ne

A nice editor
Version 1.0

by Sebastiano Vigna

Copyright (© 1993 Sebastiano Vigna.

Permission is granted to make and distribute verbatim copies of this manua provided the copyright
notice and this permission notice are preserved on al copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to thisone.

Permission is granted to copy and distributetranslations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the Free Software Foundation.

Chapter 1: Introduction 1

1 Introduction

ne isafull screen text editor for UN*Xx (or, more precisely, for PosiX: see Chapter 7 [Motivations
and Design], page 65) and for the Amiga. | came to the decision of writing such an editor after getting
completely sick of vi , both from a feature and user interface point of view. | needed an editor that |
could use through at el net connection or a phone line, and that wouldn't fire off a full-blown LITHP!
operating system just to do some editing.

The first versions of ne were created on an Amiga 3000T, using the port of the cur ses library by
Simon John Raybould. After switchingtothelower-level t er mi nf o library, the development continued
under UN*X. Finaly, | ported t er m nf o to the Amiga, thus making again possibleto develop on that
platform. For ne 1.0, an effort has been made in order to provide at er ni nf o emulation using GNU’s
t er ncap.

The main inspiration for thiswork came from Martin Taillefer’'s Tur boText for the Amiga, which
isthe best editor | ever saw, on any computer.

The design goa of ne was to write an editor easy to use at first sight, powerful, and completely
configurable. Running on any terminal that vi could handle was a so a basic issue, because there isno
use in getting accustomed to a new tool if you cannot use it when you really need it. Finaly, sparing
resource usage was considered essential. ne currently runs only on uN*X terminals, but afuture release
will provide an X interface.

Of course, the Amiga user will find ne much less attractive. There are several excellent editors for
the Amiga, and ne lacks many powerful features the users are now accustomed to. However, for very
specia usages, such as editing through a seria terminal connected to the AUX: device, ne isthe only
choice, sinceit runsin any CLI (even in remote ones). Of course, acorrect installation of at er m nf o
(the Amigat er m nf o clone) isabasic requirement. See Chapter 8 [Some Notesfor the Amiga User],

page 69.

A concise overview of the main features follows:

¢ three user interfaces: control keystrokes, command line, and menus; keystrokes and menus are
completely configurable;

¢ the number of documents and clips, the dimensions of the display, and the file/line lengths are
limited only by the integer size of the machine;

¢ simple scripting language where scripts can be generated via an idiotproof learn/play method;
¢ unlimited undo/redo capability (can be disabled with a command);
¢ automatic preferences system based on the extension of the file name being edited,;

! This otherwise unremarkabl e language is distinguished by the absence of an ‘s’ in its character set;
users must substitute‘t h’. LITHP issaid to be useful in protheththing lithtth.

ne's manua

¢ afilerequester for easy file retrieval;
¢ extended regular expression search and replace alaenacs and vi ;
¢ editing of binary files.

Chapter 2: Basics 3

2 Basics

Smple things should be simple, and complex things should be possible. (Alan Kay)

ne’'s user interface is essentially a compromise between the limits of character driven terminals,
and the power of GUIs. While | would never deny that real editing is done without ever touching a
mousg, it isalso truethat it should be doable without ever touching amanual. Thistwo conflicting goals
can be easily accomodated in a single program if we can offer a series of interfaces which alow for a
differentiated usage.

In other words, itisunlikely that ane wizard will ever haveto activate amenu, but in order to become
an expert user you just have to use the menus enough to learn by heart the most important keystrokes.
A good manual is always invaluable when one comesto configuration and esotheric features, but not al
users will ever need to change ne’s menus or key bindings.

Another important thing is that powerful features should aways be accessible, at least in part, to
every user. Putting a macro capability that depends on learning LITHP is undoubtly a strange design
choice. The average user should be able to record his actions, replay them, and save them in a humanly
readable format for further usage and editing.

In the following sections we will make a quick tour of ne’s features.

2.1 Starting

In order to start ne, just type ‘ne’ and press RETURN. If you want to edit some specific file(s), you
can put their name(s) on the command line just after the command name, as for any UN* X command.
Immediately (hopefully), the screen of your terminal will be cleared (or filled with the contents of the
first file you specified).

At the bottom of the screen, you will see a line containing some numbers and letters. It is named the
status bar, because it reports to you part of the internal state of the editor.

Writing text is pretty straightforward: if you terminal is properly configured, every key will (should)
do what you expect. Alphabetic characters insert text, cursor keys move the cursor, and so on. You
can use the DELETE and BACKSPACE key in order to perform corrections. If your keyboard has an
I NSERT key, you can use it in order to toggle insert mode. In general, ne tries to squeeze everything
from your keyboard—functionskeys and specia movement keys should work flawlessly if your terminal
is properly configured. If not, complain with your system administrator.

At startup, the status bar has the following form:

4 ne's manual

L: 1 C 1 i pvu t

(the numbers could be different, and a filename could be shown as last item). You probably aready
guessed that the numbers after ‘L: ’ and ‘C: * are the line and column numbers, respectively. The small
letters represent instead user flags that you can turn on and off. In particular, the‘i * letter tells you that
insert modeison, while‘p’ indicates that the automatic preferences system is activated. For athorough
explanation of the meaning of the flags on the status line, see Section 3.2 [The Status Bar], page 11.

Once you are accustomed to cursor movement and line editing, it is time to press the F1 (the first
function key), or in case your keyboard does not have such a key, ESCAPE. Immediately, the menu bar
will appear, and the first menu will be drawn. You can now move around menus and menu items by
pressing the cursor keys. Moreover, alower case aphabetic key will move to thefirst item whose name
starts with that letter, and an upper case alphabetic key will move to the first menu whose name starts
with that letter.

Moving around the menus should give you an idea of the capabilities of ne. If youwant to save your
work, you should use the‘Save As. ..’ item fromthe ‘Pr oj ect ' menu. Menus are fully discussed
in Section 3.6 [Menus], page 15. When you want to exit from the menu system, press F1 (or ESCAPE)
again. If you instead prefer to choose a command and execute it, move over the respective menu item
and press RETURN.

At the end of severa menu items you will find strange symbols like " A or F1. They represent
shortcuts for the respective menu items. In other words, instead of activating, selecting and executing
amenu item, which can take seconds, you can simply press a couple of keys. The symbol ** ' in front
of a character denotes the shortcut produced by the CONTRCL key plus that character (I suppose here
you are perfectly aware of the usage of the CONTROL key: itisjust asif you had to type a capital letter
with SHI FT). The descriptions of the form Fn represent instead function keys. Note that under certain
conditions (for instance, while using ne through at el net connection) some of the shortcuts could not
work, because they are trapped by the operating system for other purposes (see Chapter 6 [Hints and
Tricks], page 63).

Finally, we have the third and last interface to ne’s features. the command line. If you press
CONTRQOL- K, or ESCAPE followed by *: * (alavi), youwill be requested some command to execute.
Just press RETURN for the time being.

In what follows, when explaining how to use acommand, we will usualy describe the corresponding
menu item. The related shortcut and command can be found, respectively, on the menu item itself, and
in Section 3.6 [Menus], page 15.

Chapter 2: Basics 5

2.2 Loading and Saving

The first thing to learn about an editor is how to exit. ne has a G oseDoc command which can
be activated by pressing CONTROL- Q by choosingthe ‘T ose’ item of the‘Docurent ' menu, or by
activating the command linewith CONTROL- K, writing ‘cd’ and pressing RETURN. Itseffectisto close
the current document without saving any modification (you will be requested to confirm your choicein
case the current document has been modified since the last save).

There is dso a command Qui t, which leaves the editor without saving any maodification, and an
Exi t command which saves the modified documents before quitting.

This choice of shortcuts could surprise you—wouldn’'t Quit be a much better candidate for
CONTROL- Q? WEell, experience shows that the most common operation is closing a document, rather
than quitting the editor. If thereis just one document, the two operations coincide (thisis typical, for
instance, when you use ne for writing electronic mail), and if there are many documents, it is far more
common to close a single document than all the existing documents.

If you want to load afile, you have to use the Open command, which can be activated by pressing
CONTROL- O, by choosingthe*Open. . . * itemof the'Pr oj ect’ menu, or by typingit onthe command
line (as in the previous case). You will be prompted with the list of files and directories in the current
working directory (you can tell the directory names because they end with a slash). You can move on
any of them by using the cursor keys, or any other movement key. Pressing an a phabetic key will move
the cursor on thefirst entry after the cursor starting with the given letter. When the cursor is positioned
over thefile you want to open, just press RETURN, and the file will be opened. If instead you moveon a
directory name, pressing RETURN will display the contents of that directory.

You can aso escape with F1 or ESCAPE, and type manually the file name on the command line (or
escape again, and abort the loading operation).

When you want to save afile, just use the command Save (CONTROL- S). It will use the current
document name (and will ask for one if noneis available). SaveAs, on the contrary, will aways ask
for anew name before saving thefile.

If ne isinterrupted by an external signal (for instance, if your termina crashes), it will try to save
your work on some emergency files. See Section 3.9 [Emergency Save], page 24.

2.3 Editing

An editor ispresumably used for editing. If not, you could decide to not use ne, becauseit just does
that—it edits. It doesnot play Tet ri s. It does not evaluate recursive functions. It does not solve your
love problems. It just allowsyou to edit.

6 ne’s manual

The design of ne makes editing extremely natural and straightforward. There is no specia thing to
do in order to start—I assume that if you start an editor, you want to edit, and not to give commands.
Thus, just press the keys of your keyboard, and see what happens.

ne provides two ways of deleting characters, bound to the BACKSPACE (or CONTROL- H, if you
have no such key) and to the DELETE key respectively. In the former case you delete the character at
the left of the cursor, whilein the latter you delete the character just under the cursor. Thisisin contrast
with many UN*X editors, which for unknown reasons decide to limit your ways of destroying things—
something notoriously much funnier than creating. (see aso Section 4.11.2 [DeleteChar], page 55, and
see Section 4.11.3 [Backspace], page 55).

If you want to delete aline, you can usethe Del et eLi he command, or CONTROL- Y. A very nice
feature of ne isthat each time anonempty lineis deleted, it is stored in atemporary buffer from whichit
can be undeleted viathe Undel Li ne command, or CONTROL- U (see also Section 4.11.5 [DeleteLin€],
page 56, and see Section 4.7.3 [UndelLing], page 40).

If you want to copy, cut, paste or erase a block of text, you have to set a mark. Thisis done viathe
Mar k command, activated by choosing the ‘Mar k Bl ock’ item of the ‘Edi t* menu, or by pressing
CONTROL- B (=block). This command toggles the mark (puts it in the current cursors position, or
remove it). Whenever the mark is set, the zone between the mark and the cursor can be cut, copied or
erased. Note that by using CONTROL- @you can set a vertical mark instead, that allows to cut exactly
rectangles of text. Whenever a mark has been set, an ‘M appears on the command ling; a‘V' appears
instead if the mark isvertical. If you forget where the mark is currently, you can use the ‘Got o Mar k’
menu item of the‘Sear ch’ menu in order to move to cursor over it.

When you cut or copy ablock, you can saveit withthe‘Save C i p. .. ' menuitem of the'Edi t’
menu. You can aso load in memory a file with ‘Qpen A i p. . .’, and paste it anywhere. All such
operation act on the current clip, which is by default the clip 0. You can change the current clip number
withthe d i pNunber command. See Section 4.4.10 [ClipNumber], page 32.

One of the most noteworthy features of ne isits unlimited undo/redo capability. Each editing action
is recorded, and can be played back and forth as much as you like. Undo and redo are bound to the
function keys F5 and F6.

Another interesting feature is the possibility of loading an unlimited number of documents. If you
activate the NewDoc command (using the ‘Docunent ' menu, CONTROL- D or the command line), a
new, empty document will be created. You can switch between the existing documentsin memory with
F2 and F3, which are boundto the Pr evDoc and Next Doc commands. If you have alot of documents,
the‘Sel ect. ..’ menu item prompts you with the list of names of currently loaded documents, and
allows you to choose directly what to edit.

Chapter 2: Basics 7

2.4 Basic Preferences

ne has anumber of flags which specify alternative behaviours, the most prototypica example being
theinsert flag, which specifiesif thetext you typeinisinserted in the existing text, or overwritesit. You
can toggle thisflag with the ‘I nsert’ menu item of the ‘Pr ef s’ menu, or with the | NSERT key of
your keyboard (toggle means to change the value of a flag from true to false, or from faseto true; aso
see Section 4.9.3 [Insert], page 45).

Another important flag is the free form flag, which specifies if the cursor can be moved anywhere,
or only on existing text (alavi). Programmers usualy prefer non free form editing; text writers prefer
free form. See Section 4.9.5 [FreeForm], page 45, for some elaboration. The free form flag can be set
with the ‘Fr ee For mi menu item of the‘Pr ef s’ menu

At thispoint, | suggest you to explore by trial and error the other flags of the‘Pr ef s’ menu. | would
prefer spending a couple of words about the automatic preferences, or, in short, autoprefs.

Having many flags ensures a high degree of flexibility, but can turn editing into a nightmare if for
each different kind of file loaded one has to turn on and off dozens of options. The solution is having
the program handling al the details, depending on some characteristic of thefile.

The solution chosen in ne is to look at the extension of the name of afile, i.e,, the last group of
|etters after adot. For instance, the extension of ‘ne. t exi nf o’ is‘t exi nf o', while the extension of
‘source.c’'is‘c’.

Whenever you select the ‘Save Aut oPr ef s’ menu item, ne saves in a directory named ‘. ne’
(in your home directory) a file, with the same name as the extension of the name of current document
(postfixed with ‘#ap’), containing all the commands which will rebuild the current settings. Whenever
you will open afile with the same extension in its name, ne will reload automagically the same set of
preferences (there is aflag which inhibits the process; see Section 4.9.1 [AutoPrefs], page 44).

Finally, when you select the ‘Save Def Prefs’ menu item, a specia preferences file named
‘. def aul t #ap’ issaved that isloaded whenever ne isrun, before loading any file. Hereis the place
to put in the preferences you always want to be set.

Note aso that a preferences file is just a macro (as described in the following section). Thus, it can
be edited manually if necessary.

2.5 Basic Macros

Very often, the programmer or the text writer has to repeat some complex editing action over a series
of similar blocks of text. Unlessyou are an awk wizard, thisiswhere macros comein.

8 ne’s manual

Macros alows you to record complex actions and play them many times. They can be saved on
disk for further usage, edited, loaded, or bound to any key. This alowsto reconfigure each key of your
keyboard with a complex action, if you want so.

Recording a macro is very simple. The keystroke CONTROL- T starts and stop a macro recording
(you can seeyou are actudly recording if an ‘R appearsonthestatusbar). Whatever you doisregistered,
and when you stop (again with CONTROL- T) the recording process, you can play the macro with the
‘Pl ay Once’ item of the ‘Macr os’ menu, or with the F9 key. If you want to repeat the action many
times, the Pl ay command allowsyou to specify anumber of timesto repeat the macro. You can always
interrupt the execution with CONTRCL- \ .

After recording amacro, you can saveit withthe‘Save Macr o. . . * menuitem. Any macrofilecan
be played (without modifying the current macro) with the ‘Macr o. . .’ menuitem. Useful macros can
be permanently bound to a keystroke, as explained in Section 5.1 [Key Bindings], page 59. Moreove,
whenever acommand line does not specify an “internal” command, it is assumed to specify the name of
amacro to execute. Thus, you can execute macros just by typing their complete file name.

In order to make this mechanism even more transparent, if the first attempt to open amacro failsne
checks for amacro with the given nameinthe ‘. ne’ subdirectory of your home directory. This allows
you to program simple extensionsto ne’s language. For instance, al automatic preferences macros can
be executed just by typing their names—if you have an automatic preference for the‘doc’ extension, by
typing the command doc#ap you will set ne’s flags exactly asif you loaded afile ending with ‘. doc’.
In generd, it is a good idea to save frequently used macros in ‘$HOVE/ . ne’, so that you can invoke
them just by name (of course, you cannot recall in thisway macros with the same name as a command).

Since loading a macro each time it isinvoked would be a rather slow and expensive process, once a
macro has been executed it is cached internally. The next invocations of the macro will used the cached
version.

Warning: the macro names are not case sensitive or path sensitive. ne caches internaly only the
file name of a macro, not the path name, and uses a case insensitive comparison. That is, if you cdl
"/ f oobar/ macr o', asubsequent call for ‘/ usr / MACRO will usethe cached version. You can clear
the cache by using the Unl oadMacr os command. See Section 4.6.6 [UnloadM acros], page 39.

2.6 More Advanced Features

It often happensthat you have to browse through afile, switching frequently between a small number
of positions. In this case, you can use bookmarks. There are ten bookmarks per document: they can
be set with the Set Booknmar k command, and reached with the Got oBooknar k command. See
Section 4.10.19 [SetBookmark], page 54, and see Section 4.10.20 [GotoBookmark], page 54. Note that
in the default configuration no key binding is assigned to these commands: if you use them frequently,
you may want to change the key bindings. See Section 5.1 [Key Bindings], page 59.

Chapter 2: Basics 9

ne alowsasimplified form of binary editing. If the binary flag is set, only NULLs are considered
newlineswhen loading or saving. Thus, binary files can be safely loaded, modified and saved. Inserting
anew lineor joining two lines has obviously the effect of inserting or deletingaNULL . Please be careful
to not mismatch the state of the binary flag when loading and saving the samefile.

The NoFi | eReq command allows to deactivate the file requester. It isintended for “tough guys’
who always remember the name of their files and can type them at the speed of light.

Should you need to execute UN*X commands while using ne, you have two possibilities. The
Syst emcommand can run any UN*X command; you will get back into ne as soon as the command
execution terminates. See Section 4.12.8 [System], page 58. The Thr ough command (which can be
found in the ‘Edi t ' menu), however, is much more powerful: it cuts the current block, passes it as
standard input to any UN*X command, and pastes the command output at the current cursor position.
The neat effect with filter commands (UN*X commands which read from standard input and write
to standard output, eg., sort) is that the currently selected block is passed through the filter. See
Section 4.4.11 [Through], page 33.

For an exaustive list of the remaining features of ne, see Chapter 3 [Reference], page 11.

10

ne's manua

Chapter 3: Reference 11

3 Reference

In this chapter we will methodically overview each part of ne. Itisarequired reading for becoming
an expert user, because some commands and features are not available through menus.

3.1 Arguments

The main argument you can giveto ne isalist of files you want to edit. They will be loaded within
separate documents.

The- - noconf i g option allowsto skip the reading of the key bindingsand menu configuration files
(see Chapter 5 [Configuration], page 59). Thisisessentia if you are experimenting a new configuration,
and you make mistakesin it.

The - - macr o filename option alows to specify the name of a macro that will be started just after
all documents have been loaded. A typical macro would move the cursor on acertain line.

3.2 The Status Bar

The last line of the screen, the status bar, is reserved by ne in order to display some information
about itsinternal state. Note that on most terminalsis physically impossibleto write a character on the
last column of thisline, so that we are not really stealing precious space to editing.

The status bar looks more or less like that:

L: 31 C 25 i abcwf pvur BMR* /f oo/ bar

Some of the letters may be missing—their presence isrelated to the value of a series of flags, as we
will see later.

The numbersafter ‘L: * and ‘C: ’ represent the line and column of the cursor position. The first line
and the first column are numbered by 1. They change while the cursor is moving, and this fact can
really slow down the cursor movement if you are using ne through a slow connection. In this case, it
isagood ideato turn off the status bar using the ‘St at us Bar ' menu item of hte ‘Pr ef s’ menu, or
the St at usBar command. See Section 4.9.7 [StatusBar], page 46. Note that if you really need it, it
isanyway agood ideato turn on the fast GUI mode using the ‘Fast GUl ' menu item of the ‘Pr ef s’
menu, or the Fast GUI command (see Section 4.9.4 [FastGUI], page 45), because in this case the status
bar is not draw in reverse, and some additional optimization can be done when refreshing it.

12 ne's manua

Theletters after the line and column number represent the status of the flags associated to a series of
command. In detail:

appears if theinsert flag istrue. See Section 4.9.3 [Insert], page 45.

a appearsif the auto indent flag istrue. See Section 4.8.8 [Autolndent], page 43.
‘b’ appearsif the back search flag istrue. See Section 4.5.8 [SearchBack], page 36.
‘c’ appears if the case sensitive search flag istrue. See Section 4.5.9 [CaseSearch], page 36.
‘W appears if theword wrap flag istrue. See Section 4.8.7 [WordWrap], page 43.
‘f appearsif the free form flag istrue. See Section 4.9.5 [FreeForm], page 45.
‘P’ appearsif the automatic preferences flag istrue. See Section 4.9.1 [AutoPrefs], page 44.
‘v’ appearsif the verbose macros flag istrue. See Section 4.9.12 [VerboseM acros|, page 48.
‘u’ appears if the undo flag istrue. See Section 4.7.4 [DoUndo], page 40.
‘r’ appearsif theread only flag istrue. See Section 4.9.8 [ReadOnly], page 46.
‘t’ appears if the turbo parameter is nonzero. See Section 4.9.11 [Turbo], page 47.
‘B’ appears if the binary flag istrue. See Section 4.9.2 [Binary], page 44.
‘M appearsif you are currently marking ablock. See Section 4.4.1 [Mark], page 30.
Vv can appear in place of ‘M if you are currently marking a vertical block. See Section 4.4.2
[MarkVert], page 30.
‘R appearsif you are currently recording a macro. See Section 4.6.1 [Record], page 37.
e appearsif the document has been modified since the last save.

The file name appearing after this group of letters is the file name of the current document. Very
long file names may end off screen. Of course, ne is keeping track internally of the compl ete file name,
which isused by the Save command, and as default input by the SaveAs command. See Section 4.2.4
[Save], page 27, and Section 4.2.5 [SaveAs], page 27.

Note that sometimes ne needs to communicate you some message. The message is then usually
written over the status bar, where it stays until you do something (any such message ends with a full
stop). Any action (moving the cursor, inserting a character et cetera) will restore the normal 1ook of the
status bar.

3.3 Thelnput Line

The last line of the screen is usually occupied by the status bar (see Section 3.2 [The Status Bar],
page 11); however, whenever you have to interact with ne, for instance providing some input to a
command which requires it, the last line becomes the input line. You can see this because a prompt is

Chapter 3: Reference 13

displayed at the start of the line, suggesting what kind of input isrequired. The prompt always endswith
acolon, soitisimpossibleto missit for an error message.

There are two essentialy different waysin which input can be done: whenever ne just needsto know
a simple decision which can be expressed by one character, you can type it and ne will immediately
accept and use your input: it is caled aimmediate input. Thisisthe case, for instance, of the prompt
which asks you if you realy want to quit a modified document. If, instead, awhole string is required,
you can type severa characters, perform some editing actions, and end your input with the RETURN key:
itiscaled along input. You can easily distinguish between this two modes because in immediate mode
the cursor is not on the input line.

When doing a immediate input, there is usualy a character appearing just after the prompt. It is
the default value, which is used if you just press the RETURN key. Note that case is not significant in
immediate inputs. Moreover, if ayes/no choiceis requested, anything elsethan 'y’ will be considered a
negative answe.

When doing along input, there are a number of editing features available. Asanywhere elsein ne,
knowledge reuseis the basic goal.

Essentially, you can edit theinput lineexactly asaline of text. All key bindingsrelated to line editing
work on the command line exactly asin adocument. Thisistrue even of custom key bindings. Thus, no
particular explanation is needed here—just edit as you are used to. Moreover, the contents of the input
line can be replaced by thefirst line of the current clip using the keystroke which is bound to the Past e
command, usually CONTRCL- V.

Note that if you type a line which is longer then the screen width, it is scrolled away. This alows
to input very long lines even on small monitors. Thereisalimit of 1024 characters, but | do not really
think you are going to fedl it as a limitation.

Thereisauseful feature of long inputs. you are often offered with adefault input value (for instance,
if you change the TAB size, the old TaB width). If you type immediately an aphabetic character, the
default value is completely erased. If instead you use any non aphabetical character (for instance, you
move the cursor or delete the first character), the default input can be further edited. A simple way of
keeping the default value without really doing anything is to press the BACKSPACE key (or any key
which isbound to the Backspace command). No character can be deleted, but being thefirst key non
alphabeticd, the default input value will be retained.

You can always cancel along input using F1, ESCAPE, or in genera any key which is bound to the
Escape command. The effect will vary depending on what your were requested to input, but in general
the execution of the command requiring the input is stopped.

14 ne's manual

3.4 TheCommand Line

The command lineis atypica (topical) way of controlling an editor on character driven systems. It
has some advantages in term of access speed, but it is a complete failure from a user interface point of
view. ne has acommand line which should be used whenever strange features have to be accessed, or
whenever you are enough accustomed to know by heart the commands you want to use, and which are
not bound to any key.

In order to access the command line, you have two possibilities: either activating menu mode and
typing acolon (*: "), or typing CONTROL- K (or any key which is bound to the Exec command; see
Section 4.12.3 [Exec], page 57). Thefirst method will work regardless of any key binding configuration
if you activate the menus with the ESCAPE key, sinceit is not possibleto reconfigure it.

Once you activate the command line, the status bar will turn into an input line (see Section 3.3 [The
Input Line], page 12) with prompt ‘Conmrand: ’, waiting for you doing a long input. In other words,
you can now type any command (possibly with arguments), and when you press RETURN the command
will be executed.

If the command you specify does not appear in ne’s interna tables, it is considered to be a macro
name. See Section 2.5 [Basic Macrog|, page 7, for details.

3.5 TheRequester

In various situations, ne needsto ask you to choose one of severa strings (where “ several” can mean
alot, even hundreds). For thiskind of event, the requester isissued. The requester displays the strings
in as many columnsas possible, and let you move with the cursor from one string to another. The strings
can fill many screens, which are handled as consecutive pages. Alwaysin the spirit of knowledge reuse,
all the navigation keys work exactly asin norma editing. Thisis true even of custom key bindings.
Thus, for instance, you can move to the top or bottom of the list with CONTROL- " (in the standard
keyboard configuration).

As with the input line (see Section 3.3 [The Input Lin€], page 12), you can confirm your input with
RETURN or escape the requester with F1 (or the ESCAPE key, or whatever has been bound to the
Escape command).

A special feature is bound to al phabetic characters: they move you on the next entry starting with the
letter you typed. The search is case insensitive, and continues on the first string after having passed the
last one.

An example of requester isthe file requester that ne issues whenever afile operation isgoing to take
place. Inthis case, pressing RETURN while on a directory name will enter the directory. Note also that,

Chapter 3: Reference 15

should the requester take too long to appear, you can interrupt the directory scanning with CONTRCOL- \ .
However, the listing will likely be incompl ete.

Note that there are two items which always appear inthefilelisting: *. /" and ‘. ./ ’. Thefirst one
represents the current directory (and can be used to force a reread), the second one the parent directory
(and can be used to move up by one level).

Another example of requester isthelist of commands appearing when you use the Hel p command.
(Note that even the help text appearing on the screen is handled by the requester—your “choice” of a
lineinthetext isof course discarded, but the flexibility of the requester allowsto gain in code size, since
no separate code is necessary in order to display the on-line help.)

3.6 Menus

ne’'s menus are extremely straightforward. The suggested way of learning their use is by tria and
error, with a peek here and there at this manual when some doubts arise.

Menusare activated by F1, or in case your keyboard does not have such akey, ESCAPE, oringenera
any key which is bound to the Escape command. Movement is accomplished by pressing the cursor
keys and the page up/down keys (which move to the first or last menu item in a menu). You can aso
move around menus and menu items by pressing the alphabetic keys; alower case letter will move to
the first item whose name starts with the given letter; an upper case letter will move to the first menu
whose hame starts with the given letter.

Each menuitem of ne’s standard menu correspond exactly to asingle command. Thus, in explaining
what each menu item alows you to do, you will be simply referred to the section which explains the
command relative to the menu item.

If you plan to change ne’s menu (see Section 5.2 [Changing Menus], page 60), you should take a
look at thefile ‘def aul t . menus’ which comes with ne’s distribution. It contains a complete menu
configuration which clones the standard one.

3.6.1 Project

The Project menu contains standard items which alow to load and save files. Quitting or exiting
(with save) ne isaso possible.

‘Open. ..~
See Section 4.2.2 [Open], page 26.

16 ne's manua

‘Open New. ..’
See Section 4.2.3 [OpenNew], page 27.

‘Save’ See Section 4.2.4 [Save], page 27.

‘Save As. ..’
See Section 4.2.5 [SaveAs], page 27.

‘Cear’ SeeSection4.2.1[Clear], page 26.
‘Qit’ See Section 4.3.1 [Quit], page 28.
‘Exit’ See Section 4.3.2 [Exit], page 28.
‘About’ See Section 4.12.1 [About], page 56.

3.6.2 Documents

The Documents menu contains commands which create new documents, destroy them, and browse
through them.

‘New See Section 4.3.3 [NewDoc], page 28.
‘Cl ose’ See Section 4.3.4 [CloseDoc], page 29.
‘Next’ See Section 4.3.5 [NextDoc], page 29.
‘Prev’ See Section 4.3.6 [PrevDoc], page 29.
‘Select ...’

See Section 4.3.7 [SelectDoc], page 29.

3.6.3 Edit

The Edit menu contains the commands related to cutting and pasting text.

‘Mar k Bl ock’
See Section 4.4.1 [Mark], page 30.
‘Cut’ See Section 4.4.4 [Cut], page 31.

‘Copy’ See Section 4.4.3 [Copy], page 30.
‘Paste’ See Section 4.4.5 [Paste], page 31.

‘Erase’ See Section 4.4.7 [Erase], page 31.
‘Thr ough’
See Section 4.4.11 [Through], page 33.

‘Del et e Li ne’
See Section 4.11.5 [Deletelin€], page 56.

Chapter 3: Reference

‘Mark Vert’
See Section 4.4.2 [MarkVert], page 30.

‘Past e Vert’
See Section 4.4.6 [PasteVert], page 31.

‘pendip...’
See Section 4.4.8 [OpenClip], page 32.

‘Savedip...’
See Section 4.4.9 [SaveClip], page 32.

3.6.4 Search

‘Find...’
See Section 4.5.1 [Find], page 33.

‘Fi nd RegExp. ..~
See Section 4.5.2 [FindRegEXxp], page 33.

‘Repl ace. ..’
See Section 4.5.3 [Replace], page 34.

‘Repl ace Once. ..’
See Section 4.5.4 [ReplaceOnce], page 35.

‘Replace Al l ...~
See Section 4.5.5 [ReplaceAll], page 35.

‘Repeat Last’
See Section 4.5.6 [RepeatL ast], page 35.

‘CotoLine...’
See Section 4.10.5 [GotoLine], page 51.

‘Goto Col ...~

See Section 4.10.6 [GotoColumn], page 51.

‘Coto Mark. ..’
See Section 4.10.7 [GotoMark], page 51.

‘Mat ch Br acket’

See Section 4.5.7 [MatchBracket], page 36.

3.6.5 Macros

‘Record’ See Section 4.6.1 [Record)], page 37.

‘St op’ See Section 4.6.1 [Record], page 37.

‘Repl ace. ..’
See Section 4.5.3 [Replace], page 34.

17

18

‘Pl ay Once’
‘Pl ay Many. ..’

See Section 4.6.2 [Play], page 37.
‘Pl ay Macro. ..’

See Section 4.6.3 [Macro], page 38.

‘Open Macro. ..’

See Section 4.6.4 [OpenMacro], page 38.

‘Save Macro. ..’
See Section 4.6.5 [SaveMacro], page 39.

3.6.6 Extras

This menu contains a couple of special items.

‘Exec. ..’

See Section 4.12.3 [Exec], page 57.
‘Help...~

See Section 4.12.5 [Help], page 57.
‘Ref resh’

See Section 4.12.7 [Refresh], page 58.
‘Undo’ See Section 4.7.1 [Undo], page 40.

‘Redo’ See Section 4.7.2 [Redo], page 40.
‘Undel Li ne’

See Section 4.7.3 [UndelLine], page 40.
‘Center’ See Section 4.8.1 [Center], page 41.
‘Par agr aph’

See Section 4.8.2 [Paragraph], page 41.

‘ToUpper’
See Section 4.8.3 [ToUpper], page 42.

‘ToLower’
See Section 4.8.4 [ToLower], page 42.

‘Capitalize’
See Section 4.8.5 [Capitalize], page 42.

3.6.7 Navigation

‘Move Left’
See Section 4.10.1 [MovelL &ft], page 50.

ne's manua

Chapter 3: Reference

‘Move Ri ght’

See Section 4.10.2 [MoveRight], page 50.
‘Li ne Up’” See Section 4.10.3 [LineUp], page 50.
‘Li ne Down’

See Section 4.10.4 [LineDown], page 50.

‘Prev Page’
See Section 4.10.8 [PrevPage], page 52.

‘Next Page’
See Section 4.10.9 [NextPage], page 52.

‘“Top/ Bot t oni

See Section 4.10.17 [ToggleSEOF], page 54.

‘Beg O Li ne’

See Section 4.10.13 [MoveSOL], page 53.

‘End O Li ne’

See Section 4.10.12 [MoveEOL], page 53.

‘Prev Word’
See Section 4.10.10 [PrevWord], page 52.

‘Next Word’

See Section 4.10.11 [NextWord], page 52.

3.6.8 Prefs

‘Tab Si ze. ..’
See Section 4.9.10 [TabSize], page 47.

‘I nsert/ Over’
See Section 4.9.3 [Insert], page 45.

‘Fr ee Formi
See Section 4.9.5 [FreeForm], page 45.

‘St at us Bar’
See Section 4.9.7 [StatusBar], page 46.

‘Fast GUI’
See Section 4.9.4 [FastGUI], page 45.

‘“Word W ap’
See Section 4.8.7 [WordWrap], page 43.

‘Ri ght Margi n’

See Section 4.8.6 [RightMargin], page 42.

‘Aut o | ndent”’
See Section 4.8.8 [Autolndent], page 43.

‘Load Prefs. ..’
See Section 4.9.13 [LoadPrefs], page 48.

19

20 ne's manua

‘Save Prefs. ..

See Section 4.9.14 [SavePrefs], page 49.
‘Load Aut oPr ef s’

See Section 4.9.15 [LoadAutoPrefs], page 49.
‘Save Aut oPref s’

See Section 4.9.16 [SaveAutoPrefs], page 49.

‘Save Def Prefs’
See Section 4.9.17 [SaveDefPrefs], page 49.

3.7 Regular Expressions

Regular expressions are a powerful way of specifying complex search and replace operations.

3.7.1 Syntax

The following section is taken (with minor modifications) from the GNU regular expression library
documentation, and is Copyright (© Free Software Foundation.

A regular expression describes a set of strings. The simplest case is one that describes a particular
string; for example, the string ‘f 00’ when regarded as a regular expression matches ‘f oo’ and nothing
else. Nontrivia regular expressions use certain specia constructs so that they can match more than one
string. For example, the regular expression ‘f oo| bar’ matches either the string ‘f 0o’ or the string
‘bar’; the regular expression ‘c[ad] *r’' matches any of the strings ‘cr’, ‘car’, ‘cdr’, ‘caar’,
‘cadddar’ and all other such strings with any number of ‘a’’sand ‘d’’s.

Regular expressions have a syntax in which afew characters are special constructs and the rest are
ordinary. An ordinary character isasimpleregular expression which matchesthat character and nothing

else. Thespecid charactersare‘$’, ", . ', %" '+ 2" [, 17, (7, ') " and '\ ". Any other character
appearing in aregular expressionisordinary, unlessa‘\ ' precedes it.

For example, ‘f ' isnot a special character, so it isordinary, and therefore ‘f ' isaregular expression
that matches the string ‘f * and no other string. (It does not match the string ‘f f’.) Likewise, ‘0’ isa
regular expression that matchesonly ‘o’.

Any two regular expressions a and b can be concatenated. The result is aregular expression which
matches a string if a matches some amount of the beginning of that string and b matches the rest of the
string.

As a simple example, we can concatenate the regular expressions ‘f ' and ‘0’ to get the regular
expression ‘f 0’, which matches only the string ‘f o’. Still trivial.

Chapter 3: Reference 21

Note: specia characters are treated as ordinary ones if they are in contexts where their special

meanings make no sense. For example, ‘*f 00’ treats ‘*’ as ordinary since there is no preceding
expression on which the “*’ can act. It is poor practice to depend on this behavior; better to quote the
specia character anyway, regardless of where is appears.

Thefollowing are the characters and character sequences which have special meaning within regular

expressions. Any character not mentioned hereis not special; it standsfor exactly itself for the purposes
of searching and matching.

is a specid character that matches anything except a newline. Using concatenation, we
can make regular expressions like ‘a. b’ which matches any three-character string which
beginswith‘a’ and endswith ‘b’.

is not a construct by itself; it is a suffix, which means the preceding regular expression is
to be repeated as many times as possible. In ‘f o*’, the ‘*’ appliesto the ‘0’, so ‘f o*’
matches ‘f * followed by any number of ‘0’’s.

The case of zero ‘0’’sisalowed: ‘f o*’' doesmatch ‘f .

“** aways applies to the smallest possible preceding expression. Thus, ‘f 0*’ has a
repeating ‘0’, not arepeating ‘f o’.

‘+’ islike **’ except that at least one match for the preceding pattern is required for ‘+’.
Thus, ‘c[ad] +r’ does not match ‘cr’ but does match anything else that ‘c[ad] *r’
would match.

‘?" islike‘* " except that it alowseither zero or one match for the preceding pattern. Thus,
‘c[ad] ?r’ matches‘cr’ or ‘car’ or ‘cdr’, and nothing else.

‘[* beginsacharacter set, whichisterminatedby a‘] ’. Inthe simplest case, the characters
between the two form the set. Thus, ‘[ad] ' matches either ‘a’ or ‘d’, and ‘[ad] *’
matches any string of ‘a’’s and ‘d’’s (including the empty string), from which it follows
that ‘c[ad] *r’' matches‘car’, et cetera.

Character ranges can also beincludedin acharacter set, by writing two characterswitha“-
between them. Thus, ‘[a- z] ' matches any lower-case letter. Ranges may be intermixed
freely with individual characters, asin‘[a- z$%] ', which matches any lower case letter
or'$’, ‘9% or period.

Note that the usua special characters are not special any more inside a character set. A

(~

completely different set of special characters existsinside character sets: ‘] ', -’ and ‘™"

To include a ‘]’ in a character set, you must make it the first character. For example,
‘1a]’ matches‘]’ or‘a’. Toincludea‘-’, you must useit in a context where it cannot
possibly indicate arange: that is, as thefirst character, or immediately after arange.

‘[" begins a complement character set, which matches any character except the ones
specified. Thus, ‘[" a- z0- 9A- Z] ' matches all characters except letters and digits.

(~

isnot specia in acharacter set unlessit is thefirst character. The character following
the*” " istreated asif it werefirst (it may bea‘- " ora‘]’).

22

\ digit

:\ b1

ne's manua

isaspecia character that matches the empty string — but only if at the beginning of aline
in the text being matched. Otherwise it fails to match anything. Thus, ‘" f 00’ matches a
‘f 00’ which occurs at the beginning of aline.

(~

issimilar to ‘"’ but matches only at the end of aline. Thus, ‘xx*$’ matches a string of
oneor more‘x’’s at theend of aline.

has two functions: it quotes the above special characters (including ‘\ '), and it introduces
additional special constructs.

Because ‘\ ' quotes special characters, ‘\ $' isaregular expression which matchesonly ‘$’,
and ‘\ [’ isaregular expression which matchesonly ‘[’, and so on.

For the most part, ‘\’ followed by any character matches only that character. However,
therearesevera exceptions: characterswhich, when preceded by ‘\ ’, are special constructs.
Such characters are always ordinary when encountered on their own.

specifies an alternative. Two regular expressions a and b with ‘|’ in between form an
expression that matches anything that either a or b will match.

Thus, ‘f 00| bar’ matcheseither ‘f 00’ or ‘bar’ but no other string.

‘| * appliesto the largest possible surrounding expressions. Only asurrounding‘(...)
grouping can limit the grouping power of ‘| ".

isagrouping construct that serves three purposes:
1. To enclose a set of ‘|’ dternatives for other operations. Thus, ‘(f oo| bar) x’
matches either ‘f oox’ or ‘bar x’.
2. To enclose a complicated expression for the postfix ‘*’ to operate on. Thus,
‘ba(na) *' matches‘bananana’, etc., with any (zero or more) number of ‘na’’s.

3. Tomark amatched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping; itisa
separate feature which happens to be assigned as a second meaning to the same ‘(. . .
) " construct because there is no conflict in practice between the two meanings. Hereis an
explanation of thisfeature:

Aftertheendof a“(...)’ construct, the matcher remembers the beginning and end of
the text matched by that construct. Then, later onin theregular expression, you can use‘\’
followed by digit to mean “match the same text matched the digit'th time by the*(. . .

) " construct.” The‘(...)’ constructs are numbered in order of commencement in the
regexp.

The strings matching thefirst nine‘(...)’ constructsappearing in aregular expression
are assigned numbers 1 through 9 in order of their beginnings. ‘\ 1’ through ‘\ 9' may be
used to refer to the text matched by the corresponding ‘(. ..)’ construct.

For example, ‘(. +) \ 1’ matches any non empty string that is composed of two identical
halves. The‘(. +) ' matches thefirst half, which may be anything non empty, but the ‘\ 1’
that follows must match the same exact text.

matches the empty string, but only if it is a the beginning or end of a word. Thus,
‘\ bf oo\ b’ matches any occurrence of ‘f 00’ as a separate word. ‘\ bbal | (s])\ b’
matches‘bal | * or ‘bal | s’ as aseparate word.

Chapter 3: Reference 23

\B matches the empty string, provided it is not at the beginning or end of aword.
N\ < matches the empty string, but only if it is at the beginning of aword.

A\ > matches the empty string, but only if it isat the end of aword.

“\w matches any word-constituent character.

\W matches any character that is not aword-constituent.

3.7.2 Replacing regular expressions

Also the replacement string has some special feature when doing a regular expression search and
replace. Exactly as during the search, ‘\’ followed by digit stands for “the text matched the digit’'th
timeby the‘(...)’ construct in the search expression”. Moreover, ‘\ 0’ represent the whole string
matched by the regular expression. Thus, for instance, the replace string ‘\ O\ O’ has the effect of
doubling any string matched.

Another example: if you search for ‘(a+) (b+)’, replacing with ‘\ 2x\ 1’, you will match any
string composed by a series of ‘a’’s followed by a series of ‘b’’s, and you will replace it with the string
obtained by movingthe‘a’ infront of the‘b’’s, adding moreover ‘X’ inbetween. For instance, ‘aaaab’
will be matched and replaced by ‘bxaaaa’.

Notethat the backslash character can escapeitself. Thus, in order to put abackslashinthe replacement
string, you havetouse ‘\ \ ’.

3.8 Automatic Preferences

Automatic preferences let you set up a custom configuration that will be automatically loaded
whenever you open afile with a given extension. For instance, you could like a TAB size of three while
editing C sources, but eight could be more palatable while writing el ectronic mail.

The use of thisfeature is definitely straightforward: you simply use the ‘Save Aut oPr ef s’ menu
item (or the SaveAut oPr ef s command; see Section 4.9.16 [SaveAutoPrefs], page 49) when the
current document has the given extension, and the current configuration suits your tastes. The internal
status of a series of options will be recorded as a macro, containing commands which reproduce the
current configuration. The macro is then saved in the ‘$HOVE/ . ne’ directory (which is created, if
necessary) with the name given by the extension, postfixed with ‘#ap’. Thus, the C sources automatic
preferences file will be named ‘c#ap’, the one of TeX files‘t ex#ap’, and so on.

The macros are generated with short or long command names depending on the status of the verbose
macros flag. See Section 4.9.12 [VerboseM acros], page 48.

24 ne's manual

Automatic preferencesfile areloaded and executed whenever afilewith aknown extensionisopened.
Note that you can edit manually such files, and even insert commands, but any command which does
something el se than setting aflag will be rejected, and an error message will beissued.

3.9 Emergency Save

Sometimesit can happen that ne isinterrupted by an abnormal event (for instance, the crash of your
terminal). In this cases, it will try, if it is given the possibility, to save al unsaved documentsin its
current directory. Named documentswill have their name prefixed witha‘#'. Unnamed documentswill
be named using hexadecima numbers obtained by some addresses in memory which will make them
unique.

Chapter 4: Commands 25

4 Commands

Everything ne can do is specified through a command. Commands can be manually typed on the
command line, bound to a key, to a menu item, or grouped into macros for easier manipulation. If you
want to fully exploit the power of ne, you will be faced sooner or later with using directly commands.

4.1 Generals

Every command of ne hasalong and ashort name. Exceptinavery few cases, theshort nameisgiven
by two or three letters which are the initials of the words which form the long name. Thus, for instance,
Sear chBack has short name SB. However, most used commands such as Exi t have one-letter short
names (X), and St at usBar 's short name is ST in order to avoid clashes with Sear chBack'’s.

A command has always at most an argument. Thisisa chosen limitation, which alowsne’s parsing
of commands and macros to be very fast (a hash table with no conflicts decodes the command name).
Moreover, it dmost cancd al problemsrelated to delimitators, escape characters, et cetera. The unique
argument can be a number, a string, or aflag modifier. You can easily distinguish these three cases even
without this manual by looking at what the Hel p command says about the given command. Note that
when a command argument is enclosed in square brackets, it is optional.

Strings are general purpose arguments. Numbers are used to modify internal parameters, such as the
size of aTAB. Flag modifiers are an optiona number which isinterpreted as follows:

¢ 0 means clearing theflag;
¢ 1 (or any positive number) means setting the flag;

¢ no number means toggling the flag.

Thus, St at usBar 1 will activate that status bar, whilel will toggleinsert/overstrike. This design
choice is due to the fact that, most of the time, during interactive editing one is faced with changing a
flag; for instance, oneisin insert mode and wants to overstrike, or viceversa. Absolute settings (i.e.,
with a number) are useful essentially for macros. It is reasonable to keep the fastest approach for the
most frequent interactive event. When a number or a string is required, and the argument is optional,
most of the timesthe user will be prompted to typing the argument on the command line.

When a number represent the times ne should repeat an action, it is dways understood that the
command will terminate anyway when the conditions for applying it are not longer true. For instance,
the Par agr aph commands accepts the number of paragraphs to format. But if not enough paragraphs
existsin the text, only the available ones will be formatted.

26 ne's manua

Thisalowsto easily perform operation on the whol e text by specifying preposterously huge numbers
asarguments. ToUpper 2000000000 will (hopefully) upper the case of al thewordsin the document.
Note that thisis much faster than recording amacro with acommand and playing it many times, because
the command has to be parsed just one time.

In any case, if amacro or arepeated operation takestoo long, you can stop it using the interrupt key
(CONTROL-\).

In order to handle situations such as an argument string starting with a space, ne implements the
following simple mechanism: an argument string can be included in quotes, provided that the closing
guoteisthelast character of the command line.

The main advantage of this approach is that no escape convention is necessary when putting quotes
inside a quoted string, since ne can use contextua information in order to tell thereal delimitator. The
only case needing aspecial treatment is the case of an argument string starting and ending with a quote:
unlessitisagain enclosed in quotes, ne will believe the quotes are delimitators, and act accordingly.

4.2 FileCommands

These commands allow to open and save files. They all act in the context of the current document
(i.e., the document displayed when the command is issued).

42.1 Clear

Syntax: d ear
Abbreviation: CL

destroys the contents of the current document and of its undo buffer. Moreover, the document becomes
unnamed. If the current document is marked as modified, you have to confirm the action.

4.2.2 Open

Syntax: Open [filename]
Abbreviation: O

loads the file specified by the filename string into the current document.

Chapter 4: Commands 27

If the optional filename argument is not specified, the file requester is opened, and you are prompted
to select a file (you can inhibit the file requester opening by using the NoFi | eReq command; see
Section 4.9.6 [NoFileReq], page 46).

If you escape from the file requester, you can input the file name on the command line, the default
being the current document name, if available.

If at the timethe command isissued the current document is marked as modified, you have to confirm
the action.

4.2.3 OpenNew

Syntax: GpenNew [filename]
Abbreviation: ON

is the same as Open, but loads the file specified by the filename string into a new document. See
Section 4.2.2 [Open], page 26.

4.2.4 Save

Syntax: Save
Abbreviation: S

saves the current document using its default file name.

If the current document is unnamed, the file requester is opened, and you are prompted to select a
file (you can inhibit the file requester opening by using the NoFi | eReq command; see Section 4.9.6
[NoFileReq], page 46).

If you escape from the file requester, you can input the file name on the command line.

425 SaveAs

Syntax: SaveAs [filenameg]
Abbreviation: SA

saves the current document using the specified string as file name.

28 ne's manua

If the optional filename argument is not specified, the file requester is opened, and you are prompted
to select a file (you can inhibit the file requester opening by using the NoFi | eReq command; see
Section 4.9.6 [NoFileReq], page 46).

If you escape from the file requester, you can enter the file name on the input line, the default being
the current document name, if available.

4.3 Document Commands

These command allow to manipulate the circular list of documents of ne.

4.3.1 Quit

Syntax: Qui t
Abbreviation: Q

closes dl documents and exits. If some document is modified, you have to confirm the action.

4.3.2 Exit

Syntax: Exi t
Abbreviation: X

saves al modified documents, closes them and exits. If some document cannot be saved, the action is
suspended and an error messageis issued.

4.3.3 NewDoc

Syntax: NewDoc
Abbreviation: N

creates a new, empty, unnamed document which becomes the current document. The position of the
document in the document list is just after the current document. The preferences of the new document
are abtained by cloning the preferences of the current document.

Chapter 4: Commands 29

4.3.4 CloseDoc

Syntax: Cl oseDoc
Abbreviation: CD

closes the current document. The document isremoved from ne’slist and, in case it isthe only existing
document, ne exits. If the document was modified from the last save, you have to confirm your choice.

4.3.5 NextDoc

Syntax: Next Doc
Abbreviation: ND

sets as current document the next document in the document list.

4.3.6 PrevDoc

Syntax: Pr evDoc
Abbreviation: PD

sets as current document the previous document in the document list.

4.3.7 SdectDoc

Syntax: Sel ect Doc
Abbreviation: SD

opens a regquester containing the names of al the documentsin memory. You can select the document
you want to edit.

If you escape from the requester, you can enter the document name on theinput line, the default being
the current document name, if available.

This command is realy useful only if you have a large (say, more than 10) number of documents
loaded. Otherwise, Next Doc and Pr evDoc should be enough. See Section 4.3.5 [NextDoc], page 29,
and Section 4.3.6 [PrevDoc], page 29.

30 ne's manua

4.4 Clip Commands

These commands control the clipping system. ne can have any number of clips, which are dis-
tinguished by an integer index. Most commands act on the current clip, which can be selected with
d i pNunber . Notethat clips can be copied and pasted in two ways—normally or vertically.

Note that by using the Thr ough command you can automatically pass a (possibly vertical) block of
text through any filter (such assort under UN*X).
4.4.1 Mark

Syntax: Mark [0] 1]
Abbreviation: M

sets the mark at the current position or cancels the previous mark. The mark can then be used in order
to perform clip operations. The clip commands act on the characters laying between the mark and the
Ccursor.

If you cdll this command with no arguments, it will toggle the mark. If you specify 0 or 1, the mark
will be canceled or set to the current position, respectively. A capital ‘M appears on the status bar, if the
mark is active.

See Section 4.6.1 [Record], page 37, for the reason why the mark isimplemented as aflag.

442 MarkVert

Syntax: Mar kVert [O] 1]
Abbreviation: W

isthe same as Mar k, but the mark isinterpreted as vertical by the clip handling commands. This means
that the region manipulated by the cut/paste commands is the rectangle having as vertices the cursor
and the mark. Moreover, a capita V', rather than a capita ‘M, will appear on the status bar. Vertica
cut/paste operations are most useful for handling structured program indentation.

4.4.3 Copy

Syntax: Copy [n]
Abbreviation: C

Chapter 4: Commands 31

copies the contents of the characters laying between the cursor and the mark into the clip specified
by the optional numeric argument, the default clip being the current clip, which can be set with the
d i pNunber command (see Section 4.4.10 [ClipNumber], page 32). If the current mark was vertical,
the rectangle of characters defined by the cursor and the mark is copied instead.

4.4.4 Cut

Syntax: Cut [n]
Abbreviation: CU

actsjust like Copy, but also deletes the block being copied.

4.4.5 Paste

Syntax: Past e [n]
Abbreviation: P

pastes the contents of specified clip, the default being current clip, which can be set with the
C i pNurmber command (see Section 4.4.10 [ClipNumber], page 32), at the cursor position.

4.4.6 PasteVert

Syntax: Past eVert [n]
Abbreviation: PV

pastes vertically the contents of the specified clip, the default being the current clip. Each line of theclip
isinserted on consecutive lines at the horizontal cursor position.

4.4.7 Erase

Syntax: Er ase
Abbreviation: E

actslike Cut , but the block isjust deleted, and not copied into any clip.

32 ne's manua

4.4.8 OpenClip

Syntax: Opend i p [filenameg]
Abbreviation: OC

loads the given file name as the current clip (just asif you copied it; see Section 4.4.3 [Copy], page 30).

If the optional filename argument is not specified, the file requester is opened, and you are prompted
to select a file (you can inhibit the file requester opening by using the NoFi | eReq command; see
Section 4.9.6 [NoFileReq], page 46).

If you escape from the file requester, you can enter the file name on the input line.

4.4.9 SaveClip

Syntax: Saved i p [filenameg]
Abbreviation: SC

saves the current clip on the given file name.

If the optional filename argument is not specified, the file requester is opened, and you are prompted
to select a file (you can inhibit the file requester opening by using the NoFi | eReq command; see
Section 4.9.6 [NoFileReq], page 46).

If you escape from the file requester, you can enter the file name on the input line.

4.4.10 ClipNumber

Syntax: Cl i pNurrber [n]
Abbreviation: CN

sets the current clip number. This number isused by Qpend i p and Saved i p, and by Copy, Cut
and Past e if they are called without any argument. Its default value is zero. nislimited only by the
integer size of the machine ne isrunning on.

If the optional argument n is not specified, you can enter it on the input line, the default being the
current clip number.

Chapter 4: Commands 33

4.4.11 Through

Syntax: Thr ough [command]
Abbreviation: T

asks the shell to execute command, piping the current block in the standard input, and replacing it with
the output of the command. Thiscommand is most useful with filters, suchassort . Itspractical effect
isto pass the block through the specified filter.

Note that by selecting an empty block (or equivaently by having the mark unset) you can use
Thr ough in order to insert the output of any UN* X command in your file.

If the optional argument command is not specified, you can enter it on the input line.

4.5 Search Commands

These commands control the search system. ne offers two complementary searching techniques:
an simple, fast exact matching search (optionally, modulo case), and a very flexible and powerful, but
slower, regular expression search based on the GNU r egex library (again, optionally modulo case).

45.1 Find

Syntax: Fi nd [pattern]
Abbreviation: F

searches for the given pattern. The cursor is positioned on the first occurrence of the pattern, or an error
message is given. The direction and the case sensitivity of the search are established by the value of the
back search and case sensitive search flags. See Section 4.5.8 [SearchBack], page 36 and Section 4.5.9
[CaseSearch], page 36.

If the optional argument pattern is not specified, you can enter it on the input line, the default being
the last pattern used.

4.5.2 FindRegExp

Syntax: Fi ndRegExp [pattern]
Abbreviation: FX

34 ne's manua

searches the buffer for the given extended regular expression (see Section 3.7.2 [Regular Expressions],
page 23) . Thecursor ispositioned on thefirst string matching the expression. The direction and the kind
of search are established by the val ue of the back search and case sensitive search flags. See Section4.5.8
[SearchBack], page 36 and Section 4.5.9 [CaseSearch], page 36.

If the optional argument pattern is not specified, you can enter it on the input line, the default being
the last pattern used.

4.5.3 Replace

Syntax: Repl ace [string]
Abbreviation: R

moves on the first match of the most recent find string or regular expression, and then asks you which
action to perform. You can choose among:

¢ replacing the string found with the given string and moving to the next match (* Yes’);
¢ moving to the next match (‘No’);

¢ replacing the string found with the given string, and stop the search (‘Last ’);

¢ stopping immediately the search (‘Qui t');

¢ replacing all occurrences of the find string with the given string (Al 1 7);

¢ reverting the search direction (‘Backwar d’ or *For war d’); thischoicewill also modify thevaue
of the back search flag. See Section 4.5.8 [SearchBack], page 36.

This command is mainly useful for interactive editing. Repl aceOnce, Repl aceAl | and
Repeat Last are more suited to macros.

If no find string was ever specified, you can enter it on the input line. If the optional argument string
is not specified, you can enter it on the input line, the default being the last string used. When the last
search wasaregular expression search (see Section 4.5.2 [FindRegEXxp], page 33), there are some specia
features you can usein the replace string (see Section 3.7.2 [Regular Expressions], page 23) .

Note that normally a search starts just one character after the cursor. However, when Repl ace is
invoked, the search starts at the character just under the cursor, so that you can safely Fi nd a pattern
and Repl ace it without having to move back.

Warning: when recording amacro (see Section 4.6.1 [Record], page 37), thereisno tracein the macro of
your interaction with ne during the replacement process. When themacro is played, you will have again
to choose which actions to perform. If you want to apply automatic replacement of stringsfor a certain
number of times, you should look at Section 4.5.4 [ReplaceOnce], page 35, Section 4.5.5 [ReplaceAll],
page 35 and Section 4.5.6 [RepeatL ast], page 35.

Chapter 4: Commands 35

4.5.4 ReplaceOnce

Syntax: Repl aceOnce [string]
Abbreviation: R1

actsjust like Repl ace, but without any interaction with you (unless there is no find string). The first
string matched by the last search pattern, if existing, is replaced by the given replacement string.

If the optional argument string is not specified, you can enter it on the input line, the default being
the last string used.
455 ReplaceAll

Syntax: Repl aceAl | [string]
Abbreviation: RA

is similar to Repl aceOnce, but replaces all occurrences of the last search pattern with the given
replacement string.

If the optional argument string is not specified, you can enter it on the input line, the default being
the last string used.

Note that Undo will restore all the occurrences of the search pattern this command replaced. See
Section 4.7.1 [Undo], page 40.
4.5.6 Repeatl ast

Syntax: Repeat Last [times]
Abbreviation: RL

repeats for the given number of times the last find or replace operation (with replace we mean here a
singlereplace, even if thelast Repl ace operation ended with aglobal substitution).

This command is mainly useful for researching a given number of times, or replacing something a
given number of times. The standard technique for accomplishing thisis:

1. Fi nd (or Fi ndRegExp) the string you are interested in;

2. if you want to repeat a replace operation, Repl aceOnce with the replacement string you are
interested in;

36 ne's manua

3. now issue a Repeat Last n- 1 command, where n is the number of occurrences you wanted to
skip over, or replace.

Theimportant thing about this sequence of actionsisthat it will work thisway even in amacro. The
Repl ace command cannot be used in a macro unless you really want to interact with ne during the
macro execution. Thisis the only reason why the commands Repl aceAl | and Repl aceOnce are
provided.

45.7 MatchBracket

Syntax: Mat chBr acket
Abbreviation: MB

moves the cursor over the bracket associated to the bracket the cursor is on. If the cursor is not on a
bracket, or thereis no bracket associated to the current one, an error messageisissued. ‘{}", ()", ‘[1’
and ‘<>’ are recognized.

45.8 SearchBack

Syntax: Sear chBack [O 1]
Abbreviation: SB

sets the back search flag. When this flag is true, every search or replacement command is performed
backwards.

If you call thiscommand with no arguments, it will toggletheflag. If you specify O or 1, the flag will
be set to false or true, respectively. A lower case ‘b’ will appear on the status bar if the flag istrue.

Note that this flag can be also set by the interaction happening during a replace. See Section 4.5.3
[Replace], page 34.

45.9 CaseSearch

Syntax: CaseSear ch [0] 1]
Abbreviation: CS

sets the case sengitivity flag. When thisflag istrue, the search commands di stingui sh between the upper
case and lower case versions of aletter. By default the flag is false, since this seems to be what most
user want.

Chapter 4: Commands 37

If you call thiscommand with no arguments, it will toggletheflag. If you specify 0 or 1, the flag will
be set to false or true, respectively. A lower case ‘¢’ will appear on the status bar if the flag istrue.

4.6 Macros Commands

Macros are lists of commands. Any series of operations which has to be performed frequently isa
good candidate for being amacro.

Macros can be written manually: they are just ASCII files, each command occupying a line (lines
starting with any non-alphabetical character are considered comments). But the rea power of macros
isthat they be recorded during the normal usage of ne. When the recording terminates, the operations
which have been recorded can be saved for later use. Note that each document has a current macro (the
last macro which has been opened or recorded).

4.6.1 Record

Syntax: Record [0] 1]
Abbreviation: Rec

sets the recording state flag. When this flag becomes true, a macro recording is initiated. When it
becomes false, the macro recording is stopped, and the macro can be played (see Section 4.6.2 [Play],

page 37).

If you call thiscommand with no arguments, it will toggletheflag. If you specify O or 1, the flag will
be set to false or true, respectively. An upper case ‘R will appear on the status bar if the flag istrue.

The reason for providing a flag instead of an explicit start/stop recording command pair is that this
way it is possible to bind to the same key the start and stop recording command, while still being able
to specifying “absolute” menu items (by using Recor d 0 and Record 1). For instance, the default
key binding for CONTROL- T issimply Recor d, which means that this shortcut can be used both for
initiating and for terminating a macro recording.

4.6.2 Play

Syntax: Pl ay [times]
Abbreviation: PL

plays the current macro for the given number of times. If the optional argument times is not specified,
you can enter it on the input line.

38 ne's manua

A (possibly iterated) macro execution terminates as soon as its stream of instructions is exhausted,
or one of its commands returns an error. This means that, for instance, you can perform some complex
operation on al the lines contaning a certain pattern by recording a macro that searches for the pattern
and performs the operation, and then playing it a preposterously huge number of times. Note that the
execution of amacro can be interrupted by CONTRCOL- \ .

4.6.3 Macro

Syntax: Macr o [filename]
Abbreviation: MA

executes the given file name as a macro.

If the optional filename argument is not specified, the file requester is opened, and you are prompted
to select a file (you can inhibit the file requester opening by using the NoFi | eReq command; see
Section 4.9.6 [NoFileReq], page 46).

If you escape from the file requester, you can input the file name on the command line.

Note that macros whose name does not conflict with acommand can be called without using Macr o.
Whenever ne is required to perform a command it cannot find in its internal tables, it will look for a
macro named as the command. If also this search fails, ne looksin ‘$HOVE/ . ne’ for afile named as
the command.

Warning: in order to (greatly) improve efficiency, the first time a macro is executed it is cached
into a hash table and is kept forever in memory (unless the Unl oadMacr os command is issued; see
Section 4.6.6 [UnloadM acros], page 39). The next time a macro with the same file name isinvoked, the
cached list is searched for it before accessing thefile using a case insensitive string comparison. That is,
if youcal *~/foobar/ macr o', asubsequent call for ‘/ usr/ MACRO or just ‘MaCr O will use the
cached version. Notethat the cache tableis global to ne.

4.6.4 OpenMacro

Syntax: OpenMacr o [filename]
Abbreviation: OM

loads the given file name as the current macro (just as if you Recor ded it; see Section 4.6.1 [Record],
page 37).

Chapter 4: Commands 39

If the optional filename argument is not specified, the file requester is opened, and you are prompted
to select a file (you can inhibit the file requester opening by using the NoFi | eReq command; see
Section 4.9.6 [NoFileReq], page 46).

If you escape from the file requester, you can input the file name on the command line.

4.6.5 SaveMacro

Syntax: SaveMacr o [filename]
Abbreviation: SM

saves the current macro on the given file name.

If the optional filename argument is not specified, the file requester is opened, and you are prompted
to select a file (you can inhibit the file requester opening by using the NoFi | eReq command; see
Section 4.9.6 [NoFileReq], page 46).

If you escape from the file requester, you can input the file name on the command line.

This command is of course most useful for saving macros you just recorded. The macros can then
be loaded as normal text files for further editing, if necessary.

4.6.6 UnloadM acros

Syntax: Unl oadMacr os
Abbreviation: UM

frees the macro cache list. After this command, the Macr o command will be forced to search for the
file containing the macro it has to play.

Thiscommand isreally useful only if you are experimenting with a macro bound to some keystroke,
and you are interactively modifying it and playingit. Unl oadMacr os forces ne to look for the newer
version available.

4.7 Undo Commands

The following commands control the undo system.

40 ne's manua

4.7.1 Undo

Syntax: Undo [n]
Abbreviation: U

undoes the last n actions. If n is not specified, it is assumed to be one. Once you undo a number of

actions, you can Redo them (or part of them; see Section 4.7.2 [Redo], page 40).

4.7.2 Redo

Syntax: Redo [n]
Abbreviation: RE

redoes thelast n actions. If nisnot specified, it isassumed to be one. You can only Redo actionswhich

have been Undone. See Section 4.7.1 [Undo], page 40.

4.7.3 UndelLine

Syntax: Undel Li ne [n]
Abbreviation: UL

insertsat the cursor positionfor ntimesthelast non-empty linewhichwasdeleted withthe Del et eLi ne
command. If nisnot specified, it is assumed to be one.

Thiscommand is most useful inthat it allows avery fast way of moving oneline around. Just delete
it, and undelete it somewhere else. It isalso an easy way to replicate aline without getting involved with
clips.

Note that this command works independently of the status of the undo flag. See Section 4.7.4

[DoUndo], page 40.

4.7.4 DoUndo

Syntax: DoUndo [0] 1]
Abbreviation: DU

sets the flag which enables or disables the undo system. When you turn the undo system off, al the
recorded actions are discarded, and the undo buffers are reset.

Chapter 4: Commands 41

If you call thiscommand with no arguments, it will toggletheflag. If you specify 0 or 1, the flag will
be set to false or true, respectively. A lower case ‘u’ will appear on the status bar if the flag istrue.

The usefulness of thisoption reliesin the fact the undo system is a maor memory eater. If you plan
to do massive editing (say, cutting and pasting megabytes of text) it is a good idea to disable the undo
system, both for improving (doubling) performance and for using less (half) memory. Except for this,
on avirtual memory system | see no reason to not keep the undo flag always true, and thisis indeed the
default.

4.8 Formatting Commands

Thefollowing commandsallow simpleformatting operationsonthetext. Notethat for ne aparagraph
is delimited by an empty line.

4.8.1 Center

Syntax: Cent er [n]
Abbreviation: CE

centers n lines from the cursor position onwards. If n is not specified, it is assumed to be one. The
lines are centered with spaces, relatively to the value of the right margin as set by the Ri ght Mar gi n
command. See Section 4.8.6 [RightMargin], page 42.

4.8.2 Paragraph

Syntax: Par agr aph [n]
Abbreviation: PA

reformats n paragraphs from the cursor position onwards. If n is not specified, it is assumed to be one.
The paragraph are formatted relatively to the value of the right margin as set by the Ri ght Mar gi n
command. See Section 4.8.6 [RightMargin], page 42.

Do not ever ask me to implement justified paragraphing. | hate non-proportional justified text.

If you think paragraphing should insert “smart” spaces after full stops and colons, and do other such
“smart” things, you should consider using atext formatter. TeX isusualy the best choice.

42 ne's manual

4.8.3 ToUpper

Syntax: ToUpper [n]
Abbreviation: TU

uppers the case of theletters from the cursor position up to the end of aword, and movesto the fist | etter
of next word for n times.

The description of the command may seem alittle bit cryptic. What isrealy happening is that there
are situations where you want to upper case only the last part of aword. In this case, you just have to
position the cursor in thefirst character you want to upper case, and use this command with no argument.

If you apply ToUpper on thefirst character of aword, it will just upper case n words.

4.8.4 ToL ower

Syntax: ToLower [n]
Abbreviation: TL

acts exactly like ToUpper , but lowersthe case. See Section 4.8.3 [ToUpper], page 42.

4.8.5 Capitalize

Syntax: Capitalize[n]
Abbreviation: CA

actsexactly like ToUpper , but capitalizes, i.e., makesthefirst |etter upper case and the other oneslower
case. See Section 4.8.3 [ToUpper], page 42.

4.8.6 RightMargin

Syntax: Ri ght Margi n [n]
Abbreviation: RM

sets the right margin for all formatting operations, and for Wor dW ap (see Section 4.8.7 [WordWrap],
page 43).

If the optional argument n is not specified, you can enter it on the input line, the default being the
current value of the right margin.

Chapter 4: Commands 43

A value of O for n will force ne to use (what it thinksit is) the current screen width as right margin.

4.8.7 WordWrap

Syntax: Wor dW ap [0] 1]
Abbreviation: VWV

sets the word wrap flag. When thisflag istrue, ne will automatically break lines of text longer than the
current right margin (see Section 4.8.6 [RightMargin], page 42) while you type them.

If you call thiscommand with no arguments, it will toggletheflag. If you specify O or 1, the flag will
be set to false or true, respectively. A lower case ‘W will appear on the status bar if the flag istrue.

4.8.8 Autolndent

Syntax: Aut ol ndent [0] 1]
Abbreviation: Al

sets the auto indent flag. When thisflag is true, ne will automatically insert tabs and spaces on a new
line(created by an | nsert Li ne command, or by automatic word wrapping) in such away to replicate
theinitial spaces of the previous line. Most useful for indenting programs.

If you call thiscommand with no arguments, it will toggletheflag. If you specify 0 or 1, the flag will
be set to false or true, respectively. A lower case ‘a’ will appear on the status bar if the flag istrue.

Aut ol ndent features anice interaction with Undo. Whenever anew line is created, the insertion
of spaces is recorded as a separate action in the undo buffer (with respect to the line creation). If you
are not satisfied with the indentation, just give the Undo command and the indentation will disappear
(but the new line will remain in place, since its creation has been recorded as a separate action). See
Section 4.7.1 [Undo], page 40.

4.9 PreferencesCommands

These commands allow you to set your preferences, i.e., the value of a series of flags which modify
the behaviour of ne (some of the flag commands, like the command for the indent flag, appear in other
sections). The status of the flags can be saved and restored later (the file saved isjust a macro which
suitably sets the flags). The back search and the read only flags are not saved, because they do not
represent a preference, but rather atemporary state. The escapetimeisglobal to ne, and it is not saved.
Theturbo parameter is better set at run time by ne. However, you can add manually to a preferences file

a4 ne's manual

any preferences command (such as EscapeTi me or Tur bo); usualy, thiswill be done to the default
preferences file ‘$HOVE/ . ne/ . def aul t #ap’.

Note that there is an automatic preferences system, which loads automagically a preferences file
related to the extension of the name of afile. The automatic preferences files are kept in a directory
named ‘. ne’ (in your home directory), and they are named as an extension postfixed with ‘#ap’. Each
time you open a file whose nhame has an extension for which there is an automatic preferences file, the
latter is executed. If you want to inhibit this process, you can clear the automatic preferences flag. See
Section 4.9.1 [AutoPrefs], page 44.

4.9.1 AutoPrefs

Syntax: Aut oPrefs [0] 1]
Abbreviation: AP

setsthe automatic preferences flag. If thisflag istrue, each timean Qpen command isexecuted and afile
isloaded, ne will look for an automatic preferences filein the $HOVE/ . ne’ directory. The preferences
file nameisgiven by the extension of thefileloaded, postfixed with ‘#ap’. Thus, for instance, C sources
have an associated ‘c#ap’ file. See Section 3.8 [Automatic Preferences], page 23.

If you call thiscommand with no arguments, it will toggletheflag. If you specify O or 1, the flag will
be set to false or true, respectively. A lower case ‘p’ will appear on the status bar if the flag istrue.

4.9.2 Binary

Syntax: Bi nary [0] 1]
Abbreviation: B

sets the binary flag. When this flag is true, loading and saving a document is performed in a different
way. On loading, only nulls are considered newlines; on saving, nulls are saved instead of newlines.
This alows you to edit a binary file, fix some text in it, and save it without modifying anything else.
Normally, linefeeds, carriage returns and nulls are considered newlines, so that what you load will have
al nullsand carriage returns substituted by newlines when saved.

Notethat since usually binary files contain agreat number of nulls, and every null will be considered
a line terminator, the memory necessary for loading a binary file can be severa times bigger than the
length of the file. Thus, binary editing within ne should be considered not a normal, but rather an
exceptional activity.

Chapter 4: Commands 45

If you call thiscommand with no arguments, it will toggletheflag. If you specify 0 or 1, the flag will
be set to false or true, respectively. An upper case ‘B’ will appear on the status bar if the flag istrue.

4.9.3 Insert

Syntax: | nsert [0] 1]
Abbreviation: |

setstheinsert flag. If thisflag is true, the text you type is inserted, otherwise it overwrites the existing
characters. Thisisaso true of thel nsert Char command.

If you call thiscommand with no arguments, it will toggletheflag. If you specify 0 or 1, the flag will
be set to false or true, respectively. A lower case ‘i ' will appear on the status bar if the flag istrue.

4.9.4 FastGUI

Syntax: Fast GUI [0] 1]
Abbreviation: FG

setsthefast graphical user interface flag. When thisflag istrue, ne triesto print asfew as possiblewhile
displaying menus and the status bar. In particular, menu items are highlighted by the cursor only, and
the status bar is not highlighted (which allowsto print it with less characters). Thisoptionisvery useful
if you are using ne through a slow connection.

If you call thiscommand with no arguments, it will toggletheflag. If you specify 0 or 1, the flag will
be set to false or true, respectively.

495 FreeForm

Syntax: Fr eeFor m[O] 1]
Abbreviation: FF

sets the free form flag. When this flag is true, you can move with the cursor anywhere on the screen,
even where no text is present (however, you cannot moveinside the space expansion of aTAB character).

If you call thiscommand with no arguments, it will toggletheflag. If you specify 0 or 1, the flag will
be set to false or true, respectively. A lower case ‘f ' will appear on the status bar if the flag istrue.

46 ne's manua

Theissue free-form-versus-non-free-form isamajor religiouswar which is engaging hackers, lusers
and programmers from day one. The due of the implementor is to alow both choices, and to set as
default the correct one (in his humble opinion). In this case, non-free-form.

4.9.6 NoFileReq

Syntax: NoFi | eReq [0] 1]
Abbreviation: NFR

sets the file requester flag. When this flag is true, the file requester is never opened, under any
circumstances.

If you call thiscommand with no arguments, it will toggletheflag. If you specify 0 or 1, the flag will
be set to false or true, respectively.

4.9.7 StatusBar

Syntax: St at usBar [0] 1]
Abbreviation: ST

sets the status bar flag. When this flag is true, the status bar is displayed at the bottom of the screen.
There are only two reasons to turn off the statusbar | am aware of:

¢ if you are using ne through a slow connection, updating the line/column indicator can really slow
down editing;

¢ scrolling caused by cursor movement on terminals which do not allow to set a scrolling region can
produce annoying flashes at the bottom of the screen.

If you call thiscommand with no arguments, it will toggletheflag. If you specify O or 1, the flag will
be set to false or true, respectively.

4.9.8 ReadOnly

Syntax: ReadOnl y [0] 1]
Abbreviation: RO

sets the read only flag. When thisflag istrue, no editing can be performed on the document (any such
attempt produces an error message). Thisflag isautomatically set whenever you open a file which you
cannot write to. See Section 4.2.2 [Open], page 26.

Chapter 4: Commands 47

If you call thiscommand with no arguments, it will toggletheflag. If you specify 0 or 1, the flag will
be set to false or true, respectively. A lower case ‘r’ will appear on the status bar if the flag istrue.

4.9.9 EscapeTime

Syntax: EscapeTi nme [n]
Abbreviation: ET

sets the escape time. The ESCAPE key is recognized as such after n tenths of second (see Chapter 7
[Motivationsand Design], page 65). Along slow connections, it can happen that the default value of 10
istoolow: inthiscase, escape sequences (e.g., those of the arrow keys) could be erroneously broken into
an escape and some spurious characters. Rising the escape time usually solves this problem. Allowed
values range from O to 255.

Note that the escape timeis global to ne, and it is not saved. However, you can add manualy to a
preferences file an EscapeTi me command.
4.9.10 TabSize

Syntax: TabSi ze [siz€]
Abbreviation: TS

sets the number of spaces ne will use when expanding a TAB character.

If the optional argument size is not specified, you can enter it on the input line, the default being the
current TAB size. Allowed values are strictly between 0 and half the width of the screen.
4.9.11 Turbo

Syntax: Tur bo [steps]
Abbreviation: TUR

sets the turbo parameter. When it is nonzero, iterated actions and global replaces will update at most
steps line of the screen; then, update will be delayed to the end of the action.

This feature is most useful when massive operations (such as replacing thousands of occurrences of
a pattern) have to be performed. After having updated steps lines, ne can proceed at maximum speed,
because no visual update has to be performed.

48 ne's manua

The value of the turbo parameter has to be adapted to the kind of terminal you are using. Very high
values (or zero, which completely disables the delayed update) can be good on high-speed terminals,
since the time required for the visua updates is very smdl, and it is dways safer to look at what the
editor isrealy doing. On slow terminals, however, small values ensure that operations such as paragraph
formatting will not take too long.

You have to be careful about setting the turbo parameter too low. ne keeps track internally of the
part of the screen which needs refresh in a very rough way. This meansthat a value of less than, say, 8
will force it to do alot of unnecessary refresh.

The default value of this parameter is given by twice the number of lines of the screen, which for
several reasons does seem to offer agood value.

4.9.12 VerboseM acros

Syntax: Ver boseMacr os [0| 1]
Abbreviation: VM

sets the verbose macros flag. When thisflag istrue, al macros generated by recording or by automatic
preferences saving will contain full names, instead of short names. Thisis highly desirable if you are
going to manually editing the macro, but it can slow down considerably the parsing of the commands.

If you call thiscommand with no arguments, it will toggletheflag. If you specify O or 1, the flag will
be set to false or true, respectively. A lower case ‘v’ will appear on the status bar if the flag istrue.

The only reason to use this flag is when recording a macro that will be played a great number of
times. Automatic preferences files are too short to be an issue with respect to execution timing.

4.9.13 LoadPrefs

Syntax: LoadPr ef s [filename]
Abbreviation: LP

loads the given preference file, and setsthe current preferences accordingly.

If the optional filename argument is not specified, the file requester is opened, and you are prompted
to select a file (you can inhibit the file requester opening by using the NoFi | eReq command; see
Section 4.9.6 [NoFileReq], page 46). If you escape from the file requester, you can input the file name
on the command line.

Chapter 4: Commands 49

Note that a preferences file is just a macro containing option modifiers only. You can manually edit
a preferences file for specia purposes, such as filtering out specific settings. See Chapter 6 [Hints and
Tricks], page 63.

49.14 SavePrefs

Syntax: SavePr ef s [filename]
Abbreviation: SP

saves the current preferences on the given file.

If the optional filename argument is not specified, the file requester is opened, and you are prompted
to select a file (you can inhibit the file requester opening by using the NoFi | eReq command; see
Section 4.9.6 [NoFileReq], page 46). If you escape from the file requester, you can input the file name
on the command line.

4.9.15 LoadAutoPrefs

Syntax: LoadAut oPr ef s
Abbreviation: LAP

loads the preferences filein ‘SHOVE/ . ne’ relative to the current document file name. If the current file

name has no extension, the default preferences are loaded. See Section 4.9.1 [AutoPrefs], page 44.

4.9.16 SaveAutoPrefs

Syntax: SaveAut oPr ef s
Abbreviation: SAP

saves the current preferences on the filein ‘SHOVE/ . ne’ relative to the current document file name.
If the current file name has no extension, an error message isissued. See Section 4.9.1 [AutoPrefg],

page 44.

4.9.17 SaveDefPrefs

Syntax: SaveDef Pr ef s
Abbreviation: SDP

50 ne's manua

saves the current preferences on the ‘$SHOVE/ . ne/ . def aul t #ap’ file. Thisfileisawaysloaded by
ne at startup.
4.10 Navigation Commands

These commands allows you to move through a document. Besides the standard commands which
allow you to move by lines, pages, et cetera, ne has bookmarkswhich let you mark a positionin afile,
in order to move to the same position later.

4.10.1 Movel eft

Syntax: MovelLeft [n]
Abbreviation: M.

moves the cursor on the left by one character n times. If the optional n argument is not specified, it is
assumed to be one.

4.10.2 MoveRight

Syntax: MoveRi ght [n]
Abbreviation: MR

moves the cursor on the right by one character n times. If the optional n argument is not specified, itis
assumed to be one.

4.10.3 LineUp

Syntax: Li neUp [n]
Abbreviation: LU

moves the cursor up by one linentimes. If the optional n argument is not specified, it is assumed to be
one.

4.10.4 LineDown

Syntax: Li neDown [n]
Abbreviation: LD

Chapter 4: Commands 51

moves the cursor down by one line n times. If the optional n argument is not specified, it is assumed to
be one.

4.10.5 GotoLine

Syntax: Got oLi ne [ling]
Abbreviation: GL

moves the cursor on the lineth line of thefile. If lineis greater than the number of lines of the file, the
cursor ismoved on thelast line.

If the optiona argument lineis not specified, you can enter it on theinput line, the default input being
the current line number.

4.10.6 GotoColumn

Syntax: Got 0Col umm [column]
Abbreviation: GC

moves the cursor on the columnth column of thefile.

If the optiona argument lineis not specified, you can enter it on theinput line, the default input being
the current column number.

4.10.7 GotoMark

Syntax: Got oMar k
Abbreviation: GV

moves the cursor to the current mark, if existing. See Section 4.4.1 [Mark], page 30.

This command is mainly useful if you forgot where you started marking. If you want to record
a position in a file and jump on it later, you may want to use a bookmark. See Section 4.10.19
[SetBookmark], page 54.

52 ne's manua

4.10.8 PrevPage

Syntax: Pr evPage [n]
Abbreviation: PP

moves the cursor n pages backward, if the cursor is on the first line of the screen; otherwise moves the
cursor on thefirst line of the screen, and moves by n-1 pages. If the optional n argument isnot specified,
it isassumed to be one.

4.10.9 NextPage

Syntax: Next Page [n]
Abbreviation: NP

moves the cursor n pages forward, if the cursor is on the last line of the screen; otherwise moves the
cursor on the last line of the screen, and moves by n-1 pages. If the optional n argument is not specified,
it is assumed to be one.

4.10.10 PrevWord

Syntax: PrevWord [n]
Abbreviation: PW

moves the cursor on the previous word n times. If the optional n argument is not specified, it is assumed
to be one (in which case, if the cursor isin the middle of aword the effect isjust to move it on the start
of that word).

4.10.11 NextWord

Syntax: Next Wor d [n]
Abbreviation: NW

moves the cursor on the next word ntimes. If the optional n argument is not specified, it is assumed to
be one.

Chapter 4: Commands

4.10.12 MoveEOL

Syntax: MoveECL
Abbreviation: EQL

moves the cursor to the end of the current line.

4.10.13 MoveSOL

Syntax: MoveSCOL
Abbreviation: SOL

moves the cursor to the start of the current line.

4.10.14 MoveEOF

Syntax: MoveECF
Abbreviation: EOF

moves the cursor to the end of the document (ECF = end of file).

4.10.15 MoveSOF

Syntax: MoveSOF
Abbreviation: SOF

moves the cursor to the start of the document (SOF = start of file).

4.10.16 MoveEOW

Syntax: MoveEOW
Abbreviation: EONV

moves the cursor one character after the end of theword it ison.

53

Thiscommandsisextremely useful in macros, because it allowsto copy precisely theword the cursor

ison. See Chapter 6 [Hints and Tricks], page 63.

54 ne's manua

4.10.17 ToggleSEOF

Syntax: Toggl eSEOF
Abbreviation: TSEOF

movesthe cursor to the start of document, if it is not already there; otherwise, movesit to the end of the
document.

This kind of toggling command (also see Section 4.10.18 [ToggleSEOL], page 54) is very useful in
order to gain some keystroke on systems with very few keys. See also Section 4.10.15 [MoveSOF],
page 53, and Section 4.10.14 [MoveEOF], page 53.

4.10.18 ToggleSEOL

Syntax: Toggl eSEQL
Abbreviation: TSECL

moves the cursor to the start of the current line, if it is not already there; otherwise, movesit to the end
of the current line.

This kind of toggling command (also see Section 4.10.17 [ToggleSEOF], page 54) is very useful in
order to gain some keystroke on systems with very few keys. See also Section 4.10.13 [MoveSOL],
page 53, and Section 4.10.12 [MoveEOL], page 53.

4.10.19 SetBookmark

Syntax: Set Bookmar k [n]
Abbreviation: SBM

sets the nth bookmark to the current cursor position. If the optional n argument is not specified, it is
assumed to be zero. There are ten bookmarks, numbered from 0 to 9.

4.10.20 GotoBookmark

Syntax: Got oBookmar k [n]
Abbreviation: GBM

moves the cursor to the nth bookmark. If the optional n argument is not specified, it is assumed to be
zero. There are ten bookmarks, numbered from 0to 9.

Chapter 4: Commands 55

4.11 Editing Commands

This commands alows to modify directly a document.

4.11.1 InsertChar

Syntax: | nsert Char code
Abbreviation: |1 C

insertsacharacter whoseAscCll codeiscode at the current cursor position. code has alwaysto be different
from 0. All the currently active options (insert, word wrapping, auto indent, et cetera) are applied.

Note that inserting aline feed (10) is completely different frominserting alinewith | nsert Li ne.
I nsert Char 10 puts the control char CONTROL- J in the text at the current cursor position. See
Section 4.11.4 [InsertLine], page 55.

4.11.2 DeeteChar

Syntax: Del et eChar [n]
Abbreviation: DC

deletes n characters from the text. If the optiona n argument is not specified, it is assumed to be one.
Deleting a character when the cursor isjust after the last char on alinewill join alinewith thefollowing
one; in other word, the carriage return between the two lines will be deleted. Note that if the cursor is
after the end of the current line, no action will be performed.

4.11.3 Backspace

Syntax: Backspace [n]
Abbreviation: BS

actslike Del et eChar , but moves to the right the cursor before deleting each character.

4.11.4 InsertLine

Syntax: | nsert Li ne [n]
Abbreviation: | L

56 ne's manua

insertsn lines at the current cursor position, breaking the current line. If the optional n argument is not
specified, it is assumed to be one.

4.11.5 Deeteline

Syntax: Del et eLi ne [n]
Abbreviation: DL

deletes n lines at the current currsor position, putting the last one in the temporary buffer, from which it
can be undeleted. See Section 4.7.3 [UndelLine], page 40. If the optional n argument is not specified, it
is assumed to be one. Notethat thisaction isin no way inverse with respectto | nsert Li ne.

4.11.6 DeleteEOL

Syntax: Del et eECL
Abbreviation: DE

deletes all characters from the current cursor position to the end of theline.

This command could be easily implemented with a macro, but it is such a common, basic editing
feature that it seemed worth a separate implementation.

4.12 Support Commands

These commands perform miscellaneous useful actions. In particular, they provide access to the shell
and away to assign the functionality of ESCAPE to another key.

4.12.1 About

Syntax: About
Abbreviation: About

displays a simpleinformation line about ne on the status bar.

Chapter 4: Commands 57

4.12.2 Beep

Syntax: Beep
Abbreviation: BE

beeps. If your terminal cannot beep, it flashes. If it cannot flash, nothing happens (but you have a very
bad terminal).

4.12.3 Exec

Syntax: Exec
Abbreviation: EX

prompts the user on the input line, asking for a command, and executes it. It is never registered while
recording a macro (but the command you typeis).

Thiscommand ismainly useful for key bindings, menu configurations, and in manually programmed
macros.

Notethat if the command you specify does not appear in ne’s internal tables, itis considered to be a
macro hame. See Section 4.6.3 [Macro], page 38.

4.12.4 Flasnh

Syntax: Fl ash
Abbreviation: FL

actsasBeep, butinterchanging thewords“beep” and “flash”. Same commentsapply. See Section4.12.2
[Beep], page 57.

4125 Help

Syntax: Hel p [hameg]
Abbreviation: H

displays some help about the command name (both the short and the long version are accepted). If no
argument isgiven, alist of all existingcommandsin long form isdisplayed, alowing you to choose one.
You can browse the hel p text with the standard navigation keys. If you press RETURN, the command list
will be displayed again. If you press F1 or ESCAPE, you will return to normal editing.

58 ne's manua

This command is never registered while recording a macro, so that you can safely access the help
system while recording. See Section 4.6.1 [Record)], page 37.

4.12.6 NOP

Syntax: NOP
Abbreviation: NOP

does nothing. Mainly useful for inhibiting standard key bindings.

4.12.7 Refresh

Syntax: Refresh
Abbreviation: REF

refreshesthe display. Thiscommandisvery important, and should preferably be bound to the CONTROL-
L sequence, for historica reasons. It can aways happen that a noisy phoneline or aquirk in thetermina
corrupts the display. This command restores it from scratch.

4.12.8 System

Syntax: Syst em[command]
Abbreviation: SYS

asks the shell to execute command. The terminal istemporarily reset to the state it was in before ne’s
activation, and command is started. When the execution isfinished, ne returnsin control.

If the optional argument command is not specified, you can enter it on the input line.

4.12.9 Escape

Syntax: Escape
Abbreviation: ESC

toggles on and off the menus, or escapes from the input line. This command is mainly useful for
reprogramming the menu activator, and it is never registered while recording amacro. See Section 4.6.1
[Record], page 37.

Chapter 5: Configuration 59

5 Configuration

In this chapter we will see how the menus and the key bindings of ne can be completely configured.
Note that the configuration is parsed at startup time, and cannot be changed during the execution of the
program. Thisisachosen limitation.

It should al so be remarked that the standard configuration of ne does not contain key bindingsrelative
to the META key. This choice was forced by the fact that the behaviour of this key is unpredictable on
most systems. If your META key does what it should (i.e., it rises the high bit of any character), you can
configure about thirty new shortcuts—the CONTROL- META- letter combinations—which will produce
ASCII characters between 128 and 159, and will be parsed as shortcuts by ne.

5.1 Key Bindings

ne alows you to associate to any keystroke any command. In order to accomplish this task, you
have to create afile named ‘$HOVE/ . ne/ . keys’.

Theformat of thefileisvery simple: each line starting with the ‘KEY’ sequence of capital characters
is considered the description of akey binding. All other lines are considered commments. The format
of akey binding description is

KEY hexcode command

The hexcode value is the Ascil code of the keystroke. For specia keys such as| NSERT or function
keys, you should take a look at ne’s source file ‘keycodes. h’, which contains the codes for al
t erm nf o’s key capabilities. You can write just the hex digits, nothing else is necessary (but a
prefixing ‘0x’ istolerated). For instance,

KEY 1 MOVESCL

bindsto CONTROL- A the action of moving to the start of aline, while

KEY 101 LI NEUP
bindsto the “cursor-up” key the action of moving the cursor one line up.

The file ‘def aul t . keys’ which comes with ne’s distribution contains a complete, commented
definition of ne’s standard bindings. You can modify thisfile with a trial-and-error approach.

60 ne's manua

command can be any ne command, including Escape (which alows the reconfigure the menu
activator) and Macr o, which allows to bind complex sequences of actions to a single keystroke. The
binding of amacro isvery fast because on thefirst call themacro is cached in memory. See Section 4.6.3
[Macro], page 38.

Note that you cannot ever redefine RETURN and ESCAPE. This is a basic issue—however brain
damaged isthe current configuration, you will dwaysbe ableto exploit fully the menusand the command
line.

The key binding file is parsed at startup. If something does not work, ne exits displaying an error
message. If you want to skip this phase (for instance, in order to correct the broken file), just give ne
the- - noconfi g argument. See Section 3.1 [Arguments], page 11.

5.2 Changing Menus

When ne isstarted, it looks at thefile ‘$HOVE/ . ne/ . nenus’; if it exists, it is considered a menu
configuration file.

Each line of amenu configuration file not starting with the* MENU or ‘| TEM keywordsis considered
acomment. You should describe the menus as in the following example:

MENU " Proj ect "

| TEM " Cpen. . . ~O' QCpen
| TEM "d ose " d ose
| TEM " Dol t " Macro Dolt

In other words: aline of thisform

MENU " title"

will start the definition of a new menu, having the given title. Each line of the form

| TEM "text" command
will then define amenu item, and associate the given command to it.

Any number of menus can be accomodated, but you should consider that many terminals are 80
column wide. There isalso a minor restriction on the items—their width has to be constant throughout
each menu (but different menus can have different widths). Note that the text of an item, as the name
of amenu, is between quotes. Whatever follows the last quote is considered the command associated to
the menu.

Chapter 5: Configuration 61

Warning: thedescription of key bindingsinmenus (*~ O inthe previous example) is very important for
the beginner; thereis no relation inside ne about what you say in the menu and how you configure the
key bindings (see Section 5.1 [Key Bindings|, page 59). Please do not say things in the menus which
are not truein the key binding file.

The menu configuration fileis parsed at startup. If something does not work, ne exits displaying an
error message. If you want to skip this phase (for instance, in order to correct the broken file), just give
ne the- - noconf i g argument. See Section 3.1 [Arguments], page 11.

62

ne's manua

Chapter 6: Hintsand Tricks 63

6 Hintsand Tricks

Use F1, not ESCAPE.
Dueto the limitationsof the techniques used when communicating with aterminal, itisnot
possibleto “decide’ that the user pressed the ESCAPE key for about a second after the actua
key press (see Section 4.9.9 [EscapeTime], page 47). Thismeans that you will experiment
annoying delayswhen using menus. If you have no F1 key, redefine akeystroke assigning
the command Escape, and you will be able to use that keystroke instead of ESCAPE.

Check for the presence of a META key.
If your system has a standard META or ALT key, there is a good chance that you have
another thirty shortcuts or so. See Chapter 5 [Configuration], page 59.

ne doestilda expansion.
When you have to specify afile name, you can always start with *~ /' in order to specify
your home directory, or ‘™ user/ ' in order to specify the home directory of another user.

The ESCAPE delay when activating menus can be avoided.
If you press after ESCAPE any key which does not produce the second character of an
escape sequence, ne will immediately recognize the ESCAPE key code as such. Since
non-aphabetical keys have no effect while browsing through the menus, if you’re forced
to use ESCAPE as menu activator you can press, for instance, ‘, ’ just after it in order to
speed up the menu activation (note that *: ' would not work, because it would activate the
command line).

Use turbo mode for lengthy operations.
Turbo mode (see Section 4.9.11 [Turbo], page 47) alowsto perform very complex operation
without updating the screen up to the end. Thiscan be amajor plusif you are editing very
long files, or if your terminal is slow. If the default value (twice the number of lines of the
screen) does not give you the best results, experiment other values.

Regular expressions are powerful, and slow.
Regular expressions must be studied very carefully. If you spend alot of time doing editing,
it is definitely reasonable to study even their most esoteric features. Very complex editing
actions can be performed by a single find/replace using the\ n convention. But remember
always that regular expressions are much slower than anormal search.

Use the right movement commands in a macro.
Many boring, repetitive editing actions can be performed in a breeze by recording them the
first time. Remember, however, that while recording a complex macro you should aways
useacursor movement that will apply in adifferent context. For instance, if you are copying
a word, you cannot move with cursor keys, because that word at another application of
the macro could be of a different length. Rather, use the next/previous word keys and the
Mov e EOWcommand, which guarantee a correct behaviour in al situations.

Some preferences can be preserved even with automatic preferences.
When you save an autoprefs file, the file simply contains a macro which, when executed,
produces the current configuration. However, you could want, for instance, to never change
the insert/overwrite state. In this case, just edit with ne the autoprefs files and delete the

64 ne's manua

line containing the command setting the insert flag. When the autoprefs will be loaded, the
insert flag will be left untouched. Thistrick is particularly useful with the St at usBar
and Fast GUI commands.

If some keystrokes do not work, check for system-specific features.
Sometimes it can happen that a keystroke does not work—for instance, CONTROL- O
does not open afile. Thisusudly is due to the kernel tracking that key for its purposes.
For instance, dong at el net connection with xon/xoff flow control, CONTROL- S and
CONTROL- Qwould block and rel ease the output instead of saving and quitting.

In these cases, if you do not need the system feature you should check how to disableit: for
instance, some BsD-like systemsfeature a delayed suspend signal which isnot in the Posix
standard, and thus cannot be disabled by ne. On HP-UX, the command ‘st ty dsusp ™ -’
would disable the signal, and would let the control sequence previously assigned to it to
run up to ne.

Another example is the NCSA Tel net software for the Macintrash. Unless you modify
your setting in such away to disable CONTROL- S and CONTROL- Q as flow controllers,
you will not be able to use them as keystrokes (even if ne is doing al it can in order to
explain to the software that it does not need xon/xoff flow control ...).

Chapter 7: Motivationsand Design 65

7 Motivationsand Design

In thischapter | will try to outlinethe rational e behind ne’s design choices. Moreover, some present,
voluntary limitations of the current implementation will be described. The intended audience of such a
description is the programmer wanting to hack up ne’s sources, or the informed user wanting to deepen
its knowledge of the limitations.

ne has no concept of mode. All shortcuts are defined by a single key, possibly with a modifier
(such as CONTRCL or META). Modality isin my opinion a Bad Thing unlessit has a very clear visua
feedback. Asan example, menus are aform of modality. After entering the menus, the a phabetic keys
and the navigation keys have a different meaning. But the modality is clearly reflected by a changein
the graphical user interface. The same can be said about the input line, because it is dways preceeded
by a (possibly highlighted) prompt ending with a colon.

ne has no sophisticated visual updating system similar, for instance, to the one of cur ses. All
updating is done while manipulating the text, and only if theturbo flag is set someiterated operations can
delay theupdate (inthiscase, ne keepstrack in avery rough way of the part of the screen which changed).
Moreover, the output is not preempted by additiona input coming in, so that along a slow connection
the output could not keep up with the input. However, aong fast connections, the responsiveness of the
editor is greatly enhanced by the direct update. Moreover, a great deal of memory and computational
power is gained, because it is not necessary to keep constantly updated two copies of the screen, and
to compare them whenever doing an update. Asiit istypica in ne, when such design tradeoffs arise
preference is given to the solution which is effective on agood part of the existing hardware, and will be
very effective on most future hardware.

ne uses a particular scheme for handling the text. There is a doubly linked list of line descriptors
which contain pointers to each line of text. The lines themselves are kept in alist of pools, which is
expanded and reduced dynamically. Theinteresting thingisthat for each pool ne keeps track just of the
first and of the last character used. A character isfreeiff it containes anull, so thereisno need for alist
of free chunks. The point isthat the free characters laying between that first and the last used characters
(the lost characters) can only be alocated locally: whenever aline hasto grow inlength, ne first checks
if there are enough free characters around it. Otherwise, it remaps the line elsewhere. Since editing is
essentialy alocal activity, the number of such lost characters remainsvery low. And the manipulation of
alineisextremely fast and independent of the size of the file, which can be very huge. A mathematical
analysis of the space/timetradeoff israther difficult, but empirical evidence suggeststhat theideaworks.

ne takesthe Posix standard as the basisfor uN*Xx compatibility. The fact that this standard has been
designed by a worldwide recognized and impartial organization such as IEEE makesit in my opinion the
most interesting effort in hisleague. No attempt is made of supporting ten thousands different versions
and releases by using conditional compilation. Very few assumptions are made about the behaviour of
the system calls. This has obvious advantagesin terms of code testing, maintenance, and reliability. For
the same reasons, the availability of an ANSI C compiler is assumed.

66 ne's manua

If thesystem hasat er m nf o database and the relative functions (which are usually contained in the
library ‘1 i bcur ses. a’), ne will use them. The need for aterminal capability database is clear, and
the choice of t er mi nf o (with respect tot er ncap) is compulsory if you want to support a series of
features (such as morethan ten function keys) whicht er ncap lacks. If t er m nf o isnot available, ne
canuseat er ntap database. Some details about thiscan be found in Chapter 9 [Portability Problems],

page 71.

ne does not allow to redefine the ESCAPE and RETURN keys, and theinterrupt character CONTROL-

\ . This decision has been taken mainly for two reasons. First of all, it is necessary to keep a user from
transforming ne’s bindings to such a point that another unaware user cannot work with it. These two
keys and the alphabetic keys alow to activate any command without any further knowledge of the key
bindings, so it seems to me thisis a good choice. As a second point, the ESCAPE key usage should
generaly be avoided. The reason is that most escape sequences that are produced by special keys start
exactly with the escape character. When ESCAPE is pressed, ne has to wait for one second (thistiming
can be changed withthe EscapeTi me command), just to be surethat it did not receivethefirst character
of an escape sequence. This makes the response of the key very slow, unlessit isimmediately followed
by another key such as‘: '. See Chapter 6 [Hintsand Tricks], page 63.

Note that it was stated several timesthat the custom key bindingswork also when doing along input,
navigating through the menus or browsing the requester. Thisis only partialy true. In order to keep
down the code size and complexity, in these cases ne recognizes only direct bindings to commands,
and discards the arguments. Thus, for instance, if akey is bound to the command line ‘Li neUp 2’, it
will act like ‘Li neUp’, while abinding to ‘Macr o Movel t Up’ would produce no result. Of course
full binding capability is available while writing text. Thislimitation will probably be lifted in a future
version: presently it does not seem to limit seriously the configurability of ne.

ne has somerestriction initstermina handling. It does not support highlighting on terminalswhich
use amagic cookie. Supporting correctly such terminalsisaroyal pain, and | did not have any means of
testing the code anyway. Moreover, they are rather obsolete. Another lack of support isfor the capability
strings which specify afile to print or a program to launch in order to initialize the terminal.

The macro capabilities of ne are rather limited. For instance, you cannot give an argument to a
macro: they are simply scripts which can be played back automatically. This makes them very useful
for everyday usage in a learn/play context, but rather unflexible for extending the capabilities of the
program. However, it is not reasonable to incorporate in an editor an interpreter for a custom language.
Rather, a systemwide macro language should control the editor via interprocess communication. Thisis
the way of the REXX language: unfortunately, a diffused, uniform, standard implementation of REXX
under UN* X isnot likely to appear. However, the next version of ne will certainly feature a REXX port
on the Amiga.

ne has been written with sparing resource usage as a basic goal. Every possible effort has been
made in order to reduce the use of cpu time and memory, and the number of system calls. For instance,
command parsing is done through hash techniques, and the escape sequence analysis uses the order

Chapter 7: Motivationsand Design 67

structure of strings for minimizing the number of comparisons. The optimal cursor motion functions
weredirectly copied fromenacs. No busy pollingisalowed. Doubly headed, doubly linked listsallow
for very fast list operations without any specia case whatsoever. The search agorithm is a version of
the Boyer-Moore agorithm which provides high performance with aminimal setup time. An effort has
been taken to move to the text segment all datawhich do not change during the program execution.

A word should be spent about lists. Clearly, handling the text as asingle block with an insertion gap
(alaemacs) alows you to gain some memory, since you do hot have to allocate the list nodes, which
require usualy 16 bytes per line. However, the management of thetext asalinked list requires much less
CPU time, and the tradeoff seemsto be particularly favorable on virtual memory systems, where moving
the insertion gap can require alot of accesses to different pages.

Just to give a pratical example, on the HP-UX systems where ne was developed vi requires more
memory than ne, unlessthe size of thefileto edit israther big, in which case ne requires a data segment
about 20% bigger. (Of course, this does not take into account some sophisticated features of ne, such as
unlimited undo/redo, which can cause a major memory consumption.)

68

ne's manua

Chapter 8: Some Notes for the Amiga User 69

8 SomeNotesfor the Amiga User

This section describes the differences between the Amiga and UN* X versions of ne, and some of
the misfeatures inherited by its UN* Xish design.

In order to keep maintenance of the code simple, conditional code was avoided when possible. Thus,
some feature had to be dropped. First of dl, there is no interrupt character. This happens because the
Amiga handles signals in a very different way than UN*X, and it would have been very complex to
reproduce the original behaviour.

In the file requester, it is not possible to obtain alist of the available devices. Indeed, it isnot even
possible to pass from a device to another inside the requester. You have to escape, then input manually
the device name as a filename (which will produce a spurious error) and open again: this time, the
device scanned by the requester will be the new one. Another aternative, of course, issimply to input a
compl ete pathname.

ne will not behave particularly well under low memory conditions. It won't crash, but it could
behave improperly.

The *‘$HOVE’ directory has no meaning on the Amiga: rather, the ‘PROGDI R: ’ directory is used.
For instance, the ‘$HOVE/ . ne’ directory isreally ‘PROGDI R: . ne’.

70

ne's manua

Chapter 9: Portability Problems 71

9 Portability Problems

This chapter is devoted to the description of the (hopefully very few) problemsthat could arise when
porting ne to another version of uN*x. Compatibility withinthe Amigafamily of computersiscompl ete,
so there are no problemsin recompiling ne for a different processor or architecture in this case.

Thefact that only Posix callshavebeen used (see Chapter 7 [M otivationsand Design], page65) should
guarantee that on Posix-compliant systems a recompilation should suffice. Unfortunately, t er m nf o
has not been standardized by IEEE, so that different calls could be available. The necessary calls are
setupterm(), fixterm(), resetternm(), tparm() andtputs(). Theother term nfo
functions are never used.

Ift er mi nf oisnotavailable, thesourcefiles‘i nf o2cap. ¢’ and‘i nf o2cap. h’ mapt er mi nf o
calsont er ntap cals. Thecomplete GNU t er ntap sources are distributed withne, so nolibrary at
all isneeded in order to use them. You just haveto compile using as makefile ‘Makef i | e. t er ncap’.
Should you need comprehensive information on GNU t er ntap, you can find the distribution files on
any f t p site which distributes the GNU archives. | should note that the GNU t er nrcap manual is
definitely the best manual ever written about termina databases.

There are, however, some details which are not specified by Posix, or are specified with insuffi-
cient precision. The places of the source where such details come to the light are evidenced by the
‘PORTABI LI TY PROBLEM string, which isfollowed by a complete explanation of problem.

For instance, there is no standard way of printing extended Ascil characters (i.e., characters whose
code is smaller than 32 or greater than 126). On many system, these characters have to be filtered and
replaced with something printable: the default behaviour is to add 64 to all characters under 32 (so
that control characters will translate to the respective letter) and to visuaize al characters between 126
and 160 as a question mark (this works particularly well with ISO Latin 1). If your system has a more
powerful display, you may want to change the DECONTROL() macro definedin‘t er m ¢’ which takes
a character variable as an argument, and transformsit into a printable character.

Note that it is perfectly possible that some system features not standardized by Posix interfere with
ne’s usage of the 1/0 stream. Such problems should be attached locally, by using the system facilities,
rather than by #i f def 'ing horribly the source code. An example is given in Chapter 6 [Hints and
Tricks], page 63.

72

ne's manua

Chapter 10: Acknowledgments 73

10 Acknowledgments

A lot of people contributed to this project. Part of the code comes from the emacs sources. Many
people, in particular at thesilab (the Milan University Computer Science Department L aboratory), hel ped
in betatesting.

In particular, | would like to cite Roberto Attias, Ivan Buttinoni, Alfredo Chizzoni, Marco Colombo,
Heinfried Korn, Willy Langeveld, Fabrizio Lodi, Antonio Piccolboni, Gianpiero Puccioni, Marco
Pugliese, Marco Rodolfi, Larry Rosenman, Sergio Ruocco, David Alan Sanna, Carlo Santagostino,
Markus Senoner, Paolo Silvera, Reinhard Spisser, Elena Toninelli and Marvin Weinstein.

Comments, complaints, desiderata are welcome.

Sebasti ano Vi gna
Via California 22
| -20144 MIlano M

Bl X: svi gna@i x. com
| NTERNET: vi gna@host.dsi.unim.it
UUCP: seba@ebam ga. adsp. sub. org

74

ne's manua

Command Index

Command Index

A

ADOUL. .. 56
Autolndent. 43
AutoPrefs. 44
B

Backspace.. 55
BEED . . et 57
Binary ... 44
C

Capitalize. 42
CaseSearCht 36
Gty . . 41
Clear. .o e 26
ClipNumber. ... 32
CloSEDOC . . .o vt 29
COPY v e 30
CUL . 31
D

DeleteChar. e 55
DeleteEOLt 56
Deleteline.t 56
DOUNO. ..t 40
E

Erase ... 31
ESCapeo 58
EscapeTime. . ..ot 47
EXEC. .. 57
EXit. 28
F

FastGUI 45
Find ... 33
FINAREGEXP .. .o vt 33
Flash. ..o 57
FreeForm. 45
G

GotoBookmark ... 54
GotoColUMNo 51

75
GOtOLINE . vttt 51
GOtOMark . . vt 51
H
HEID oo e 57
I
INSErt .. 45
InsertChar 55
Insertline 55
L
LinEDOWN ... e 50
LineUpP. ..o 50
LoadAutoPrefs. .. .o 49
LoadPrefso 48
M
MaCro. ..o 38
Mark . .. 30
MarkVert 30
MatchBracket 36
MOVEEOF 53
MOVEEOL ...t i 53
MOVEEOW 53
MoveLeft.o 50
MoveRight. 50
MOVESOF 53
MOVESOL 53
N
NewDOC. . ..o 28
NEeXtDOC. 29
NextPage...........co i 52
NextWord e 52
NOFIIEREG . . .o 46
NOP . . 58
O
BN . o 26
OPENClIP . . et 32
OPENMACIO .. . oo e ittt e 38

76

P

Paragraph.. ... 41
Paste. 31
PasteVert ... 31
Play . 37
PrevDoC. 29
PrevPage....... ... 52
PrevWord. 52
Q

QUIt . 28
R

ReadOnly ... 46
RECOMd . .o 37
READ. ..o 40
Refresh. 58
REPEAILASE . . . o v e ettt 35
Replaceo 34
ReplaceAll. ... 35
ReplaceOnCe.o 35
RightMargin 42
S

SV . 27
SAVBAS . 27
SaveAUtoPrefs 49

ne's manua

SaveDefPrefs. ..o 49
SAVEMACIO. . o ettt 39
SavePrefs. 49
SearchBacK 36
SElECtDOC . . v 29
SetBookmark. 54
StatuSBar 46
SVt M . 58
T

TabSiZe . .. 47
Through. ... 33
ToggIESEOFt 54
TOggIESEOL ..\t 54
TOLOWES e e 42
TOUPPEr . ..o 42
TUDO . oo 47
U

Undelline 40
UNdO . oo 40
UnloadMacros.ot 39
V

VerboSEMaCrOS .. . oot 48
W

WOrdWIrap 43

Concept Index

Concept I ndex

A

AMiga. ..o 1,69
ATQUMENTS . . . oot 11
Automatic preferences.. ..., 7,23
B

Binaryfiles. ... 8,44
Block operations. 5
Bookmarks 8
C

Cachingamacro.ouvu it 7
ClipUSAZE. . ot 5
Closingadocumentoeei e 5
Command argumentsSvuiiniiie e, 25
Commandling.coouiiiiiii i 3,14
ComMMANGS. . .. oo 25
Configuringthekeyboard 59
Configuringthemenus. ..., 60
Control Keyo 3
CUIMSES . . ottt ettt e e et e e 65
D

Deletingcharacters.. ... 5
Deletinglineso 5
E

Emergency Save. 24
Escapeconventions.ooiiiiii i 25
ESCapeusage.coviiiiiii 63
Escapinganinput 12
EXecutingamacrooouuiiiii i 7
EXItiNG . .o 5
F

Fast GUI ... 11
Features 1
Filerequesterc.vviiiiiiiiiine.n, 5,8,14
Filteringablocko 8
Flags . ..o 7,25
H

77
I
Immediate input 12
Inputline. 12
Insertmode ..o 7
Interrupt character ... 7,65
Interrupting amacro.o 7
Interrupting directory scanmning...................... 14
K
Keybindings.. ... 59
Keyboardusage.c.oviiiiii i 3
L
Lineand columnnumbers................ 11
LITHP . 1
Loadingafile..........oooiiii i, 5
LONGiNPpUL. ..o 12
LoNgnames. ..o 25
M
Macrodefinition......... ... 7
Magic cookieterminals. ... 65
Menubar.o 3
MenuuSage.oiiiii i 3
Menus 15
Metakey 59
MOOE . . 65
Multipledocuments. 5
@)
Openingafile........... oo 5
P
Portabilityo 71
POSIX . 1,65, 71
Preferences.o 7
Printablecharacters oo 71
Q
QUILEING .« e e 5
QuOLiNG CONVENLIONS . .. oottt 25

78

R

Recordingamacroouieiiiiiiiinnn. 7
Regular EXpressions.vvvien i 20
Repeating actions.covii i 25
REGUESIEN . . .\ et e e ettt 14
Resourceusage. ... 65
S

Savingafile....... ..o 5
SAVINGAMACIO . .. v ettt 7
Shortnames. 25
ShortCutS . . .o 3
Shortcutsnot working ... 63
Skipping configurationfiles......................... 11
SAtUP MACIOt 11
Statusbar. 3,11

ne's manua

T
termeap . .. 1,65,71
terminfo. 1,65,71
Turboadjustment oo 63
TurboText 1
U

Undeletinglines 5
Unloading macrosS.o v vt 7
V

Vet 1
W

Table of Contents

1 INtroduCtionccoviiiii e 1
2 BaASICS. . i 3
21 SAMING oo e 3

22 Loadingand SaVving.ououiiiii e 5

23 Editing. .. .o 5

24 BaSiCPreferenCes. ...t 7

2.5 BaSiCMatIOS. ..ottt 7

26 MoreAdvanced Features.cco it 8

3 REEENCE. ..o e 11
3L ATQUMENES . . e e e e 11

32 TheStaUSBar. it e 11

33 ThelnputLine. oot i 12

34 TheCommandLine.ouoiiiiiiiiii i 14

35 TheREQUESIENo 14

BB MENUS. .ottt e 15

36. 1 Project. .. .o 15

3.6.2 DOCUMENTS. . ..ottt ittt 16

3.6.3 Edit.....oii e 16

364 SEaCh. ... i 17

365 MaCIOS. ..ottt e e 17

36.6 EXIaS.....oiiiiii i e e 18

3.6.7 NaVigation.ouvuiiii i 18

3.6.8 Prefs. ... 19

3.7 Regular EXPressionS.viuitie i 20

BT L SYNEAX . e e 20

3.7.2 Replacing regular eXpresSionNS.vvvieieeeenenennns 23

3.8 AutomaticPreferences. ... 23

3.9 EMErgEnCY SaVe. ... 24

4 COoMMaANAS. ..ttt 25
A1 GENEIAlS . . 25

42 FileCommands.coriiii i e 26

421 ClEar ..o 26

42,2 OB it 26

423 OPENNEW . . oo e 27

A28 SV, ..t 27

425 SAVEAS. . e 27

4.3 Document Commands.oviiii i 28

432 Xt i 28
4.3.3 NEAWDOC. ...ttt e e 28
434 CloSEDOC . .ottt e 29
435 NeXtDOC......oiii it e e 29
436 PrevDOC. ... e 29
437 SEAECIDOC. ...t 29
44 ClipCoMMandS.ouiit it 30
441 MarK ..o e 30
442 MarkVErt ... o e 30
A3 COPY « ot ettt e 30
A4 CUL. ..o e e 31
A A5 Pt .. i 31
446 PasteVET .. . e 31
A AT EraSB. i 31
448 OPENClIP ..ot 32
449 SaAVECH . ot e 32
4410 ClHpNUMbDEro 32
4411 THhrough ... 33
45 Search Commands.oviit i e e 33
A51 Find.. ..o 33
452 FNAREGEXP .. iveii i 33
453 Replace.o 34
454 ReplacONCe.ot 35
455 ReplaceAll.o e 35
456 Repeatlast..........oiiiiiiiii e 35
457 MachBracket. 36
458 SearchBacKcoviiiii i 36
459 CaseSearCN ...t 36
46 MacrosSCommMandS.vvrt it 37
461 RECOId . ..ottt e e 37
4.6.2 Play ... 37
AB.3 MaACIO ..t e 38
464 OPENMACIO ... oti ittt e 38
465 SAVEMACIO. ..t e e 39
466 UnloadMaCtros.ovviiii i i 39
A7 Undo Commands........c.oviiniieiiii i 39
AT71 UNAO. ... e e 40
A72 ReAO.....oii 40
473 Undelline.. ... 40
A7.4 DoOUNO......o it e e 40
4.8 Formatting Commands..........coviieiiii i 41
S N = o | (= A 41
482 Paragraph. 41
483 TOUPPE ..ottt 42
484 TOLOWE ... e e 42
485 Capitalize. 42

ne's manua

486 RIghtMargin.ot 42
487 WOrAWIaD . ..ottt 43
488 Autolndent........ ... 43
49 Preferences Commands.c.coviiii i 43
491 AUOPIErS. ..o e 44
492 BiNaryo 44
49,3 INSET. .t e e 45
494 FastGUI ... e 45
495 FreeForm. ... e 45
496 NOFIEREG. ..ot 46
49,7 StausBar. ... 46
498 ReadONly.ot 46
4.9.9 ESCAPETIME. ...ttt 47
4910 TabSIZE. ...t 47
4911 TUIDO ..o 47
4912 VerboseMaCroS. . ..ot 48
4913 LoadPrefs. ...t 48
4914 SavePrefs. ... 49
4915 LoadAUtOPIeEfS. ...t 49
4916 SaveAUtoPrefs...........iiiii 49
4917 SaveDefPrefs.o 49
410 Navigation ComMmMands.ovvuiriiei i 50
4101 MoVELEft. ... o 50
4.10.2 MOVERIGNto 50
4.10.3 LiNEUP ..ot 50
4104 LinEDOWN ...t e 50
4105 GOtOLINE. ...ttt e 51
4106 GotoCOIUMN . ..ottt e e e 51
4107 GotoMark ...t 51
4108 PrevPage.o 52
4109 NextPage..........oiiiiiii e 52
41010 PrevWordt 52
41011 NextWord i 52
41012 MOVEEOL ...t e 53
41013 MOVESOL ..o 53
41014 MOVEEOF e e 53
41015 MOVESOF 53
41016 MOVEEOW ... oo 53
4.10.17 ToggleSEOF.o 54
41018 ToggleSEOLo 54
41019 SetBookmarkccoiiiiiii 54
4.10.20 GotoBookmarkc.cooiiiiiiii 54
411 EditingCommandsS.vivuineie i 55
4111 InSertChar ...t 55
4112 DEEEChar ...t 55
4113 BaCKSPACE. ..o e ittt 55

iv ne's manua

4114 Insertline.ot e 55

4115 Deeteline.o.veee e 56

4116 DEEEEOLvve it 56

412 SUPPOrt COMMENGS. . ..o vttt et 56
4121 AbBOUL 56

8122 BOED ... 57

8123 EXEC ...t 57

B124 Fash.o 57

8125 HED ..o 57

8126 NOPt 58

4127 REFreSN. ... 58

8128 SYSOM ...t 58

4129 ESCOPE ...ttt 58

5 Configurationcooeiiiiiiiii i 59
51 Key BindingS.t 59

52 ChangingMenUS.ttt 60

6 Hintsand TrickS......o.viiiiiiiiii e 63
7 Motivationsand Design.........ooviiiiiiiiiiiii e 65
8 SomeNotesfor theAmigaUserccooiivinn. 69
9 Portability Problems................oo 71
10 Acknowledgments.........c.oviiiiiiiiiiiiiieen, 73
Command INdexooiiiiiiii e e 75

ConCEPt INAEX. ... 77

