An Introduction to Display Editing with Vi

William Joy
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Vi (visual) is a display oriented interaitext editor. When usingvi the screen of your
terminal acts as a windointo the file which you are editing. Changes which you aemnakhe
file are reflected in what you see.

Usingvi you can insert e text any place in the file quite easilyMost of the commands
to vi move the cursor around in the file. There are commands terhe cursor forward and
backward in units of characters, words, sentences and paragrapmall set of operators, l&k
d for delete and for change, are combined with the motion commands to form operations such
as delete word or change paragraph, in a simple and natayal Mis regularity and the
mnemonic assignment of commands &ykmakes the editor command set easy to remember
and to use.

Vi will work on a large number of display terminals, andv/nerminals are easily cdsén
after editing a terminal description file. While it is adtageous to we an intelligent terminal
which can locally insert and delete lines and characters from the dity@agditor will function
quite well on dumb terminalsver slow phone lines. The editor mag allavance for the lav
bandwidth in these situations and uses smaller wirgites and dierent display updating algo-
rithms to malk best use of the limited speedbdable.

It is also possible to use the command seti @n hardcop terminals, storage tubes and
“glass ttys” using a one line editing window; thw§s command set isvailable on all termi-
nals. Thefull command set of the more traditional, line oriented editas available within vi;
it is quite simple to switch between theotwodes of editing.

1. Getting started

This document pnades a quick introduction tei. (Pronouncediee-eyg You should be runningi on a file
you are familiar with while you are reading this. The first part of this document (sections 1 through 5) describes the
basics of usingi. Some topics of special interest are presented in section 6, and some nitty-gritty detaishef ho
editor functions are sad for section 7 toaid cluttering the presentation here.

There is also a short appendix here, whialeggfor each character the special meanings which this character
has invi. Attached to this document should be a quick reference Géid.card summarizes the commandsioh
a very compact formatYou should hae the card handy while you are learniig

The financial support of amm Graduate Fellowship and the National Science Foundation under grants MCS74-07644-A03 and MCS78-07291 is
gratefully acknowledged.

uUSD:11-2 Anintroduction to Display Editing with Vi

1.1. Specifyingterminal type

Before you can stasti you must tell the system what kind of terminal you are using. Here is a (necessarily
incomplete) list of terminal type codes. If your terminal does not appear here, you should consult with one of the
staf members on your system to find out the code for your termifgbur terminal does not a a ®de, one can
be assigned and a description for the terminal can be created.

Code Fullname Type

2621 Hevlett-Packard 2621A/P Intelligent
2645 Hevlett-Packard 264x Intelligent
act4 MicrotermACT-IV Dumb

actb MicrotermACT-V Dumb
adm3a LeaBiegler ADM-3a Dumb
adm31 LeaSSiegler ADM-31 Intelligent
€100 HumarDesign Concept 100 Intelligent
dm1520 Datamedia520 Dumb
dm2500 Datamedia500 Intelligent
dm3025 Datamedia025 Intelligent
fox Perkin-ElmeirFox Dumb
h1500 Hazeltind 500 Intelligent
h19 Heathkih19 Intelligent
i100 Infoton100 Intelligent
mime Imitatinga smart act4 Intelligent
t1061 TEleray 1061 Intelligent
vt52 DecVT-52 Dumb

Suppose for example that youvkaa Hewlett-Packard HP2621A terminal. The code used by the system for

this terminal is ‘2621’.In this case you can use one of the following commands to tell the system the type of your
terminal:

% seterv TERM 2621

This command works with theshshell. If you are using the standard Bourne skhlthen you should gé the
commands

$ TERM=2621
$ export TERM

If you want to arrange to ka your terminal type set up automatically when you log in, you can ugsdhe

program. Ifyou dial in on anime but often use hardwired ports, a typical line for ydagin file (if you use csh)
would be

seterv TERM “tset — —d mime’
or for your.profilefile (if you use sh)
TERM="tset — -d mime"
Tsetknows which terminals are hardwired to each port and needs only to be told that when you dial in you are prob-
ably on amime Tsetis usually used to change the erase and kill characters, too.
1.2. Editing a file

After telling the system which kind of terminal youvbayou should mak a opy of a file you are amiliar
with, and rurvi on this file, giving the command

% vi name

replacingnamewith the name of the cggfile you just created. The screen should clear and the text of your file

An Introduction to Display Editing with vV USD:11-3

should appear on the screen. If something else happens refer to the footnote.t

1.3. Theeditor's copy: the buffer

The editor does not directly modify the file which you are editiRgther the editor makes a cgpf this file,
in a place called thieuffer, and remembers the filehame. You do not affect the contents of the file unless and until
you write the changes you meakack into the original file.

1.4. Notationalconventions

In our xkamples, input which must be typed as is will be presentdublich face Text which should be
replaced with appropriate input will bevgn initalics. We will represent special characterssSmALL CAPITALS.

1.5. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals with cursor position-
ing keys, these &ys will also work within the editor If you dont havecursor positioning &ys, or een if you do,
you can use the j k andl keys as cursor positioningels (these are labelled with arrows onadma3a).*

(Particular note for the HP2621: on this terminal the functiegskmust beshifted (ick) to send to the
machine, otherwise tlgenly act locally Unshifted use will le@ the cursor positioned incorrectly.)

1.6. Speciakcharacters: ESC, CR and DEL

Several of these special characters asryvimportant, so be sure to find them rightvnd_ook on your
keyboard for a ky labelledescor ALT. It should be near the upper left corner of your termifay hitting this key
a few times. Theeditor will ring the bell to indicate that it is in a quiescent state.t Partially formed commands are
cancelled bysc and when you insert x¢ in the file you end the text insertion wigsc This key is a firly harm-
less one to hit, so you can just hit it if you ddaiown what is going on until the editor rings the bell.

ThecRr or RETURNKey is important because it is used to terminate certain commands. It is usually at the right
side of the kyboard, and is the same command used at the end of each shell command.

Another very useful &y is the DEL or RUB key, which generates an interrupt, telling the editor to stop what it is
doing. Itis a forceful vay of making the editor listen to you, or to return it to the quiescent state if yaikdow
or dont like what is going on.Try hitting the ‘/’ key an your terminal. This &y is used when you want to specify a
string to be searched folThe cursor should mobe positioned at the bottom line of the terminal after a */’ printed as
a prompt. You can get the cursor back to the current position by hittingeher RuB key; try this nav.* From
now on we will simply refer to hitting thedEL or RUB key as ‘sending an interrugt**

The editor often echoes your commands on the last line of the terrfitta. cursor is on the first position of
this last line, then the editor is performing a computation, such as computingpasigon in the file after a search
or running a command to reformat part of théfdr. When this is happening you can stop the editor by sending an
interrupt.

T If you cavethe system an incorrect terminal type code then the editor nvayjust made a mess out of your scred@is happens when it
sends control codes for one kind of terminal to some other kind of terminal. In this case histhe (kolon and the gdy) and then hit the
RETURN key. This should get you back to the commandliénterpreter Figure out what you did wrong (ask someone else if necessary) and try
again.

Another thing which can go wrong is that you typed the wrong file name and the editor just printed an error didgrtbi&icase you
should follaw the abeoe procedure for getting out of the editand try again this time spelling the file name correctly.

If the editor doesit’'seem to respond to the commands which you type here, try sending an interrupt to it by hitingottreis key on your
terminal, and then hitting thg command again followed by a carriage return.

* As we will see laterh moves back to the left (lile control-h which is a backspacég)moves down (in the same columnk moves up {n the
same column), anidmoves to the right.

F On snart terminals where it is possible, the editor will quietly flash the screen rather than ringing the bell.
* Backspacing eer the '/’ will also cancel the search.
** On some systems, this interruptibility comes at a price: you cannot type ahead when the editor is computing with the cursor on the bottom line.

USD:11-4 Anintroduction to Display Editing with Vi

1.7. Gettingout of the editor

After you hare worked with this introduction for a while, and you wish to do something else, you\eatngi
commandZZ to the editor This will write the contents of the editertuffer back into the file you are editing, if you
made ag changes, and then quit from the edit¥bu can also end an editor session by giving the comneas;
this is a dangerous but occasionally essential command which ends the editor session and discards all your changes.
You need to knw about this command in case you change the editogy of a file you wish only to look atBe
very careful not to gie this command when you really want tavsghe changes you hia made.

2. Moving around in the file

2.1. Scolling and paging

The editor has a number of commands for moving around in the file. The most useful of these is generated by
hitting the control and Ddys at he same time, a control-D or “DWe will use this tw character notation for
referring to these controlelgs from nav on. You may hae a key &belled " on your terminal. Thisdy will be
represented as *in this document; ' is exclusély used as part of the “x’ notation for control characters.t

As you knav now if you tried hitting"D, this command scrolls @m in the file. The D thus stands for ahn.
Mary editor commands are mnemonic and this makes them much easier to remEontiestance the command to
scroll up is’U. Mary dumb terminals cat’scroll up at all, in which case hittingy clears the screen and refreshes it
with a line which is farther back in the file at the top.

If you want to see more of the file belevhere you are, you can KE to expose one more line at the bottom
of the screen, leaving the cursor where it is. The comér(@hich is hopelessly non-mnemonic, but nextlo
on the leyboard) exposes one more line at the top of the screen.

There are other ways to m®aound in the file; thedys "F and"B move forward and backward a pagedp-
ing a couple of lines of continuity between screens so that it is possible to read through a file using these rather than
"D and”U if you wish.

Notice the difference between scrolling and paging. If you are trying to read the text in a file,”Riting
move forward a page will lea you only a little context to look back at. Scrolling on the other handseaore
context, and happens more smoathfpu can continue to read the text as scrolling is taking place.

2.2. Seaching, goto, and pevious context

Another way to position yourself in the file is by giving the editor a string to searchijqe the character
followed by a string of characters terminatedcBy The editor will position the cursor at the next occurrence of this
string. Ty hitting n to then go to the m& occurrence of this string. The charac®ewill search backwards from
where you are, and is otherwise like

If the search string you g the editor is not present in the file the editor will print a diagnostic on the last line
of the screen, and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string witf@match
only at the end of a line, end the search string wigth @hus/1 searchcr will search for the word ‘search’ at the
beginning of a line, anflast$cr searches for the word ‘last’ at the end of a line.*

The commands, when preceded by a number will position the cursor at that line in theTfiles 1G will
move the cursor to the first line of the file. If yowgiG no count, then it mees to he end of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen, the editor will place only
the character ™ on each remaining line. This indicates that the last line in the file is on the screen; that is, the ™
T All commands which read from the last display line can also be terminatedsgitias well as agr.

T If you dont havea ’ key a your terminal then there is probably eyKabelled % ’; in any case these characters are one and the same.

T These searches will normally wrap around the end of the file, and thus find the\aninifgitas not on a line in the direction you search pro-

vided it is anywhere else in the fil&ou can disable this wraparound in scans by giving the comnsmdavrapscarcr, or more briefly:se

NOWSCR.

*Actually, the string you gie © search for here can beregular expressiorin the sense of the editoex(1) anded(1). If you dont wish to learn

about this yet, you can disable this more general facility by desngomagicr; by putting this command in EXINIT in your environment, you

can hae tis alvays be in effect (more aboBXINIT later.)

An Introduction to Display Editing with vV USD:11-5

lines are past the end of the file.

You can find out the state of the file you are editing by typif@.aThe editor will shav you the name of the
file you are editing, the number of the current line, the number of lines inffeg bnd the percentage of theaw
through the bffer which you are.Try doing this nav, and remember the number of the line you are Give aG
command to get to the end and then anaBieommand to get back where you were.

You can also get back to a previous position by using the commdtwio back quotes). This is often more
cornvenient thanG because it requires no advance preparafiog.giving aG or a search withhor ? and then &" to
get back to where you were. If you accidentallyrhitr ary command which mees you far avay from a context of
interest, you can quickly get back by hitting

2.3. Moving around on the screen

Now try just moving the cursor around on the screen. If your terminal hag leess (@ or 5 keys with arrovs
going in each direction) try them and convince yourself thatwaek. If you dont haveworking arrav keys, you
can alvays useh, j, k, andl. Experienced users of prefer these dys to arow keys, because tlyeare usually right
underneath their fingers.

Hit the + key. Each time you do, notice that the cursorabes to the next line in the file, at the first non-
white position on the line. Thekey is like + but goes the other way.

These areery common kys for moving up and down lines in the file. Notice that if you ddloé bottom or
top with these &ys then the screen will scroll down (and up if possible) to bring a line at a time imto Viee
RETURNKey has the same effect as théey.

Vi also has commands to talou to the top, middle and bottom of the screehwill take you to the top
(home) line on the screerTry preceding it with a number as 8H. This will take you to the third line on the
screen. Mayvi commands tak preceding numbers and do interesting things with th€m.M, which takes you to
the middle line on the screen, dngdwhich takes you to the last line on the screkeralso takes counts, thgg will
take you to the fifth line from the bottom.

2.4. Moving within a line

Now try picking a word on some line on the screen, not the first word on thentioee the cursor using
RETURN and- to be on the line where the word i$ry hitting thew key. This will advance the cursor to thexhe
word on the line.Try hitting the b key to back up words in the lineAlso try thee key which advances you to the
end of the current word rather than to the beginning of the nanxd. wAlsotry SmcE (the space bar) which mes
right one character and tiss (backspace oiH) key which moves left one characterThe key h works as™H does
and is useful if you dohhaveaBs key. (Also, as noted just ale, | will move 1 the right.)

If the line had punctuation in it you mayJearoticed that that thev andb keys stopped at each group of
punctuation. ¥u can also go back and forwards words without stopping at punctuation byWwising B rather
than the lower case egdients. Thinkof these as biggeravds. Ty these on a fe lines with punctuation to see
how they differ from the lower caser andb.

The word leys wrap around the end of line, rather than stopping at the Brydmoving to a word on a line
belov where you are by repeatedly hitting

2.5. Summary

SRACE advance the cursor one position

" backwards to previous page
scrolls down in the file

exposes another line at the bottom
forward to next page

tell what is going on

backspace the cursor

next line, same column

previous line, same column

IZZQTnmMJdw

>

USD:11-6 Anintroduction to Display Editing with Vi

“U scrolls up in the file
Y exposes another line at the top
+ next line, at the beginning
- previous line, at the beginning
/ scan for a following string forwards
? scan backwards
B back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen line
w forward a word, ignoring punctuation
b back a word
e end of current word
n scan for next instance 6br ? pattern
w word after this word
2.6. iew

If you want to use the editor to look at a file, rather than toerdaénges, inoke it as viewinstead ofvi. This
will set thereadonlyoption which will preent you from accidentlyerwriting the file.

3. Making simple changes

3.1. Inserting

One of the most useful commands is tlfmsert) command. After you typeeverything you type until you
hit Escis inserted into the fileTry this now; position yourself to some word in the file and try inserting text before
this word. If you are on an dumb terminal it will seem, for a minute, that some of the characters in yowdine ha
been eerwritten, but thg will reappear when you hitsc.

Now try finding a word which can, but does not, end in anPgsition yourself at this word and typémove
to end of vord), thena for append and thenesc to terminate the textual insert. This sequence of commands can
be used to easily pluralize a word.

Try inserting and appending aMéimes to mak sure you understand twthis works;i placing text to the left
of the cursora to the right.

It is often the case that you want to add/hi@es to the file you are editing, before or after some specific line
in the file. Find a line where this makes sense and thentgg commana to create a ne line after the line you
are on, or the commar@ to create a ne line before the line you are on. After you create & hiee in this vay,
text you type up to aescis inserted on the meline.

Many related editor commands areviked by the same letterdy and differ only in that one is gén by a
lower case &y and the other is gen by an ypper case éy. In these cases, the upper casg #ten differs from the
lower case &y in its sense of direction, with the upper casg korking backward and/or up, while the lower case
key moves forward and/or down.

Wheneer you are typing in text, you canvgi mary lines of input or just a fe characters. @ type in more
than one line of text, hitRETURN at the middle of your inputA new line will be created for &, and you can con-
tinue to type. If you are on a sicand dumb terminal the editor may choose titwo redrav the tail of the screen,
and will let you type wer the existing screen lineslhis avoids the lengti delay which would occur if the editor
attempted to keep the tail of the screemags up to date. The tail of the screen will be fixed up, and the missing
lines will reappeawhen you hiesc

While you are inserting metext, you can use the characters you normally use at the system comrend le
(usually™H or #) to backspace wer the last character which you typed, and the character which you use to kill input

An Introduction to Display Editing with vV USD:11-7

lines (usually@, "X, or "U) to erase the input you ka typed on the current line.t The characf will erase a
whole word and leg you after the space after the previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspase ot erased; the cur
sor maves backwards, and the characters remain on the displéys is often useful if you are planning to type in
something similar In any case the characters disappear when when yoashijtif you want to get rid of them
immediately hit anescand thera again.

Notice also that you canérase characters which you ditdimsert, and that you carbackspace around the
end of a line.If you need to back up to the previous line to malmrrection, just hiescand mee te cursor back
to the previous line After making the correction you can return to where you were and use the insert or append
command again.

3.2. Making small corrections

You can male small corrections in existing text quite easillind a single character which is wrong or just
pick ary character Use the arne keys to find the characteor get near the character with the word motieykand
then either backspace (hit the key or "H or even justh) or smce (using the space bar) until the cursor is on the
character which is wrong. If the character is not needed then hitkiye this deletes the character from the file.
is analogous to the way yewout characters when you nekistakes on a typewriter (excepsitiot as messy).

If the character is incorrect, you can replace it with the correct charactesiiy thie commandc, wherec is
replaced by the correct characté&inally if the character which is incorrect should be replaced by more than one
charactergive the command which substitutes a string of characters, ending &ét for it. If there are a small
number of characters which are wrong you can presedéh a count of the number of characters to be replaced.
Counts are also useful wittto specify the number of characters to be deleted.

3.3. More oorrections: operators

You dready knev amost enough to makdanges at a highendd. All you need to kne now is that thed
key acts as a delete operatofry the commandiw to delete a wrd. Try hitting . a few imes. Noticethat this
repeats the effect of thlwv. The command repeats the last command which made a chaMge.can remember it
by analogy with an ellipsis.".

Now try db. This deletes a word backwards, hamely the precedord.wlry dSmce. This deletes a single
characterand is eqwiaent to thex command.

Another very useful operator ¢sor change. The commarmiv thus changes thexieof a single wrd. You
follow it by the replacement text ending with asc Find a word which you can change to anaotlaad try this
now. Notice that the end of the text to be changed waseuanlth the character ‘$’ so that you can see this as you
are typing in the ne material.

3.4. Operatingon lines

It is often the case that you want to operate on lines. Find a line which you want to delete, alal ttype
operator twice. This will delete the linéf you are on a dumb terminal, the editor may just erase the line on the
screen, replacing it with a line with only an @ on it. This line does not correspong lineim your file, but only
acts as a place holdelt helps to &oid a lengtly redrav of the rest of the screen which would be necessary to close
up the hole created by the deletion on a terminal without a delete line capability.

Try repeating thes operator twice; this will change a whole line, erasing its previous contents and replacing
them with text you type up to @asc T

You can delete or change more than one line by precedingdtioe cc with a count, i.e5dd deletes 5 lines.
You can also gie a @mmand lile dL to delete all the lines up to and including the last line on the scred8l.do
delete through the third from the bottom linEty some commands liktis nav.* Notice that the editor lets you

T In fact, the charactéH (backspace) alays works to erase the last input character hegeyakess of what your erase character is.
T The command is a corenient synonym for focc, by analogy withs. Think of S as a substitute on lines, whiés a substitute on characters.

* One subtle point herevlves using theé search after @. This will normally delete characters from the current position to the point of the
match. Ifwhat is desired is to delete whole lines including theaints, give the pattern afpat/+0, a line address.

USD:11-8 Anintroduction to Display Editing with Vi

know when you change a @ number of lines so that you can see the extent of the change. The editor will also
always tell you when a change you neadff ects text which you cannot see.

3.5. Undoing

Now suppose that the last change which you made was incorrect; you could use the insert, delete and append
commands to put the correct material batlowever, snce it is often the case that we regret a change oe mak
change incorrect)ythe editor provides a (undo) command to verse the last change which you madey this a
few times, and gie it twice in a rav to notice that aru also undoes a.

The undo command lets yoweese only a single changéfter you male a umber of changes to a line, you
may decide that you would ratherneahe original state of the line backhe U command restores the current line
to the state before you started changing it.

You can recoer text which you delete,wen if undo will not bring it back; see the section on reximg lost
text belav.

3.6. Summary
SRACE advance the cursor one position
“H backspace the cursor
W erase a word during an insert
erase youerase (usually "H or #), erases a character during an insert
kill your Kill (usually @, "X, or "U), kills the insert on this line
. repeats the changing command
0] opens and inputs nelines, abee te current
U undoes the changes you made to the current line
a appends text after the cursor
c changes the object you specify to the following text
d deletes the object you specify
i inserts text before the cursor
o] opens and inputs nelines, belav the current
u undoes the last change

4. Moving about; rearranging and duplicating text

4.1. Low levd character motions

Now move he cursor to a line where there is a punctuation or a bracketing character such as a parenthesis or a
comma or period.Try the commandx wherex is this character This command finds the xiex character to the
right of the cursor in the current lindry then hitting &, which finds the next instance of the same chara&gr
using thef command and then a sequencefou can often get to a particular place in a line much faster than with
a equence of word motions emcEs. Thereis also aF command, which is li&f, but searches baclasd. The;
command repeats also.

When you are operating on the text in a line it is often desirable to deal with the charactersuamao, b
including, the first instance of a charact&ry dfx for somex now and notice that th& character is deletedJndo
this withu and then trydtx; thet here stands for to, i.e. delete up to thetxebut not thex. The command is
the reverse oft.

When working with the te of a single line, an moves the cursor to the first non-white position on the line,
and a$ moves it to the end of the line. Thukawill append ner text at the end of the current line.

Your file may hae tab (1) characters in it. These characters are represented as a number of gpaiceng

to a tab stop, where tab stops averg 8 positions.* When the cursor is at a tab, it sits on the last of leeake
spaces which represent that.tdlpy moving the cursor back and forthen tabs so you understandviathis works.

* This is settable by a command of the fasa ts=cr, wherex is 4 to set tabstopvey four columns. This has effect on the screen representa-
tion within the editor.

An Introduction to Display Editing with vV USD:11-9

On rare occasions, your file maywkavonprinting characters in it. These characters are displayed in the same
way they are represented in this document, that is with @ ¢thharacter code, the first character of which is On
the screen non-printing characters resemble a ' character adjacent to ,amdthpacing or backspacinges the
character will reeal that the tw characters are, likthe spaces representing a tab charaatémgle character.

The editor sometimes discards control characters, depending on the character and the settbepofifihe
option, if you attempt to insert them in your fil¥ou can get a control character in the file byginaing an insert
and then typing &V before the control charactefhe "V quotes the following characterausing it to be inserted
directly into the file.

4.2. Higherlevel text objects

In working with a document it is often advantageous to work in terms of sentences, paragraphs, and sections.
The operationg and) move t© the bginning of the previous and next sentences resmhctiThus the command)
will delete the rest of the current sentencesMilse d(will delete the previous sentence if you are at the beginning of
the current sentence, or the current sentence up to where you are if you are notgihtivghef the current sen-
tence.

A sentence is defined to end at’a‘l’ or *?’ which is followed by either the end of a line, or bydwpaces.
Any number of closing ‘), ‘], “" and *’ characters may appear after the ‘., ‘I" or ‘?’ before the spaces or end of

line.

The operation§ and} move ove paragraphs and the operatighand]] move ove sections.t

A paragraph bgins after each empty line, and also at each of a set of paragraph macros, specified by the pairs
of characters in the definition of the strirgjued optiorparagraphs The default setting for this option defines the
paragraph macros of thensand—mm macro packages, i.e. the “.IP’, *.LP’, *.PP’ and ".QP’, ‘.P’ and ‘.LI' macros.t
Each paragraph boundary is also a sentence bountlaeysentence and paragraph commands carvee giunts
to operate er groups of sentences and paragraphs.

Sections in the editor begin after each macro inst@ionsoption, normally ‘*.NH’, *.SH’, *.H’ and *.HU’,
and each line with a formfeéd in the first column.Section boundaries areaslys line and paragraph boundaries
also.

Try experimenting with the sentence and paragraph commands until you arewuteshwork. If you hare
a large document, try looking through it using the section commans.section commands interpret a preceding
count as a different winéosize in which to redna the screen at the wdocation, and this winde size is the base
size for newly drawn windows until another size is specifilldis is very useful if you are on a slderminal and
are looking for a particular sectiorYou can give the first section command a small count to then see each succes-
sive ection heading in a small windo

4.3. Rearrangingand duplicating text

The editor has a single unnamedffer where the last deleted or changedyatext is saved, and a set of
named buffera—z which you can use to ga cpies of text and to nve text around in your file and between files.

The operatoy yanks a cop of the object which follows into the unnamedffer. If preceded by auifer
name," Xy, wherex here is replaced by a letterz, it places the text in the namedffer. The text can then be put
back in the file with the commangdsandP; p puts the text after or belothe cursgrwhile P puts the text before or
above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence which partially spans more
than one line, then when you put thattback, it will be placed after the cursor (or before if you Bself the
yanked text forms whole lines, thevill be put back as whole lines, without changing the current line. In this case,
the put acts much l&ao or O command.

Try the commandrP. This makes a cgpof the current line and lgas you on this cop, which is placed
before the current line. The commarids a cowenient abbreviation foyy. The command/p will also male a

T The[[and]] operations require the operation character to be doubled becaysartiraae the cursor far from where it currently is. While it
is easy to get back with the commandhese commands would still be frustrating ifyteere easy to hit accidentally.

T You can easily change or extend this set of macros by assignirfigrarditring to thgaragraphsoption in your EXINIT See section 6.2 for
details. The.bp’ directive is dso considered to start a paragraph.

USD:11-10 Anintroduction to Display Editing with Vi

copy of the current line, and place it after the current lieu can give Y a count of lines to yank, and thus dupli-
cate seeral lines; try3YP.

To move &xt within the huffer, you need to delete it in one place, and put it back in anotfoer can precede
a celete operation by the name of affbr in which the tet is to be stored as ita5dd deleting 5 lines into the
named bffera. You can then me the cursor to theventual resting place of the these lines and dapaor "aP to
put them back. Indct, you can switch and edit another file before you put the lines back, by giving a command of
the form:e namecr wherenameis the name of the other file you want to edfbu will have o write back the con-
tents of the current editoufier (or discard them) if you ke made changes before the editor will let you switch to
the other file. An ordinary delete commangesahe text in the unnamediffer, so hat an ordinary put can me it
elsavhere. Havever, the unnamedudfer is lost when you change files, so tovadext from one file to another you
should use an unnamed buffer.

4.4. Summary
1 first non-white on line
$ end of line
) forward sentence
} forward paragraph
1l forward section
(backward sentence
{ backward paragraph
i backward section
fx find x forward in line
p put text back, after cursor or bel@urrent line
y yank operatqrfor copies and mas
tx up tox forward, for operators
Fx f backward in line
P put text back, before cursor or alecaurrent line
Tx t backward in line

5. High level commands

5.1. Writing, quitting, editing new files

So far we hee sen ha to entervi and to write out our file using eith#Z or :wcRr. The first &its from the
editor, (writing if changes were made), the second writes and stays in the editor.

If you have thanged the edit@’opy of the file lut do not wish to s your changes, either because you
messed up the file or decided that the changes are not arvémert to the file, then you canvgithe command
:q! crto quit from the editor without writing the changeu can also reedit the same file (startingrd by giving
the commande!cr. These commands should be used only raealy with caution, as it is not possible to reeo
the changes you i@ made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the commamameR. If you hae rot
written out your file before you try to do this, then the editor will tell you this, and delay editing the oth¥ofile.
can then gie the commandwcR to save your work and then thee namecrR command again, or carefullyvg the
commande! nameR, which edits the other file discarding the changes yoe hade to the current fileTo have
the editor automatically sa dhanges, includset autowritén your EXINIT, and usen instead ofe.

5.2. Escapingo a shell

You can get to a shell taxecute a single command by givingyiecommand of the forrdcmdcR. The system
will run the single commandmdand when the command finishes, the editor will ask you to k&rarN to con-
tinue. Whenyou have finished looking at the output on the screen, you shoukEmitRN and the editor will clear
the screen and redvédt. You can then continue editingyou can also gie another: command when it asks you for
aRETURN; in this case the screen will not be redrawn.

An Introduction to Display Editing with vV USD:11-11

If you wish to &ecute more than one command in the shell, then you earntg commandshcr. This will
give you a n& shell, and when you finish with the shell, ending it by typin® athe editor will clear the screen and
continue.

On systems which support 1 will suspend the editor and return to the (togelleshell. When the editor is
resumed, the screen will be redrawn.

5.3. Marking and returning

The command’ returned to the pwgous place after a motion of the cursor by a command sut?as G.
You can also mark lines in the file with single letter tags and return to these marks later by naming thg/tags.
marking the current line with the commantk, where you should pick some letter fgrsay ‘a’. Then mee te
cursor to a different line (gnway you like) and hita. The cursor will return to the place which you meatk
Marks last only until you edit another file.

When using operators suchdsand referring to marked lines, it is often desirable to delete whole lines rather
than deleting to the exact position in the line markethbyin this case you can use the fomrather thanx. Used
without an operatof x will move © the first non-white character of the madkline; similarly”” moves to he first
non-white character of the line containing the previous context mark

5.4. Adjustingthe screen

If the screen image is messed up because of a transmission error to your terminal, or because some program
other than the editor wrote output to your terminal, you can Hit, dhe Ascil form-feed characteto cause the
screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line deletion, you may get
rid of these lines by typintR to cause the editor to retype the screen, closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of the screen, you can
position the cursor to that line, and theweghz command. %u should follev thez command with &ETURNf you
want the line to appear at the top of the wiwda. if you want it at the centeor a- if you want it at the bottom.

6. Specialtopics

6.1. Editing on slow terminals

When you are on a skoterminal, it is important to limit the amount of output which is generated to your
screen so that you will not suffer long delaysitimg for the screen to be refreshadde havealready pointed out
how the editor optimizes the updating of the screen during insertions on dumb terminals to limit the delays, and ho
the editor erases lines to @ whenytage deleted on dumb terminals.

The use of the sleterminal insertion mode is controlled by tslewoperoption. You can force the editor to
use this modewven on faster terminals by giving the commarse slavcr. If your system is sluggish this helps
lessen the amount of output coming to your termiivaki can disable this option bige noslover.

The editor can simulate an intelligent terminal on a dumb @negiving the commandse redrawcr. This
simulation generates a great deal of output and is generally tolerable only on lightly loaded systems and fast termi-
nals. You can disable this by giving the command
:se noredrawcr.

The editor also makes editing more pleasantvatsfieed by starting editing in a small windand letting the
window expand as you edit. Thisawks particularly well on intelligent terminals. The editor can expand the win-
dow easily when you insert in the middle of the screen on these termifgisssible, try the editor on an intelligent
terminal to see hw this works.

You can control the size of the windowhich is redrawn each time the screen is cleared by giving windo
sizes as argument to the commands which cause large screen motions:

2 n

Thus if you are searching for a particular instance of a common string in a file you can precede the first search com-
mand by a small numhesay 3, and the editor will dvathree line windows around each instance of the string which

USD:11-12 Anintroduction to Display Editing with Vi

it locates.

You can easily expand or contract the winglacing the current line as you choose, by giving a number on a
z command, after the and before the follwing RETURN, . or —. Thus the commanzb. redravs the screen with the
current line in the center of a éiline windaw.t

If the editor is redrawing or otherwise updatingyi&portions of the displayou can interrupt this updating
by hitting aDEL or RUB as usual. If you do this you may partially confuse the editor about what is displayed on the
screen. Yu can still edit the & on the screen if you wish; clear up the confusion by hittitig ar move a search
again, ignoring the current state of the display.

See section 7.8 arpenmode for another way to use tiecommand set on shoterminals.

6.2. Options,set, and editor startup files

The editor has a set of options, some of whickeH®en mentioned albe. The most useful options arevgn
in the following table.

The options are of three kinds: numeric options, string options, and toggle optensan set numeric and
string options by a statement of the form

setopt=val

and toggle options can be set or unset by statements of one of the forms

setopt

set nmpt
Name Default Description
autoindent noai Supply indentation automatically
autawrite noav Automatic write beforen, :ta, "1, !
ignorecase noic Ignore case in searching
lisp nolisp ({) } commands deal with S-expressions
list nolist Tabs print as “I; end of lines marked with $
magic nomagic The characters . [and * are special in scans
number nonu Lines are displayed prefixed with line numbers
paragraphs para=IPLPPPQPHAP Macronames which start paragraphs
redrav nore Simulatea smart terminal on a dumb one
sections sect=NHSHHU Macronames which start mesections
shiftwidth sw=8 Shift distance for <, > and inpiD and™T
shavmatch nosm Shav matching(or { as) or} is typed
slowopen slov Postpone display updates during inserts
term dumb The kind of terminal you are using.

These statements can be placed in your EXINIT in yovir@mment, or gren while you are runningi by preced-
ing them with a and following them with &r.

You can get a list of all options which youweadanged by the commandetcr, or the value of a single
option by the commantet opt?cr. A list of all possible options and their values is generatethdtyallcr. Set
can be abbreviatese Multiple options can be placed on one line, esg ai aw nicr.

Options set by theetcommand only last while you stay in the edittiris common to want to hee certain
options set whemner you use the editorThis can be accomplished by creating a listxxfommandst which are to
be run gery time you start ugex, edit, or vi. A typical list includes &etcommand, and possibly awfenap com-
mands. Sincé is advisable to get these commands on one ling,cdre be separated with the | charadtarexam-
ple:

setai aw tersenap @ ddjmap # x

which sets the optionsutoindent autowritg terse (the setcommand), mads @ delete a line, (the finstap), and

T Note that the commarkk. has an entirely different effect, placing line 5 in the center ofvawirdow.
T All commands which start withareexcommands.

An Introduction to Display Editing with vV USD:11-13

males # delete a charactéthe secondnap). (Seesection 6.9 for a description of theap command) This string
should be placed in thasiable EXINIT in your emronment. Ifyou use the shedish put this line in the filelogin
in your home directory:

setew EXINIT “setai aw tersefnap @ ddjmap # X
If you use the standard shel put these lines in the filgrofilein your home directory:

EXINIT="setai av tersefnap @ ddjmap # X’
export EXINIT

Of course, the particulars of the line would depend on which options you wanted to set.

6.3. Recwering lost lines

You might have a grious problem if you delete a number of lines and thgretehat thg were deleted.
Despair not, the editor ges the last 9 deleted blocks of text in a set of numbered registersybt3an get thevth
previous deleted te back in your file by the commandp. The " here says that aiffer name is to follw, nis the
number of the bffer you wish to try (use the number 1 fompandp is the put command, which puts text in the
buffer after the cursorlf this doesrt bring back the text you wanted, hito undo this and then(period) to repeat
the put command. In general theommand will repeat the last change you made. As a special case, when the last
command refers to a numbered teuffér, the. command increments the number of thdfdr before repeating the
command. Thua squence of the form

"lpu.u.u.

will, if repeated long enough, shoyou all the deleted text which has beeweddor you. You can omit theu com-
mands here to gather up all thigtten the tuffer, or dop after ag . command to keep just the then reeed tet.
The commandP can also be used rather thato put the receered text before rather than after the cursor.

6.4. Recwering lost files

If the system crashes, you can nemahe work you were doing to within aviechanges. ®Wu will normally
receve mail when you next login ging you the name of the file which has beeveddor you. You should then
change to the directory where you were when the system crashed@adminmand of the form:

% vi —r name
replacingnamewith the name of the file which you were editinthis will recover your work to a point near where
you left off. T
You can get a listing of the files which areve@dfor you by giving the command:

% Vi —r

If there is more than one instance of a particular filedsathe editor gies you the neest instance each time you
recover it. You can thus get an oldewved copy back by first receering the newer copies.

For this feature to wrk, vi must be correctly installed by a super user on your system, antatherogram
must exist to recee mail. Theinvocation ‘vi -r” will not always list all s&ed files, but thg can be receered even
if they are not listed.

6.5. Continuoustext input

When you are typing in large amounts of text it isvenient to hae lines broken near the right margin auto-
matically. You can cause this to happen by giving the commssam=1@R. This causes all lines to be begkat
a pace at least 10 columns from the right hand edge of the screen.

If the editor breaks an input line and you wish to put it back together you can tell it to join the linds with
You can give J a oount of the number of lines to be joined a8Jrto join 3 lines. The editor supplies white space, if

T In rare cases, some of the lines of the file may be lost. The editor véllygii the numbers of these lines and the té the lines will be
replaced by the string ‘LOST'. These lines will almostals be among the lastvfiewhich you changedYou can either choose to discard the
changes which you made (if there easy to remake) or to replace the fest lines by hand.

USD:11-14 Anintroduction to Display Editing with Vi

appropriate, at the juncture of the joined lines, angetethe cursor at this white spac¥ou can kill the white space
with x if you dont want it.

6.6. Features for editing programs

The editor has a number of commands for editing progrdrnhe.thing that most distinguishes editing of pro-
grams from editing of t& is the desirability of maintaining an indented structure to the body of the progizn.
editor has autoindentfacility for helping you generate correctly indented programs.

To enable this facility you can @& the commandse acr. Now try opening a n& line witho and type some
characters on the line after avfeabs. Ifyou nawv start another line, notice that the editor supplies white space at the
beginning of the line to line it up with the previous lingou cannot backspacever this indentation, but you can
use™D key to backtab @er the supplied indentation.

Each time you typéD you back up one position, normally to an 8 column boundé@ings amount is settable;
the editor has an option callesthiftwidth which you can set to change thiglue. Ty giving the commandse
sw=4cRr and then experimenting with autoindent again.

For shifting lines in the program left and right, there are operat@asd>. These shift the lines you specify
right or left by oneshiftwidth. Try << and>> which shift one line left or right, andL and>L shifting the rest of
the display left and right.

If you have a omplicated expression and wish to sew Itlle parentheses match, put the cursor at a left or
right parenthesis and Hib. This will shov you the matching parenthesis. This works also for braces { and }, and
brackets [and].

If you are editing C programs, you can use[fhend]] keys to advance or retreat to a line starting wih a
i.e. a function declaration at a tim&/hen]] is used with an operator it stops after a line which starts}ittis is
sometimes useful wit]] .

6.7. Filtering portions of the buffer

You can run system commandseo portions of the bffer using the operatdr You can use this to sort lines
in the luffer, or to reformat portions of theuffer with a pretty-printer Try typing in a list of random words, one per
line and ending them with a blank lin8ack up to the beginning of the list, and theveghe command}sortcr.
This says to sort the next paragraph of material, and the blank line ends a paragraph.

6.8. Commanddor editing LISP

If you are editing aIsp program you should set the optilisp by doing:se lispcr. This changes theéand)
commands to me backward and forward \er s-expressions. Thé and} commands are l&k(and) but don't stop
at atoms. These can be used to skip to the next list, or through a comment quickly.

The autoindentoption works differently forisp, supplying indent to align at the firstgument to the last
open list. If there is no such argument then the indentasgtaces more than the lastde

There is another option which is useful for typingisp, the showmatcloption. Ty setting it with:se sntr
and then try typing a ‘(' someards and then a ‘)’. Notice that the cursor shows the position of the ‘(" which
matches the ‘)’ briefly This happens only if the matching ‘(" is on the screen, and the cursor stays there for at most
one second.

The editor also has an operator to realign existing lines as thoyghatthéeen typed in witlisp andautoin-
dentset. Thisis the= operator Try the command% at the beginning of a function. This will realign all the lines
of the function declaration.

When you are editingisp,, the[[and]] advance and retreat to lines beginning withand are useful for
dealing with entire function definitions.

6.9. Macros

Vi has a parameterless macagifity, which lets you set it up so that when you hit a singlgstkole, the edi-
tor will act as though you had hit some longer sequenceyst RKou can set this up if you find yourself typing the
same sequence of commands repeatedly.

An Introduction to Display Editing with vV USD:11-15

Briefly, there are tw flavars of macros:

a) Oneswhere you put the macro body in affer register say x. You can then typ@x to invoke the macro.
The @ may be followed by anothé® to repeat the last macro.

b) You can use thmapcommand fronvi (typically in yourEXINIT) with a command of the form:
:maplhs rhcr

mappinglhs into rhs. There are restrictionghs should be onedystroke (either 1 character or one function
key) since it must be entered within one second (umesisneoutis set, in which case you can type it as
slowly as you wish, andi will wait for you to finish it before it echoeswhing). Thelhs can be no longer
than 10 characters, thrbs no longer than 100To get a space, tab or newline intts or rhs you should
escape them with &/. (It may be necessary to double fiveif the map command is ggn insidevi, rather
than inex) Spaces and tabs inside tins need not be escaped.

Thus to mak theq key write and exit the editpyou can gre the command
‘map q :w§V'VCRCR

which means that whemer you typeq, it will be as though you had typed the four charact®ggcr. A “V's is
needed because without it the would end the command, rather than becoming part ofitepdefinition. There
are two "V's because from withiwi, two "V’'s must be typed to get one. The ficstis part of therhs, the second
terminates the : command.

Macros can be deleted with

unmap lhs

If the Ihs of a macro is‘#0" through “#9”, this maps the particular functiorek instead of the 2 character
“#" sequence. Sthat terminals without functiongys can access such definitions, the fofx™ will mean func-
tion key x on all terminals (and need not be typed within one second.) The cha¥éttan be changed by using a
macro in the usual way:
‘map V'Vl #
to use tab, forxample. (Thiswon't affect themapcommand, which still use$ but just the inocation from visual
mode.
The undo commandverses an entire macro call as a unit, if it madedranges.
Placing a ‘' after the wrd map causes the mapping to apply to input mode, rather than command mode.
Thus, to arrange fOiT to be the same as 4 spaces in input mode, you can type:
:map”T "Vibibbb

whereb is a blank. The”V is necessary to prent the blanks from being tek as white space between theand
rhs.

7. Word Abbr eviations

A feature similar to macros in input mode is word abbt®n. Thisallows you to type a shortavd and
have it expanded into a longer word orowds. Thecommands areabbreviate and:unabbreviate (:ab and:una)
and h&e the same syntax asiap. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word ‘eecs’ toaglys be changed into the phrase ‘Electrical Engineering and Computer Sciaioes’.
abbreviation is different from macros in that only whole words afecié¢d. If‘eecs’ were typed as part of adar
word, it would be left alone. Also, the partial word is echoed as it is tyjpldre is no need for an abbreviation to
be a single &ystroke, as it should be with a macro.

7.1. Abbreviations

The editor has a number of short commands which abbreviate longer commands whicle wérdduced
here. Yu can find these commands easily on the quick reference Taeg often sae a hit of typing and you can

USD:11-16 Anintroduction to Display Editing with Vi

learn them as ceenient.
8. Nitty-gritty details

8.1. Linerepresentation in the display

The editor folds long logical lines onto nyaphysical lines in the displayCommands which adnce lines
adwance logical lines and will skipver all the segments of a line in one motion. The commjamdves the cursor
to a specific column, and may be useful for getting near the middle of a long line to split it ifirk&@|on a line
which is more than 80 columns long. ¥t

The editor only puts full lines on the display; if there is not enough room on the display to fit a logical line, the
editor leaes the physical line empfylacing only an @ on the line as a place hold&hen you delete lines on a
dumb terminal, the editor will often just clear the lines to @ tee dae (rather than rewriting the rest of the
screen.) Wu can alvays maximize the information on the screen by giving'Bieommand.

If you wish, you can ha te editor place line numbers before each line on the dis@mg the command
:Se NLCR to enable this, and the commarsé nontcr to turn it of. You can hee tabs represented asand the
ends of lines indicated with ‘$’ by giving the commase listcR; :se nolistr turns this off.

~

Finally, lines consisting of only the character ™ are displayed when the last line in the file is in the middle of
the screen. These represent physical lines which are past the logical end of file.

8.2. Counts

Mostvi commands will use a preceding count to affect their behavior in sayeTle following table gies
the common ways in which the counts are used:

new window size o B | I |
scroll amount "D "U
line/column number z G |

repeat dect mostof the rest

The editor maintains a notion of the currentaddtf windav size. Onterminals which run at speeds greater
than 1200 baud the editor uses the full terminal scr@mterminals which are slower than 1200 baud (most dialup
lines are in this group) the editor uses 8 lines as the defaultwgize. At1200 baud the default is 16 lines.

This size is the size used when the editor clears and refills the screen after a search or other westfan mo
from the edge of the current windo The commands which teka rew window size as count all often cause the
screen to be rednan. If you anticipate this, but do not need as large a wir@®you are currently using, you may
wish to change the screen size by specifying thesme before these commands. Iryaase, the number of lines
used on the screen will expand if youweadf the top with a- or similar command or bthe bottom with a com-
mand such ageTurN or "D. The windav will revert to the last specified size the next time it is cleared and
refilled. T

The scroll command® and”U likewise remember the amount of scroll last specified, using half the basic
window size initially. The simple insert commands use a count to specify a repetition of the inserte@hies
10a+———-—<tscwill insert a grid-like dring of text. A few commands also use a preceding count as a line or column
number.

Except for a fave commands which ignore girtounts (such a¥R), the rest of the editor commands use a count
to indicate a simple repetition of theirfexft. Thus5w advances fie words on the current line, whilBRETURN
adwances fie lines. Avery useful instance of a count as a repetition is a cowmehdd the . command, which
repeats the last changing commaiifdyou dodw and ther3., you will delete first one and then threends. You
can then delete tsvmore words with2..

T You can mak long lines very easily by usinto join together short lines.
T But not by &L which just redraws the screen as it is.

An Introduction to Display Editing with vV USD:11-17

8.3. More file manipulation commands
The following table lists the file manipulation commands which you can use when yowiare in

W write back changes

w(q write and quit

X write (if necessary) and quit (same as Z2).
e hame edit filename

el reedit, discarding changes

;e +name edit, starting at end

‘e edit, starting at line

e# edit alternate file

‘W name write file name

:w! name overwrite file name
X,)W hame write linesx throughy to name

:r name read filenameinto buffer

:remd read output oEmdinto buffer

n edit next file in argument list

:n! edit next file, discarding changes to current
'n args specify nev argument list

‘ta tag edit file containing tat¢pg, a tag

All of these commands are folled by acr or ESC The most basic commands ave and:e. A normal editing
session on a single file will end withZzZ command. Ilfyou are editing for a long period of time you cavegiv
commands occasionally after major amounts of editing, and then finish &#Zh aVhen you edit more than one
file, you can finish with one with @ and start editing a mefile by giving a:e command, or sedutowriteand use
:n <file>.

If you male changes to the editaropy of a file, but do not wish to write them back, then you musegn !
after the command you would otherwise use; this forces the editor to disyasidaages you hee made. Usehis
carefully.

The:e command can begn a+ argument to start at the end of the file, emeargument to start at line. In
actuality,n may be ay editor command not containing a space, usefully a scar-ijyat or +?pat In forming nev
names to the command, you can use the charatewhich is replaced by the current file name, or the char#cter
which is replaced by the alternate file nariiée alternate file name is generally the last name you typed other than
the current file.Thus if you try to do ae and get a diagnostic that youvea't written the file, you can gé a:w
command and then:a #command to redo the previoles

You can write part of the uffer to a file by finding out the lines that bound the range to be written 1&jng
and giving these numbers after thend before thev, separated by's. You can also mark these lines withand
then use an address of the foryiy on thew command here.

You can read another file into theiffer after the current line by using thecommand. Wu can similarly
read in the output from a command, just legadinstead of a file name.

If you wish to edit a set of files in succession, you caa di the names on the command line, and then edit
each one in turn using the command It is dso possible to respecify the list of files to be edited by givingrthe
command a list of file names, or a pattern to be expanded as you wesilgvea it on the initialvi command.

If you are editing large programs, you will find thie command very useful. It utilizes a data base of func-
tion names and their locations, which can be created by programs sttelgsato quickly find a function whose
name you gie. If the:ta command will require the editor to switch files, then you musir abandon anchanges
before switching.You can repeat thga command without anarguments to look for the same tag again.

8.4. More aout searching for strings

When you are searching for strings in the file Wiimd?, the editor normally places you at the next owvpre
ous occurrence of the string. If you are using an operator sutltasy, then you may well wish to affect lines up
to the line before the line containing the patteYou can give a garch of the fornipat’—n to refer to tha'th line

USD:11-18 Anintroduction to Display Editing with Vi

before the next line containingat, or you can usé- instead of- to refer to the lines after the one containprag |If
you dont give a line ofset, then the editor will affect characters up to the match place, rather than whole lines; thus
use “+0" to affect to the line which matches.

You can hae the editor ignore the case obwds in the searches it does by giving the commsadcRr. The
commandse noicR turns this off.

Strings gven to sarches may actually begrdar expressions. Ifyou do not want or need thiadility, you
should

set nomagic

in your EXINIT. In this case, only the characterand$ are special in patterns. The charattisralso then special
(as it is most werywhere in the system), and may be used to get at the an extended pattern matdhingltfis
also necessary to use a \ beforkeim a forward scan or @in a backward scan, in prtase. Thedollowing table
gives the extended forms whemnagicis set.

1 at beginning of pattern, matches beginning of line
$ at end of pattern, matches end of line

. matches ancharacter

\< matches the beginning of a word

\> matches the end of a word

[str] matches ansingle character istr

[tst] matches ansingle character not istr

[x-y] matches ancharacter betweexandy

* matches annumber of the preceding pattern

If you usenomagicmode, then the[and* primitives ae given with a preceding \.

8.5. More aout input mode

There are a number of characters which you can use te aakctions during input mode. These are sum-
marized in the following table.

“H deletes the last input character
W deletes the last input word, defined aby
erase your erase characteame asH

kill your kill characterdeletes the input on this line

\ escapes a followingH and your erase and kill
ESC ends an insertion

DEL interrupts an insertion, terminating it abnormally
CR starts a ne line

"D backtabs wer autoindent

0°D kills all theautoindent
"D same a®"D, but restores indent next line
Vv guotes the next non-printing character into the file

The most usual way of making corrections to input is by tyfiih¢p correct a single character by typing
one or moréW'’s to back over incorrect vords. Ifyou use# as your erase character in the normal system, it will
work like "H.

Your system kill charactenormally @, "X or "U, will erase all the input you ka gven on the current line.
In general, you can neither erase input back around a line boundary nor can you erase characters which you did not
insert with this insertion command.o make rrections on the pvéous line after a ne line has been started you
can hitescto end the insertion, me ove and male the correction, and then return to where you were to continue.
The command\ which appends at the end of the current line is often useful for continuing.

An Introduction to Display Editing with vV USD:11-19

If you wish to type in your erase or kill character (say # or @) then you must precede i\ withtas you
would do at the normal system commangtle A more general way of typing non-printing characters into the file is
to precede them with’d. The"V echoes as a character on which the cursor restis indicates that the editor
expects you to type a control charactér fact you may type ancharacter and it will be inserted into the file at that
point.*

If you are usinqautoindentyou can backtabwer the indent which it supplies by typing@. This backs up to
ashiftwidthboundary This only works immediately after the suppliatoindent

When you are usingutoindentyou may wish to place a label at the left giarof a line. The way to do this
easily is to type and theriD. The editor will mae the cursor to the left margin for one line, and restore thé-pre
ous indent on the meé You can also type @followed immediately by @D if you wish to kill all the indent and not
have it come back on the next line.

8.6. Uppercase only terminals

If your terminal has only upper case, you can stillwid®y using the normal system a@ntion for typing on
such a terminal. Characters which you normally type areetten to laver case, and you can type upper case let-
ters by preceding them with a\. The characters {" } | ~ arevailable on such terminals, but you can escape them
as\(% \)\''\". These characters are represented on the display in the samewarg tigped.t

8.7. Mand ex

Vi is actually one mode of editing within the editot When you are runningi you can escape to the line
oriented editor oexby giving the comman®. All of the: commands which were introduced abare available
in ex Likewise, mostex commands can bevioked from vi using :. Just gie them without the and follov them
with acr.

In rare instances, an internal error may occwiinin this case you will get a diagnostic and be left in the
command mode afx You can then see your work and quit if you wish by ging a command after the: which
exprompts you with, or you can reentetby givingexavi command.

There are a number of things which you can do more easilytiman invi. Systematic changes in line ori-
ented material are particularly easyou can read the advanced editing documents for the editorfind out a lot
more about this style of editindexperienced users often mix their useexw€ommand mode and command mode
to speed the work tyeare doing.

8.8. Openmode: vi on hardcopy terminals and “glass tty’s’ £

If you are on a hardcgperminal or a terminal which does notvhaa wrsor which can mee df the bottom
line, you can still use the command sevipbut in a dfferent mode. When youyg avi command, the editor will
tell you that it is usinggpenmode. Thisname comes from thepencommand irex which is used to get into the
same mode.

The only difference betweesisualmode andpenmode is the way in which the text is displayed.

In openmode the editor uses a single line wiwdato the file, and moving backward and forward in the file
causes ne lines to be displayed,w#ys belav the current line. Two commands of/i work differently in open:z
and"R. Thez command does not talparameters, but rather dva a windev of context around the current line and
then returns you to the current line.

If you are on a hardcgperminal, th€ R command will retype the current line. On such terminals, the editor
normally uses tw lines to represent the current lin€he first line is a copof the line as you started to edit it, and
you work on the line belw this line. When you delete characters, the editor types a numbertofdVow you the
characters which are deletedhe editor also reprints the current line soon after such changes so that you can see
what the line looks lig egain.

* This is not quite true. The implementation of the editor does nat dtlenuLL ("@) character to appear in files. Also tire(linefeed or'J)
character is used by the editor to separate lines in the file, so it cannot appear in the middle ¥ba tae.insert ap other charactethoweve,

if you wait for the editor to echo the before you type the charactdn fact, the editor will treat a following letter as a request for the corre-
sponding control charactefhis is the only way to typ& or "Q, since the system normally uses them to suspend and resume outpuvand ne
gives them to the editor to process.

T The \ character you g will not echo until you type anotheek

USD:11-20 Anintroduction to Display Editing with Vi

It is sometimes useful to use this mode on verw s&yminals which can suppovt in the full screen mode.
You can do this by enteringxand using ampencommand.

Acknowledgements

Bruce Englar encouraged the earlwalepment of this display editorPeter Kessler helped bring sanity to
version 25 command layout. Bill Jp wrote \ersions 1 and 2.0 through 2.7, and created the Warkethat users
see in the present editavlark Horton added macros and other features and made the editor work on a large number
of terminals and Unix systems.

Appendix: character functions

This appendix gies the uses the editor mek of each characteThe characters are presented in their order in
the Ascil character setControl characters come first, then most special characters, then the digits, upper and then
lower case characters.

For each character we tell a meaning it has as a command smdeaming it has during an inseff. it has
only meaning as a command, then only this is discussed. Section numbers in parentheses indicate where the charac-
ter is discussed; a'‘&fter the section number means that the character is mentioned in a footnote.

@ Not a command charactelf typed as the first character of an insertion it is replaced with the last
text inserted, and the insert terminates. Only 128 charactersvacefsam the last insert; if more
characters were inserted the mechanism is veitable. A”"@ cannot be part of the file due to
the editor implementation (7.5f).

“A Unused.

"B Backward windav. A count specifies repetitiorifwo lines of continuity are kept if possible (2.1,
6.1, 7.2).

“C Unused.

"D As a command, scrolls down a half-windof text. A count gves the number of (logical) lines

to scroll, and is remembered for futdi2 and"U commands (2.1, 7.2). During an insert, back-
tabs oer autoindentwhite space at the beginning of a line (6.6, 7.5); this white space cannot be

backspacedwar.

“E Exposes one more line beldhe current screen in the file, Wé@g the cursor where it is if possi-
ble. (\ersion 3 only.)

“F Forward windav. A count specifies repetitionTwo lines of continuity are kept if possible (2.1,
6.1, 7.2).

"G Equivalent to:fcRr, printing the current file, whether it has been modified, the current line number

and the number of lines in the file, and the percentage of the way through the file that you are.

"H (BS) Same ageft arrow. (Seeh). Duringan insert, eliminates the last input charadiacking wer it
but not erasing it; it remains so you can see what you typed if you wish to type something only
slightly different (3.1, 7.5).

"l (TAB) Not a command charactewhen inserted it prints as some number of spadésen the cursor is
at a tab character it rests at the last of the spaces which represent fitgetapacing of tabstops
is controlled by théabstopoption (4.1, 6.6).

“J (LF) Same aslown arrow (se€j).
“K Unused.
"L The Aascll formfeed charactethis causes the screen to be cleared andwedrdhisis useful

after a transmission erroif characters typed by a program other than the editor scramble the

An Introduction to Display Editing with vV USD:11-21

"M (CR)

>

O T o 2

T(esg

A\
]

SRACE

screen, or after output is stopped by an interrupt (5.4, 7.2f).

A carriage return advances to thexnkne, at the first non-white position in the lin&iven a
count, it advances that matines (2.3). During an insert,GR causes the insert to continue onto
another line (3.1).

Same aslown arrow (se€j).
Unused.
Same asip arrow (seek).

Not a command charactem input mode;Q quotes the nd characterthe same a3V, except
that some teletype durs will eat the€ Q so that the editor wer sees it.

Redravs the current screen, eliminating logical lines not correspondingysicah lines (lines
with only a single @ character on them). On hargdepminals inopenmode, retypes the cur
rent line (5.4, 7.2, 7.8).

Unused. Someletype dners us€ Sto suspend output until pressegis

Not a command characteburing an insert, wittautoindentset and at the beginning of the line,
insertsshiftwidthwhite space.

Scrolls the screen up,verting "D which scrolls dawn. Countswork as thg do for "D, and the
previous scroll amount is common to botn a dumb terminallU will often necessitate clear
ing and redrawing the screen further back in the file (2.1, 7.2).

Not a command charactein input mode, quotes the next character so that it is possible to insert
non-printing and special characters into the file (4.2, 7.5).

Not a command characteburing an insert, backs up bsvould in command mode; the deleted
characters remain on the display (3¢ (7.5).

Unused.

Exposes one more line alethe current screen, leaving the cursor where it is if possi{ble.
mnemonic value for thisdy; howeve, it is next to "U which scrolls up adnch.) (\érsion 3
only.)

If supported by the Unix system, stops the edixiting to the top leel shell. Sameas:stopcr.
Otherwise, unused.

Cancels a partially formed command, such asvaen no following character has yet beeregj
terminates inputs on the last line (read by commands such asd ?); ends insertions of me

text into the luffer. If an EScis given when quiescent in command state, the editor rings the bell
or flashes the screerYou can thus hitescif you dont know what is happening till the editor
rings the bell. If you do’know if you are in insert mode you can tye&ca, and then material to

be input; the material will be inserted correctly whether or not you were in insert mode when you
started (1.5, 3.1, 7.5).

Unused.

Searches for the avd which is after the cursor as a tdgguivaent to typing:ta, this word, and
then acR. Mnemonicallythis command is “go right t6{7.3).

Equivalent to ;e #CR, returning to the prdous position in the last edited file, or editing a file
which you specified if you got a ‘No write since last change diagnostic’ and doanbtavhae

to type the file name again (7.3)You hare o do a:w before™t will work in this case. If you do
not wish to write the file you should de! #crinstead.)

Unused. Reseed as the command character for the Tektronix 4025 and 4027 terminal.
Same asight arr ow (seel).

An operatorwhich processes lines from thaffer with reformatting commandg-alow ! with

the object to be processed, and then the command name terminated Dyubling! and pre-

ceding it by a count causes count lines to be filtered; otherwise the count is passed on to the
object after theé. Thus2!}fmtcr reformats the nd two paragraphs by running them through the

USD:11-22

%

Anintroduction to Display Editing with Vi

programfmt If you are verking onLisp, the command% grindcr,* given at he beginning of a
function, will run the tgt of the function through thesp grinder (6.7, 7.3).To read a file or the
output of a command into the buffer us€7.3). To mply execute a command usk(7.3).

Precedes a namedfter specification. There are namaaffbrs 1-9 used for saving deletedxte
and named buffera-z into which you can place text (4.3, 6.3)

The macro character which, when followed by a numbidrsubstitute for a functiondy a ter-
minals without function &ys (6.9). Ininput mode, if this is your erase charactiewill delete the
last character you typed in input mode, and must be preceded Wwithiasert it, since it ner
mally backs wer the last input character yoagg

Moves to the end of the current line. If yase listcr, then the end of each line will be shown by
printing a$ after the end of the displayed text in the li&@iven a ®unt, advances to the couht’
following end of line; thug$ advances to the end of the following line.

Moves to the parenthesis or bra¢é which balances the parenthesis or brace at the current cursor
position.

A synonym for:& CR, by enalogy with theex& command.

When followed by a returns to the previous context at the beginning of a line. The previous con-
text is set wheneer the current line is mad in a ron-relatve way. When followed by a letter

a-z, returns to the line which was mauk with this letter with an command, at the first non-
white character in the line. (2.2, 5.3). When used with an operator sdchhasoperation tads

place wer complete lines; if you use the operation tads place from the exact marked place to
the current cursor position within the line.

Retreats to the beginning of a sentence, or to the beginningss stexpression if thdisp option

is set. A sentence ends at.a or ? which is followed by either the end of a line or bytgaces.
Any number of closing] " and” characters may appear after tHeor ?, and before the spaces
or end of line. Sentences also begin at paragraph and section boundagen(i¢delor). A
count advances that masentences (4.2, 6.8).

Advances to the lginning of a sentenceA count repeats the fett. Seq above for the defini-
tion of a sentence (4.2, 6.8).

Unused.
Same agRwhen used as a command.

Reverse of the last F t or T command, looking the otheray in the current line. Especially use-
ful after hitting too many characters. Aount repeats the search.

Retreats to the pv@us line at the first non-white charactdiis is the inerse of+ andRETURN.

If the line maved to is rot on the screen, the screen is scrolled, or cleared and redrawn if this is
not possible.If a large amount of scrolling would be required the screen is also cleared and
redrawn, with the current line at the center (2.3).

Repeats the last command which changed tiffeb Especially useful when deleting words or
lines; you can delete some words/lines and thentbitlelete more and moreowds/lines. Gien

a mount, it passes it on to the command being repeated. Thus 2ffier, 8. deletes three ords
(3.3,6.3, 7.2, 7.4).

Reads a string from the last line on the screen, and scarardiofov the next occurrence of this
string. Thenormal input editing sequences may be used during the input on the bottom line; an
returns to command state withoutesearching. Theearch begins when you kik to terminate

the pattern; the cursor mes to he bginning of the last line to indicate that the search is in
progress; the search may then be terminated withLaor RUB, or by backspacing when at the
beginning of the bottom line, returning the cursor to its initial positiBearches normally wrap
end-around to find a string anywhere in the buffer.

*Both fmtandgrind are Berkelg programs and may not be present at all installations.

An Introduction to Display Editing with vV USD:11-23

When used with an operator the enclosed region is normédlgted. Bymentioning an déet
from the line matched by the pattern you can force whole lines tddeteaf. D do this give a
pattern with a closing a closiri@gnd then an offsetn or —n.

To include the charactérin the search string, you must escape it with a precadifgt at the
beginning of the pattern forces the match to occur at tiggnhig of a line only; this speeds the
search. A$ at the end of the pattern forces the match to occur at the end of a lineviory
extended pattern matching igallable, see section 7.4; unless you rs@tagicin your .exrcfile
you will have o preceed the characterg * and™ in the search pattern with\ao get them to
work as you would nagly expect (1.5, 2,2, 6.1, 7.2, 7.4).

0 Moves to he first character on the current line. Also used, in forming numbers, after an initial
1-9.
1-9 Used to form numeric arguments to commands (2.3, 7.2).

A prefix to a set of commands for file and option manipulation and escapes to the dygtam.
is given on he bottom line and terminated with @R, and the command thenxecuted. You can
return to where you were by hittireL or RUB if you hit : accidentally (see primarily 6.2 and
7.3).

; Repeats the last single character find which @igetdor T. A count iterates the basic scan (4.1).

< An operator which shifts lines left orshiftwidth normally 8 spacesLike dl operators, décts
lines when repeated, asdr. Counts are passed through to the basic object 3tashifts three
lines (6.6, 7.2).

= Reindents line forisp, as hough thg were typed in withisp andautoindentset (6.8).

> An operator which shifts lines right orshiftwidth normally 8 spaces.Affects lines when
repeated as in>. Counts repeat the basic object (6.6, 7.2).

? Scans backwards, the opposite.ofsee the/ description abee for details on scanning (2.2, 6.1,
7.4).

@ A macro character (6.9). If this is your kill characteru must escape it with a \ to type it in dur
ing input mode, as it normally backseo the input you hee gven on he current line (3.1, 3.4,
7.5).

A Appends at the end of line, a synonym$ar(7.2).

B Backs up a word, where words are composed of non-blank sequences, placing the cursor at the
beginning of the wrd. Acount repeats the effect (2.4).

C Changes the rest of the text on the current line; a synonycs.for

D Deletes the rest of the text on the current line; a synonydsfor

E Moves forward to the end of a word, defined as blanks and non-blan&s® BindW. A count
repeats the effect.

F Finds a single following charactdiackwards in the current lineA count repeats this search that
mary times (4.1).

G Goes to the line numbengh as peceding agument, or the end of the file if no preceding count

is given. Thescreen is redrawn with theweurrent line in the center if necessary (7.2).

H Home arrow. Homes the cursor to the top line on the screen. If a countas,dhen the cursor
is moved to the countth line on the screen. Inwiase the cursor is naed to the first non-white
character on the line. If used as the target of an opefalldines are affected (2.3, 3.2).

I Inserts at the beginning of a line; a synonymnrfor

J Joins together lines, supplying appropriate white space: one space betorelsn two paces
after a., and no spaces at all if the first character of the joined on lije Ascount causes that
mary lines to be joined rather than the defaul (&.5, 7.1f).

K Unused.

USD:11-24

Y4

Anintroduction to Display Editing with Vi

Moves the cursor to the first non-white character of the last line on the scdigim.a count, to

the first non-white of the coutlt’ line from the bottom. Operators affect whole lines when used
with L (2.3).

Moves the cursor to the middle line on the screen, at the first non-white position on the line (2.3).

Scans for the next match of the last pattewergto / or ?, but in the r@erse direction; this is the
reverse ofn.

Opens a ne line abae the current line and inputs text there up tceaa A count can be used
on dumb terminals to specify a number of lines to be opened; this is generally obsolete, as the
slowoperoption works better (3.1).

Puts the last deleted text back beforevabtbe cursar The text goes back as whole linesabo

the cursor if it was deleted as whole lines. Otherwise the text is inserted between the characters
before and at the cursoMay be preceded by a namadfbr specification x to retrieve the con-

tents of the bffer; buffers 1-9 contain deleted materialuffersa-z are aailable for general use

(6.3).

Quits fromvi to excommand modeln this mode, whole lines form commands, ending with a
RETURN. You can gie dl the : commands; the editor supplies thes a prompt (7.7).

Replaces characters on the screen with characters you Wgolaydashion). Erminates with an
ESC

Changes whole lines, a synonym far A count substitutes for that matines. Thelines are
saved in the numeric buffers, and erased on the screen before the substitution begins.

Takes a sngle following charactelocates the character before the cursor in the current line, and
places the cursor just after that characeicount repeats thefett. Mostuseful with operators
such agl (4.1).

Restores the current line to its state before you started changing it (3.5).
Unused.

Moves forward to the beginning of a word in the current line, wheoed® are defined as
sequences of blank/non-blank charactér&ount repeats the effect (2.4).

Deletes the character before the curdorcount repeats thefett, but only characters on the cur
rent line are deleted.

Yanks a cop of the current line into the unnamedffer, to be ut back by a latep or P; a very
useful synonym foyy. A count yanks that marlines. Maybe preceded by auffer name to put
lines in that buffer (7.4).

Exits the editar (Same asxcr.) If ary changes hee keen made, theuffer is written out to the
current file. Then the editor quits.

Backs up to the previous section boundakysection begins at each macro in fieetionsoption,
normally a *.NH’ or *.SH’ and also at lines which which start with a formfded Lines bgin-

ning with{ also stofd[; this makes it useful for looking backwards, a function at a time, in C pro-
grams. Ifthe optionlisp is set, stops at eachat the bginning of a line, and is thus useful for
moving backwards at the topvkb LISP objects. (4.2, 6.1, 6.6, 7.2).

Unused.

Forward to a section boundaisee][[for a definition (4.2, 6.1, 6.6, 7.2).
Moves to he first non-white position on the current line (4.4).
Unused.

When followed by a returns to the previous comte The previous context is set whever the
current line is meed in a ron-relatve way. When followed by a lettesi—z, returns to the position
which was marked with this letter witmacommand. Whensed with an operator suchdgshe
operation takes place from the exact marked place to the current position within the line; if you
use’, the operation takes placesn complete lines (2.2, 5.3).

An Introduction to Display Editing with vV USD:11-25

- O T O >

Appends arbitrary text after the current cursor position; the insert can continue onto multiple lines
by usingrRETURN within the insert. A count causes the inserted text to be replicated, but only if
the inserted text is all on one line. The insertion terminates witls@a(8.1, 7.2).

Backs up to the beginning of aowd in the current lineA word is a sequence of alphanumerics,
or a sequence of special characté&xount repeats the effect (2.4).

An operator which changes the fallimg object, replacing it with the following input text up to
anesc If more than part of a single line is affected, the tehich is changedveay is savel in
the numeric nameduffers. Ifonly part of the current line isfatted, then the last character to be
changed way is marked with a$. A count causes that maobjects to be affected, thus b@h)
andc3) change the following three sentences (7.4).

An operator which deletes the following object. If more than part of a lindeisted, the text is
saved in the numeric bffers. Acount causes that maiobjects to be affected; thudw is the
same asl3w (3.3, 3.4, 4.1, 7.4).

Advances to the end of the next word, defined abfandw. A count repeats the effect (2.4,
3.1).

Finds the first instance of the next character following the cursor on the currenflicmunt
repeats the find (4.1).

Unused.

Arrow keysh, j, k, I, andH.

Left arrow. Moves the cursor one character to the ldfike the other arne keys, eitherh, the

left arr ow key, or one of the synonymsl) has the same fefct. Onv2 editors, arre keys an

certain kinds of terminals (those which send escape sequences, such as vt52, ¢100, or hp) cannot
be used.A count repeats the effect (3.1, 7.5).

Inserts text before the cursotherwise likea (7.2).

Down arr ow. Moves the cursor one line @ in the same column. If the position does naste
vi comes as close as possible to the same column. Synonyms itic{lidefeed) andN.

Up arr ow. Moves the cursor one line ugP is a synonym.
Right arrow. Moves the cursor one character to the righirCE is a synonym.

Marks the current position of the cursor in the mark register which is specified bytiobaiac-
tera—z. Return to this position or use with an operator usiog” (5.3).

Repeats the lagbr ? scanning commands (2.2).

Opens n& lines belav the current line; otherwise like (3.1).
Puts text after/beiw the cursor; otherwise like (6.3).
Unused.

Replaces the single character at the cursor with a single character you type wTdhanaeter
may be arRETURN, this is the easiest way to split lineA. count replaces each of the fallimg
count characters with the single characteemi seeR above which is the more usually useful
iteration ofr (3.2).

Changes the single character under the cursor to the text which follows ufEsag, ajiven a
count, that mancharacters from the current line are chang€le last character to be changed is
marked with$ as inc (3.2).

Advances the cursor upto the character before tkieaharacter typed. Most useful with opera-
tors such asl andc to delete the characters up to a faflog character You can use to delete
more if this doesn’delete enough the first time (4.1).

Undoes the last change made to the currefieb If repeated, will alternate between these tw
states, thus is its ownvese. When used after an insert which inserted text on more than one
line, the lines are sad in the numeric named buffers (3.5).

USD:11-26

“? (DEL)

Anintroduction to Display Editing with Vi

Unused.
Advances to the beginning of the next word, as defindu(By4).

Deletes the single character under the cur¥dth a count deletes deletes that mwaharacters
forward from the cursor position, but only on the current line (6.5).

An operatoy yanks the following object into the unnamed temporarffe If preceded by a
named hffer specification; x, the text is placed in thauBfer also. Text can be receered by a
laterp or P (7.4).

Redravs the screen with the current line placed as specified by theifdlcharacterRETURN
specifies the top of the screerthe center of the screen, ancht the bottom of the screes
count may be gen dter thez and before the following character to specify they sereen size
for the redrav. A count before the gives the number of the line to place in the center of the
screen instead of the default current line. (5.4)

Retreats to the lginning of the beginning of the preceding paragraphparagraph begins at
each macro in thparagraphsoption, normally “.IP’, *.LP’, *.PP’, *.QP’ and ‘.bp’.A paragraph
also begins after a completely empty line, and at each section boundajfygbes) (4.2, 6.8,
7.6).

Places the cursor on the character in the column specified by the count (7.1, 7.2).

Advances to the beginning of the next paragrapee{ for the definition of paragraph (4.2, 6.8,
7.6).

Unused.
Interrupts the editoreturning it to command accepting state (1.5, 7.5)

An Introduction to Display Editing with vV USD:11-27

