ftp.nice.ch/pub/next/unix/editor/xemacs.19.13.s.tar.gz#/xemacs-19.13/src/floatfns.c

This is floatfns.c in view mode; [Download] [Up]

/* Primitive operations on floating point for XEmacs Lisp interpreter.
   Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* Synched up with: FSF 19.28. */

/* ANSI C requires only these float functions:
   acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
   frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.

   Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
   Define HAVE_CBRT if you have cbrt().
   Define HAVE_RINT if you have rint().
   If you don't define these, then the appropriate routines will be simulated.

   Define HAVE_MATHERR if on a system supporting the SysV matherr() callback.
   (This should happen automatically.)

   Define FLOAT_CHECK_ERRNO if the float library routines set errno.
   This has no effect if HAVE_MATHERR is defined.

   Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
   (What systems actually do this?  Let me know. -jwz)

   Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
   either setting errno, or signalling SIGFPE/SIGILL.  Otherwise, domain and
   range checking will happen before calling the float routines.  This has
   no effect if HAVE_MATHERR is defined (since matherr will be called when
   a domain error occurs).
 */

#include <config.h>
#include "lisp.h"
#include "syssignal.h"

#ifdef LISP_FLOAT_TYPE

/* Need to define a differentiating symbol -- see sysfloat.h */
#define THIS_FILENAME floatfns
#include "sysfloat.h"

#ifndef HAVE_RINT
static double
rint (double x)
{
  double r = floor (x + 0.5);
  double diff = fabs (r - x);
  /* Round to even and correct for any roundoff errors.  */
  if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0)))
    r += r < x ? 1.0 : -1.0;
  return r;
}
#endif

/* Nonzero while executing in floating point.
   This tells float_error what to do.  */
static int in_float;

/* If an argument is out of range for a mathematical function,
   here is the actual argument value to use in the error message.  */
static Lisp_Object float_error_arg, float_error_arg2;
static CONST char *float_error_fn_name;

/* Evaluate the floating point expression D, recording NUM
   as the original argument for error messages.
   D is normally an assignment expression.
   Handle errors which may result in signals or may set errno.

   Note that float_error may be declared to return void, so you can't
   just cast the zero after the colon to (SIGTYPE) to make the types
   check properly.  */
#ifdef FLOAT_CHECK_ERRNO
#define IN_FLOAT(d, name, num)				\
  do {							\
    float_error_arg = num;				\
    float_error_fn_name = name;				\
    in_float = 1; errno = 0; (d); in_float = 0;		\
    if (errno != 0) in_float_error ();			\
  } while (0)
#define IN_FLOAT2(d, name, num, num2)			\
  do {							\
    float_error_arg = num;				\
    float_error_arg2 = num2;				\
    float_error_fn_name = name;				\
    in_float = 2; errno = 0; (d); in_float = 0;		\
    if (errno != 0) in_float_error ();			\
  } while (0)
#else
#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
#define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0)
#endif


#define arith_error(op,arg) \
  Fsignal (Qarith_error, list2 (build_string ((op)), (arg)))
#define range_error(op,arg) \
  Fsignal (Qrange_error, list2 (build_string ((op)), (arg)))
#define range_error2(op,a1,a2) \
  Fsignal (Qrange_error, list3 (build_string ((op)), (a1), (a2)))
#define domain_error(op,arg) \
  Fsignal (Qdomain_error, list2 (build_string ((op)), (arg)))
#define domain_error2(op,a1,a2) \
  Fsignal (Qdomain_error, list3 (build_string ((op)), (a1), (a2)))


/* Convert float to Lisp_Int if it fits, else signal a range error
   using the given arguments.  */
static Lisp_Object
float_to_int (double x, CONST char *name, Lisp_Object num, Lisp_Object num2)
{
  if (x >= ((LISP_WORD_TYPE)1 << (VALBITS-1))
      || x <= - ((LISP_WORD_TYPE)1 << (VALBITS-1)) - (LISP_WORD_TYPE)1)
  {
    if (!EQ (num2, Qunbound))
      range_error2 (name, num, num2);
    else
      range_error (name, num);
  }
  return (make_number ((LISP_WORD_TYPE) x));
}


static void
in_float_error (void)
{
  switch (errno)
  {
  case 0: 
    break;
  case EDOM:
    if (in_float == 2)
      domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2);
    else
      domain_error (float_error_fn_name, float_error_arg);
    break;
  case ERANGE:
    range_error (float_error_fn_name, float_error_arg);
    break;
  default:
    arith_error (float_error_fn_name, float_error_arg);
    break;
  }
}

  

static Lisp_Object mark_float (Lisp_Object, void (*) (Lisp_Object));
extern void print_float (Lisp_Object, Lisp_Object, int);
static int float_equal (Lisp_Object o1, Lisp_Object o2, int depth);
static unsigned long float_hash (Lisp_Object obj, int depth);
DEFINE_LRECORD_IMPLEMENTATION ("float", float,
                               mark_float, print_float, 0, float_equal,
			       float_hash, struct Lisp_Float);

static Lisp_Object
mark_float (Lisp_Object obj, void (*markobj) (Lisp_Object))
{
  return (Qnil);
}

static int
float_equal (Lisp_Object o1, Lisp_Object o2, int depth)
{
  return (extract_float (o1) == extract_float (o2));
}

static unsigned long
float_hash (Lisp_Object obj, int depth)
{
  /* mod the value down to 32-bit range */
  /* #### change for 64-bit machines */
  return (unsigned long) fmod (extract_float (obj), 4e9);
}


/* Extract a Lisp number as a `double', or signal an error.  */

double
extract_float (Lisp_Object num)
{
  CHECK_INT_OR_FLOAT (num, 0);

  if (FLOATP (num))
    return (float_data (XFLOAT (num)));
  return (double) XINT (num);
}
#endif /* LISP_FLOAT_TYPE */


/* Trig functions.  */
#ifdef LISP_FLOAT_TYPE

DEFUN ("acos", Facos, Sacos, 1, 1, 0,
  "Return the inverse cosine of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 1.0 || d < -1.0)
    domain_error ("acos", arg);
#endif
  IN_FLOAT (d = acos (d), "acos", arg);
  return make_float (d);
}

DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
  "Return the inverse sine of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 1.0 || d < -1.0)
    domain_error ("asin", arg);
#endif
  IN_FLOAT (d = asin (d), "asin", arg);
  return make_float (d);
}

DEFUN ("atan", Fatan, Satan, 1, 2, 0,
  "Return the inverse tangent of ARG.")
  (arg1, arg2)
     Lisp_Object arg1, arg2;
{
  double d = extract_float (arg1);

  if (NILP (arg2))
    IN_FLOAT (d = atan (d), "atan", arg1);
  else
    {
      double d2 = extract_float (arg2);
#ifdef FLOAT_CHECK_DOMAIN
      if (d == 0.0 && d2 == 0.0)
	domain_error2 ("atan", arg1, arg2);
#endif
      IN_FLOAT2 (d = atan2 (d, d2), "atan", arg1, arg2);
    }
  return make_float (d);
}

DEFUN ("cos", Fcos, Scos, 1, 1, 0,
  "Return the cosine of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = cos (d), "cos", arg);
  return make_float (d);
}

DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
  "Return the sine of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = sin (d), "sin", arg);
  return make_float (d);
}

DEFUN ("tan", Ftan, Stan, 1, 1, 0,
  "Return the tangent of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  double c = cos (d);
#ifdef FLOAT_CHECK_DOMAIN
  if (c == 0.0)
    domain_error ("tan", arg);
#endif
  IN_FLOAT (d = (sin (d) / c), "tan", arg);
  return make_float (d);
}
#endif /* LISP_FLOAT_TYPE (trig functions) */


/* Bessel functions */
#if 0 /* Leave these out unless we find there's a reason for them.  */
/* #ifdef LISP_FLOAT_TYPE */

DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
  "Return the bessel function j0 of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = j0 (d), "bessel-j0", arg);
  return make_float (d);
}

DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
  "Return the bessel function j1 of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = j1 (d), "bessel-j1", arg);
  return make_float (d);
}

DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
  "Return the order N bessel function output jn of ARG.\n\
The first arg (the order) is truncated to an integer.")
  (arg1, arg2)
     Lisp_Object arg1, arg2;
{
  int i1 = extract_float (arg1);
  double f2 = extract_float (arg2);

  IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1);
  return make_float (f2);
}

DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
  "Return the bessel function y0 of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = y0 (d), "bessel-y0", arg);
  return make_float (d);
}

DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
  "Return the bessel function y1 of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = y1 (d), "bessel-y0", arg);
  return make_float (d);
}

DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
  "Return the order N bessel function output yn of ARG.\n\
The first arg (the order) is truncated to an integer.")
  (arg1, arg2)
     Lisp_Object arg1, arg2;
{
  int i1 = extract_float (arg1);
  double f2 = extract_float (arg2);

  IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1);
  return make_float (f2);
}

#endif /* 0 (bessel functions) */

/* Error functions. */
#if 0 /* Leave these out unless we see they are worth having.  */
/* #ifdef LISP_FLOAT_TYPE */

DEFUN ("erf", Ferf, Serf, 1, 1, 0,
  "Return the mathematical error function of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = erf (d), "erf", arg);
  return make_float (d);
}

DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
  "Return the complementary error function of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = erfc (d), "erfc", arg);
  return make_float (d);
}

DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
  "Return the log gamma of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = lgamma (d), "log-gamma", arg);
  return make_float (d);
}

#endif /* 0 (error functions) */


/* Root and Log functions. */

#ifdef LISP_FLOAT_TYPE
DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
  "Return the exponential base e of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 709.7827)   /* Assume IEEE doubles here */
    range_error ("exp", arg);
  else if (d < -709.0)
    return make_float (0.0);
  else
#endif
    IN_FLOAT (d = exp (d), "exp", arg);
  return make_float (d);
}
#endif /* LISP_FLOAT_TYPE */


DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
  "Return the exponential X ** Y.")
  (arg1, arg2)
     Lisp_Object arg1, arg2;
{
  double f1, f2;

  CHECK_INT_OR_FLOAT (arg1, 0);
  CHECK_INT_OR_FLOAT (arg2, 0);
  if ((INTP (arg1)) && /* common lisp spec */
      (INTP (arg2))) /* don't promote, if both are ints */
    {
      LISP_WORD_TYPE acc, x, y;
      x = XINT (arg1);
      y = XINT (arg2);
      
      if (y < 0)
	{
	  if (x == 1)
	    acc = 1;
	  else if (x == -1)
	    acc = (y & 1) ? -1 : 1;
	  else
	    acc = 0;
	}
      else
	{
	  acc = 1;
	  while (y > 0)
	    {
	      if (y & 1)
		acc *= x;
	      x *= x;
	      y = (unsigned LISP_WORD_TYPE) y >> 1;
	    }
	}
      return (make_number (acc));
    }
#ifdef LISP_FLOAT_TYPE
  f1 = (FLOATP (arg1)) ? float_data (XFLOAT (arg1)) : XINT (arg1);
  f2 = (FLOATP (arg2)) ? float_data (XFLOAT (arg2)) : XINT (arg2);
  /* Really should check for overflow, too */
  if (f1 == 0.0 && f2 == 0.0)
    f1 = 1.0;
# ifdef FLOAT_CHECK_DOMAIN
  else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
    domain_error2 ("expt", arg1, arg2);
# endif /* FLOAT_CHECK_DOMAIN */
  IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
  return make_float (f1);
#else  /* !LISP_FLOAT_TYPE */
  abort ();
#endif /* LISP_FLOAT_TYPE */
}

#ifdef LISP_FLOAT_TYPE
DEFUN ("log", Flog, Slog, 1, 2, 0,
  "Return the natural logarithm of ARG.\n\
If second optional argument BASE is given, return log ARG using that base.")
  (arg, base)
     Lisp_Object arg, base;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d <= 0.0)
    domain_error2 ("log", arg, base);
#endif
  if (NILP (base))
    IN_FLOAT (d = log (d), "log", arg);
  else
    {
      double b = extract_float (base);
#ifdef FLOAT_CHECK_DOMAIN
      if (b <= 0.0 || b == 1.0)
	domain_error2 ("log", arg, base);
#endif
      if (b == 10.0)
	IN_FLOAT2 (d = log10 (d), "log", arg, base);
      else
	IN_FLOAT2 (d = (log (d) / log (b)), "log", arg, base);
    }
  return make_float (d);
}


DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
  "Return the logarithm base 10 of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d <= 0.0)
    domain_error ("log10", arg);
#endif
  IN_FLOAT (d = log10 (d), "log10", arg);
  return make_float (d);
}


DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
  "Return the square root of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d < 0.0)
    domain_error ("sqrt", arg);
#endif
  IN_FLOAT (d = sqrt (d), "sqrt", arg);
  return make_float (d);
}


DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
  "Return the cube root of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef HAVE_CBRT
  IN_FLOAT (d = cbrt (d), "cube-root", arg);
#else
  if (d >= 0.0)
    IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
  else
    IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
#endif
  return make_float (d);
}
#endif /* LISP_FLOAT_TYPE */


/* Inverse trig functions. */
#ifdef LISP_FLOAT_TYPE
/* #if 0  Not clearly worth adding...  */

DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
  "Return the inverse hyperbolic cosine of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d < 1.0)
    domain_error ("acosh", arg);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
  IN_FLOAT (d = acosh (d), "acosh", arg);
#else
  IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
#endif
  return make_float (d);
}

DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
  "Return the inverse hyperbolic sine of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef HAVE_INVERSE_HYPERBOLIC
  IN_FLOAT (d = asinh (d), "asinh", arg);
#else
  IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
#endif
  return make_float (d);
}

DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
  "Return the inverse hyperbolic tangent of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d >= 1.0 || d <= -1.0)
    domain_error ("atanh", arg);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
  IN_FLOAT (d = atanh (d), "atanh", arg);
#else
  IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
#endif
  return make_float (d);
}

DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
  "Return the hyperbolic cosine of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 710.0 || d < -710.0)
    range_error ("cosh", arg);
#endif
  IN_FLOAT (d = cosh (d), "cosh", arg);
  return make_float (d);
}

DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
  "Return the hyperbolic sine of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 710.0 || d < -710.0)
    range_error ("sinh", arg);
#endif
  IN_FLOAT (d = sinh (d), "sinh", arg);
  return make_float (d);
}

DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
  "Return the hyperbolic tangent of ARG.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = tanh (d), "tanh", arg);
  return make_float (d);
}
#endif /* LISP_FLOAT_TYPE (inverse trig functions) */

/* Rounding functions */

DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
  "Return the absolute value of ARG.")
  (arg)
     Lisp_Object arg;
{
  CHECK_INT_OR_FLOAT (arg, 0);

#ifdef LISP_FLOAT_TYPE
  if (FLOATP (arg))
  {
    IN_FLOAT (arg = make_float ((double) fabs (float_data (XFLOAT (arg)))),
              "abs", arg);
    return (arg);
  }
  else
#endif /* LISP_FLOAT_TYPE */
    if (XINT (arg) < 0)
      return (make_number (- XINT (arg)));
    else
      return (arg);
}

#ifdef LISP_FLOAT_TYPE
DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
  "Return the floating point number equal to ARG.")
  (arg)
     Lisp_Object arg;
{
  CHECK_INT_OR_FLOAT (arg, 0);

  if (INTP (arg))
    return make_float ((double) XINT (arg));
  else				/* give 'em the same float back */
    return arg;
}
#endif /* LISP_FLOAT_TYPE */


#ifdef LISP_FLOAT_TYPE
DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
  "Return largest integer <= the base 2 log of the magnitude of ARG.\n\
This is the same as the exponent of a float.")
     (arg)
     Lisp_Object arg;
{
  double f = extract_float (arg);

  if (f == 0.0)
    return (make_number (- (1 << (VALBITS - 1)))); /* most-negative-fixnum */
#ifdef HAVE_LOGB
  {
    Lisp_Object val;
    IN_FLOAT (val = make_number (logb (f)), "logb", arg);
    return (val);
  }
#else
#ifdef HAVE_FREXP
  {
    int exp;  
    IN_FLOAT (frexp (f, &exp), "logb", arg);
    return (make_number (exp - 1));
  }
#else
  {
    int i;
    double d;
    LISP_WORD_TYPE val;
    if (f < 0.0)
      f = -f;
    val = -1;
    while (f < 0.5)
      {
        for (i = 1, d = 0.5; d * d >= f; i += i)
          d *= d;
        f /= d;
        val -= i;
      }
    while (f >= 1.0)
      {
        for (i = 1, d = 2.0; d * d <= f; i += i)
          d *= d;
        f /= d;
        val += i;
      }
    return (make_number (val));
  }
#endif /* ! HAVE_FREXP */
#endif /* ! HAVE_LOGB */
}
#endif /* LISP_FLOAT_TYPE */


DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0,
  "Return the smallest integer no less than ARG.  (Round toward +inf.)")
  (arg)
     Lisp_Object arg;
{
  CHECK_INT_OR_FLOAT (arg, 0);

#ifdef LISP_FLOAT_TYPE
  if (FLOATP (arg))
  {
    double d;
    IN_FLOAT ((d = ceil (float_data (XFLOAT (arg)))), "ceiling", arg);
    return (float_to_int (d, "ceiling", arg, Qunbound));
  }
#endif /* LISP_FLOAT_TYPE */

  return arg;
}


DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
  "Return the largest integer no greater than ARG.  (Round towards -inf.)\n\
With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.")
  (arg, divisor)
     Lisp_Object arg, divisor;
{
  CHECK_INT_OR_FLOAT (arg, 0);

  if (! NILP (divisor))
    {
      int i1, i2;

      CHECK_INT_OR_FLOAT (divisor, 1);

#ifdef LISP_FLOAT_TYPE
      if (FLOATP (arg) || FLOATP (divisor))
	{
	  double f1, f2;

	  f1 = ((FLOATP (arg)) ? float_data (XFLOAT (arg)) : XINT (arg));
	  f2 = ((FLOATP (divisor)) ? float_data (XFLOAT (divisor)) : XINT (divisor));
	  if (f2 == 0)
	    Fsignal (Qarith_error, Qnil);

	  IN_FLOAT2 (f1 = floor (f1 / f2), "floor", arg, divisor);
	  return float_to_int (f1, "floor", arg, divisor);
	}
#endif /* LISP_FLOAT_TYPE */

      i1 = XINT (arg);
      i2 = XINT (divisor);

      if (i2 == 0)
	Fsignal (Qarith_error, Qnil);

      /* With C's /, the result is implementation-defined if either operand
	 is negative, so use only nonnegative operands.  */
      i1 = (i2 < 0
	    ? (i1 <= 0  ?  -i1 / -i2  :  -1 - ((i1 - 1) / -i2))
	    : (i1 < 0  ?  -1 - ((-1 - i1) / i2)  :  i1 / i2));

      return (make_number (i1));
    }

#ifdef LISP_FLOAT_TYPE
  if (FLOATP (arg))
  {
    double d;
    IN_FLOAT ((d = floor (float_data (XFLOAT (arg)))), "floor", arg);
    return (float_to_int (d, "floor", arg, Qunbound));
  }
#endif /* LISP_FLOAT_TYPE */

  return arg;
}

DEFUN ("round", Fround, Sround, 1, 1, 0,
  "Return the nearest integer to ARG.")
  (arg)
     Lisp_Object arg;
{
  CHECK_INT_OR_FLOAT (arg, 0);

#ifdef LISP_FLOAT_TYPE
  if (FLOATP (arg))
  {
    double d;
    /* Screw the prevailing rounding mode.  */
    IN_FLOAT ((d = rint (float_data (XFLOAT (arg)))), "round", arg);
    return (float_to_int (d, "round", arg, Qunbound));
  }
#endif /* LISP_FLOAT_TYPE */

  return arg;
}

DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0,
       "Truncate a floating point number to an integer.\n\
Rounds the value toward zero.")
  (arg)
     Lisp_Object arg;
{
  CHECK_INT_OR_FLOAT (arg, 0);

#ifdef LISP_FLOAT_TYPE
  if (FLOATP (arg))
    return (float_to_int (float_data (XFLOAT (arg)),
                          "truncate", arg, Qunbound));
#endif /* LISP_FLOAT_TYPE */

  return arg;
}

/* Float-rounding functions. */
#ifdef LISP_FLOAT_TYPE
/* #if 1  It's not clear these are worth adding... */

DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
  "Return the smallest integer no less than ARG, as a float.\n\
\(Round toward +inf.\)")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = ceil (d), "fceiling", arg);
  return make_float (d);
}

DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
  "Return the largest integer no greater than ARG, as a float.\n\
\(Round towards -inf.\)")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = floor (d), "ffloor", arg);
  return make_float (d);
}

DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
  "Return the nearest integer to ARG, as a float.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = rint (d), "fround", arg);
  return make_float (d);
}

DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
       "Truncate a floating point number to an integral float value.\n\
Rounds the value toward zero.")
  (arg)
     Lisp_Object arg;
{
  double d = extract_float (arg);
  if (d >= 0.0)
    IN_FLOAT (d = floor (d), "ftruncate", arg);
  else
    IN_FLOAT (d = ceil (d), "ftruncate", arg);
  return make_float (d);
}

#endif /* LISP_FLOAT_TYPE (float-rounding functions) */


#ifdef LISP_FLOAT_TYPE
#ifdef FLOAT_CATCH_SIGILL
static SIGTYPE
float_error (int signo)
{
  if (! in_float)
    fatal_error_signal (signo);

  EMACS_REESTABLISH_SIGNAL (signo, arith_error);
  EMACS_UNBLOCK_SIGNAL (signo);

  in_float = 0;

  /* Was Fsignal(), but it just doesn't make sense for an error
     occurring inside a signal handler to be restartable, considering
     that anything could happen when the error is signaled and trapped
     and considering the asynchronous nature of signal handlers. */
  signal_error (Qarith_error, list1 (float_error_arg));
}

/* Another idea was to replace the library function `infnan'
   where SIGILL is signaled.  */

#endif /* FLOAT_CATCH_SIGILL */

#ifdef HAVE_MATHERR
int 
matherr (struct exception *x)
{
  Lisp_Object args;
  if (! in_float)
    /* Not called from emacs-lisp float routines; do the default thing. */
    return 0;

  /* if (!strcmp (x->name, "pow")) x->name = "expt"; */

  args = Fcons (build_string (x->name),
                Fcons (make_float (x->arg1),
                       ((in_float == 2)
                        ? Fcons (make_float (x->arg2), Qnil)
                        : Qnil)));
  switch (x->type)
    {
    case DOMAIN:	Fsignal (Qdomain_error, args);		break;
    case SING:		Fsignal (Qsingularity_error, args);	break;
    case OVERFLOW:	Fsignal (Qoverflow_error, args);	break;
    case UNDERFLOW:	Fsignal (Qunderflow_error, args);	break;
    default:		Fsignal (Qarith_error, args);		break;
    }
  return (1);	/* don't set errno or print a message */
}
#endif /* HAVE_MATHERR */
#endif /* LISP_FLOAT_TYPE */


void
init_floatfns_very_early (void)
{
#ifdef LISP_FLOAT_TYPE
# ifdef FLOAT_CATCH_SIGILL
  signal (SIGILL, float_error);
# endif 
  in_float = 0;
#endif /* LISP_FLOAT_TYPE */
}

void
syms_of_floatfns (void)
{
  
  /* Trig functions.  */
  
#ifdef LISP_FLOAT_TYPE
  defsubr (&Sacos);
  defsubr (&Sasin);
  defsubr (&Satan);
  defsubr (&Scos);
  defsubr (&Ssin);
  defsubr (&Stan);
#endif /* LISP_FLOAT_TYPE */

  /* Bessel functions */
  
#if 0
  defsubr (&Sbessel_y0);
  defsubr (&Sbessel_y1);
  defsubr (&Sbessel_yn);
  defsubr (&Sbessel_j0);
  defsubr (&Sbessel_j1);
  defsubr (&Sbessel_jn);
#endif /* 0 */

  /* Error functions. */

#if 0
  defsubr (&Serf);
  defsubr (&Serfc);
  defsubr (&Slog_gamma);
#endif /* 0 */

  /* Root and Log functions. */

#ifdef LISP_FLOAT_TYPE
  defsubr (&Sexp);
#endif /* LISP_FLOAT_TYPE */
  defsubr (&Sexpt);
#ifdef LISP_FLOAT_TYPE
  defsubr (&Slog);
  defsubr (&Slog10);
  defsubr (&Ssqrt);
  defsubr (&Scube_root);
#endif /* LISP_FLOAT_TYPE */

  /* Inverse trig functions. */

#ifdef LISP_FLOAT_TYPE
  defsubr (&Sacosh);
  defsubr (&Sasinh);
  defsubr (&Satanh);
  defsubr (&Scosh);
  defsubr (&Ssinh);
  defsubr (&Stanh);
#endif /* LISP_FLOAT_TYPE */

  /* Rounding functions */

  defsubr (&Sabs);
#ifdef LISP_FLOAT_TYPE
  defsubr (&Sfloat);
  defsubr (&Slogb);
#endif /* LISP_FLOAT_TYPE */
  defsubr (&Sceiling);
  defsubr (&Sfloor);
  defsubr (&Sround);
  defsubr (&Struncate);

  /* Float-rounding functions. */

#ifdef LISP_FLOAT_TYPE
  defsubr (&Sfceiling);
  defsubr (&Sffloor);
  defsubr (&Sfround);
  defsubr (&Sftruncate);
#endif /* LISP_FLOAT_TYPE */
}

void
vars_of_floatfns (void)
{
#ifdef LISP_FLOAT_TYPE
  Fprovide (intern ("lisp-float-type"));
#endif
}

These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.