
Mini SQL

A Lightweight Database Engine

Version 1.0.6
May 1995

mSQL has been developed as part of the Minerva Network Management Environment.
Copyright (c) 1993 - 1995 David J. Hughes

mSQL Version 1.0.6

Table of Contents

Introduction and History ... 1

Mini SQL Specification ... 2

The Database Engine ... 7

Runtime Configuration ... 8

C Programming API ... 9

The mSQL Terminal Monitor ... 15

mSQL Database Administration ... 16

mSQL Schema Viewer ... 16

mSQL Database Dumper ... 16

mSQL Access from Script Languages ... 17

Access Control ... 18

Author’s Details ... 19

Archive Location ... 19

Mailing List ... 19

Index ... 20

mSQL Version 1.0.6

Page 1

Introduction and History
Mini SQL, or mSQL, is a lightweight database engine designed to provide fast access to stored
data with low memory requirements. As its name implies, mSQL offers a subset of SQL as its
query interface. Although it only supports a subset of SQL (no views, sub-queries etc.), every-
thing it supports is in accordance with the ANSI SQL specification. The mSQL package
includes the database engine, a terminal “monitor” program, a database administration pro-
gram, a schema viewer, and a C language API. The API and the database engine have been
designed to work in a client/server environment over a TCP/IP network.

The decision to write yet another database package was made due to the hole in the range of
“free” or “freely available” databases. At the time of writing, there are no other database pack-
ages available that support SQL as the query language. The most notable database package for
research work, Postgres from the University of California at Berkeley, offers a superset of the
original Ingres QUEL known as PostQUEL as its query language.

mSQL has been developed as the database backend for the Minerva1 Network Management
Environment. Originally, Minerva utilised Postgres as its database and generated PostQUEL
queries to access it. During initial alpha testing of Minerva, a comment was made that if Min-
erva generated SQL queries, sites with an existing database installation, such as Ingres or Ora-
cle, could use their commercial databases rather than have to support Postgres as well. To
accommodate that wish, mSQL was written initially as an SQL to PostQUEL translator so that
sites without commercial database could still use Postgres (seeing as there were no “free” SQL
engines available).

As time passed, and Minerva developed further, it became apparent that Postgres was too
resource hungry to support the evolving mechanisms provided by Minerva. To gain speed,
Minerva was extended to perform monitoring and data acquisition in parallel. Unfortunately,
each process that communicated with the database forced another copy of the Postgres back-
end to be spawned. The fact that each Postgres backend consumes close to 1.5 megabytes of
memory soon put a stop to the parallel data acquisition operations.

Although Postgres is a very large and capable package, it is supported on only a handful of
platforms. This proved to be a problem as a couple of the original Minerva alpha testers
wished to run Minerva on Silicon Graphics machines. Unfortunately, Postgres did not support
the SGI machines so they could not participate in the testing. The fact that Minerva itself uti-
lised only a fraction of the features of Postgres and needed to be portable to most platforms
proved that tying Minerva to Postgres was not the best option. From that decision Mini SQL
was developed.

It should be noted that Postgres is an excellent database package offering a vast array of pow-
erful features and that the above comments in no way try to detract from its success. The fact
that Minerva utilises very few database features (it doesn’t even need a relational join) showed
that a database as capable and advanced as Postgres was overkill.

1. Minerva was the Roman Goddess of knowledge and information. She is depicted on the front cover

mSQL Version 1.0.6

Page 2

Mini SQL Specification

The mSQL language offers a significant subset of the features provided by ANSI SQL. It
allows a program or user to store, manipulate and retrieve data in table structures. It does not
support relational capabilities such as table joins, views or nested queries. Although it does not
support all the relational operations defined in the ANSI specification, it does provide the
capability of “joins” between multiple tables.

Although the definitions and examples below depict mSQL key words in upper case, no such
restriction is placed on the actual queries.

The Create Clause

The create clause as supported by mSQL can only be used to create a table. It cannot be used
to create other definitions such as views. It should also be noted that there can only be one pri-
mary key field defined for a table. Defining a field as a key generates and implicit “not null”
attribute for the field.

CREATE TABLE table_name (
col_name col_type [not null | primary key]
[, col_name col_type [not null | primary key]]**

)

for example

CREATE TABLE emp_details(
first_name char(15) not null,
last_name char(15) not null,
dept char(20),
emp_id int primary key,
salary int

)

The available types are:-

char (len) String of chracters (or other 8 bit data)
int Signed integer values
real Decimal or Scientific Notation real values

mSQL Version 1.0.6

Page 3

The Drop Clause

Drop is used to remove a table definition from the database:

DROP TABLE table_name
for example

DROP TABLE emp_details

The Insert Clause

Unlike ANSI SQL, you cannot nest a select within an insert (i.e. you cannot insert the data
returned by a select). If you do not specify the field names they will be used in the order they
were defined - you must specify a value for every field if you do this.

INSERT INTO table_name [(column [, column]**)]
VALUES (value [, value]**)

for example

INSERT INTO emp_details (first_name, last_name, dept, salary)
VALUES (‘David’, ‘Hughes’, ‘I.T.S.’,’12345’)

INSERT INTO emp_details
VALUES (‘David’, ‘Hughes’, ‘I.T.S.’,’12345’)

The number of values supplied must match the number of columns.

The Delete Clause

The syntax for mSQL’s delete clause is

DELETE FROM table_name
WHERE column OPERATOR value

[AND | OR column OPERATOR value]**

OPERATOR can be <, >, =, <=, >=, <>, or like

for example

DELETE FROM emp_details WHERE emp_id = 12345

mSQL Version 1.0.6

Page 4

The Select Clause

The select offered by mSQL lacks some of the features provided by the SQL spec:

• No nested selects
• No implicit functions (e.g. count(), avg())

It does however support:

• Joins - including table aliases
• DISTINCT row selection
• ORDER BY clauses
• Regular expression matching
• Column to Column comparisons in WHERE clauses

So, the formal syntax for mSQL’s select is:-

SELECT [table.]column [, [table.]column]**
FROM table [= alias] [, table [= alias]]**
[WHERE [table.] column OPERATOR VALUE

[AND | OR [table.]column OPERATOR VALUE]**]
[ORDER BY [table.]column [DESC] [, [table.]column [DESC]]

OPERATOR can be <, >, =, <=, >=, <>, or like
VALUE can be a literal value or a column name

A simple select may be

SELECT first_name, last_name FROM emp_details
WHERE dept = ‘finance’

To sort the returned data in ascending order by last_name and descending order by first_name
the query would look like this

SELECT first_name, last_name FROM emp_details
WHERE dept = ‘finance’
ORDER BY last_name, first_name DESC

And to remove any duplicate rows, the DISTINCT operator could be used:

SELECT DISTINCT first_name, last_name FROM emp_details
WHERE dept = ‘finance’
ORDER BY last_name, first_name DESC

mSQL Version 1.0.6

Page 5

The regular expression syntax supported by LIKE clauses is that of standard SQL:
• ‘_’ matches any single character
• ‘%’ matches 0 or more characters of any value
• ‘\’ escapes special characters (e.g. ‘\%’ matches % and ‘\\’ matches \)
• all other characters match themselves

So, to search for anyone in finance who’s last name consists of a letter followed by ‘ughes’,
such as Hughes, the query could look like this:

SELECT first_name, last_name FROM emp_details
WHERE dept = ‘finance’ and last_name like ‘_ughes’

The power of a relational query language starts to become apparent when you start joining
tables together during a select. Lets say you had two tables defined, one containing staff
details and another listing the projects being worked on by each staff member, and each staff
member has been assigned an employee number that is unique to that person. You could gen-
erate a sorted list of who was working on what project with a query like:

SELECT emp_details.first_name, emp_details.last_name,
project_details.project

FROM emp_details, project_details
WHERE emp_details.emp_id = project_details.emp_id
ORDER BY emp_details.last_name, emp_details.first_name

mSQL places no restriction on the number of tables “joined” during a query so if there were
15 tables all containing information related to an employee ID in some manner, data from each
of those tables could be extracted, albeit slowly, by a single query. One key point to note
regarding joins is that you must qualify all column names with a table name. mSQL does not
support the concept of uniquely named columns spanning multiple tables so you are forced to
qualify every column name as soon as you access more than one table in a single select.

mSQL-1.0.6 adds table aliases so that you can perform a join of a table onto itself. With this
you could find out from a list of child/parent tuples any grandparents using something like

SELECT t1.parent, t2.child from parent_data=t1, parent_data=t2
where t1.child = t2.parent

The table aliases t1 and t2 both point to the same table (parent_data in this case) and are
treated as two different tables taht just happen to contain exactly the same data.

mSQL Version 1.0.6

Page 6

The Update Clause

The mSQL update clause cannot use a column name as a value. Only literal values may by
used as an update value

UPDATE table_name SET column=value [, column=value]**
WHERE column OPERATOR value

[AND | OR column OPERATOR value]**

OPERATOR can be <, >, =, <=, >=, <>, or like

for example
UPDATE emp_details SET salary=30000 WHERE emp_id = 1234

mSQL Version 1.0.6

Page 7

The Database Engine

The mSQL daemon, msqld, is a standalone application that listens for connections on a well
known TCP socket. It is a single process engine that will accept multiple connections and seri-
alise the queries received. It utilises memory mapped I/O and cache techniques to offer rapid
access to the data stored in a database. It also utilises a stack based mechanism that ensures
that INSERT operations are performed at the same speed regardless of the size of the table
being accessed. Preliminary testing performed by a regular user of mSQL has shown that for
simple queries, the performance of mSQL is comparable to or better than other freely availa-
ble database packages. For example, on a set of sample queries including simple inserts,
updates and selects, mSQL performed roughly 4 times faster than University Ingres and over
20 times faster than Postgres on an Intel 486 class machine running Linux.

The server may be accessed either via a well known TCP socket or via a UNIX domain socket
with the file system (/dev/msqld). The availability of the TCP socket allows client software to
access data stored on machine over the network. Use of the TCP socket should be limited to
client software on remote machines as communicating with the server via a TCP socket rather
than the UNIX socket will result in a substantial drop in performance. See the details on the
programming API and also the command line options to standard programs for details on
selecting the server machine.

The engine includes debugging code so that its progress can be monitored. There are currently
8 debugging modules available in the engine. Debugging for any of the available modules can
be enabled at runtime by setting the contents of the MINERVA_DEBUG environment variable
to a colon separated list of debug module names. A list of available debug modules is given
below:

• cache Display the workings of the table cache
• query Display each query before it is executed
• error Display error message as well as sending them to the client
• key Display details of key based data lookups
• malloc Display details of memory allocation
• trace Display a function call trace as the program executes
• mmap Display details of memory mapped regions
• general Anything that didn’t fit into a category above

For example, to make the server display the queries before they are processed and also show
details of the memory allocation that takes place during the query execution, the following
value would be set

setenv MINERVA_DEBUG query:malloc

By default, the software is installed into /usr/local/Minerva and the server will use space
within that directory for the storage of the databases and also temporary result tables during
operations such as joins and ordering.

mSQL Version 1.0.6

Page 8

Runtime Configuration
Both the mSQL server and API library support a series of environment variables that can dic-
tate and modify the befaviour of the software. Using these variables it is possible to run multi-
ple servers on the same host (one for testing for example). It must be stressed that at no time
must more than one server be configured to access the same database directory. If multiple
servers are configured to work on the same data, you will probably end up with corrupted
databases.

MSQL_HOME
The MSQL_HOME variable instructs the server to ignore the default installation directory
(such as /usr/local/Minerva) and use the value of that variable instead. The directory in which
mSQL maintains the databases is a subdirectory of the installation directory so this environ-
ment variable allows you to run the mSQL server on another set of databases if you wish.

MSQL_TCP_PORT
By default, mSQL uses a pre-defined TCP/IP port for network communications. You can
reconfigure mSQL to use another TCP port in 2 ways, either with the MSQL_TCP_PORT var-
iable or by editing /etc/services.

mSQL initially searches for an entry of type msql/tcp in the /etc/services database. If it finds
such an entry, it uses the port number specified in that file. It then checks for the
MSQL_TCP_PORT environment variable. If it finds such a variable, it uses the port number
stored in that variable as the TCP port (overriding the /etc/services entry if any). If it finds nei-
ther an /etc/services entry nor the MSQL_TCP_PORT variable, it defaults to using the pre-
compiled value for the TCP port.

MSQL_UNIX_PORT
Like the TCP port number, the path of the UNIX socket can be modified. By default it is usu-
ally set to /dev/msql. By setting the value of this variable, you can override the default path
and force mSQL to use a different location for the UNIX socket.

mSQL Version 1.0.6

Page 9

C Programming API
Included in the distribution is the mSQL API library, libmsql.a. The API allows any C pro-
gram to communicate with the database engine. The API functions are accessed by including
the msql.h header file into your program and by linking against the mSQL library (using -
lmsql as an argument to your C compiler). The library and header file will be installed by
default into /usr/local/Minerva/lib and /usr/local/Minerva/include respectively.

Like the mSQL engine, the API supports debugging via the MINERVA_DEBUG environment
variable. Three debugging modules are currently supported by the API: query, api, and malloc.
Enabling “query” debugging will cause the API to print the contents of queries as they are sent
to the server. The “api” debug modules causes internal information, such as connection
details, to be printed. Details about the memory used by the API library can be obtained via
the “malloc” debug module. Information such as the location and size of malloced blocks and
the addresses passed to free() will be generated. Multiple debug modules can be enabled by
setting MINERVA_DEBUG to a colon separated list of module names. For example

setenv MINERVA_DEBUG api:query

msqlConnect()

int msqlConnect(char * host)

msqlConnect() forms an interconnection with the mSQL engine. It takes as its only argument
the name or IP address of the host running the mSQL server. If NULL is specified as the host
argument, a connection is made to a server running on the localhost using the UNIX domain
socket /dev/msqld. If an error occurs, a value of -1 is returned and the external variable
msqlErrMsg will contain an appropriate text message. This variable is defined in “msql.h”.

If the connection is made to the server, an integer identifier is returned to the calling function.
This values is used as a handle for all other calls to the mSQL API. The value returned is in
fact the socket descriptor for the connection. By callingmsqlConnect() more than once and
assigning the returned values to separate variables, connections to multiple database servers
can be maintained simultaneously.

In previous versions of mSQL, the MSQL_HOST environment variable could be used to spec-
ify a target machine if the host parameter was NULL. This is no longer the case.

mSQL Version 1.0.6

Page 10

msqlSelectDB()

int msqlSelectDB(sock,dbName)
int sock;
char *dbName;

Prior to submitting any queries, a database must be selected. msqlSelectDB() instructs the
engine which database is to be accessed. msqlSelectDB() is called with the socket descriptor
returned by msqlConnect() and the name of the desired database. A return value of -1 indi-
cates an error with msqlErrMsg set to a text string representing the error. msqlSelectDB() may
be called multiple times during a program’s execution. Each time it is called, the server will
use the specified database for future accesses. By calling msqlSelectDB() multiple times, a
program can switch between different databases during its execution.

msqlQuery()

int msqlQuery(sock, query)
int sock;
char *query;

Queries are sent to the engine over the connection associated withsock as plain text strings
usingmsqlQuery(). As usual, a returned value of -1 indicates an error andmsqlErrMsg will be
updated. If the query generates output from the engine, such as a SELECT statement, the data
is buffered in the API waiting for the application to retrieve it. If the application submits
another query before it retrieves the data usingmsqlStoreResult(), the buffer will be overwrit-
ten by any data generated by the new query.

msqlStoreResult()

m_result *msqlStoreResult()

Data returned by a SELECT query must be stored before another query is submitted or it will
be removed from the internal API buffers. Data is stored using themsqlStoreResult() function
which returns a result handle to the calling routines. The result handle is a pointer to a
m_result structure and is passed to other API routines when access to the data is required.
Once the result handle is allocated, other queries may be submitted. A program may have
many result handles active simultaneously.

mSQL Version 1.0.6

Page 11

msqlFreeResult()

void msqlFreeResult(result)
m_result *result;

When a program no longer requires the data associated with a particular query result, the data
must be freed usingmsqlFreeResult(). The result handle associated with the data, as returned
by msqlStoreResult() is passed tomsqlFreeResult() to identify the data set to be freed.

msqlFetchRow()

m_row msqlFetchRow(result)
m_result *result;

The individual database rows returned by a select are accessed via themsqlFetchRow() func-
tion. The data is returned in a variable of type m_row which contains a char pointer for each
field in the row. For example, if a select statement selected 3 fields from each row returned, the
value of the 3 fields would be assigned to elements [0], [1], and [2] of the variable returned by
msqlFetchRow(). A value of NULL is returned when the end of the data has been reached. See
the example at the end of this sections for further details. Note, a NULL value is represented
as a NULL pointer in the row.

msqlDataSeek()

void msqlDataSeek(result, pos)
m_result *result;
in pos;

The m_result structure contains a client side “cursor” that holds information about the next
row of data to be returned to the calling program.msqlDataSeek() can be used to move the
position of the data cursor. If it is called with a position of 0, the next call tomsqlFetchRow()
will return the first row of data returned by the server. The value of pos can be anywhere from
0 (the first row) and the number of rows in the table. If a seek is made past the end of the table,
the next call tomsqlFetchRow() will return a NULL.

mSQL Version 1.0.6

Page 12

msqlNumRows()

int msqlNumRows(result)
m_result *result;

The number of rows returned by a query can be found by callingmsqlNumRows() and passing
it the result handle returned bymsqlStoreResult(). The number of rows of data sent as a result
of the query is returned as an integer value. If a select query didn’t match any data, msqlNum-
Rows() will indicate that the result table has 0 rows (note: earlier versions of mSQL returned a
NULL result handle if no data was found. This has been simplified and made more intuitive by
returning a result handle with 0 rows of result data)

msqlFetchField()

m_field *msqlFetchField(result)
m_result *result;

Along with the actual data rows, the server returns information about the data fields selected.
This information is made available to the calling program via themsqlFetchField() function.
Like msqlFetchRow(), this function returns one element of information at a time and returns
NULL when no further information is available. The data is returned in a m_field structure
which contains the following information:-

typedef struct {
char *name, /* name of field */

table; / name of table */
int type, /* data type of field */

length, /* length in bytes of field */
flags; /* attribute flags */

} m_field;

Possible values for the type field are defined in msql.h as INT_TYPE, CHAR_TYPE and
REAL_TYPE. The individual attribute flags can be accessed using the following macros:-

IS_PRI_KEY(flags) /* Field is the primary key */
IS_NOT_NULL(flags) /* Field may not contain a NULL value */

mSQL Version 1.0.6

Page 13

msqlFieldSeek()

void msqlFieldSeek(result, pos)
m_result *result;
int pos;

The result structure includes a “cursor” for the field data. It’s position can be moved using the
msqlFieldSeek() function. See msqlDataSeek() for further details.

msqlNumFields()

int msqlNumFields(result)
m_result *result;

The number of fields returned by a query can be ascertained by callingmsqlNumFields() and
passing it the result handle. The value returned by msqlNumFields() indicates the number of
elements in the data vector returned by msqlFetchRow(). It is wise to check the number of
fields returned before, as with all arrays, accessing an element that is beyond the end of the
data vector can result in a segmentation fault.

msqlListDBs()

m_result *msqlListDBs(sock)
int sock;;

A list of the databases known to the mSQL engine can be obtained via themsqlListDBs() func-
tion. A result handle is returned to the calling program that can be used to access the actual
database names. The individual names are accessed by callingmsqlFetchRow() passing it the
result handle. The m_row data structure returned by each call will contain one field being the
name of one of the available databases. As with all functions that return a result handle, the
data associated with the result must be freed when it is no longer required usingmsqlFre-
eResult().

mSQL Version 1.0.6

Page 14

msqlListTables()

m_result *msqlListTables(sock)
int sock;;

Once a database has been selected usingmsqlInitDB(), a list of the tables defined in that data-
base can be retrieved usingmsqlListTables(). As with msqlListDBs(), a result handle is
returned to the calling program and the names of the tables are contained in data rows where
element [0] of the row is the name of one table in the current database. The result handle must
be freed when it is no longer needed by callingmsqlFreeResult().

msqlListFields()

m_result *msqlListFields(sock,tableName);
int sock;
char *tableName

Information about the fields in a particular table can be obtained usingmsqlListFields(). The
function is called with the name of a table in the current database as selected usingmsqlSe-
lectDB() and a result handle is returned to the caller. UnlikemsqlListDBs() andmsqlListTa-
bles(), the field information is contained in field structures rather than data rows. It is accessed
usingmsqlFetchField(). The result handle must be freed when it is no longer needed by call-
ing msqlFreeResult().

msqlClose()

int msqlClose(sock)
int sock;

The connection to the mSQL engine can be closed usingmsqlClose(). The function must be
called with the connection socket returned bymsqlConnect() when the initial connection was
made.

mSQL Version 1.0.6

Page 15

The mSQL Terminal Monitor

Like all database applications, mSQL provides a program that allows a user to interactively
submit queries to the database engine. In the case of mSQL, it is a program simply called
‘msql’. It requires one command line argument, being the name of the database to access.
Once started, there is no way to swap databases without restarting the program.

The monitor also accepts two command line flags as outlined below:

• -h Host Connect to the mSQL server onHost.
• -q Process one query and quit returning an exit code.

The monitor has been modelled after the original Ingres (and the subsequent Postgres) monitor
program. Commands are distinguished from queries due to their being prefixed with a back-
lashes. To obtain help from the monitor prompt, the \h command is used. To exit from the pro-
gram, the \q command or an EOF (^D) must be entered.

To send a query to the engine, the query is entered followed by the \g command. \g tells the
monitor to “Go” and send the query to the engine. If you wish to edit your last query, \e will
place you inside vi so that you can modify your query. If you wish to use an editor other than
vi to perform query editing, msql will honour the convention of using the contents of the VIS-
UAL environment variable as an alternate editor. When you have completed your editing,
exiting the editor in the usual manner will return you to msql with the edited query placed in
the buffer. The query can then be submitted to the server by using the \g “Go” command as
usual.

The query buffer is maintained between queries to no only enable query editing, but to also
allow a query to be submitted multiple times. If \g is entered without entering a new query, the
last query to be submitted will be resubmitted. The contents of the query buffer can also be
displayed by using the \p “Print” command of the monitor.

To enable convenient access to database servers running on remote hosts, the mSQL terminal
monitor supports the use of an environment variable to indicate the machine running the
server (rather than having to specify “-h some.host.name” everytime you execute mSQL).
Note that this is a function provided by the mSQL terminal monitor NOT the mSQL API
library and as such is not available for use with other programs. To use this feature set the
environment variable MSQL_HOST to the name or address of the desired machine.

mSQL Version 1.0.6

Page 16

mSQL Database Administration
mSQL databases are administered using themsqladmin command. Several administrative
tasks, such as creating new databases and forcing a server shutdown are performed using
msqladmin. Like all mSQL programs,msqladmin accepts the ‘-hHost’ command line flag to
specify the desired machine. The commands available viamsqladmin are:

• createDataBase Create a new database calledDataBase
• dropDataBase Delete the entire database calledDataBase
• shutdown Tell the server to shut itself down
• reload Tell the server to reload its access control information
• version Display various version information from the server

It should be noted that the server will only accept create, drop, shutdown, andreload com-
mands if they are sent by the root user (as defined at installation time) and are sent from the
machine running the server. An attempt to perform any of these commands from a remote cli-
ent or as a non-root user will result in a “permission denied” error. The only command you can
execute over the network or as a non-root user isversion.

mSQL Schema Viewer
mSQL provides therelshow command for display the structure of a database. If executed with
no arguments,relshow will list the available database. If it is executed with the name of a data-
base,relshow will list the tables that have been defined for that database. If given both a data-
base and table name,relshow will display the structure of the table including the field names,
types, and sizes. Like all mSQL programs,relshow honours the ‘-hHost’ command line flag to
specify a remote machine as the database server.

mSQL Database Dumper
A program is provided that will dump the contents and structure of a table or entire database in
an ASCII form. The program,msqldump, produces output that is suitable to be read by the
mSQL terminal monitor as a script file. Using this tool, the contents of a database can be
backed-up or moved to a new database. By virtue of the ‘-hHost’ option, the contents of a
remote database may be sucked over the net. This can be used as a mechanism for mirroring
the contents of an mSQL database onto multiple machines.

msqldump started life as a user contributed program calledmsqlsave written by Igor

mSQL Version 1.0.6

Page 17

Romanenko (igor@frog.kiev.ua). Thanks Igor.

mSQL Access from Script Languages

ESL

Another development that has arisen from the development of Minerva has been the Extensi-
ble Scripting Language, ESL (pronounced Easel). ESL is a C styled scripting language that
offers automatic memory allocation, strict typing, associative arrays (both in-core and bound
the ndbm files), full SNMP support and much, much more. ESL resembles C so closely that
any C programmer will be able to code in ESL within a minute or two of scanning the manual.
Because both ESL and mSQL have been developed as part of the Minerva project (well, both
were developed in the spare bedroom I call an office as part of my Ph.D.), ESL provides full
support for the mSQL API. This includes every aspect of the C API as well as the client server
mode of operation.

Access to mSQL from other scripting languages is available using user-contributed extensions
to the respective languages. Currently, the following languages are supported:

Perl 5

Andreas Koenig <k@franz.ww.TU-Berlin.DE> has developed MsqlPerl, a Perl 5 adapter for
mSQL. It was written against the mSQL 0.2 Patch 1 API but should still work with the 1.0
release as the API hasn’t changed (although a couple of semantics have). MsqlPerl is available
via ftp from Bond.edu.au in /pub/Minerva/msql/contrib/MsqlPerl-a1.tgz

Python

Anthony Baxter <anthony.baxter@aaii.oz.au> has developed PymSQL, a Python module for
mSQL. It was written using the msql 0.2 Patch 2 API but should still work well. PymSQL can
be found on Bond.edu.au in /pub/Minerva/msql/contrib/PymSQL.tar.gz

Tcl

Brad Pepers <pepersb@cuug.ab.ca> has developed tcl_msql, a Tcl interface to mSQL. I can’t
recall which version of the API Brad was using when he wrote tcl_msql (Brad’s been hacking
on mSQL since the early days). I’m pretty sure that it’ll work against release 1.0 and am even
more sure that Brad will fix it if it doesn’t (that’s because he’s _such_ a nice guy and Tcl/Tk

mSQL Version 1.0.6

Page 18

users can be quire persuasive when they need to be).

Access Control
Access control is managed by the msql.acl file in the installation directory. This file is split
into entries for each database to be controlled. If the file doesn’t exist or details for a particular
database aren’t configured, access reverts to global read/write. An example ACL entry is
included below:

Sample access control for mSQL
database=test
read=bambi,paulp
write=root
host=*.Bond.edu.au,-student.it.Bond.edu.au
access=local,remote

Using this definition, database ‘test’ can be accessed by both local and remote connections
from any host in the Bond.edu.au domain accept for the machine student.it.Bond.edu.au. Read
access is only granted to bambi and paulp. Nobody else is allowed to perform selects on the
database. Write access is only available to root.

Control is based on the first match found for a given item. So, a line such as “read=-*,bambi”
would not do the desired thing (i.e. deny access to everyone other than bambi) because -* will
also match bambi. In this case the line would have to be “read=bambi,-*” although the -* is
superfluous as that is the default action.

Note that if an entry isn’t found for a particular configuration line (such as read) it defaults to a
global denial. For example, if there is no “read” line (i.e. there are no read tokens after the data
is loaded) nobody will be granted read access. This is in contrast to the action taken if the
entire database definition is missing in which case access to everything is granted.

Another thing to note is that a database’s entry _must_ be followed by a blank line to signify
the end of the entry. There may also be multiple config lines in the one entry (such as
“read=bambi,paulp” “read=root”). The data will be loaded as though it was concatenated onto
the same “read” line (i.e. “read=bambi,paulp,root”).

Wildcards can be used in any configuration entry. A wildcard by itself will match anything
whereas a wildcard followed by some text will cause only a partial wildcard (e.g.
*.Bond.edu.au matches anything that ends in Bond.edu.au). A wildcard can also be set for the
database name. A good practice is to install an entry with database=* as the last entry in the
file so that if the database being accessed wasn’t covered by any of the other rules a default
site policy can be enforced.

The ACL information can be reloaded at runtime using “msqladmin reload”. This will parse
the file before it sends the reload command to the engine. Only if the file is parsed cleanly is it
reloaded. Like most msqladmin commands, it will only be accepted if generated by the root

mSQL Version 1.0.6

Page 19

user (or whoever the database was installed as) on the localhost.

Author’s Details
Mini SQL was written by:-

David J. Hughes
Senior Network Programmer (and Ph.D. lunatic)
Bond University
Australia

E-Mail: bambi @ Bond.edu.au
HTTP://Bond.edu.au/People/bambi.html
Fax: +61 75 951456

Archive Location
The current version of mSQL can be found via ftp from

Host: Bond.edu.au (131.244.1.1)
Path: /pub/Minerva/msql

User contributed code can also be found there in /pub/Minerva/msql/contrib. A monthly
archive of the mailing list is also available in /pub/Minerva/msql/mail-archive.

Mailing List
I have setup a mailing list for discussing mSQL. To subscribe, send a message to:-

msql-list-request@Bond.edu.au

To send a message to the entire list, address it to:-

msql-list@Bond.edu.au

mSQL Version 1.0.6

Page 20

Symbols

4, 5
% 5
= 4
> 4
>= 4
_ 5

A

Access Control 18
ACL 18
Andreas Koenig 17
Anthony Baxter 17
Archive Location 19
ASCII 16
Author’s Details 19
Authors Details 18
avg 4

B

bambi 19
Bond.edu.au 19
Brad Pepers 17

C

char 2
count 4
Create 2
create 16

D

Database Dumper 16
Delete 3
DESC 4
DISTINCT 4
Drop 3
drop 16

E

ESL 17

F

field names 16
ftp 19

H

-h Host 15, 16

I

Igor Romanenko 16
Insert 3
installation directory 8
int 2

J

join 5

K

key 2

L

libmsql.a 9
like 4

M

Mailing List 19
Minerva 1
MINERVA_DEBUG 7
msql.acl 18
msql.h 9
MSQL_HOME 8
MSQL_TCP_PORT 8
MSQL_UNIX_PORT 8
msqlClose() 14
msqlConnect() 9
msqlDataSeek() 11
msqldump 16
msqlErrMsg 9
msqlFetchField() 12
msqlFetchRow() 11

Index

mSQL Version 1.0.6

Page 21

msqlFieldSeek() 13
msqlFreeResult() 11
msqlListDBs() 13
msqlListFields() 14
msqlListTables() 14
msqlNumFields() 13
msqlNumRows() 12
msqlQuery() 1
msqlStoreResult() 10

N

nested 4
nested selects 4
not null 2
NULL 11
null 2
NULL pointer 11

O

ORDER BY 4

P

performance 7
Perl 5 17
Postgres 1, 7
primary key 2
Python 17

R

real 2
regular expression 5
reload 16
relshow 16
result handle 10
Runtime Configuration 8

S

Schema 16
Scripts 17
Select 4
shutdown 16

T

table aliases 5
tables 16
Tcl 17
TCP/IP port 8
Terminal Monitor 15

U

University Ingres 7
UNIX socket 8
Update 6

V

version 16

W

Where 4

