING (string)) - s, 
                   &search_regs);
  last_thing_searched = Qt;
  if (val == -2)
    matcher_overflow ();
  if (val < 0) return Qnil;
  return make_number (val);
}


/* Match REGEXP against STRING, searching all of STRING,
   and return the index of the match, or negative on failure.
   This does not clobber the match data.  */

Bytecount
fast_string_match (Lisp_Object regexp, CONST Bufbyte *nonreloc,
		   Lisp_Object reloc, Bytecount offset,
		   Bytecount length, int no_error, int no_quit)
{
  int val;
  Bufbyte *newnonreloc = (Bufbyte *) nonreloc;

  if (!compile_pattern (regexp, &searchbuf, 0, 0, 0, no_error))
    return -1; /* will only do this when no_error */
  if (!no_quit)
    QUIT;
  else
    no_quit_in_re_search = 1;

  fixup_internal_substring (nonreloc, reloc, offset, &length);

  if (!NILP (reloc))
    {
      if (no_quit)
	newnonreloc = string_data (XSTRING (reloc));
      else
	{
	  /* QUIT could relocate RELOC.  Therefore we must alloca()
	     and copy.  No way around this except some serious
	     rewriting of re_search(). */
	  newnonreloc = (Bufbyte *) alloca (length);
	  memcpy (newnonreloc, string_data (XSTRING (reloc)), length);
	}
    }

  val = re_search (&searchbuf, (char *) newnonreloc + offset, length, 0,
		   length, 0);

  no_quit_in_re_search = 0;
  return val;
}

/* Search in BUF for COUNT instances of the character TARGET, starting
   at START and stopping at LIMIT.  If COUNT is negative, search backwards.
   If LIMIT is <= 0, stop at end of accessible region of buffer (or
   beginning of accessible region, if COUNT is negative).

   If we find COUNT instances, set *SHORTAGE to zero, and return the
   position after the COUNTth match.  Note that for reverse motion
   this is not the same as the usual convention for Emacs motion commands.

   If we don't find COUNT instances before reaching LIMIT, set *SHORTAGE
   to the number of TARGETs left unfound, and return the end of the
   buffer we bumped up against.

   If ALLOW_QUIT is non-zero, call QUIT periodically. */

Bufpos
scan_buffer (struct buffer *buf, Emchar target, Bufpos start, Bufpos limit,
	     int count, int *shortage, int allow_quit)
{
  Bytind lim = limit > 0 ? bufpos_to_bytind (buf, limit) :
    ((count > 0) ? BI_BUF_ZV (buf) : BI_BUF_BEGV (buf));
  Bytind st = bufpos_to_bytind (buf, start);

  assert (count != 0);

  if (shortage)
    *shortage = 0;
  
  if (count > 0)
    {
#ifdef MULE
      /* Due to the Mule representation of characters in a buffer,
	 we can simply search for characters in the range 0 - 127
	 directly.  For other characters, we do it the "hard" way.
	 Note that this way works for all characters but the other
	 way is faster. */
      if (target >= 0200)
	{
	  while (st < lim && count > 0)
	    {
	      if (BI_BUF_FETCH_CHAR (buf, st) == target)
		count--;
	      INC_BYTIND (buf, st);
	    }
	}
      else
#endif
	{
	  while (st < lim && count > 0)
	    {
	      Bytind ceil;
	      Bufbyte *bufptr;
	      
	      ceil = BI_BUF_CEILING_OF (buf, st);
	      ceil = min (lim, ceil);
	      bufptr = memchr (BI_BUF_BYTE_ADDRESS (buf, st), (int) target,
			       ceil - st);
	      if (bufptr)
		{
		  count--;
		  st = BI_BUF_PTR_BYTE_POS (buf, bufptr) + 1;
		}
	      else
		st = ceil;
	    }
	}

      if (shortage)
	*shortage = count;
      if (allow_quit)
	QUIT;
      return bytind_to_bufpos (buf, st);
    }
  else
    {
#ifdef MULE
      if (target >= 0200)
	{
	  while (st > lim && count < 0)
	    {
	      DEC_BYTIND (buf, st);
	      if (BI_BUF_FETCH_CHAR (buf, st) == target)
		count++;
	    }
	}
      else
#endif
	{
	  while (st > lim && count < 0)
	    {
	      Bytind floor;
	      Bufbyte *bufptr;
	      Bufbyte *floorptr;
	      
	      floor = BI_BUF_FLOOR_OF (buf, st);
	      floor = max (lim, floor);
	      /* No memrchr() ... */
	      bufptr = BI_BUF_BYTE_ADDRESS_BEFORE (buf, st);
	      floorptr = BI_BUF_BYTE_ADDRESS (buf, floor);
	      while (bufptr >= floorptr)
		{
		  st--;
		  /* At this point, both ST and BUFPTR refer to the same
		     character.  When the loop terminates, ST will
		     always point to the last character we tried. */
		  if (* (unsigned char *) bufptr == (unsigned char) target)
		    {
		      count++;
		      break;
		    }
		  bufptr--;
		}
	    }
	}

      if (shortage)
	*shortage = -count;
      if (allow_quit)
	QUIT;
      if (count)
	return bytind_to_bufpos (buf, st);
      else
	{
	/* We found the character we were looking for; we have to return
	   the position *after* it due to the strange way that the return
	   value is defined. */
	  INC_BYTIND (buf, st);
	  return bytind_to_bufpos (buf, st);
	}
    }
}

Bufpos
find_next_newline_no_quit (struct buffer *buf, Bufpos from, int cnt)
{
  return scan_buffer (buf, '\n', from, 0, cnt, (int *) 0, 0);
}

Bufpos
find_next_newline (struct buffer *buf, Bufpos from, int cnt)
{
  return scan_buffer (buf, '\n', from, 0, cnt, (int *) 0, 1);
}

static Lisp_Object
skip_chars (struct buffer *buf, int forwardp, int syntaxp,
	    Lisp_Object string, Lisp_Object lim)
{
  /* !!#### This function has not been Mule-ized */
  unsigned char *p, *pend;
  /* jwz: c must be bigger than char, else (skip-chars-forward "\200-\377")
     loops while trying to fill fastmap, as c++ wraps when c == 255. */
  unsigned int c;
  unsigned char fastmap[0400];
  int negate = 0;
#ifdef MULE_REGEXP
  unsigned char *b;
  struct compile_charset_information info, *ip = &info;
#endif /* MULE_REGEXP */
  int i;
  Lisp_Object syntax_table = buf->syntax_table;

  CHECK_STRING (string, 0);

  if (NILP (lim))
    XSETINT (lim, forwardp ? BUF_ZV (buf) : BUF_BEGV (buf));
  else
    CHECK_INT_COERCE_MARKER (lim, 1);

  /* In any case, don't allow scan outside bounds of buffer.  */
  if (XINT (lim) > BUF_ZV (buf))
    lim = make_number (BUF_ZV (buf));
  if (XINT (lim) < BUF_BEGV (buf))
    lim = make_number (BUF_BEGV (buf));

  p = string_data (XSTRING (string));
  pend = p + string_length (XSTRING (string));
  memset (fastmap, 0, sizeof (fastmap));

  if (p != pend && *p == '^')
    {
      negate = 1;
      p++;
    }

#ifdef MULE_REGEXP

  /* !!#### What's going on here? */
  b = (unsigned char *) alloca (1 +  (1 << 8) / 8 + 2 + (pend - p) * 2);
  if (b == 0) error ("not enough memory");

  /* Find the characters specified and set their elements of fastmap.  */

  init_compile_charset_information (ip, b, p, pend, 0, mc_flag, 1);

  if (compile_charset (ip))
    error ("maybe invalid charset");
  b[0] = ip->bitmap_size;
  if (ip->rt_used - ip->range_table)
    {
      b[0] |= 0x80;
      b[ip->bitmap_size+1] = (ip->rt_used - ip->range_table) >> 8;
      b[ip->bitmap_size+2] = (ip->rt_used - ip->range_table) & 0xff;
    }

  {
    Bufpos start_point = BUF_PT (buf);

    if (forwardp)
      {
	while (BUF_PT (buf) < XINT (lim))
	  {
	    c = BUF_FETCH_CHAR (buf, BUF_PT (buf));

	    if (lookup_charset (b, c, 0, 0) == negate)
	      break;

	    BUF_SET_PT (buf, BUF_PT (buf) + 1);
	  }
      }
    else
      {
	while (BUF_PT (buf) > XINT (lim))
	  {
	    Bufpos pos;

	    pos = BUF_PT (buf) - 1;
	    c = BUF_FETCH_CHAR (buf, pos);

	    if (lookup_charset (b, c, 0, 0) == negate)
	      break;

	    BUF_SET_PT (buf, pos);
	  }
      }

    QUIT;
    return make_number (BUF_PT (buf) - start_point);
  }

#else /* !MULE_REGEXP */

  /* Find the characters specified and set their elements of fastmap.
     If syntaxp, each character counts as itself.
     Otherwise, handle backslashes and ranges specially  */

  while (p != pend)
    {
      c = *p++;
      if (syntaxp)
	fastmap[c] = 1;
      else
	{
	  if (c == '\\')
	    {
	      if (p == pend) break;
	      c = *p++;
	    }
	  if (p != pend && *p == '-')
	    {
	      p++;
	      if (p == pend) break;
	      while (c <= *p)
		{
		  fastmap[c] = 1;
		  c++;
		}
	      p++;
	    }
	  else
	    fastmap[c] = 1;
	}
    }

  if (syntaxp && fastmap['-'] != 0)
    fastmap[' '] = 1;

  /* If ^ was the first character, complement the fastmap. */

  if (negate)
    for (i = 0; i < sizeof fastmap; i++)
      fastmap[i] ^= 1;

  {
    Bufpos start_point = BUF_PT (buf);

    if (syntaxp)
      {

	if (forwardp)
	  {
	    while (BUF_PT (buf) < XINT (lim)
		   && fastmap[(unsigned char)
                              syntax_code_spec[(int) SYNTAX (syntax_table,
                                                             BUF_FETCH_CHAR (buf, BUF_PT (buf)))]])
	      BUF_SET_PT (buf, BUF_PT (buf) + 1);
	  }
	else
	  {
	    while (BUF_PT (buf) > XINT (lim)
		   && fastmap[(unsigned char) 
                              syntax_code_spec[(int) SYNTAX (syntax_table,
                                                             BUF_FETCH_CHAR (buf, BUF_PT (buf) - 1))]])
	      BUF_SET_PT (buf, BUF_PT (buf) - 1);
	  }
      }
    else
      {
	if (forwardp)
	  {
	    while (BUF_PT (buf) < XINT (lim) && fastmap[BUF_FETCH_CHAR (buf, BUF_PT (buf))])
	      BUF_SET_PT (buf, BUF_PT (buf) + 1);
	  }
	else
	  {
	    while (BUF_PT (buf) > XINT (lim) && fastmap[BUF_FETCH_CHAR (buf, BUF_PT (buf) - 1)])
	      BUF_SET_PT (buf, BUF_PT (buf) - 1);
	  }
      }
    QUIT;
    return make_number (BUF_PT (buf) - start_point);
  }

#endif /* MULE_REGEXP */
}

DEFUN ("skip-chars-forward", Fskip_chars_forward, Sskip_chars_forward, 1, 3, 0,
  "Move point forward, stopping before a char not in CHARS, or at position LIM.\n\
CHARS is like the inside of a `[...]' in a regular expression\n\
except that `]' is never special and `\\' quotes `^', `-' or `\\'.\n\
Thus, with arg \"a-zA-Z\", this skips letters stopping before first nonletter.\n\
With arg \"^a-zA-Z\", skips nonletters stopping before first letter.\n\
Returns the distance traveled, either zero or positive.\n\
\n\
Optional argument BUFFER defaults to the current buffer.")
  (chars, lim, buffer)
     Lisp_Object chars, lim, buffer;
{
  return skip_chars (decode_buffer (buffer, 0), 1, 0, chars, lim);
}

DEFUN ("skip-chars-backward", Fskip_chars_backward, Sskip_chars_backward, 1, 3, 0,
  "Move point backward, stopping after a char not in CHARS, or at position LIM.\n\
See `skip-chars-forward' for details.\n\
Returns the distance traveled, either zero or negative.\n\
\n\
Optional argument BUFFER defaults to the current buffer.")
  (chars, lim, buffer)
     Lisp_Object chars, lim, buffer;
{
  return skip_chars (decode_buffer (buffer, 0), 0, 0, chars, lim);
}


DEFUN ("skip-syntax-forward", Fskip_syntax_forward, Sskip_syntax_forward, 1, 3, 0,
  "Move point forward across chars in specified syntax classes.\n\
SYNTAX is a string of syntax code characters.\n\
Stop before a char whose syntax is not in SYNTAX, or at position LIM.\n\
If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
This function returns the distance traveled, either zero or positive.\n\
\n\
Optional argument BUFFER defaults to the current buffer.")
  (syntax, lim, buffer)
     Lisp_Object syntax, lim, buffer;
{
  return skip_chars (decode_buffer (buffer, 0), 1, 1, syntax, lim);
}

DEFUN ("skip-syntax-backward", Fskip_syntax_backward, Sskip_syntax_backward, 1, 3, 0,
  "Move point backward across chars in specified syntax classes.\n\
SYNTAX is a string of syntax code characters.\n\
Stop on reaching a char whose syntax is not in SYNTAX, or at position LIM.\n\
If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
This function returns the distance traveled, either zero or negative.\n\
\n\
Optional argument BUFFER defaults to the current buffer.")
  (syntax, lim, buffer)
     Lisp_Object syntax, lim, buffer;
{
  return skip_chars (decode_buffer (buffer, 0), 0, 1, syntax, lim);
}


/* Subroutines of Lisp buffer search functions. */

static Bytind search_buffer (Lisp_Object str, Bytind pos, Bytind lim, int n,
			     int RE, unsigned char *trt,
			     unsigned char *inverse_trt);

static Lisp_Object
search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object no_error,
		Lisp_Object count, int direction, int RE)
{
  /* !!#### This function has not been Mule-ized */
  int np;
  Bufpos lim;
  long n = direction;
  struct buffer *buf = current_buffer;

  if (!NILP (count))
    {
      CHECK_INT (count, 3);
      n *= XINT (count);
    }

  /* string is now checked in compile_pattern, which is called from
     search_buffer. */
  if (NILP (bound))
    lim = n > 0 ? BUF_ZV (buf) : BUF_BEGV (buf);
  else
    {
      CHECK_INT_COERCE_MARKER (bound, 1);
      lim = XINT (bound);
      if (n > 0 ? lim < BUF_PT (buf) : lim > BUF_PT (buf))
	error ("Invalid search bound (wrong side of point)");
      if (lim > BUF_ZV (buf))
	lim = BUF_ZV (buf);
      if (lim < BUF_BEGV (buf))
	lim = BUF_BEGV (buf);
    }

  np = search_buffer (string, BUF_PT (buf), lim, n, RE,
		      (!NILP (buf->case_fold_search)
		       ? string_data (XSTRING (buf->case_canon_table)) 
                       : 0),
		      (!NILP (buf->case_fold_search)
		       ? string_data (XSTRING (buf->case_eqv_table)) 
                       : 0));

  if (np <= 0)
    {
      if (NILP (no_error))
	{
	  Fsignal (Qsearch_failed, list1 (string));
	  return Qnil;
	}
      if (!EQ (no_error, Qt))
	{
	  if (lim < BUF_BEGV (buf) || lim > BUF_ZV (buf))
	    abort ();
	  BUF_SET_PT (buf, lim);
	  return Qnil;
#if 0			/* This would be clean, but maybe programs depend on
			   a value of nil here.  */
	  np = lim;
#endif
	}

      else
        return Qnil;
    }

  if (np < BUF_BEGV (buf) || np > BUF_ZV (buf))
    abort ();

  BUF_SET_PT (buf, np);

  return make_number (np);
}

/* Search for the n'th occurrence of STRING in the current buffer,
   starting at position POS and stopping at position LIM,
   treating PAT as a literal string if RE is false or as
   a regular expression if RE is true.

   If N is positive, searching is forward and LIM must be greater than POS.
   If N is negative, searching is backward and LIM must be less than POS.

   Returns -x if only N-x occurrences found (x > 0),
   or else the position at the beginning of the Nth occurrence
   (if searching backward) or the end (if searching forward).  */

static Bytind
search_buffer (Lisp_Object string, Bytind pos, Bytind lim, int n, int RE,
	       unsigned char *trt, unsigned char *inverse_trt)
{
  /* !!#### This function has not been Mule-ized */
  Bytecount len = 0;
  Bufbyte *base_pat = 0;
  int *BM_tab;
  int *BM_tab_base;
  int direction = ((n > 0) ? 1 : -1);
  int dirlen;
  int infinity, limit, k, stride_for_teases = 0;
  Bufbyte *pat = 0;
  Bufbyte *cursor, *p_limit, *ptr2;  
  int i, j;
  Bytind p1, p2;
  Bytecount s1, s2;
  struct buffer *buf = current_buffer;

  if (!RE)
    {
      CHECK_STRING (string, 0);
      base_pat = string_data (XSTRING (string));
      len = string_length (XSTRING (string));

      /* Null string is found at starting position.  */
      if (len == 0)
	{
	  set_search_regs (pos, 0);
	  return pos;
	}
    }
  else					/* type check of string also done. */
    compile_pattern (string, &searchbuf, &search_regs,
		     (char *) trt, direction < 0, 0);

  /* Searching 0 times means don't move.  */
  if (n == 0)
    return pos;

  if (RE			/* Here we detect whether the */
				/* generality of an RE search is */
				/* really needed. */
      /* first item is "exact match" */
#ifdef EMACS19_REGEXP
      && *(searchbuf.buffer) == (char) RE_EXACTN_VALUE
#else
      && *(searchbuf.buffer) == exactn
#endif
      && searchbuf.buffer[1] + 2 == searchbuf.used) /*first is ONLY item */
    {
      RE = 0;			/* can do straight (non RE) search */
      pat = (base_pat = (unsigned char *) searchbuf.buffer + 2);
				/* trt already applied */
      len = searchbuf.used - 2;
    }
  else if (!RE)
    {
      pat = (Bufbyte *) alloca (len * sizeof (Bufbyte));

      for (i = len; i--;)		/* Copy the pattern; apply trt */
	*pat++ = (((int) trt) ? trt [*base_pat++] : *base_pat++);
      pat -= len; base_pat = pat;
    }

  if (RE)
    {
      /* Get pointers and sizes of the two strings
	 that make up the visible portion of the buffer. */

      p1 = BI_BUF_BEGV (buf);
      p2 = BI_BUF_CEILING_OF (buf, p1);
      s1 = p2 - p1;
      s2 = BI_BUF_ZV (buf) - p2;
  
      while (n < 0)
	{
          int val;
	  QUIT;
	  val = re_search_2 (&searchbuf,
			     (char *) BI_BUF_BYTE_ADDRESS (buf, p1), s1,
			     (char *) BI_BUF_BYTE_ADDRESS (buf, p2), s2,
                             pos - BI_BUF_BEGV (buf), lim - pos, &search_regs,
                             /* Don't allow match past current point */
			     /* mstop for backward search is */
			     /* BEGV - BEGV */
			     (EXTENDED_REGEXP_P (&searchbuf) ? 0 :
			      pos - BI_BUF_BEGV (buf))
	    );
	  if (val == -2)
	    matcher_overflow ();
	  if (val >= 0)
	    {
	      j = BI_BUF_BEGV (buf);
	      for (i = 0; i < SEARCH_NREGS (&search_regs); i++)
		if (search_regs.start[i] >= 0)
		  {
		    search_regs.start[i] += j;
		    search_regs.end[i] += j;
		  }
	      XSETBUFFER (last_thing_searched, buf);
	      /* Set pos to the new position. */
	      pos = search_regs.start[0];
	    }
	  else
	    {
	      return (n);
	    }
	  n++;
	}
      while (n > 0)
	{
	  int val;
	  QUIT;
          val = re_search_2 (&searchbuf,
			     (char *) BI_BUF_BYTE_ADDRESS (buf, p1), s1,
			     (char *) BI_BUF_BYTE_ADDRESS (buf, p2), s2,
                             pos - BI_BUF_BEGV (buf), lim - pos, &search_regs,
                             lim - BI_BUF_BEGV (buf));
	  if (val == -2)
	    matcher_overflow ();
	  if (val >= 0)
	    {
	      j = BI_BUF_BEGV (buf);
	      for (i = 0; i < SEARCH_NREGS (&search_regs); i++)
		if (search_regs.start[i] >= 0)
		  {
		    search_regs.start[i] += j;
		    search_regs.end[i] += j;
		  }
	      XSETBUFFER (last_thing_searched, buf);
	      pos = search_regs.end[0];
	    }
	  else
	    {
	      return (0 - n);
	    }
	  n--;
	}
      return (pos);
    }
  else				/* non-RE case */
    {
#ifdef C_ALLOCA
      int BM_tab_space[0400];
      BM_tab = &BM_tab_space[0];
#else
      BM_tab = (int *) alloca (0400 * sizeof (int));
#endif
      /* The general approach is that we are going to maintain that we know */
      /* the first (closest to the present position, in whatever direction */
      /* we're searching) character that could possibly be the last */
      /* (furthest from present position) character of a valid match.  We */
      /* advance the state of our knowledge by looking at that character */
      /* and seeing whether it indeed matches the last character of the */
      /* pattern.  If it does, we take a closer look.  If it does not, we */
      /* move our pointer (to putative last characters) as far as is */
      /* logically possible.  This amount of movement, which I call a */
      /* stride, will be the length of the pattern if the actual character */
      /* appears nowhere in the pattern, otherwise it will be the distance */
      /* from the last occurrence of that character to the end of the */
      /* pattern. */
      /* As a coding trick, an enormous stride is coded into the table for */
      /* characters that match the last character.  This allows use of only */
      /* a single test, a test for having gone past the end of the */
      /* permissible match region, to test for both possible matches (when */
      /* the stride goes past the end immediately) and failure to */
      /* match (where you get nudged past the end one stride at a time). */ 

      /* Here we make a "mickey mouse" BM table.  The stride of the search */
      /* is determined only by the last character of the putative match. */
      /* If that character does not match, we will stride the proper */
      /* distance to propose a match that superimposes it on the last */
      /* instance of a character that matches it (per trt), or misses */
      /* it entirely if there is none. */  

      dirlen = len * direction;
      infinity = dirlen - (lim + pos + len + len) * direction;
      if (direction < 0)
	pat = (base_pat += len - 1);
      BM_tab_base = BM_tab;
      BM_tab += 0400;
      j = dirlen;		/* to get it in a register */
      /* A character that does not appear in the pattern induces a */
      /* stride equal to the pattern length. */
      while (BM_tab_base != BM_tab)
	{
	  *--BM_tab = j;
	  *--BM_tab = j;
	  *--BM_tab = j;
	  *--BM_tab = j;
	}
      i = 0;
      while (i != infinity)
	{
	  j = pat[i]; i += direction;
	  if (i == dirlen) i = infinity;
	  if ((int) trt)
	    {
	      k = (j = trt[j]);
	      if (i == infinity)
		stride_for_teases = BM_tab[j];
	      BM_tab[j] = dirlen - i;
	      /* A translation table is accompanied by its inverse -- see */
	      /* comment following downcase_table for details */ 

	      while ((j = inverse_trt[j]) != k)
		BM_tab[j] = dirlen - i;
	    }
	  else
	    {
	      if (i == infinity)
		stride_for_teases = BM_tab[j];
	      BM_tab[j] = dirlen - i;
	    }
	  /* stride_for_teases tells how much to stride if we get a */
	  /* match on the far character but are subsequently */
	  /* disappointed, by recording what the stride would have been */
	  /* for that character if the last character had been */
	  /* different. */
	}
      infinity = dirlen - infinity;
      pos += dirlen - ((direction > 0) ? direction : 0);
      /* loop invariant - pos points at where last char (first char if reverse)
	 of pattern would align in a possible match.  */
      while (n != 0)
	{
	  if ((lim - pos - (direction > 0)) * direction < 0)
	    return (n * (0 - direction));
	  /* First we do the part we can by pointers (maybe nothing) */
	  QUIT;
	  pat = base_pat;
	  limit = pos - dirlen + direction;
	  /* XEmacs change: definitions of CEILING_OF and FLOOR_OF
	     have changed.  See buffer.h. */
	  limit = ((direction > 0)
		   ? BI_BUF_CEILING_OF (buf, limit) - 1
		   : BI_BUF_FLOOR_OF (buf, limit + 1));
	  /* LIMIT is now the last (not beyond-last!) value
	     POS can take on without hitting edge of buffer or the gap.  */
	  limit = ((direction > 0)
		   ? min (lim - 1, min (limit, pos + 20000))
		   : max (lim, max (limit, pos - 20000)));
	  if ((limit - pos) * direction > 20)
	    {
	      p_limit = BI_BUF_BYTE_ADDRESS (buf, limit);
	      ptr2 = (cursor = BI_BUF_BYTE_ADDRESS (buf, pos));
	      /* In this loop, pos + cursor - ptr2 is the surrogate for pos */
	      while (1)		/* use one cursor setting as long as i can */
		{
		  if (direction > 0) /* worth duplicating */
		    {
		      /* Use signed comparison if appropriate
			 to make cursor+infinity sure to be > p_limit.
			 Assuming that the buffer lies in a range of addresses
			 that are all "positive" (as ints) or all "negative",
			 either kind of comparison will work as long
			 as we don't step by infinity.  So pick the kind
			 that works when we do step by infinity.  */
		      if ((int) (p_limit + infinity) > (int) p_limit)
			while ((int) cursor <= (int) p_limit)
			  cursor += BM_tab[*cursor];
		      else
			while ((unsigned int) cursor <= (unsigned int) p_limit)
			  cursor += BM_tab[*cursor];
		    }
		  else
		    {
		      if ((int) (p_limit + infinity) < (int) p_limit)
			while ((int) cursor >= (int) p_limit)
			  cursor += BM_tab[*cursor];
		      else
			while ((unsigned int) cursor >= (unsigned int) p_limit)
			  cursor += BM_tab[*cursor];
		    }
/* If you are here, cursor is beyond the end of the searched region. */
 /* This can happen if you match on the far character of the pattern, */
 /* because the "stride" of that character is infinity, a number able */
 /* to throw you well beyond the end of the search.  It can also */
 /* happen if you fail to match within the permitted region and would */
 /* otherwise try a character beyond that region */
		  if ((cursor - p_limit) * direction <= len)
		    break;	/* a small overrun is genuine */
		  cursor -= infinity; /* large overrun = hit */
		  i = dirlen - direction;
		  if ((int) trt)
		    {
		      while ((i -= direction) + direction != 0)
			if (pat[i] != trt[*(cursor -= direction)])
			  break;
		    }
		  else
		    {
		      while ((i -= direction) + direction != 0)
			if (pat[i] != *(cursor -= direction))
			  break;
		    }
		  cursor += dirlen - i - direction;	/* fix cursor */
		  if (i + direction == 0)
		    {
		      cursor -= direction;

                      set_search_regs (pos + cursor - ptr2 + ((direction > 0)
							    ? 1 - len : 0),
				       len);

		      if ((n -= direction) != 0)
			cursor += dirlen; /* to resume search */
		      else
			return ((direction > 0)
				? search_regs.end[0] : search_regs.start[0]);
		    }
		  else
		    cursor += stride_for_teases; /* <sigh> we lose -  */
		}
	      pos += cursor - ptr2;
	    }
	  else
	    /* Now we'll pick up a clump that has to be done the hard */
	    /* way because it covers a discontinuity */
	    {
	      /* XEmacs change: definitions of CEILING_OF and FLOOR_OF
		 have changed.  See buffer.h. */
	      limit = ((direction > 0)
		       ? BI_BUF_CEILING_OF (buf, pos - dirlen + 1) - 1
		       : BI_BUF_FLOOR_OF (buf, pos - dirlen));
	      limit = ((direction > 0)
		       ? min (limit + len, lim - 1)
		       : max (limit - len, lim));
	      /* LIMIT is now the last value POS can have
		 and still be valid for a possible match.  */
	      while (1)
		{
		  /* This loop can be coded for space rather than */
		  /* speed because it will usually run only once. */
		  /* (the reach is at most len + 21, and typically */
		  /* does not exceed len) */    
		  while ((limit - pos) * direction >= 0)
		    pos += BM_tab[BI_BUF_FETCH_CHAR (buf, pos)];
		  /* now run the same tests to distinguish going off the */
		  /* end, a match or a phony match. */
		  if ((pos - limit) * direction <= len)
		    break;	/* ran off the end */
		  /* Found what might be a match.
		     Set POS back to last (first if reverse) char pos.  */
		  pos -= infinity;
		  i = dirlen - direction;
		  while ((i -= direction) + direction != 0)
		    {
		      pos -= direction;
		      if (pat[i] != (((int) trt)
				     ? trt[BI_BUF_FETCH_CHAR (buf, pos)]
				     : BI_BUF_FETCH_CHAR (buf, pos)))
			break;
		    }
		  /* Above loop has moved POS part or all the way
		     back to the first char pos (last char pos if reverse).
		     Set it once again at the last (first if reverse) char.  */
		  pos += dirlen - i- direction;
		  if (i + direction == 0)
		    {
		      pos -= direction;

		      set_search_regs (pos + ((direction > 0) ? 1 - len : 0),
				       len);

		      if ((n -= direction) != 0)
			pos += dirlen; /* to resume search */
		      else
			return ((direction > 0)
				? search_regs.end[0] : search_regs.start[0]);
		    }
		  else
		    pos += stride_for_teases;
		}
	      }
	  /* We have done one clump.  Can we continue? */
	  if ((lim - pos) * direction < 0)
	    return ((0 - n) * direction);
	}
      return pos;
    }
}

/* Record beginning BEG and end BEG + LEN
   for a match just found in the current buffer.  */

static void
set_search_regs (int beg, int len)
{
  /* !!#### This function has not been Mule-ized */
#ifdef EMACS19_REGEXP
  /* Make sure we have registers in which to store
     the match position.  */
  if (search_regs.num_regs == 0)
  {
    regoff_t *starts, *ends;

    starts = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
    ends = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
    re_set_registers (&searchbuf,
                      &search_regs,
                      2, starts, ends);
  }
#endif /* EMACS19_REGEXP */

  search_regs.start[0] = beg;
  search_regs.end[0] = beg + len;
  XSETBUFFER (last_thing_searched, current_buffer);
}


/* Given a string of words separated by word delimiters,
  compute a regexp that matches those exact words
  separated by arbitrary punctuation.  */

static Lisp_Object
wordify (Lisp_Object string)
{
  /* !!#### This function has not been Mule-ized */
  unsigned char *p, *o;
  int i, len, punct_count = 0, word_count = 0;
  Lisp_Object val;
  Lisp_Object syntax_table = current_buffer->syntax_table;

  CHECK_STRING (string, 0);
  p = string_data (XSTRING (string));
  len = string_length (XSTRING (string));

  for (i = 0; i < len; i++)
    if (SYNTAX (syntax_table, p[i]) != Sword)
      {
	punct_count++;
	if (i > 0 && SYNTAX (syntax_table, p[i-1]) == Sword)
          word_count++;
      }
  if (SYNTAX (syntax_table, p[len-1]) == Sword)
    word_count++;
  if (!word_count) return build_string ("");

  val = make_string (p,
		     len - punct_count + 5 * (word_count - 1) + 4);

  o = string_data (XSTRING (val));
  *o++ = '\\';
  *o++ = 'b';

  for (i = 0; i < len; i++)
    if (SYNTAX (syntax_table, p[i]) == Sword)
      *o++ = p[i];
    else if (i > 0
             && SYNTAX (syntax_table, p[i-1]) == Sword
             && --word_count)
      {
	*o++ = '\\';
	*o++ = 'W';
	*o++ = '\\';
	*o++ = 'W';
	*o++ = '*';
      }

  *o++ = '\\';
  *o++ = 'b';

  return val;
}

DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
  "sSearch backward: ",
  "Search backward from point for STRING.\n\
Set point to the beginning of the occurrence found, and return point.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must not extend before that position.\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
 If not nil and not t, position at limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.\n\
See also the functions `match-beginning', `match-end' and `replace-match'.")
  (string, bound, no_error, count)
     Lisp_Object string, bound, no_error, count;
{
  return search_command (string, bound, no_error, count, -1, 0);
}

DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "sSearch: ",
  "Search forward from point for STRING.\n\
Set point to the end of the occurrence found, and return point.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must not extend after that position.  nil is equivalent\n\
  to (point-max).\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
  If not nil and not t, move to limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.\n\
See also the functions `match-beginning', `match-end' and `replace-match'.")
  (string, bound, no_error, count)
     Lisp_Object string, bound, no_error, count;
{
  return search_command (string, bound, no_error, count, 1, 0);
}

DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
  "sWord search backward: ",
  "Search backward from point for STRING, ignoring differences in punctuation.\n\
Set point to the beginning of the occurrence found, and return point.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must not extend before that position.\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
  If not nil and not t, move to limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.")
  (string, bound, no_error, count)
     Lisp_Object string, bound, no_error, count;
{
  return search_command (wordify (string), bound, no_error, count, -1, 1);
}

DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
  "sWord search: ",
  "Search forward from point for STRING, ignoring differences in punctuation.\n\
Set point to the end of the occurrence found, and return point.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must not extend after that position.\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
  If not nil and not t, move to limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.")
  (string, bound, no_error, count)
     Lisp_Object string, bound, no_error, count;
{
  return search_command (wordify (string), bound, no_error, count, 1, 1);
}

DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
  "sRE search backward: ",
  "Search backward from point for match for regular expression REGEXP.\n\
Set point to the beginning of the match, and return point.\n\
The match found is the one starting last in the buffer\n\
and yet ending before the origin of the search.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must start at or after that position.\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
  If not nil and not t, move to limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.\n\
See also the functions `match-beginning', `match-end' and `replace-match'.")
  (regexp, bound, no_error, count)
     Lisp_Object regexp, bound, no_error, count;
{
  return search_command (regexp, bound, no_error, count, -1, 1);
}

DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
  "sRE search: ",
  "Search forward from point for regular expression REGEXP.\n\
Set point to the end of the occurrence found, and return point.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must not extend after that position.\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
  If not nil and not t, move to limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.\n\
See also the functions `match-beginning', `match-end' and `replace-match'.")
  (regexp, bound, no_error, count)
     Lisp_Object regexp, bound, no_error, count;
{
  return search_command (regexp, bound, no_error, count, 1, 1);
}


DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 3, 0,
  "Replace text matched by last search with NEWTEXT.\n\
If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
Otherwise maybe capitalize the whole text, or maybe just word initials,\n\
based on the replaced text.\n\
If the replaced text has only capital letters\n\
and has at least one multiletter word, convert NEWTEXT to all caps.\n\
If the replaced text has at least one word starting with a capital letter,\n\
then capitalize each word in NEWTEXT.\n\n\
If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
Otherwise treat `\\' as special:\n\
  `\\&' in NEWTEXT means substitute original matched text.\n\
  `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
       If Nth parens didn't match, substitute nothing.\n\
  `\\\\' means insert one `\\'.\n\
  `\\u' means upcase the next character.\n\
  `\\l' means downcase the next character.\n\
  `\\U' means begin upcasing all following characters.\n\
  `\\L' means begin downcasing all following characters.\n\
  `\\E' means terminate the effect of any `\\U' or `\\L'.\n\
  Case changes made with `\\u', `\\l', `\\U', and `\\L' override\n\
  all other case changes that may be made in the replaced text.\n\
FIXEDCASE and LITERAL are optional arguments.\n\
Leaves point at end of replacement text.")
  (newtext, fixedcase, literal)
     Lisp_Object newtext, fixedcase, literal;
{
  /* This function can GC */
  enum { nochange, all_caps, cap_initial } case_action;
  Bufpos pos, last;
  int some_multiletter_word;
  int some_lowercase;
  int some_uppercase;
  int some_nonuppercase_initial;
  Emchar c, prevc;
  int inslen;
  struct buffer *buf = current_buffer;
  Lisp_Object syntax_table = buf->syntax_table;
  int mc_count;
  Lisp_Object buffer;
  int_dynarr *ul_action_dynarr = 0;
  int_dynarr *ul_pos_dynarr = 0;

  XSETBUFFER (buffer, buf);
  CHECK_STRING (newtext, 0);

  case_action = nochange;	/* We tried an initialization */
				/* but some C compilers blew it */

#ifdef EMACS19_REGEXP
  if (search_regs.num_regs <= 0)
    error ("replace-match called before any match found");
#endif

  if (search_regs.start[0] < BUF_BEGV (buf)
      || search_regs.start[0] > search_regs.end[0]
      || search_regs.end[0] > BUF_ZV (buf))
    args_out_of_range (make_number (search_regs.start[0]),
		       make_number (search_regs.end[0]));

  if (NILP (fixedcase))
    {
      /* Decide how to casify by examining the matched text. */

      last = search_regs.end[0];
      prevc = '\n';
      case_action = all_caps;

      /* some_multiletter_word is set nonzero if any original word
	 is more than one letter long. */
      some_multiletter_word = 0;
      some_lowercase = 0;
      some_nonuppercase_initial = 0;
      some_uppercase = 0;

      for (pos = search_regs.start[0]; pos < last; pos++)
	{
	  c = BUF_FETCH_CHAR (buf, pos);
	  if (LOWERCASEP (buf, c))
	    {
	      /* Cannot be all caps if any original char is lower case */

	      some_lowercase = 1;
	      if (SYNTAX (syntax_table, prevc) != Sword)
		some_nonuppercase_initial = 1;
	      else
		some_multiletter_word = 1;
	    }
	  else if (!NOCASEP (buf, c))
	    {
	      some_uppercase = 1;
	      if (SYNTAX (syntax_table, prevc) != Sword)
		;
	      else
		some_multiletter_word = 1;
	    }
	  else
	    {
	      /* If the initial is a caseless word constituent,
		 treat that like a lowercase initial.  */
	      if (SYNTAX (syntax_table, prevc) != Sword)
		some_nonuppercase_initial = 1;
	    }

	  prevc = c;
	}

      /* Convert to all caps if the old text is all caps
	 and has at least one multiletter word.  */
      if (! some_lowercase && some_multiletter_word)
	case_action = all_caps;
      /* Capitalize each word, if the old text has all capitalized words.  */
      else if (!some_nonuppercase_initial && some_multiletter_word)
	case_action = cap_initial;
      else if (!some_nonuppercase_initial && some_uppercase)
	/* Should x -> yz, operating on X, give Yz or YZ?
	   We'll assume the latter.  */
	case_action = all_caps;
      else
	case_action = nochange;
    }

  mc_count = begin_multiple_change (buf, search_regs.start[0],
				    search_regs.end[0]);

  /* We insert the replacement text before the old text, and then
     delete the original text.  This means that markers at the
     beginning or end of the original will float to the corresponding
     position in the replacement.  */
  BUF_SET_PT (buf, search_regs.start[0]);
  if (!NILP (literal))
    Finsert (1, &newtext);
  else
    {
      Charcount stlen = string_char_length (XSTRING (newtext));
      Charcount strpos;
      struct gcpro gcpro1;
      GCPRO1 (newtext);
      for (strpos = 0; strpos < stlen; strpos++)
	{
	  int offset = BUF_PT (buf) - search_regs.start[0];

	  c = string_char (XSTRING (newtext), strpos);
	  if (c == '\\')
	    {
	      c = string_char (XSTRING (newtext), ++strpos);
	      if (c == '&')
		Finsert_buffer_substring 
                  (buffer,
                   make_number (search_regs.start[0] + offset),
                   make_number (search_regs.end[0] + offset));
	      else if (c >= '1' && c <= '9' &&
		       c <= SEARCH_NREGS (&search_regs) + '0')
		{
		  if (search_regs.start[c - '0'] >= 1)
		    Finsert_buffer_substring
                      (buffer,
                       make_number (search_regs.start[c - '0'] + offset),
                       make_number (search_regs.end[c - '0'] + offset));
		}
	      else if (c == 'U' || c == 'u' || c == 'L' || c == 'l' ||
		       c == 'E')
		{
		  /* Keep track of all case changes requested, but don't
		     make them now.  Do them later so we override
		     everything else. */
		  if (!ul_pos_dynarr)
		    {
		      ul_pos_dynarr = Dynarr_new (int);
		      ul_action_dynarr = Dynarr_new (int);
		    }
		  Dynarr_add (ul_pos_dynarr, BUF_PT (buf));
		  Dynarr_add (ul_action_dynarr, c);
		}
	      else
		buffer_insert_emacs_char (buf, c);
	    }
	  else
	    buffer_insert_emacs_char (buf, c);
	}
      UNGCPRO;
    }

  inslen = BUF_PT (buf) - (search_regs.start[0]);
  buffer_delete_range (buf, search_regs.start[0] + inslen, search_regs.end[0] +
		       inslen, 0);

  if (case_action == all_caps)
    Fupcase_region (make_number (BUF_PT (buf) - inslen),
		    make_number (BUF_PT (buf)),  buffer);
  else if (case_action == cap_initial)
    upcase_initials_region (buf, make_number (BUF_PT (buf) - inslen),
                            make_number (BUF_PT (buf)));

  /* Now go through and make all the case changes that were requested
     in the replacement string. */
  if (ul_pos_dynarr)
    {
      Bufpos eend = BUF_PT (buf);
      int i = 0;
      int cur_action = 'E';

      for (pos = BUF_PT (buf) - inslen; pos < eend; pos++)
	{
	  Emchar curchar = BUF_FETCH_CHAR (buf, pos);
	  Emchar newchar = -1;
	  if (i < Dynarr_length (ul_pos_dynarr) &&
	      pos == Dynarr_at (ul_pos_dynarr, i))
	    {
	      int new_action = Dynarr_at (ul_action_dynarr, i);
	      i++;
	      if (new_action == 'u')
		newchar = UPCASE (buf, curchar);
	      else if (new_action == 'l')
		newchar = DOWNCASE (buf, curchar);
	      else
		cur_action = new_action;
	    }
	  if (newchar == -1)
	    {
	      if (cur_action == 'U')
		newchar = UPCASE (buf, curchar);
	      else if (cur_action == 'L')
		newchar = DOWNCASE (buf, curchar);
	      else
		newchar = curchar;
	    }
	  if (newchar != curchar)
	    buffer_replace_char (buf, pos, newchar, 0, 0);
	}

      /* #### will not be freed if an after-change function throws,
	 or whatever */
      Dynarr_free (ul_action_dynarr);
      Dynarr_free (ul_pos_dynarr);
    }

  end_multiple_change (buf, mc_count);

  return Qnil;
}

static Lisp_Object
match_limit (Lisp_Object num, int beginningp)
{
  /* !!#### This function has not been Mule-ized */
  int n;

  CHECK_INT (num, 0);
  n = XINT (num);
  if (n < 0 || n >= SEARCH_NREGS (&search_regs))
    args_out_of_range (num, make_number (SEARCH_NREGS (&search_regs)));
#ifdef EMACS19_REGEXP
  if (search_regs.num_regs <= 0)
    return (Qnil);
#endif
  if (search_regs.start[n] < 0)
    return Qnil;
  return (make_number ((beginningp) ? search_regs.start[n]
		                    : search_regs.end[n]));
}

DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
  "Return position of start of text matched by last regexp search.\n\
NUM, specifies which parenthesized expression in the last regexp.\n\
 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.\n\
Zero means the entire text matched by the whole regexp or whole string.")
  (num)
     Lisp_Object num;
{
  return match_limit (num, 1);
}

DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
  "Return position of end of text matched by last regexp search.\n\
NUM specifies which parenthesized expression in the last regexp.\n\
 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.\n\
Zero means the entire text matched by the whole regexp or whole string.")
  (num)
     Lisp_Object num;
{
  return match_limit (num, 0);
} 

DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 0, 0,
  "Return a list containing all info on what the last regexp search matched.\n\
Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
All the elements are markers or nil (nil if the Nth pair didn't match)\n\
if the last match was on a buffer; integers or nil if a string was matched.\n\
Use `store-match-data' to reinstate the data in this list.")
  ()
{
  /* !!#### This function has not been Mule-ized */
  Lisp_Object *data;
  int i, len;

  if (NILP (last_thing_searched))
    error ("match-data called before any match found");

  data = (Lisp_Object *) alloca ((2 * SEARCH_NREGS (&search_regs))
				 * sizeof (Lisp_Object));

  len = -1;
  for (i = 0; i < SEARCH_NREGS (&search_regs); i++)
    {
      int start = search_regs.start[i];
      if (start >= 0)
	{
	  if (EQ (last_thing_searched, Qt))
	    {
	      data[2 * i] = make_number (start);
	      data[2 * i + 1] = make_number (search_regs.end[i]);
	    }
	  else if (BUFFERP (last_thing_searched))
	    {
	      data[2 * i] = Fmake_marker ();
	      Fset_marker (data[2 * i],
			   make_number (start),
			   last_thing_searched);
	      data[2 * i + 1] = Fmake_marker ();
	      Fset_marker (data[2 * i + 1],
			   make_number (search_regs.end[i]), 
			   last_thing_searched);
	    }
	  else
	    /* last_thing_searched must always be Qt, a buffer, or Qnil.  */
	    abort ();

	  len = i;
	}
      else
	data[2 * i] = data [2 * i + 1] = Qnil;
    }
  return Flist (2 * len + 2, data);
}


DEFUN ("store-match-data", Fstore_match_data, Sstore_match_data, 1, 1, 0,
  "Set internal data on last search match from elements of LIST.\n\
LIST should have been created by calling `match-data' previously.")
  (list)
     Lisp_Object list;
{
  /* !!#### This function has not been Mule-ized */
  int i;
  Lisp_Object marker;

  if (!CONSP (list) && !NILP (list))
    list = wrong_type_argument (Qconsp, list);

  /* Unless we find a marker with a buffer in LIST, assume that this 
     match data came from a string.  */
  last_thing_searched = Qt;

#ifdef EMACS19_REGEXP
  /* Allocate registers if they don't already exist.  */
  {
    int length = XINT (Flength (list)) / 2;

    if (length > search_regs.num_regs)
      {
	if (search_regs.num_regs == 0)
	  {
	    search_regs.start
	      = (regoff_t *) xmalloc (length * sizeof (regoff_t));
	    search_regs.end
	      = (regoff_t *) xmalloc (length * sizeof (regoff_t));
	  }
	else
	  {
	    search_regs.start
	      = (regoff_t *) xrealloc (search_regs.start,
				       length * sizeof (regoff_t));
	    search_regs.end
	      = (regoff_t *) xrealloc (search_regs.end,
				       length * sizeof (regoff_t));
	  }

	re_set_registers (&searchbuf, &search_regs, length,
			  search_regs.start, search_regs.end);
      }
  }
#endif /* EMACS19_REGEXP */

  for (i = 0; i < SEARCH_NREGS (&search_regs); i++)
    {
      marker = Fcar (list);
      if (NILP (marker))
	{
	  search_regs.start[i] = -1;
	  list = Fcdr (list);
	}
      else
	{
	  if (MARKERP (marker))
	    {
	      if (XMARKER (marker)->buffer == 0)
		marker = Qzero;
	      else
		XSETBUFFER (last_thing_searched,
                       XMARKER (marker)->buffer);
	    }

	  CHECK_INT_COERCE_MARKER (marker, 0);
	  search_regs.start[i] = XINT (marker);
	  list = Fcdr (list);

	  marker = Fcar (list);
	  if (MARKERP (marker)
	      && XMARKER (marker)->buffer == 0)
	    marker = Qzero;

	  CHECK_INT_COERCE_MARKER (marker, 0);
	  search_regs.end[i] = XINT (marker);
	}
      list = Fcdr (list);
    }

  return Qnil;  
}

/* Quote a string to inactivate reg-expr chars */

DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
  "Return a regexp string which matches exactly STRING and nothing else.")
  (str)
     Lisp_Object str;
{
  /* !!#### This function has not been Mule-ized */
  Bufbyte *in, *out, *end;
  Bufbyte *temp;

  CHECK_STRING (str, 0);

  temp = (Bufbyte *) alloca (string_length (XSTRING (str)) * 2);

  /* Now copy the data into the new string, inserting escapes. */

  in = string_data (XSTRING (str));
  end = in + string_length (XSTRING (str));
  out = temp; 

  for (; in != end; in++)
    {
      if (*in == '[' || *in == ']'
	  || *in == '*' || *in == '.' || *in == '\\'
	  || *in == '?' || *in == '+'
	  || *in == '^' || *in == '$')
	*out++ = '\\';
      *out++ = *in;
    }

  return make_string (temp, out - temp);
}

#ifdef MULE_REGEXP

DEFUN ("re-compile", Fre_compile, Sre_compile, 1, 1, 0,
  "Compile REGEXP by GNU Emacs original regexp compiler,\n\
and return information of the compiled code by a vector of length 11:\n\
 [ COMPILED-PATTERN (string)\n\
   RE-NSUB REGS-ALLOCATED CAN-BE-NULL NEWLINE-ANCHOR (integers)\n\
   NO-SUB NOT-BOL NOT-EOL SYNTAX (integers)\n\
   FASTMAP TRANSLATE (string) ].\n\
If REGEXP is nil, just return the information of previously compiled code.")
  (regexp)
     Lisp_Object regexp;
{
  Lisp_Object val;

  if (! NILP (regexp))
    {
      CHECK_STRING (regexp, 0);
      last_regexp = Qnil;
      compile_pattern (regexp, &searchbuf, &search_regs,
		       (!NILP (current_buffer->case_fold_search)
			? DOWNCASE_TABLE : 0),
		       0);
      re_compile_fastmap (&searchbuf);
    }

  val = Fmake_vector (11, Qnil);
  XVECTOR (val)->contents[0] = make_string (searchbuf.buffer, searchbuf.used);
  XVECTOR (val)->contents[1] = make_number (searchbuf.re_nsub);
  XVECTOR (val)->contents[2] = make_number (searchbuf.regs_allocated);
  XVECTOR (val)->contents[3] = make_number (searchbuf.can_be_null);
  XVECTOR (val)->contents[4] = make_number (searchbuf.newline_anchor);
  XVECTOR (val)->contents[5] = make_number (searchbuf.no_sub);
  XVECTOR (val)->contents[6] = make_number (searchbuf.not_bol);
  XVECTOR (val)->contents[7] = make_number (searchbuf.not_eol);
  XVECTOR (val)->contents[8] = make_number (searchbuf.syntax);
  if (searchbuf.fastmap_accurate && searchbuf.fastmap)
    XVECTOR (val)->contents[9] = make_string (searchbuf.fastmap, 256);
  if (searchbuf.translate)
    XVECTOR (val)->contents[10] = make_string (searchbuf.translate, 256);

  return val;
}

#endif


/************************************************************************/
/*                            initialization                            */
/************************************************************************/

void
syms_of_search (void)
{

  deferror (&Qsearch_failed, "search-failed", "Search failed", 1);
  deferror (&Qinvalid_regexp, "invalid-regexp", "Invalid regexp", 1);

#ifdef MULE_REGEXP
  defsubr (&Sre_compile);
#endif /* MULE_REGEXP */

  defsubr (&Sstring_match);
  defsubr (&Slooking_at);
  defsubr (&Sskip_chars_forward);
  defsubr (&Sskip_chars_backward);
  defsubr (&Sskip_syntax_forward);
  defsubr (&Sskip_syntax_backward);
  defsubr (&Ssearch_forward);
  defsubr (&Ssearch_backward);
  defsubr (&Sword_search_forward);
  defsubr (&Sword_search_backward);
  defsubr (&Sre_search_forward);
  defsubr (&Sre_search_backward);
  defsubr (&Sreplace_match);
  defsubr (&Smatch_beginning);
  defsubr (&Smatch_end);
  defsubr (&Smatch_data);
  defsubr (&Sstore_match_data);
  defsubr (&Sregexp_quote);
}

void
vars_of_search (void)
{
  /* !!#### This function has not been Mule-ized */
  searchbuf.allocated = 100;
#ifdef EMACS19_REGEXP
  searchbuf.buffer = (unsigned char *) xmalloc (searchbuf.allocated);
#else
  searchbuf.buffer = (char *) xmalloc (searchbuf.allocated);
#endif
  searchbuf.fastmap = search_fastmap;

#ifdef MULE_REGEXP
#ifdef EMULATE_EMACS19
  search_regs.num_regs = RE_NREGS;
#endif /* EMULATE_EMACS19 */

  for (i = 0; i <= MAXWORDBUF; i++)
    wordbuf[i] = (struct re_pattern_buffer *)0;
#endif /* MULE_REGEXP */

  last_regexp = Qnil;
  staticpro (&last_regexp);

  last_thing_searched = Qnil;
  staticpro (&last_thing_searched);

#ifdef MULE_REGEXP
  DEFVAR_LISP ("forward-word-regexp", &Vforward_word_regexp,
    "*Regular expression to be used in forward-word.");
  Vforward_word_regexp = Qnil;

  DEFVAR_LISP ("backward-word-regexp", &Vbackward_word_regexp,
    "*Regular expression to be used in backward-word.");
  Vbackward_word_regexp = Qnil;

  DEFVAR_INT ("regexp-version", &Vregexp_version,
    "version number of system internal regexp compiler and interpreter.");
  Vregexp_version = 0;
#ifdef EMACS18_REGEXP
  Vregexp_version = 18;
#endif /* EMACS18_REGEXP */
#ifdef EMACS19_REGEXP
  Vregexp_version = 19;
#endif /* EMACS19_REGEXP */
#endif /* MULE_REGEXP */
}

These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.