This is floatfns.c in view mode; [Download] [Up]
/* Primitive operations on floating point for XEmacs Lisp interpreter.
Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc.
This file is part of XEmacs.
XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Synched up with: FSF 19.28. */
/* ANSI C requires only these float functions:
acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
Define HAVE_CBRT if you have cbrt().
Define HAVE_RINT if you have rint().
If you don't define these, then the appropriate routines will be simulated.
Define HAVE_MATHERR if on a system supporting the SysV matherr() callback.
(This should happen automatically.)
Define FLOAT_CHECK_ERRNO if the float library routines set errno.
This has no effect if HAVE_MATHERR is defined.
Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
(What systems actually do this? Let me know. -jwz)
Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and
range checking will happen before calling the float routines. This has
no effect if HAVE_MATHERR is defined (since matherr will be called when
a domain error occurs).
*/
#include <config.h>
#include "lisp.h"
#include "syssignal.h"
#ifdef LISP_FLOAT_TYPE
/* Need to define a differentiating symbol -- see sysfloat.h */
#define THIS_FILENAME floatfns
#include "sysfloat.h"
#ifndef HAVE_RINT
static double
rint (double x)
{
double r = floor (x + 0.5);
double diff = fabs (r - x);
/* Round to even and correct for any roundoff errors. */
if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0)))
r += r < x ? 1.0 : -1.0;
return r;
}
#endif
/* Nonzero while executing in floating point.
This tells float_error what to do. */
static int in_float;
/* If an argument is out of range for a mathematical function,
here is the actual argument value to use in the error message. */
static Lisp_Object float_error_arg, float_error_arg2;
static CONST char *float_error_fn_name;
/* Evaluate the floating point expression D, recording NUM
as the original argument for error messages.
D is normally an assignment expression.
Handle errors which may result in signals or may set errno.
Note that float_error may be declared to return void, so you can't
just cast the zero after the colon to (SIGTYPE) to make the types
check properly. */
#ifdef FLOAT_CHECK_ERRNO
#define IN_FLOAT(d, name, num) \
do { \
float_error_arg = num; \
float_error_fn_name = name; \
in_float = 1; errno = 0; (d); in_float = 0; \
if (errno != 0) in_float_error (); \
} while (0)
#define IN_FLOAT2(d, name, num, num2) \
do { \
float_error_arg = num; \
float_error_arg2 = num2; \
float_error_fn_name = name; \
in_float = 2; errno = 0; (d); in_float = 0; \
if (errno != 0) in_float_error (); \
} while (0)
#else
#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
#define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0)
#endif
#define arith_error(op,arg) \
Fsignal (Qarith_error, list2 (build_string ((op)), (arg)))
#define range_error(op,arg) \
Fsignal (Qrange_error, list2 (build_string ((op)), (arg)))
#define range_error2(op,a1,a2) \
Fsignal (Qrange_error, list3 (build_string ((op)), (a1), (a2)))
#define domain_error(op,arg) \
Fsignal (Qdomain_error, list2 (build_string ((op)), (arg)))
#define domain_error2(op,a1,a2) \
Fsignal (Qdomain_error, list3 (build_string ((op)), (a1), (a2)))
/* Convert float to Lisp_Int if it fits, else signal a range error
using the given arguments. */
static Lisp_Object
float_to_int (double x, CONST char *name, Lisp_Object num, Lisp_Object num2)
{
if (x >= ((LISP_WORD_TYPE)1 << (VALBITS-1))
|| x <= - ((LISP_WORD_TYPE)1 << (VALBITS-1)) - (LISP_WORD_TYPE)1)
{
if (!EQ (num2, Qunbound))
range_error2 (name, num, num2);
else
range_error (name, num);
}
return (make_number ((LISP_WORD_TYPE) x));
}
static void
in_float_error (void)
{
switch (errno)
{
case 0:
break;
case EDOM:
if (in_float == 2)
domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2);
else
domain_error (float_error_fn_name, float_error_arg);
break;
case ERANGE:
range_error (float_error_fn_name, float_error_arg);
break;
default:
arith_error (float_error_fn_name, float_error_arg);
break;
}
}
static Lisp_Object mark_float (Lisp_Object, void (*) (Lisp_Object));
extern void print_float (Lisp_Object, Lisp_Object, int);
static int float_equal (Lisp_Object o1, Lisp_Object o2, int depth);
static unsigned long float_hash (Lisp_Object obj, int depth);
DEFINE_LRECORD_IMPLEMENTATION ("float", float,
mark_float, print_float, 0, float_equal,
float_hash, struct Lisp_Float);
static Lisp_Object
mark_float (Lisp_Object obj, void (*markobj) (Lisp_Object))
{
return (Qnil);
}
static int
float_equal (Lisp_Object o1, Lisp_Object o2, int depth)
{
return (extract_float (o1) == extract_float (o2));
}
static unsigned long
float_hash (Lisp_Object obj, int depth)
{
/* mod the value down to 32-bit range */
/* #### change for 64-bit machines */
return (unsigned long) fmod (extract_float (obj), 4e9);
}
/* Extract a Lisp number as a `double', or signal an error. */
double
extract_float (Lisp_Object num)
{
CHECK_INT_OR_FLOAT (num, 0);
if (FLOATP (num))
return (float_data (XFLOAT (num)));
return (double) XINT (num);
}
#endif /* LISP_FLOAT_TYPE */
/* Trig functions. */
#ifdef LISP_FLOAT_TYPE
DEFUN ("acos", Facos, Sacos, 1, 1, 0,
"Return the inverse cosine of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 1.0 || d < -1.0)
domain_error ("acos", arg);
#endif
IN_FLOAT (d = acos (d), "acos", arg);
return make_float (d);
}
DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
"Return the inverse sine of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 1.0 || d < -1.0)
domain_error ("asin", arg);
#endif
IN_FLOAT (d = asin (d), "asin", arg);
return make_float (d);
}
DEFUN ("atan", Fatan, Satan, 1, 2, 0,
"Return the inverse tangent of ARG.")
(arg1, arg2)
Lisp_Object arg1, arg2;
{
double d = extract_float (arg1);
if (NILP (arg2))
IN_FLOAT (d = atan (d), "atan", arg1);
else
{
double d2 = extract_float (arg2);
#ifdef FLOAT_CHECK_DOMAIN
if (d == 0.0 && d2 == 0.0)
domain_error2 ("atan", arg1, arg2);
#endif
IN_FLOAT2 (d = atan2 (d, d2), "atan", arg1, arg2);
}
return make_float (d);
}
DEFUN ("cos", Fcos, Scos, 1, 1, 0,
"Return the cosine of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = cos (d), "cos", arg);
return make_float (d);
}
DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
"Return the sine of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = sin (d), "sin", arg);
return make_float (d);
}
DEFUN ("tan", Ftan, Stan, 1, 1, 0,
"Return the tangent of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
double c = cos (d);
#ifdef FLOAT_CHECK_DOMAIN
if (c == 0.0)
domain_error ("tan", arg);
#endif
IN_FLOAT (d = (sin (d) / c), "tan", arg);
return make_float (d);
}
#endif /* LISP_FLOAT_TYPE (trig functions) */
/* Bessel functions */
#if 0 /* Leave these out unless we find there's a reason for them. */
/* #ifdef LISP_FLOAT_TYPE */
DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
"Return the bessel function j0 of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = j0 (d), "bessel-j0", arg);
return make_float (d);
}
DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
"Return the bessel function j1 of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = j1 (d), "bessel-j1", arg);
return make_float (d);
}
DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
"Return the order N bessel function output jn of ARG.\n\
The first arg (the order) is truncated to an integer.")
(arg1, arg2)
Lisp_Object arg1, arg2;
{
int i1 = extract_float (arg1);
double f2 = extract_float (arg2);
IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1);
return make_float (f2);
}
DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
"Return the bessel function y0 of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = y0 (d), "bessel-y0", arg);
return make_float (d);
}
DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
"Return the bessel function y1 of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = y1 (d), "bessel-y0", arg);
return make_float (d);
}
DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
"Return the order N bessel function output yn of ARG.\n\
The first arg (the order) is truncated to an integer.")
(arg1, arg2)
Lisp_Object arg1, arg2;
{
int i1 = extract_float (arg1);
double f2 = extract_float (arg2);
IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1);
return make_float (f2);
}
#endif /* 0 (bessel functions) */
/* Error functions. */
#if 0 /* Leave these out unless we see they are worth having. */
/* #ifdef LISP_FLOAT_TYPE */
DEFUN ("erf", Ferf, Serf, 1, 1, 0,
"Return the mathematical error function of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = erf (d), "erf", arg);
return make_float (d);
}
DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
"Return the complementary error function of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = erfc (d), "erfc", arg);
return make_float (d);
}
DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
"Return the log gamma of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = lgamma (d), "log-gamma", arg);
return make_float (d);
}
#endif /* 0 (error functions) */
/* Root and Log functions. */
#ifdef LISP_FLOAT_TYPE
DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
"Return the exponential base e of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 709.7827) /* Assume IEEE doubles here */
range_error ("exp", arg);
else if (d < -709.0)
return make_float (0.0);
else
#endif
IN_FLOAT (d = exp (d), "exp", arg);
return make_float (d);
}
#endif /* LISP_FLOAT_TYPE */
DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
"Return the exponential X ** Y.")
(arg1, arg2)
Lisp_Object arg1, arg2;
{
double f1, f2;
CHECK_INT_OR_FLOAT (arg1, 0);
CHECK_INT_OR_FLOAT (arg2, 0);
if ((INTP (arg1)) && /* common lisp spec */
(INTP (arg2))) /* don't promote, if both are ints */
{
LISP_WORD_TYPE acc, x, y;
x = XINT (arg1);
y = XINT (arg2);
if (y < 0)
{
if (x == 1)
acc = 1;
else if (x == -1)
acc = (y & 1) ? -1 : 1;
else
acc = 0;
}
else
{
acc = 1;
while (y > 0)
{
if (y & 1)
acc *= x;
x *= x;
y = (unsigned LISP_WORD_TYPE) y >> 1;
}
}
return (make_number (acc));
}
#ifdef LISP_FLOAT_TYPE
f1 = (FLOATP (arg1)) ? float_data (XFLOAT (arg1)) : XINT (arg1);
f2 = (FLOATP (arg2)) ? float_data (XFLOAT (arg2)) : XINT (arg2);
/* Really should check for overflow, too */
if (f1 == 0.0 && f2 == 0.0)
f1 = 1.0;
# ifdef FLOAT_CHECK_DOMAIN
else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
domain_error2 ("expt", arg1, arg2);
# endif /* FLOAT_CHECK_DOMAIN */
IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
return make_float (f1);
#else /* !LISP_FLOAT_TYPE */
abort ();
#endif /* LISP_FLOAT_TYPE */
}
#ifdef LISP_FLOAT_TYPE
DEFUN ("log", Flog, Slog, 1, 2, 0,
"Return the natural logarithm of ARG.\n\
If second optional argument BASE is given, return log ARG using that base.")
(arg, base)
Lisp_Object arg, base;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d <= 0.0)
domain_error2 ("log", arg, base);
#endif
if (NILP (base))
IN_FLOAT (d = log (d), "log", arg);
else
{
double b = extract_float (base);
#ifdef FLOAT_CHECK_DOMAIN
if (b <= 0.0 || b == 1.0)
domain_error2 ("log", arg, base);
#endif
if (b == 10.0)
IN_FLOAT2 (d = log10 (d), "log", arg, base);
else
IN_FLOAT2 (d = (log (d) / log (b)), "log", arg, base);
}
return make_float (d);
}
DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
"Return the logarithm base 10 of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d <= 0.0)
domain_error ("log10", arg);
#endif
IN_FLOAT (d = log10 (d), "log10", arg);
return make_float (d);
}
DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
"Return the square root of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d < 0.0)
domain_error ("sqrt", arg);
#endif
IN_FLOAT (d = sqrt (d), "sqrt", arg);
return make_float (d);
}
DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
"Return the cube root of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef HAVE_CBRT
IN_FLOAT (d = cbrt (d), "cube-root", arg);
#else
if (d >= 0.0)
IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
else
IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
#endif
return make_float (d);
}
#endif /* LISP_FLOAT_TYPE */
/* Inverse trig functions. */
#ifdef LISP_FLOAT_TYPE
/* #if 0 Not clearly worth adding... */
DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
"Return the inverse hyperbolic cosine of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d < 1.0)
domain_error ("acosh", arg);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
IN_FLOAT (d = acosh (d), "acosh", arg);
#else
IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
#endif
return make_float (d);
}
DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
"Return the inverse hyperbolic sine of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef HAVE_INVERSE_HYPERBOLIC
IN_FLOAT (d = asinh (d), "asinh", arg);
#else
IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
#endif
return make_float (d);
}
DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
"Return the inverse hyperbolic tangent of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d >= 1.0 || d <= -1.0)
domain_error ("atanh", arg);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
IN_FLOAT (d = atanh (d), "atanh", arg);
#else
IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
#endif
return make_float (d);
}
DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
"Return the hyperbolic cosine of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 710.0 || d < -710.0)
range_error ("cosh", arg);
#endif
IN_FLOAT (d = cosh (d), "cosh", arg);
return make_float (d);
}
DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
"Return the hyperbolic sine of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 710.0 || d < -710.0)
range_error ("sinh", arg);
#endif
IN_FLOAT (d = sinh (d), "sinh", arg);
return make_float (d);
}
DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
"Return the hyperbolic tangent of ARG.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = tanh (d), "tanh", arg);
return make_float (d);
}
#endif /* LISP_FLOAT_TYPE (inverse trig functions) */
/* Rounding functions */
DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
"Return the absolute value of ARG.")
(arg)
Lisp_Object arg;
{
CHECK_INT_OR_FLOAT (arg, 0);
#ifdef LISP_FLOAT_TYPE
if (FLOATP (arg))
{
IN_FLOAT (arg = make_float ((double) fabs (float_data (XFLOAT (arg)))),
"abs", arg);
return (arg);
}
else
#endif /* LISP_FLOAT_TYPE */
if (XINT (arg) < 0)
return (make_number (- XINT (arg)));
else
return (arg);
}
#ifdef LISP_FLOAT_TYPE
DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
"Return the floating point number equal to ARG.")
(arg)
Lisp_Object arg;
{
CHECK_INT_OR_FLOAT (arg, 0);
if (INTP (arg))
return make_float ((double) XINT (arg));
else /* give 'em the same float back */
return arg;
}
#endif /* LISP_FLOAT_TYPE */
#ifdef LISP_FLOAT_TYPE
DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
"Return largest integer <= the base 2 log of the magnitude of ARG.\n\
This is the same as the exponent of a float.")
(arg)
Lisp_Object arg;
{
double f = extract_float (arg);
if (f == 0.0)
return (make_number (- (1 << (VALBITS - 1)))); /* most-negative-fixnum */
#ifdef HAVE_LOGB
{
Lisp_Object val;
IN_FLOAT (val = make_number (logb (f)), "logb", arg);
return (val);
}
#else
#ifdef HAVE_FREXP
{
int exp;
IN_FLOAT (frexp (f, &exp), "logb", arg);
return (make_number (exp - 1));
}
#else
{
int i;
double d;
LISP_WORD_TYPE val;
if (f < 0.0)
f = -f;
val = -1;
while (f < 0.5)
{
for (i = 1, d = 0.5; d * d >= f; i += i)
d *= d;
f /= d;
val -= i;
}
while (f >= 1.0)
{
for (i = 1, d = 2.0; d * d <= f; i += i)
d *= d;
f /= d;
val += i;
}
return (make_number (val));
}
#endif /* ! HAVE_FREXP */
#endif /* ! HAVE_LOGB */
}
#endif /* LISP_FLOAT_TYPE */
DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0,
"Return the smallest integer no less than ARG. (Round toward +inf.)")
(arg)
Lisp_Object arg;
{
CHECK_INT_OR_FLOAT (arg, 0);
#ifdef LISP_FLOAT_TYPE
if (FLOATP (arg))
{
double d;
IN_FLOAT ((d = ceil (float_data (XFLOAT (arg)))), "ceiling", arg);
return (float_to_int (d, "ceiling", arg, Qunbound));
}
#endif /* LISP_FLOAT_TYPE */
return arg;
}
DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
"Return the largest integer no greater than ARG. (Round towards -inf.)\n\
With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.")
(arg, divisor)
Lisp_Object arg, divisor;
{
CHECK_INT_OR_FLOAT (arg, 0);
if (! NILP (divisor))
{
int i1, i2;
CHECK_INT_OR_FLOAT (divisor, 1);
#ifdef LISP_FLOAT_TYPE
if (FLOATP (arg) || FLOATP (divisor))
{
double f1, f2;
f1 = ((FLOATP (arg)) ? float_data (XFLOAT (arg)) : XINT (arg));
f2 = ((FLOATP (divisor)) ? float_data (XFLOAT (divisor)) : XINT (divisor));
if (f2 == 0)
Fsignal (Qarith_error, Qnil);
IN_FLOAT2 (f1 = floor (f1 / f2), "floor", arg, divisor);
return float_to_int (f1, "floor", arg, divisor);
}
#endif /* LISP_FLOAT_TYPE */
i1 = XINT (arg);
i2 = XINT (divisor);
if (i2 == 0)
Fsignal (Qarith_error, Qnil);
/* With C's /, the result is implementation-defined if either operand
is negative, so use only nonnegative operands. */
i1 = (i2 < 0
? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
: (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
return (make_number (i1));
}
#ifdef LISP_FLOAT_TYPE
if (FLOATP (arg))
{
double d;
IN_FLOAT ((d = floor (float_data (XFLOAT (arg)))), "floor", arg);
return (float_to_int (d, "floor", arg, Qunbound));
}
#endif /* LISP_FLOAT_TYPE */
return arg;
}
DEFUN ("round", Fround, Sround, 1, 1, 0,
"Return the nearest integer to ARG.")
(arg)
Lisp_Object arg;
{
CHECK_INT_OR_FLOAT (arg, 0);
#ifdef LISP_FLOAT_TYPE
if (FLOATP (arg))
{
double d;
/* Screw the prevailing rounding mode. */
IN_FLOAT ((d = rint (float_data (XFLOAT (arg)))), "round", arg);
return (float_to_int (d, "round", arg, Qunbound));
}
#endif /* LISP_FLOAT_TYPE */
return arg;
}
DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0,
"Truncate a floating point number to an integer.\n\
Rounds the value toward zero.")
(arg)
Lisp_Object arg;
{
CHECK_INT_OR_FLOAT (arg, 0);
#ifdef LISP_FLOAT_TYPE
if (FLOATP (arg))
return (float_to_int (float_data (XFLOAT (arg)),
"truncate", arg, Qunbound));
#endif /* LISP_FLOAT_TYPE */
return arg;
}
/* Float-rounding functions. */
#ifdef LISP_FLOAT_TYPE
/* #if 1 It's not clear these are worth adding... */
DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
"Return the smallest integer no less than ARG, as a float.\n\
\(Round toward +inf.\)")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = ceil (d), "fceiling", arg);
return make_float (d);
}
DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
"Return the largest integer no greater than ARG, as a float.\n\
\(Round towards -inf.\)")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = floor (d), "ffloor", arg);
return make_float (d);
}
DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
"Return the nearest integer to ARG, as a float.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = rint (d), "fround", arg);
return make_float (d);
}
DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
"Truncate a floating point number to an integral float value.\n\
Rounds the value toward zero.")
(arg)
Lisp_Object arg;
{
double d = extract_float (arg);
if (d >= 0.0)
IN_FLOAT (d = floor (d), "ftruncate", arg);
else
IN_FLOAT (d = ceil (d), "ftruncate", arg);
return make_float (d);
}
#endif /* LISP_FLOAT_TYPE (float-rounding functions) */
#ifdef LISP_FLOAT_TYPE
#ifdef FLOAT_CATCH_SIGILL
static SIGTYPE
float_error (int signo)
{
if (! in_float)
fatal_error_signal (signo);
EMACS_REESTABLISH_SIGNAL (signo, arith_error);
EMACS_UNBLOCK_SIGNAL (signo);
in_float = 0;
/* Was Fsignal(), but it just doesn't make sense for an error
occurring inside a signal handler to be restartable, considering
that anything could happen when the error is signaled and trapped
and considering the asynchronous nature of signal handlers. */
signal_error (Qarith_error, list1 (float_error_arg));
}
/* Another idea was to replace the library function `infnan'
where SIGILL is signaled. */
#endif /* FLOAT_CATCH_SIGILL */
#ifdef HAVE_MATHERR
int
matherr (struct exception *x)
{
Lisp_Object args;
if (! in_float)
/* Not called from emacs-lisp float routines; do the default thing. */
return 0;
/* if (!strcmp (x->name, "pow")) x->name = "expt"; */
args = Fcons (build_string (x->name),
Fcons (make_float (x->arg1),
((in_float == 2)
? Fcons (make_float (x->arg2), Qnil)
: Qnil)));
switch (x->type)
{
case DOMAIN: Fsignal (Qdomain_error, args); break;
case SING: Fsignal (Qsingularity_error, args); break;
case OVERFLOW: Fsignal (Qoverflow_error, args); break;
case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
default: Fsignal (Qarith_error, args); break;
}
return (1); /* don't set errno or print a message */
}
#endif /* HAVE_MATHERR */
#endif /* LISP_FLOAT_TYPE */
void
init_floatfns_very_early (void)
{
#ifdef LISP_FLOAT_TYPE
# ifdef FLOAT_CATCH_SIGILL
signal (SIGILL, float_error);
# endif
in_float = 0;
#endif /* LISP_FLOAT_TYPE */
}
void
syms_of_floatfns (void)
{
/* Trig functions. */
#ifdef LISP_FLOAT_TYPE
defsubr (&Sacos);
defsubr (&Sasin);
defsubr (&Satan);
defsubr (&Scos);
defsubr (&Ssin);
defsubr (&Stan);
#endif /* LISP_FLOAT_TYPE */
/* Bessel functions */
#if 0
defsubr (&Sbessel_y0);
defsubr (&Sbessel_y1);
defsubr (&Sbessel_yn);
defsubr (&Sbessel_j0);
defsubr (&Sbessel_j1);
defsubr (&Sbessel_jn);
#endif /* 0 */
/* Error functions. */
#if 0
defsubr (&Serf);
defsubr (&Serfc);
defsubr (&Slog_gamma);
#endif /* 0 */
/* Root and Log functions. */
#ifdef LISP_FLOAT_TYPE
defsubr (&Sexp);
#endif /* LISP_FLOAT_TYPE */
defsubr (&Sexpt);
#ifdef LISP_FLOAT_TYPE
defsubr (&Slog);
defsubr (&Slog10);
defsubr (&Ssqrt);
defsubr (&Scube_root);
#endif /* LISP_FLOAT_TYPE */
/* Inverse trig functions. */
#ifdef LISP_FLOAT_TYPE
defsubr (&Sacosh);
defsubr (&Sasinh);
defsubr (&Satanh);
defsubr (&Scosh);
defsubr (&Ssinh);
defsubr (&Stanh);
#endif /* LISP_FLOAT_TYPE */
/* Rounding functions */
defsubr (&Sabs);
#ifdef LISP_FLOAT_TYPE
defsubr (&Sfloat);
defsubr (&Slogb);
#endif /* LISP_FLOAT_TYPE */
defsubr (&Sceiling);
defsubr (&Sfloor);
defsubr (&Sround);
defsubr (&Struncate);
/* Float-rounding functions. */
#ifdef LISP_FLOAT_TYPE
defsubr (&Sfceiling);
defsubr (&Sffloor);
defsubr (&Sfround);
defsubr (&Sftruncate);
#endif /* LISP_FLOAT_TYPE */
}
void
vars_of_floatfns (void)
{
#ifdef LISP_FLOAT_TYPE
Fprovide (intern ("lisp-float-type"));
#endif
}
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.