
TransSys PNI User Manual
Version 1.13

Louis A. Mamakos, TransSys, Inc.

Copyright c

 1993, 1994 by TransSys, Inc.

All rights reserved.

This beta-test software or documentation may not be redistributed to any other party without prior
permission of TransSys, Inc.

$Header: /local/SRCS/slip2/doc/pni.texinfo,v 1.24 1994/10/03 03:49:34 louie Exp $

Chapter 1: Introduction 1

1 Introduction

1.1 About TransSys PNI

TransSys PNI (Pseudo Network Interface) software is used to create virtual network interfaces
on your NEXTSTEP system which don’t directly correspond to hardware network interfaces. By
creating pseudo- or virtual-network interfaces, network connectivity can be extended over different
types of media using a number of different mechanisms.

1.1.1 PNI as SLIP

The TransSys PNI software can be used to build wide-area networks by utilizing serial connections
as network links. This is done by using the SLIP encapsulation protocol over the links to move
network packets between systems using the serial ports as the network interface, rather than the
Ethernet interface. Once a network connection is established between your NeXT computer and
the remote network access server or router, it is possible to use the connection to support multiple
simultaneous connections for remote login, file transfer, mail, or and other TCP/IP based network
protocol.

Of course, a 9.6 kb/s serial link isn’t nearly as fast as a 10 Mb/s Ethernet port. You’ll probably
not want to try to use bandwidth intensive applications, like NFS (the Network File System).

This software is usually used by a end-system which dials into some network access server
which also expects to provide network connections over serial links. This software contains a
kernel or operating system level driver that transports IP datagrams across the serial link using a
trivial encapsulation called SLIP (Serial Line IP). You have to be talking to another device which
also knows how to do SLIP, and not just a terminal server.

1.1.2 PNI as CSLIP

This software is also capable of implementing Van Jacobson-style TCP Header compression,
which is a technique to vastly improve interactive response time for TCP connection across the
SLIP link by compressing or eliminating redundant header information. This is commonly referred
to as CSLIP.

1.1.3 PNI as virtual network link

It is possible to create tunnels, or virtual network connections, over existing networks to layer
a new logical network (where the traffic is optionally encrypted for privacy purposes) over some
existing IP infrastructure. In this instance, rather than using serial lines to provide transport for the
packets being sent on a network interface, existing network connections are used to carry traffic for
the virtual link.

Once the link has been brought up, you can arrange for the link to be dropped When the link has
gone idle for some configured period.

Chapter 1: Introduction 2

Extensive filtering is available which can be used to implement site-specific security policy. You
can restrict the flow of traffic both arriving on a network connection as well as the traffic being sent
on a connection. These filters can be updated dynamically and programmatically.

1.1.4 Is PNI for you?

TransSys PNI is very much more UNIX tool-like, rather than a traditional NEXTSTEP applica-
tion. Partly, this is because its function is to more support the entire system, rather than a particular
user. It is also useful when there are no users active on the NEXTSTEP system at all – the system
can receive mail, act as a FTP server whilst unattended.

TransSys PNI doesn’t have a GUI-based installation process – it is necessary to actually edit
configuration files to effect a working installation. In some cases, it is necessary to create new
TCL script files if you are using a modem or a network access server for which a script does not
already exist. Adding a NeXT-specific GUI front-end would significantly extend the development
effort (which has dragged on way to long as it is), as well as increase the cost of the product. It
also detracts from one of the prime motivations of this software - to be much more portable, both to
multiple NEXTSTEP hardware platforms as well as to other UNIX-like operating systems.

The same scripting capability which is so powerful and flexible also makes PNI difficult to install
with just a single mouse-click. PNI is more expert-friendly rather than user-friendly. There really is
a lot that you can do; the challenge has been writing it down and documenting it..

So, is PNI for you? In many cases it may not be. It really is necessary in some cases to understand
how IP networking actually works and how the packets fly. To really determine if PNI will solve
your problem, get the free SLIP-only version see Section 1.2 [PNI package versions], page 2, and
try it for yourself. Your only investment is your own time, which is certainly valuable enough.

1.2 PNI versions

The PNI software is available in 4 different versions: Each version consists of some set of
enabled encapsulator types which defines the available set of functions which can be used by the
pnid process.
� PNI-SLIP – A freely available version which implements SLIP. This version is available free of

charge via anonymous FTP from FTP.UU.NET as /vendor/TransSys/TransSys-PNI-1.13.tar.gz,
and from the usual NeXT Internet FTP archive sites (and eventually on CDROM collections).
This version is available as a public service to the NeXT community - NEXTSTEP systems
should have a SLIP solution available free of charge, as do many other platforms. (It also
makes a great way to get in the door to demonstrate the product!)

� PNI-BASIC – a commercial version of the software which implements SLIP (as above) as well
as CSLIP, which is SLIP with TCP Header Compression.

� PNI-PRO – a commercial version, which, along with the PNI-BASIC features, also includes
IP packet filtering including idle link timeouts and support for IP tunnels.

� PNI-Enigma – a commercial version, which, along with the PNI-PRO features, also include
the SECURE encapsulator which can be used to ensure that traffic has not been tampered

Chapter 1: Introduction 3

with during its transit over the network. This can be done by employing one of a number
of algorithms to detect tampering (such as the MD5 Message Digest algorithm) or to prevent
tampering or capture (such as a data encryption algorithm such as DES or IDEA).
The SECURE encapsulator is most commonly used with the IP TUNNEL encapsulator when
sending sensitive traffic over “public”, unsecured networks. This version is not available for
export outside the United States.
The “assurance” algorithms are implemented in different Objective-C classes which conform
to the see Section 12.3 [TamperProof], page 63 protocol.
In fact, PNI-Enigma is not be available for the indefinite future. It may be that is will be
necessary for TransSys, Inc. to register as a manufacturer of defense articles and obtain
additional licenses to sell products which are defense articles. Sigh.
All versions of TransSys PNI require NEXTSTEP release 3.1 or 3.2, and should function on
both Motorola and Intel based systems.
Support of HP-PA and other platforms will be added when access to suitable development and
test platforms can be arranged.

1.3 About this documentation

This documentation was prepared using the GNU Texinfo package, which allows one source
document to be used for creating on-line help and reference material as well as a printed reference
manual. It allows the author to use cross references and hypertext links to other parts of the
document, which can be automatically followed if the document is viewed with a suitable user
interface.

The Texinfo source is also processed by the texi2html PERL script to product HTML files
suitable for use in a WWW server.

The documentation available to end users of the PNI software is available in three forms:
� PostScript, suitable for printing on most PostScript compatible printers. This document only

uses these Type-1 PostScript fonts: Times-Bold, Times-Roman, Courier-Bold and Courier.
You can also view the PostScript form of the file using the Preview application on NEXTSTEP
platforms; it works best if you “Zoom In” once. On Motorola-based NEXTSTEP hardware
with a 1120 by 832 display resolution, an entire page of text (other than headers and footers) is
visible at once. The PostScript version of the documentation is provided in the PNI distribution.

� GNU info format, which can be browsed using emacs or by the standalone info program.
The info files, ‘pni.info-*’ are ASCII text can can also be viewed using any sort of text
editor. The info format of the documentation is provided in the PNI distribution.
The info format files contain the hypertext links, which can be followed using either the info
reader in the emacs editor or the standalone info reader program.

� HTML (Hypertext Markup Language) format, as used in the WorldWideWeb (WWW) project.
This version is not usually distributed with the PNI software, but is currently available from the
TransSys WWW server, starting at the URL:

http://www.TransSys.COM/TransSys/PNI/pni-info.html

Chapter 1: Introduction 4

This host is on a low-bandwidth SLIP link, so fetching copies of the documentation this way
is not the best option. It is handy, however, for browsing the manual and checking for new
versions, etc.
NEXTSTEP users can use the OmniWeb.app application to access WWW servers on the
Internet. It is available via anonymous FTP from

ftp.omnigroup.com: /pub/software/OmniWeb.app.tar.gz

1.4 TCL documentation

Since much of the user-visible configuration and customization of the PNI package is done using
TCL, some additional documentation is provided on TCL and some extensions to TCL, TclX. These
files will exist in the ‘doc’ sub-directory of the PNI distribution. (see Section 3.2.2 [File Archive
Distribution], page 16).

Two files, ‘doc/Tcl.man’ and ‘doc/TclX.man’ are UNIX man-formatted files. You can
examine these from a Terminal window:

nroff -man Tcl.man | more

or, to print a nicely formatted version on the default (PostScript) printer:
ptroff -man Tcl.man

1.5 TransSys DialUp-IP, the other TransSys SLIP

The TransSys PNI product began as a re-implementation of the existing and popular TransSys
DialUp-IP SLIP/CSLIP software package. That software package enables the NeXT user to par-
ticipate in a wide-area network via serial connections on the NeXT. This brings to the NeXT such
applications as telecommuting as well as part-time, low-cost Internet connectivity. That package,
which has enjoyed wide popularity in its free, demo version (SLIP) as well as a low-priced com-
mercial product (CSLIP), needed some enhancements to respond to specific requirements from
customers and potential new customers. The original design goals for the follow on product in-
cluded support for the Point-to-Point Protocol (PPP) defined by the Internet Engineering Task Force
(IETF) as well as support for hardware devices other than the NeXT’s two serial ports (such as
TTYDSP and various serial port expansion products).

The scope of the features which needed to be made available in a future product made a
reimplementation rather than a simple retrofit of the existing software an attractive option. While
adding new capabilities, a number of implementation issues in the first product could be addressed
in the light of considerable operational experience. Among these are to reduce the impact of
future NeXT operating system releases as well as having the software be portable to other vendor
platforms.

It became clear that a reimplementation set the stage for entirely new and unique capabilities
which have never been available before in a software package of this type. Existing SLIP and PPP
serial networking software for workstations tend to be implemented in a monolithic fashion, with
limited flexibility. The architecture for the TransSys PNI product is very modular and allows for
expansion to include other functions not originally part of the package.

Chapter 1: Introduction 5

1.6 Acknowledgments

1.6.1 Credits

The TCP header compression feature is derived from software written by Van Jacobson. The
MD5 message digest implementation uses the RSA Data Security, Inc. MD5 Message Digest
Algorithm.

Chapter 1: Introduction 6

1.6.2 Copyright Information

The PNI software and documentation is Copyright c

 1993 by TransSys, Inc., all rights reserved.

PNI uses TCL, the Tool Command Language an extension language designed to be embedded
into applications, as the basis for the control of the software. The complete source code to the base
TCL package is available via anonymous FTP from ftp.cs.berkeley.edu in the ‘/ucb/tcl’
directory.

/*
* tcl.h --
*
* This header file describes the externally-visible facilities
* of the Tcl interpreter.
*
* Copyright 1987-1991 Regents of the University of California
* Permission to use, copy, modify, and distribute this
* software and its documentation for any purpose and without
* fee is hereby granted, provided that the above copyright
* notice appear in all copies. The University of California
* makes no representations about the suitability of this
* software for any purpose. It is provided "as is" without
* express or implied warranty.
*/

The scripting capability that’s used to dial modems and log into remote systems is based on a heavily
modified part of the expect program. The expect program also uses TCL as the basis of its scripting
function.

/* expect.c - expect and trap commands
*
* Written by: Don Libes, NIST, 2/6/90
*
* Design and implementation of this program was paid for by
* U.S. tax dollars. Therefore it is public domain. However,
* the author and NIST would appreciate credit if this program
* or parts of it are used.
*/

Some useful extensions to TCL are also included; these are a subset of the Extended TCL pack-
age, TclX. Complete source code the the TclX package is available via anonymous FTP from
ftp.NeoSoft.COM in the ‘/pub/tcl/distrib’ directory.

Chapter 1: Introduction 7

/*
* tclExtend.h
*
* External declarations for the extended Tcl library.
*---
* Copyright 1992 Karl Lehenbauer and Mark Diekhans.
*
* Permission to use, copy, modify, and distribute this
* software and its documentation for any purpose and without
* fee is hereby granted, provided that the above copyright
* notice appear in all copies. Karl Lehenbauer and Mark
* Diekhans make no representations about the suitability of
* this software for any purpose. It is provided "as is"
* without express or implied warranty.
*/

The packet filtering capability is based on the Berkeley Packet Filter and the tcpdump program,
which were heavily modified to work as part of another application. The tcpdump program is
available via anonymous FTP from ftp.ee.lbl.gov as ‘tcpdump-2.2.1.tar.Z’.

Chapter 1: Introduction 8

/*-
* Copyright (c) 1990-1991 The Regents of the University
* of California.
* All rights reserved.
*
* This code is derived from the Stanford/CMU enet packet
* filter, (net/enet.c) distributed as part of 4.3BSD, and
* code contributed to Berkeley by Steven McCanne and Van
* Jacobson both of Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with
* or without modification, are permitted provided that the
* following conditions are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* 3. All advertising materials mentioning features or use
* of this software must display the following acknowledgement:
* This product includes software developed by the University
* of California, Berkeley and its contributors.
*
* 4. Neither the name of the University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS
* ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* @(#)bpf.c 7.5 (Berkeley) 7/15/91
*/

Chapter 1: Introduction 9

This package contains an implementation of of the MD5 Message digest algorithm which is
“derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm”. The MD5 digest
algorithm is described in Internet RFC-1321, which also includes a reference implementation in the
C programming language. This RFC can be obtained from a variety of different sources, including
via anonymous FTP from RSA.COM as ‘/pub/md5.txt’.

1.7 Summary

The TransSys PNI product is a new approach to solving the SLIP or dial-up connectivity problem
on the NeXT platform. The product was developed with portability in mind and will be available on
Intel-based NEXTSTEP platforms as well as Motorola 68030 and 68040 platforms. Ports to other
hardware platforms running NEXTSTEP, when they are announced, will also be performed very
easily.

The modular nature of the product allows it to address new situations and applications easily,
without major redesign of the software. For instance, conversion from SLIP to PPP is simply a matter
of substituting the PPP loadable encapsulator for the existing SLIP/CSLIP encapsulator. Similarly,
use of ISDN rather than a serial port requires only an ISDN encapsulator (and the requisite ISDN
hardware, of course) and no changes to any of the other encapsulators such as the DES encryption or
FILTER encapsulators. You can pick and choose the capabilities and features that your application
requires. Want to see how your network based application functions over a wide-area, congested
network? Write an encapsulator that randomly drops some percentage of the traffic passing through
it. Vary the drop rate remotely and watch the effect on your application. You don’t even need a
network connection; use the LOOP encapsulator and simulate it all locally!

This sort of mix-and-match architecture will adapt to meet you needs. The TCL based configu-
ration and scripting language is the most flexible you will find in any SLIP or PPP like product.

Chapter 2: Release Notes 10

2 Release Notes

This manual is not yet completed and is in pretty bad shape at the moment. The information
present is probably not organized in the best possible way. The emphasis thus far is to get what
information is available written down, organization and presentation has suffered as a result.

2.1 Beta Test Software

Previous versions of PNI software were available for beta testing purposes. You should ensure
that you are not using one of these version instead of the current release version.

2.2 Release History

2.2.1 1.4 Beta Release

This was the first beta release widely available.

2.2.2 1.5 Beta Release

This was an interim release, not available very long, which resolved a number of rather silly
problems that crept into the distribution at the last minute. These were mainly confined to a number
of TCL script files. Also a number of the modem dialing scripts were updated.

2.2.3 1.6 Beta Release

This version corrects a rather serious bug which, while benign and not noticed on Motorola
680x0 hardware, causes pnid on Intel 80486 systems to dump core due to a segmentation violation.

2.2.4 1.7 Beta Release

� Updated this document with more documentation describing the PNI software, including the
dialer expect command. Also describe how to set up server mode and how to debug dialing
scripts. Still need to thoroughly index the document.

� Added additional information which can be returned by the remote encapsulator query facility
(via the pnitcl program). This isn’t currently used except in debugging and development.

� When processing key registrations in the pnid program, resign any set-UIDness. Don’t emit
prompts for registration string if the standard input isn’t a tty device.

� Add new TCL command, sysarch, which returns a two element list list containing the
operating system and hardware architectures.

� In the PNI encapsulator, don’t emit weird error messages when passed a “runt” packet for input
to the kernel. Check for minimum sized packets and complain if they look broken.

Chapter 2: Release Notes 11

� In the SLIP encapsulator, declare some data structures const to move them into the (read-only)
code segment. When input packets exceed the configured MTU of the interface, look for the
end of the bloated packet and emit the length in the “packet too large” error message:

slip slip: rec’d frame len=%d exceeds mtu=%d

If in auto-CSLIP mode, log a message when switching from uncompressed to compressed
SLIP mode.

� In the TTY encapsulator, fix log message to specify the name of the network interface, rather
than just pni.

� Added support/login-netblazer.tcl, login script for a Telebit Netblazer.

� In support/init.tcl, add some additional comments describing the use of the remcmd function to
handle remote commands. Add the status command for remote queries to return a summary.

Make some debugging messages condition on testMode being defined when pnid is invoked
with the -t option.

Add support for a summary file which logs start and stop entries only to determine use of PNI.
File name is specified by the Config(callLog) configuration variable.

� Fix bogus comments in the support/login-annex.tcl file.

� Fix broken code in the support/login-unix.tcl file.

� Change the loadable kernel driver and installation scripts to use a different character spe-
cial major device number. This has been assigned to TransSys, and should eliminate the
incompatibility with Novell IPX.

� Fixes to the pnistat script, including a new command to return the process id of a particular
instance of the pnid daemon process. It is also now possible to query more than one instance
of the daemon in one invocation of the script.

� The install scripts should be a bit less prone to complaining about device conflicts when PNI is
re-installed on the same host.

� Added (yet unused) Feature array to pnid which can easily be set by a command line option.

2.2.5 1.8 Beta Release

� The TCL interpreter used by PNI has been upgraded to the latest version, TCL 7.3. The
corresponding version of the TCL extensions package, TclX has also been upgraded.

� A bug in the inactivity timer of the FILTER encapsulator has been fixed. The timer wasn’t
started until the first packet which matches the inactivity timer reset filter was seen, rather than
when the encapsulator was initialized.

� Important: only config files of the form ‘/etc/pni/config/foo.config-auto’ will be
automatically started at boot time. This is a change from the previous version.

2.2.6 1.9 Beta Release

Chapter 2: Release Notes 12

� Fixed a bug which required that a file ‘/usr/local/tclX/7.3a/TclInit.tcl’ exist
on the machine which the PNI package was installed on. This was a side-effect of hav-
ing a pathname compiled into the TclX software. This is now overridden, and uses
‘/etc/pni/TclInit.tcl’ instead. This bug caused the pnibusy program to not func-
tion.

� Reworked the ‘/etc/pni/pnirun’ shell script to correctly handle the convention used to
specify configuration files which are invoked automatically when the system boots. The
behavior described for the previous release, see Section 2.2.5 [1.8 Beta Release], page 11, now
actually works!

� Repaired a bug which kept the SLIP-only, non-expiring license key from working. Important:
this change unfortunately will cause all of the license keys which have been previously issued
to now be considered invalid, and unusable with the 1.9 Beta and later releases.

� Added support to the makeinfo program, the texinfops.tex TEX texinfo macro package,
and texi2html for a new set of @ifhtml and @end ifhtml directives.

� The demo license key strings no longer include the PPP feature. This was only specified for
future use; there is not currently PPP encapsulator available. Sorry for getting your hopes up.

� Fixed the priority queuing in the loadable kernel driver to convert TCP port numbers from
network byte order (“big-endian”) to host byte order when checking for traffic to and from
“interactive” services. This wasn’t working on Intel-based systems which have the wrong
(“little-endian”) byte order.

� The TclX package has been upgraded to TCLX 7.3a patchlevel 2. TclX is a package of
useful extensions to the TCL interpreter, which is used extensively in the PNI package. More
information on TclX is available on harbor.ecn.purdue.edu in ‘pub/tcl/extensions’.

2.2.7 1.10 Beta Release

� The pnitcl program wasn’t printing prompts in interactive mode; this was due to changes in
the most recent version of TclX. pnitcl now prints a prompt composed of the program name
and the history list item number.

� The pnid program no longer performs a setpriority(PRIO_PROCESS, 0, -20). The
daemon runs at “normal” priority, which should reduce the impact on the rest of the system.
You can cause it to revert to the previous behavior by adding the -o priority=-20 to the
pnid invocation.

� Add -debug and -down options to the pnirun shell script. The -debug option can be used
to run a pnid daemon process interactively while debugging dialing and login TCL scripts.
The -down option can be used to halt a named instance of the pnid process which is running.

� Documentation restructuring - moved supporting information into an appendix.

� Fixed a bug in the packet decoder/dumper subroutine which inadvertently applied ntohs() to
the ICMP type and code fields, which are only 8 bits wide.

� New utility TCL function, printify, defined which will convert carriage return, line feed and
tab characters in a strings to printable representations. This is useful since messages which are

Chapter 2: Release Notes 13

logged using the syslog facility are truncated at the first newline character. The log, dlog, and
warn TCL functions are updated to use printify to clean up the message text to be logged.

� The pnistat TCL script has been updated to be a little more graceful when invoked and no
daemon is running. Rather than a many line TCL traceback being dumped, a simple one line
warning message is emitted instead.

2.2.8 1.11 Release

� Converted TCL scripts to use the switch primitive rather than the depricated case primitive.
� Fixed error message in the pnibusy script.
� For hard-wired serial lines, added the ability to have pnid ignore the state the the DCD (Carrier

Detect) RS232 control signal. The use of this feature is not recommended since you cannot
detect when a modem connection has dropped, which is signified by the modem dropping the
DCD signal. It is useful, however, when a hardwired connection exists between two directly
connected computers and the cable doesn’t correctly driver one computer’s DCD signal from
other other computer’s DTR signal as a correct “null modem” cable should.
Check the documentation on the TTY encapsulator for information on how to configure this
features.

� The pnid daemon now correctly responds to the null RPC call. Now, rpcinfo -u localhost
pni0 works as expected.

� Initialize syslog a bit earlier to catch errors during early initialization activities.

2.2.9 1.12 Release

� The pnid daemon will now more gracefully deal with failures during the phase1 initialization,
and not attempt to perform phase2 initialization procedures. This means that if the network
interface is already active and in use by another daemon, further initialization will not be
attempted.

� If an error occurs in the ‘PNI.encap/PNI_objInit.tcl’ file containing initialzation scripts
for the PNI encapsulator, then don’t try to log the contents of the errorInfo variable if it’s
not set. Previously, this resulted in a another TCL error traceback which was confusing.

� And the previous error occured because the errorInfo variable wasn’t declared global in
the TCL procedure.

� We now periodically reset the the priority of the pnid process. This is because it tends to get
“auto-niced” after it’s been running for a while. This causes performance to suffer somewhat,
and manifests itself as not as snappy remote-echo performance.

� Fix error in the ‘support/login-pni.tcl’ script which incorrectly referenced an incorrect
variable when trying to log an error message.

� The kernel driver will now mark the network interface as “down” when the associated pnid
daemon process exits and closes the pseudo network interface kernel driver.

� The kernel driver no longer (incorrectly) identifies itself as Beta Test Software.

Chapter 2: Release Notes 14

� Fix a bug in the Installer’s post install script which causes a literal “*” to inadvertantly get file
globbed. This happens when creating new groups using the niutil program.

2.2.10 1.13 Release

� The pnibusy script is no longer used. It should now be possible for anyone in the pni group
to start an instance of the pnid daemon without running as root.

� Fix various login scripts to not use the TCL file readable ... construct, it TCl uses the
access() system call internally. This doesn’t do the Right Thing since access() check file
access based the real UID of the process, rather than the effective UID. Since pnid runs setuid
to root, this causes things not to work correctly.

� The PNI encapsulator now keeps track of which routes it actually succeeded in installing (a
default route and/or a route for the local address of the PNI interface via the loopback interface),
so it can properly clean up after itself.

2.3 Future Plans

These are some of the feature which are not currently implemented:
� First, and most obvious: the documentation is inadequate for use by mere mortals.
� The PNI software uses a UNIX character special device to communicate with the kernel-level

pseudo network interface driver See Section A.3 [pni_reloc kernel driver], page 81. This
is currently hardcoded to attempt to use a major device number of 29. On Motorola-based
NEXTSTEP systems, it is necessary to use a fixed major device number, while on Intel based
systems, it is possible to have one dynamically assigned. The dynamic assignment is not yet
done on those systems, so a potential for conflict exists. The major device number used by PNI
was assigned by NeXT to TransSys exclusively, Inc. so there should be minimal opportunity
for conflict.

� Control and monitoring is yet somewhat minimal. The PNI software uses Sun RPC to commu-
nicate to the daemon process. There is a program to initiate the RPCs (via a TCL primitive);
the daemon process will receive them and authenticate their origin using an MD5 digest over
the message and a password.
There is a TCL script provided, ‘/etc/pni/bin/pnistat’ which uses a TCL interpreter
augmented with PNI specific commands (/etc/pni/bin/pnitcl), to extract statistics from
instances of the pnid daemon.
One known problem currently is that whilst the daemon is in the midst of processing the modem
dialing and login scripts, it will not respond to remote queries from the monitoring tools.

Chapter 3: Installation 15

3 Installation

In this chapter, we’ll examine briefly the steps required to install the PNI software on your
NEXTSTEP computer system. We’ll cover only the basic structure and steps of the installation and
configuration process; the details will follow in later sections.

3.1 System requirements and prerequisites

The PNI package will run on NEXTSTEP versions 3.1 and 3.2 on both Motorola and Intel based
platforms. Installing is requires approximately 1 MB of disk space.

A few issues to consider:
� 68030-based NeXT Cube systems do not have serial ports which support hardware flow control.

This means that SLIP applications over a serial port will have to be run at no faster than the
modem link speed, before any compression, for best effects.

� The distributed serial driver for Intel NEXTSTEP 3.1 systems is defective, and will cause the
system to crash under moderate load. Upgrade to 3.2 as soon as possible.

� Motorola-based NEXTSTEP 3.2 systems using TTYDSP serial hardware will likely require a
TTYDSP driver update, as the earlier versions would consume a great deal of CPU time when
used by PNI.

� There is currently no support for HP NEXTSTEP platforms due to lack of available cross-
development tools hosted on 68040 based NEXTSTEP systems, targeted to generate HP object
code.

3.2 Installing the distribution

The software distribution containing the PNI software will consist of a NEXTSTEP Installer
package. The package may have been provided to you on a floppy disk. Alternatively, you may have
the file in its electronic distribution format in the form of a ‘.tar’, ‘.tar.Z’, or ‘.compressed’
file.

To install and use the PNI package, the following tasks need to be completed:
1. Load the software distribution on the NEXTSTEP system from the distribution medium (or

electronic distribution) using the Installer application.
2. Acquire the information needed to configure a network connection using the PNI package. This

information include IP network addresses, the subnet mask, and routing information. In the
case of dial-out SLIP or CSLIP connections, it is also necessary to determine what type of
modem is to be used, the telephone number to be dialed, the type of remote network access
server and any username and password information that’s required to bring up the link.

3. Prepare a PNI configuration for each network connection. This is a file where the information
that we collected is specified for the PNI software to use.

Subsequent sections in this chapter will detail the installation steps, and will also include a
“quick start” to a common PNI configuration: a dial-up SLIP connection.

Chapter 3: Installation 16

3.2.1 Before Installation

Before installing the PNI software, you need to consider a few installation choices.
First, the PNI software makes use of a UNIX group called pni which will be the group-owner

for a number of files. By default, if no pni group exists at installation time, one will be created
with a UNIX group id of 42. If this group id is already in use, the installation process will begin
examining group id sequentially increasing group id values until it finds an available group.

If you would prefer to specify a group id, create a pni group using the UserManager application
prior to installing the PNI software.

The other choice is to consider where you would like the software installed. By default, it will
be installed in the ‘/LocalApps/PNI’ directory. You may chose other locations for the software
to be installed if you like; the installation script will create a symbolic link from ‘/etc/pni’ to
the actual installed location. The ‘/etc/pni’ path name is the only path hard-coded in the PNI
package; it is used to identify the location of the package. (Actually, the other hard-coded path
names are the character special devices ‘/dev/pni*.’)

3.2.2 Electronic file archive installation

If you have obtained an electronic file archive distribution, either by FTP from an archive site on
the Internet, or perhaps via NeXTMail, or by some other download process then it is necessary to
unpack the distribution archive so it can be installed. This process is necessary because the archive
is used to group together (and compress to reduce the size of) a collection of files as a single file for
transmission. The distribution will be an archive of a directory (or folder) called ‘PNI-version’,
where ‘version’ will indicate which revision of the PNI software is being distributed. Within this
folder will be a package file as well as some other support files such as a ‘README’ or other auxiliary
information.

From the a UNIX shell:
cd /tmp
gzip -d -c < /some/path/to/PNI-1.13.tar.gz | tar -xvf -

3.2.3 Diskette Distribution

You may have received the PNI software on a distribution disk; either on a 1.44MB floppy disk or
perhaps on a CDROM. In this case, there is no file archive which need to be unpacked or unarchived;
all of the requisite files are directly accessible. On a floppy disk, all of the files will be stored at the
root of the file system. On a CDROM, the files will likely be stored in a folder corresponding to the
PNI product.

3.2.4 Using the Installer Package

To install the package, you must run the NEXTSTEP ‘Installer.app’ application. To do
this, log into your system as the system administrator root, and double-click on the ‘PNI.pkg’ icon
in the Workspace. This will launch the the ‘Installer.app’ application.

Chapter 3: Installation 17

Now clock on the ‘Install’ button. You will be given an opportunity to choose where the
software will be installed. You can just use the default location (‘/LocalApps’), or perhaps you
can choose some other location (such as ‘/usr/local’ or ‘/usr/pni’). Caution: You should not
install it as ‘/etc/pni’! Later on, during the installation process, a symbolic link at ‘/etc/pni’
will be created to point to the actual installed location; it is important to not preempt this file name.

You also have the option to choose which hardware architectures are to be supported. The PNI
package is distributed as a “fat” binary that supports both Motorola 680x0 and Intel platforms. By
default, only the current hardware architecture will be select (Intel for i486 and Pentium based
systems, and Motorola for NeXT “Black Hardware”. If you like, you can install both architectures,
though you probably don’t want to, as the package will consume more disk space.

Once you have decided on the location, click on the ‘OK’ button. You will be warned by an Alert
panel that installation programs will be run; click OK to continue.

The pre-installation installer program will indeed verify that you are running as root; please do
not attempt to disable this check. Part of the installation process updates some system file and your
local NetInfo domain. It is required that the user be root to perform these operations.

After the files have been installed from the Installer package to the local disk, the post-installation
program will be invoked. The post-installation program will then continue and perform other tasks
to complete the installation.

3.2.5 Installation-time system changes

A number of changes are made to your system by the post-installation program that’s invoked
automatically by the installer. You should be aware of the changes that are made so that you do not
inadvertently un-do them in the course of normal system administration functions.

3.2.5.1 The PNI package symbolic link

It is necessary to be able to reference the whole subtree of installed files after they are installed to
locate various configuration files, and other files required for operation of the pnid daemon. Since
the package can be installed anywhere in the UNIX file system, it is necessary to have an “anchor”
somewhere that can be used to discover the installed location of the package.

When the package is installed, the post-installer program will create a symbolic link at
‘/etc/pni’ which points to the installed package. All of the references to the installed files
are done relative to this symbolic link, so it is important that this symbolic link be present and point
to the correct location.

If the post-installer program discovers a pre-existing symbolic link, it assumes that it is an artifact
of a previously installed version of the PNI package and replaces it. If ‘/etc/pni’ is a plain file,
then an Alert panel is used to query the user and determine if the file will be removed or if the
installation will be aborted.

Chapter 3: Installation 18

3.2.5.2 Device names in ‘/dev’

A number of character special device files will be created in the ‘/dev’ directory. These are used
to communicate with the loadable kernel device driver and are each one “half” of a pseudo network
interface. There will be 16 files created in the ‘/dev’ directory: ‘/dev/pni0’, ‘/dev/pni1’, : : :,
‘/dev/pni9’, ‘/dev/pnia’, ‘/dev/pnib’, : : :, ‘/dev/pnif’.

The critical issue relating to the character special device files is which character special major
device number is used. The major device number can be considered to be an index into a table that
is used to reference different UNIX kernel drivers. Only a single driver can use a particular entry in
this table, so it is essential that conflicts with existing drivers be avoided.

The PNI package uses character special major device number 29. The post-install program will
examine the existing files in the ‘/dev’ directory for conflicts; if any files are found that conflict, they
are displayed and you are asked if you want to continue. If the files that are listed are ‘/dev/pni0’,
etc., then its likely that you are installing a new version of the PNI package, and there really is no
conflict.

3.2.5.3 Changes to the rpcs NetInfo directory

The post-installation program will install a set of new RPC (Remote Procedure Call) program
names. The PNI package uses Sun RPC to monitor and control the pnid programs that are running.
Each pnid daemon registers for a different RPC program number which is used to select which
daemon you are interested in monitoring.

A mapping exists between symbolic program names, which are mnemonic and hopefully easy
to understand and remember, and the actual RPC program numbers which are used to rendezvous
with the program willing to perform the RPCs. This mapping is stored in the local NetInfo database
in the ‘/rpcs’ location in the NetInfo database.

The program names that are used are ‘pni0’ : : : ‘pni9’, ‘pnia’ : : : ‘pnif’. These correspond
directly to the names of the network interfaces as well as the names of the character special device
files created in ‘/dev’. (Although there is no requirement that they have this correspondence, it
sure is handy!)

The program numbers that are used by the PNI package are in a range which start from 395250.
This number range has been assigned by Sun Microsystems (who administer this space) for the
exclusive use of TransSys, Inc. and our software. You should not experience any conflicts; if you
do, we’d be very interested in hearing about it!

The post-installation script will use the niutil program to install the RPC mappings. You can
examine these at any later time by using this command at the a UNIX shell:

nidump rpc .

you should see the following (though they may be in a different order);

pni0 395250
pni1 395251
pni2 395252

Chapter 3: Installation 19

pni3 395253
pni4 395254
pni5 395255
pni6 395256
pni7 395257
pni8 395258
pni9 395259
pnia 395260
pnib 395261
pnic 395262
pnid 395263
pnie 395264
pnif 395265

3.2.5.4 Changes to ‘/etc/rc.local’

The ‘/etc/rc.local’ file is modified during installation so that the various pnid daemons
can be started when the system is booted. The modifications that are made are of a very specific
format that can be recognized at a later time and removed should you decide to uninstall the software
package.

The following lines will be added to the ‘/etc/rc.local’ file:

PNI::START::
##
Danger! Warning! Do not remove the
PNI::START:: or the # PNI::END::
lines in this file. The are used to automate
installation and de-installation of this
software package.
##
if [-f /etc/pni/pnirun]; then
(/etc/pni/pnirun -all -boot -core & echo -n ’ pnid’) \

>/dev/console 2>&1
fi
##
PNI::END::

It is very important the the two delimiting lines

PNI::START::
PNI::END::

not be modified or removed. If they are, then it will not be possible for the PNI package to be
completely removed automatically. Any other lines added between the delimiting lines will also be
removed should you choose to de-install the package.

Chapter 3: Installation 20

If you are going to use a TTYDSP serial port on your Motorola-based NEXTSTEP system, then
it may be necessary to move these modification to the ‘/etc/rc.local’ file to a place after the
TTYDSP product is initialized.

3.2.5.5 Changes to ‘/etc/syslog.conf’

The ‘/etc/syslog.conf’ file is also modified so that log messages produced by the PNI pack-
age are collected together into on e log file for easy perusal. The following lines are automatically
added to the ‘/etc/syslog.conf’ file:

PNI::START::1.0
local5.debug /usr/adm/pni.log
PNI::END::1.0

You may wish to change the debug level specified to info or perhaps notice to see fewer
messages once you have installed the package and it is functioning correctly.

In a similar manner to the ‘/etc/rc.local’ file (see Section 3.2.5.4 [Changes to /etc/rc.local],
page 19) the file changes are marked with distinctive delimiters to allow the change to be removed if
the package is de-installed. Do not modify or remove the delimiting lines or this automatic removal
will not function.

3.2.6 License Key Registration

The next step in the installation process is to register the software by using the License Key
String supplied with the software. This information is used to register the software on the system it
has been installed on.

When the registration panel appears, please fill in the required information including the License
Key String. Note: to avoid confusion between characters which have similar appearance, the set of
characters that are used to make the License Key string are restricted to:

� The 10 digits 0 1 2 3 4 5 6 7 8 9

� The 25 UPPER CASE characters A B C D E F G H I J K L M N P Q R S T U V W X Y Z. Note that the
letter O (oh) is not included so it will not be confused with the number zero.

� The 25 lower case characters a b c d e f g h i j k m n o p q r s t u v w x y z. Note that the
letter l (ell) is not included in this set so that it will not be confused with the number one.

� The 4 punctuation characters + / @ %

The License Key String will be at least 16 characters from the set defined above (and longer
if it is a demonstration key with an expiration date). The License Key String, along with the user
information supplied on the registration panel is used to construct a ‘/etc/pni/keyfile’ file
which the pnid daemon uses. Do not delete this file, or you will need to reregister the software.

Some distributions of the PNI software will have a ‘/etc/pni/keyfile’ pre-installed. If this
is the case, you will be asked during the installation process if you would like to keep the existing
keyfile. You should answer yes to keep the existing demo keyfile.

Chapter 3: Installation 21

3.3 Configuration Preview

Now that the software has been installed and registered, it is necessary to configure the software
for your specific environment.

To perform this configuration, it is necessary to create a configuration file for each Pseudo
Network Interface that you wish to use. In many cases, a single network interface for a SLIP/CSLIP
connection is all that’s required.

It may also be necessary to modify or create from scratch additional support files which are used
to dial modems and “log in” to remote systems.

For network links which are originated or established from the local host, the configuration files
are stored in ‘/etc/pni/config’. Support files are located in ‘/etc/pni/support’. (Recall
that ‘/etc/pni’ is a symbolic link to the installed directory.) Please note that files which you
create or modify in the ‘/etc/pni/config’ directory will not be modified or overwritten if you
install newer versions of the PNI package.

For network links that are originated remotely, See Section 4.4.1 [PNI Network Access Server
configuration], page 29, for more information.

3.3.1 Quick Start

There are three sections of information in the sample configuration files; your configurations
will likely reflect this structure as well. Simply put there is:

1. The information needed by each of the components (encapsulators) of the pnid program. This
section consists of a series of TCL set commands.

2. A list of the components (encapsulators) being used in this particular information. This section
consists of a ordered list of TCL stack commands.

3. Procedure definitions for special purpose, custom actions to be performed when a link become
active or goes inactive. This section consists of a series of TCL proc commands to define
procedures to be invoked.

We’ll briefly cover the sample configuration; detail information is available in later chapters of
the manual, organized according to each encapsulator.

3.3.2 Tour through sample SLIP configuration

If you are just bringing up a remote SLIP or CSLIP link from your host, dialing some network
access server, you can probably take an existing sample configuration and modify it for your use.

A sample configuration, found in ‘/etc/pni/SAMPLES/config.slip’ should be copied
to a file named ‘/etc/pni/config/pni0.config’. Note that if you want a pnid dae-
mon started automatically at boot time, you must append -auto to the file file name, e.g.,
‘/etc/pni/config/pni0.config-auto’. See Section 13.4 [The /etc/pni/pnirun shell script],
page 70, for details and more information.

For a bit more through commentary, look at the ‘/etc/pni/SAMPLES/config’ file which has
a bit more detail, or skip to the next chapter.

Chapter 3: Installation 22

#
Pretty close to minimal configuration file for just
plain SLIP using a ZyXEL modem dialing into a
Xylogics Annex SLIP server.
#

PART I.

First, we will specify the configuration information for the pni encapsulator which corresponds
to the network interface and associated IP address information. We specify the name of the network
interface which will be used (‘pni0’ in this case); a network interface can only be used by one
pnid daemon process at a time. The MTU (Maximum Transmission Unit) of the interface is also
set; for plain SLIP connections, this usually defaults to 1006 bytes, though some remote systems
used as dial-in network access servers use 1500 bytes.
set Config(pni:INTERFACE) pni0
set Config(pni:MTU) 1006

Now it is necessary to specify the IP address information. A SLIP connection is implemented
using a point-to-point network interface; this type of interface is defined to have a local address (for
your host) and a remote address (for the other end of the point-to-point link). A subnet mask should
also be specified to indicate what part of the address is the network part, and what part is the host
part. You network administrator should be able to supply you with this information.
set Config(pni:ADDRESS) 229.230.11.211
set Config(pni:REMOTEADDRESS) 229.230.11.111
set Config(pni:NETWORKMASK) 255.255.255.0

If you’d like a default route installed which uses this interface when the link is established (and
removed when the link is dropped), then include the next line. If you don’t want a default route
dynamically installed when the link is established, omit this line
set Config(pni:DEFAULT) 1

The configuration for the ‘slip’ encapsulator is rather simple: you only specify the MODE
of the encapsulator which can be either ‘slip’ or ‘cslip’ (if your License Key authorizes use of
CSLIP).
set Config(slip:MODE) slip

Now we specify the configuration for the ‘tty’ encapsulator; its job is to talk to a serial tty
device to send and receive characters. We specify what device to use, and what speed the port
should be set to use.
set Config(tty:DEVICE) /dev/cufa
set Config(tty:SPEED) 38400

We also indicate what type of modem is connected to the serial port and what type of net-
work access server will be called. The names that are used refer to support scripts in the script
search path, which are the following directories: ‘/etc/pni/config’, ‘/etc/pni/support’,
‘/etc/pni/TTY.encap’. So, if you need to modify one of the scripts which are provided by the
PNI software, place them in the ‘/etc/pni/config’ directory where they will not be deleted or
over-written should you install a new version of software.

Chapter 3: Installation 23

The ‘MODEMTYPE’ specification refers to the
‘/etc/pni/support/dial-*.tcl’

files, while the ‘SERVERTYPE’ specification refers to the
‘/etc/pni/support/login-*.tcl’

files.

If a dialer script or login script doesn’t exist, you can create your own modeled on the
existing scripts, name them ‘login-foo.tcl’ or ‘dial-bar.tcl’ and install them in the
‘/etc/pni/config’ directory.
set Config(tty:MODEMTYPE) zyxel
set Config(tty:SERVERTYPE) annex

Now it is necessary to specify some information required by modem dialing and network access
server login scripts. First, we specify the name of the network access server that we’ll be dialing
into. There is nothing special about the name that is picked, it is used in a subsequent configuration
specification so it must be consistent .

Then the phone number to be dialed, and how the dialing is to occur (either TONE or PULSE).
set Config(tty:SERVERNAME) yourSlipServerName
set Config(tty:NUMBER) 555-1212
set Config(yourSlipServerName:DIALTYPE) TONE

Finally, if the network access server you are connecting to requires you to “log in”, then you
must supply the user name and password for the ‘/etc/pni/login-foo.tcl’ script to use. There
are two ways to do this. A file name can be specified which contains TCL commands to set the
username and password:
set Config(yourSlipServerName:SECRETFILE) \

"/etc/pni/config/password.pni0"

The file ‘/etc/pni/config/password.pni0’ would contain two lines:
set username sliplogin37
set password theSecretWord

The motivation for this option is that the regular configuration would contain no sensitive
information and could be readable by anyone. The sensitive username and password could be kept
protected in its own file, and only readable by the “root” user. In fact if you use a separate file, you
must ensure that the file it not readable by “group” or “other” based on the UNIX permissions set on
the file. This is checked for by the pnid scripts and an error will occur to notify the administrator
that he may have inadvertently allow sensitive information to be exposed.

Alternatively, it is possible to encode the the user name and password in the configuration file.
This is a bit simpler to configure, and may be appropriate in some situation where having the main
configuration readable is not necessary.
set Config(yourSlipServerName:USERNAME) sliplogin37
set Config(yourSlipServerName:PASSWORD) theSecretWord

The next command set a password which is used to control what users have monitoring and
control access to the pnid daemon process.
set Config(CMD:password) "The secret word"

Chapter 3: Installation 24

If this is omitted, then a password that was randomly generated at installation time will be used
instead. The random password is in the ‘/etc/pni/config/password’ file, and readable only
by root and the pni UNIX group. This is the preferred mechanism.

The next part of the configuration indicates what encapsulators will be used together to connect
this particular network interface to the network. The specification of encapsulators are done in
order, starting from the host’s logical network interface and working towards the physical network
connection.

The specification of encapsulators is done using the stack command. This command takes two
arguments:

� The type of encapsulator. This is one of a few predefined names, and are always in UPPER
CASE. These names correspond the the ‘/etc/pni/*.encap’ directories.

� The name of the encapsulator. This name is use to refer to a particular instance of an
encapsulator. Although not used in this particular configuration, it is possible to use an
encapsulator type more than once; each would have a unique name. The encapsulator name is
reference in the set commands in the first section of the configuration.

The very first encapsulator is always the ‘PNI’ encapsulator. The very last encapsulator is
what actually talks to the “hardware”; the physical connection to the network. In between are the
encapsulators that take you from one end to the other.

For a SLIP application, the sequence of ‘PNI’, ‘SLIP’, ‘TTY’ is what is required: ‘PNI’ will
hand complete IP packets to the ‘SLIP’ encapsulator. ‘SLIP’ will take IP packets, and perform
the SLIP-protocol “byte-stuffing” and framing, resulting in a stream of characters. The ‘TTY’
encapsulators takes streams of characters and puts them on the serial port.

The same sort of operation takes for input packets. The ‘TTY’ encapsulators hands a few
characters at a time (as they arrive on the serial port) to the ‘SLIP’ encapsulator. ‘SLIP’ accumulates
characters until it receives an entire frame, decodes this to an IP packet, and then hands it to ‘PNI’.
The ‘PNI’ encapsulator then causes the IP packet to be handled as input to the kernel’s network
interface.
PART II.

stack PNI pni
stack SLIP slip
stack TTY tty

There is a “global”, non-encapsulator specific configuration variable called callLog, which
specifies the name of a file which will receive logging records each time the link is established and
broken.
set Config(callLog) "/usr/adm/pni.call-log"

The records logged look like this:
STOP pni0 Mon Mar 14 22:01:26 1994 - Mon Mar 14 22:04:18 1994
START pni0 Mon Mar 14 22:05:12 1994
STOP pni0 Mon Mar 14 22:05:12 1994 - Mon Mar 14 23:01:54 1994
START pni0 Mon Mar 14 23:07:23 1994
STOP pni0 Mon Mar 14 23:07:23 1994 - Mon Mar 14 23:17:47 1994
START pni0 Tue Mar 15 10:32:07 1994

Chapter 3: Installation 25

STOP pni0 Tue Mar 15 10:32:07 1994 - Tue Mar 15 12:37:19 1994
START pni0 Tue Mar 15 12:42:34 1994
STOP pni0 Tue Mar 15 12:42:34 1994 - Thu Mar 17 16:42:35 1994

Finally, there are two TCL “hooks” that can be defined which can perform specific actions
as events occur. The two events currently available are a “start” event and a “stop” event. The
correspond to when the last encapsulator in the list establishes a link (usually the TTY encapsulator).
You can cause any local actions to occur here that you with. One possibility is to run the sendmail
queue when the link comes up by using the exec TCL command to run a program (if you do this,
make sure the program run is put in the background).
PART III.

proc LINK_start { encap } {
log "LINK $encap connected"

}

proc LINK_stop { encap } {
log "LINK $encap disconnected"

}

More detailed information on how each encapsulator can be configured follow in the next chapter.

Chapter 4: Configuration 26

4 Configuration

Configuration of the PNI package is done using TCL, the Tool Control Language. TCL is a
procedural embedded extension language; it supplies all of the control structures, data structures,
and a set of standard commands. TCL is then extended by adding application specific command
which can be invoked.

It is instances of the pnid daemon which need to be configured; the loadable kernel driver that
implements the Pseudo Network Interfaces is generally not customized or configured. It is possible,
under certain circumstances to change some operational parameters of the loadable kernel driver;
particularly which character special major device number it uses (see Section A.3 [pni_reloc kernel
driver], page 81).

All of the interesting functions of the pnid program lie in the individual encapsulators. The
basic pnid program serves as the supporting framework to allow these encapsulators to function and
be controlled. It should be of no surprise that almost all of the configuration information required
pertains to the individual encapsulators, rather to the pnid program itself.

The configuration information for a particular instance of a pnid program is stored in a plain
ASCII text file. In the case where the local host is actively initiating the link, the configuration files
are stored as ‘/etc/pni/config/pniunit.config’, where unit is used to distinguish between
different interfaces (‘pni0, pni1,’ etc). The pnirun shell script will automatically use these files
at boot time (see Section 13.4 [The pnirun script], page 70).

The configuration file consists of lines of text which are taken to be a series of TCL commands
to be invoked as the pnid program is initializing itself.

In addition to the configuration file, two other files of TCL commands are also loaded and run by
thepnid program. These files are ‘/etc/pni/pnid.tcl’ and ‘/etc/pni/support/init.tcl’
which provide support. These files consist mainly of TCL procedure definitions.

Other TCL files that are loaded by the pnid program are specific to the encapsulators which
are being used. Encapsulators are Objective-C loadable classes, and reside in bundles stored
in the ‘/etc/pni’ directory. Each bundle consists of code that is dynamically loaded at run
time as well as other supporting files; in this case, these files include two files that contain
TCL commands. For example, consider the ‘PNI’ encapsulator (which will be present in ev-
ery configuration). The bundle directory is ‘/etc/pni/PNI.encap’; the actual machine code
that implements the Objective-C class would be found in the file ‘/etc/pni/PNI.encap/PNI’.
Supporting TCL commands would be found in the files ‘/etc/pni/PNI.encap/PNI_Init.tcl’
and ‘/etc/pni/PNI.encap/PNI_objInit.tcl’. The difference between the two files is that
the first file is loaded only once if the encapsulator is in use. The second file of TCL commands is
loaded once for each instance of the encapsulator; it may be that the same encapsulator class is used
more than once, with each configured differently.

4.1 Encapsulators

The operation of each of the encapsulators is configured by invoking encapsulator specific TCL
commands. Normally, these commands are not from the “simplified” (!?!) configuration file

Chapter 4: Configuration 27

that’s normally used. The normal course of events is that only elements in the Config TCL array
are specified by the user; the encapsulator specific TCL commands are invoked by configuration
procedures that operate based on the user specified configuration information.

At initialization time, a TCL procedure is invoked for each encapsulator. For example, if
the SLIP encapsulator was used in a particular configuration, and it was “named” slip, the
TCL procedure that would be invoked to configure that encapsulator would be called slip_
configure. These configure procedures are normally defined when the encapsulator’s various
‘/etc/pni/*.encap/*Init.tcl’ files are loaded. These procedure, when invoked, examine the
defined values in the Config array, and perform the required low-level encapsulator-specific TCL
commands.

In the following sections, the commands specific to each encapsulator are listed. In most
cases, you can do what is required by using the simplified “Configuration Directives” that each
encapsulator’s configure procedure examines

4.2 Configuration Directive Conventions

The Configuration Directives are normally just specific values set in the the global TCL Config
array. This array, like all TCL arrays, is subscripted by a string. The string subscript by convention
consists of a prefix name, which refers to the encapsulator name defined on the stack command.
The prefix name is followed by a colon and then the name of some configuration parameter.

set Config(slip:MODE) cslip

This configuration naming structure is used since it may be possible to have more than one
instance of an encapsulator used in one configuration (two SLIP encapsulators, for instance). Using
this scheme, it is possible to have different instances of an encapsulator have much different
configurations.

4.3 Configuration Primitive Conventions

The encapsulator’s configuration primitives map directly to a C function or Objective-C method
invocation. These primitives also have a particular naming structure. When an encapsulator (of a
particular type) is instantiated (with a specified name). The name of this instance is used to create
a TCL command. So, when making a configuration like:

stack PNI pni
stack FILTER filter
stack SLIP slip
stack TTY serial

Four additional global TCL commands are created, named: pni, filt, slip and serial. These
commands are used in such a way that they expect a “sub-command” name to follow the command
name. Each encapsulator inherits a set of “sub-commands” that are implemented by the encapsula-
tor’s abstract super-class. These sub-commands include hashstats, commands, debug and a few
others.

Chapter 4: Configuration 28

For example, each instance of the PNI encapsulator has a TCL sub-command created called mtu
to set the MTU of the interface. Assuming the PNI encapsulator was named ‘pni’, the subcommand
could be used like this:

pni mtu 1006

to set the MTU to 1006 bytes.

The configuration primitives associated with each encapsulator are not generally documented, as
the user of the PNI software should not find it necessary to use them directly. Instead, a “higher-level”
set of configuration variables is used, and TCL code specific to each encapsulator is responsible for
invoking the configuration primitives as required.

4.4 Configuration as a Network Access Server

The PNI package can be used as a Network Access Server, to accept incoming sessions, rather
than initiating sessions to a remote server. A network access server is a device which accepts some
manner of connection from some remote user, and provides IP-level access to the network. That is,
it acts as a router to switch IP packets between the just-established connection and the network it is
connected to. This differs from a simple terminal server which expects terminals to be connecting
with streams of ASCII characters being sent and received as part of a login session. Rather, it
expects to transmit and receive entire packets from an IP capable host.

There are two major tasks that need to be performed to configure an incoming session. The first
is to create a special user account for the incoming session. Then you must configure the pnid
process, as usual, for that network interface.

The the special user account is needed so that when the remote system logs into the local system,
an instance of the pnid daemon will be available to terminate the connection. This also allows
the use of the serial port(s) for other purposes when they are not being used for a serial network
connection. For example, FAX transmission and reception (PNI works well with the NXFax product),
the UNIX tip program, and outbound PNI connections.

The user name for the account needs to be the same as the network interface to be configured
for that link. So the user names would be named pni0, pni1, etc. The user name is used to pick
the appropriate pnid configuration file to be loaded when the pnid program is started up for this
connection.

The UNIX UID should be one assigned for use exclusively for incoming PNI sessions. All of the
pseudo-users created can share the same UID value if desired. The UNIX group for the pseudo-user
should be set to that group id for the pni group. This group was automatically added when the PNI
software was installed. By default, the GID of 42 is used. Using the UserManager application, you
can simply choose the pni group from the list as you create the user.

The home directory for the user can be set to ‘/tmp’, since it is not really used. Another
possibility, if you choose, may be ‘/etc/pni/runtime’.

The shell for the user must be ‘/etc/pni/pnilogin’ which is a shell script that eventually
invokes the pnid daemon with the appropriate configuration file.

Chapter 4: Configuration 29

The password for the account should be something that need only be known to the remote SLIP
user, for use whilst completing the login process. Choose a “good” password which is not easily
guessed.

The resultant password file entries that are created will look something like these:
pni1:jJjk3450sfj12:20:42:test SLIP login:/tmp:/etc/pni/pnilogin
pni2:4j912Jkl3894A:20:42:test SLIP login:/tmp:/etc/pni/pnilogin

(These can be displayed by using nidump passwd . from a Terminal window.)

4.4.1 PNI Network Access Server configuration

When the PNI software is used as a Network Access Server, the pnid daemon is invoked when
the remote session is established, rather than running as a long-lived process. An account is created
on the host acting as a Network Access Server corresponding; the account name should be named
the same as the network interface to be used to communicate with the remote host.

For example, if a network interface pni1 is to be used to communicate with a particular remote
host, a local user also called pni1 is created, with its login shell set to be ‘/etc/pni/pnilogin’.

A configuration file need to be created for the pnid daemon used in a server role, just as when it
is used in its usual client role. A special naming convention needs to be followed when creating the
configuration for use in server mode. In the case of an inbound connection for the pni1 interface,
the name of the file needs to be ‘/etc/pni/config/pni1.config-inbound’.

he same sort of information need to be specified in the configuration file in server mode; one
large difference has to do with the scripts that are used for dialing and logging in when in server
mode.

Since the connection is established remotely, there is no dialing script required to establish the
connection. When in server mode, the PNI encapsulator will the the standard input and standard-
output of the process to receive and send characters on the serial connection.

There is a special login script: ‘/etc/pni/support/login-pniserver.tcl’ which is used
in conjunction with with the ‘/etc/pni/support/login-pni.tcl’ script on the other end of
the link (assuming that the other end is also using PNI). The purpose of the special login file is
to emit certain bits of information that the remote system may be expecting, such as the fact that
the PNI software is now running and ready; what the configured IP address of the local and remote
systems are; and when SLIP operation actually begins.

4.5 PNI specific TCL commands

Beyond the standard set of commands and features available in the TCL scripting language, there
are a number of commands available which are specific to the PNI package. These can be useful
to authors of dialing scripts or anyone that needs to modify any of the TCL scripts provided which
control the operation of the PNI package.

Most of the PNI specific TCL commands are specific to a particular encapsulator; those are
described in section that documents the function and configuration of that particular encapsulator.

Chapter 4: Configuration 30

There are, however, a number of commands which are generally available which will be described
here.

4.5.1 Logging TCL commands

TCL Commandlog Message-args...
This command will log a message using the current syslog facility, at the logging
level of LOG INFO.

TCL Commanddlog Message-args...
This command will log a message using the current syslog facility, at the logging
level of LOG DEBUG.

TCL Commandnotice Message-args...
This command will log a message using the current syslog facility, at the logging
level of LOG NOTICE.

TCL Commandwarn Message-args...
This command will log a message using the current syslog facility, at the logging
level of LOG WARNING.

TCL Commandsyslog LEVEL MESSAGE
This command will log a message with the severity level specified by LEVEL, which
can be one of DEBUG, NOTICE, WARNING, ERR, CRITICAL, ALERT or EMERGENCY.
The level can optional be prefixed with LOG_, so that LOG_ERROR is equivalent to
ERROR.

The MESSAGE argument is the string which is logged. Due to the implementation of
the syslogd logging daemon, only the text up to the first newline character will be
logged - the rest of the message text will be truncated. This is a consideration when
logging text which has been matched in a modem dialer or login chat script, which
may include multiply lines. There is a utility TCL procedure, printify, which will
remove the embedded newline, carriage return and tab characters and replace them
with a printable representation.

4.5.2 pnitcl specific TCL commands

The pnitcl program is a support program which included a TCL interpreter with the standard
set of TCL commands, and the TCLX extensions. It also has a set of commands to perform RPC
operations to running instances of the pnid program.

TCL Commandcmdopen hostname rpc-program-number
Creates an RPC client handle to perform commands to the pnid daemon registered as
RPC program ‘rpc-program-number’ on host ‘hostname’. Returns a handle that
is passed to the cmdrpc and cmdclose commands.

Chapter 4: Configuration 31

TCL Commandcmdrpc handle command [authinfo]

TCL Commandcmdclose handle
Frees the resources associated with the handle specified and makes the handle invalid
for any future uses.

Chapter 5: PNI Encapsulator 32

5 PNI Encapsulator

The PNI encapsulator manages the operation of the virtual network interface. As such, it
communicates with and configured the PNI kernel resident driver.

5.1 Configuration Directives

Configuration VariableConfig(pni:INTERFACE)
The INTERFACE parameter is used to select which kernel pseudo network interface is
to be used by this instance of the pnid daemon process. The parameter will usually
be ‘pni0’ to use the first pseudo network interface.

Configuration VariableConfig(pni:MTU)
Each network interface has an associated Maximum Transmission Unit associated
with it, which is the largest packet size (in octets or bytes) which can be transmitted
or received on the interface. This configuration variable can be used to specify the
desired MTU for the interface.

It is important that for given network link or media, that each host agree on a common
MTU to be used. If no MTU is explicitly specified, then other encapsulators (such as
the SLIP encapsulator) may supply a default value.

Configuration VariableConfig(pni:ADDRESS)
When the pseudo network interface is enabled and configured, this parameter specifies
what the local IP address of the interface will be. It should be expressed in the decimal
digits dotted-quad notation, such as ‘10.1.0.17’ or ‘192.5.214.1’.

Configuration VariableConfig(pni:REMOTEADDRESS)
Normally the pseudo network interface is used as a point-to-point network interface.
The REMOTEADDRESS parameter specifies the IP address of the host at the other end
of the point-to-point interface. It is also specified in the decimal digits dotted-quad
notation.

Configuration VariableConfig(pni:NETWORKMASK)
Along with the Config(pni:INTERFACE) and Config(pni:REMOTEADDRESS)
variables, this is used to specify the subnet mask associated with the local address of
the network interface.

Configuration VariableConfig(pni:DEFAULT)
This configuration variable takes an integer value. If the value of non-zero, then a
default route pointing out this interface is installed. The default route will also be
removed when the pnid daemon exits. This is only performed if the interface is a
point-to-point network interface, like a SLIP serial line.

Chapter 5: PNI Encapsulator 33

Configuration VariableConfig(PNI:NOLOOPBACK)
If the network interface is a point-to-point network interface (it has a REMOTEAD-
DRESS defined), then the usual case is to have the PNI encapsulator install a host
route for the local IP address via the loopback interface. It will literally perform:

/usr/etc/route add local-address 127.0.0.1 0
When the PNI interface is initialized. To inhibit this, define a value for Con-
fig(pni:NOLOOPBACK).

5.2 Configuration Primitives

This section still under construction: : :

Chapter 6: FILTER Packet Filter Encapsulator 34

6 FILTER Packet Filter Encapsulator

The FILTER encapsulator’s purpose is to examine the packet which are being received and
transmitted, and to take some action when the packet matches one or more of a set of filters. There
are separate filters which are evaluated for inbound packets (i.e. those packets being decapsulated
as they arrive from the network bound for the local host) as well as outbound packets (i.e. those
packets sourced from the local host being transmitted to the network).

The actions which can be taken fall into one of a the following categories:

� Packets which are to be filtered out, or dropped if they appear.

� Packets which are used to reset the inactivity timer, if one exists, for this interface. Note that
since there separate filters for inbound and outbound packets, you can have different inactivity
times for each direction of packet travel.

� Packets which are interesting in some way, will will cause a one line log message to be
written. For example. you might want to log the initial and final packets associated with every
TCP connection which traverses the network interface associated with this encapsulator. The
message logged is of the form:
log-input: 192.48.96.9 => 144.202.1.1 len 40 pr TCP port 20 -> 2704 SYN

The packet filters are specified in the form of symbolic packet filter expressions see Section 6.3
[Packet Filter Expressions], page 36. This is a very powerful and general mechanism which can
specify the types of packets which you desire to select.

6.1 Configuration Directives

Configuration VariableConfig(filter:INPUTFILTER)
The value of this configuration variable is a packet filter expression see Section 6.3
[Packet Filter Expressions], page 36 which defines which input packets are to be
excluded and dropped on input.

Configuration VariableConfig(filter:INPUTFILTER RPCS)
This configuration variable, if present, should contain a list of Sun RPC program names.
Any input packets directed to any of the specified RPC services will be dropped on
input.

Examples of RPC program names are ‘nfs’, ‘ypserv’ and ‘netinfod’. See man
rpcinfo for more details.

Configuration VariableConfig(filter:OUTPUTFILTER)
The value of this configuration variable is a packet filter expression (see Section 6.3
[Packet Filter Expressions], page 36) which defines which output packets are to be
excluded and dropped when transmitted.

Configuration VariableConfig(filter:OUTPUTFILTER RPCS)

Chapter 6: FILTER Packet Filter Encapsulator 35

Configuration VariableConfig(filter:INPUT LOG)
The value of this configuration variable is a packet filter expression (see Section 6.3
[Packet Filter Expressions], page 36) which defines which input packets should cause
a log entry to be made.

Configuration VariableConfig(filter:OUTPUT LOG)
The value of this configuration variable is a packet filter expression (see Section 6.3
[Packet Filter Expressions], page 36) which defines which output packets should cause
a log entry to be made.

Configuration VariableConfig(filter:INPUT ACT INTERVAL)
Specify input inactivity timeout period. If no input packets arrive within the specified
number of seconds, then the link will be taken down.

Configuration VariableConfig(filter:INPUT ACT FILTER)
A packet filter expression which specified which input packets will cause the inactivity
timer to be reset. If no filter is specified, then any input packet will reset the input
inactivity timer.

Configuration VariableConfig(filter:INPUT ACT ACTION)
If specified, a set of TCL commands which will be evaluated when the input inactivity
period expires. If not specified, the default action will be to sever the connection.

Configuration VariableConfig(filter:OUTPUT ACT INTERVAL)
Specify output inactivity timeout period. If no packets are transmitted within the
specified number of seconds, the link will be taken down.

Configuration VariableConfig(filter:OUTPUT ACT FILTER)
A packet filter expression which specified which output packets will cause the inactivity
timer to be reset. If no filter is specified, then any output packet will serve to reset the
output inactivity timer.

Configuration VariableConfig(filter:OUTPUT ACT ACTION)
If specified, a set of TCL commands which will be evaluated when the output inactivity
period expires. If not specified, the default action will be to sever the connection.

Configuration VariableConfig(filter:DEMAND FILTER)
(Not yet fully functional). The value of this configuration variable is a packet filter
expression (see Section 6.3 [Packet Filter Expressions], page 36) which defines which
output packets will cause a link level connection to actually be established, rather than
immediately establishing a connection when the pnid process is started. This is used
to implement “dial-on-demand”

6.2 Configuration Primitives

Chapter 6: FILTER Packet Filter Encapsulator 36

6.3 Packet Filter Expressions

The packet filter expressions used by the FILTER encapsulator are based on those used in the
tcpdump program. The symbolic packet filter expression is compiled into a program which is
evaluated by the Section 6.3.3 [Filter Machine], page 40, which is a simple state machine with a
few registers and scratch memory store.

6.3.1 Packet Filter Syntax
1

The expression consists of one or more primitives. Primitives usually consist of an id (name
or number) preceded by one or more qualifiers. There are three different kinds of qualifier: type
qualifiers say what kind of thing the id name or number refers to. Possible types are host, net and
port. E.g., host foo, net 128.3, port 20. If there is no type qualifier, host is assumed.

dir qualifiers specify a particular transfer direction to and/or from id. Possible directions are
src, dst, src or dst, and src and dst. E.g., src foo, dst net 128.3, src or dst port
ftp-data. If there is no dir qualifier, src or dst is assumed.

proto qualifiers restrict the match to a particular protocol. Possible protos are: ip, tcp and udp.
E.g., ip net 128.3, tcp port 21. If there is no proto qualifier, all protocols consistent with the
type are assumed. E.g., src foo means ip src foo, net bar means ip net bar and port 53
means (tcp or udp) port 53.

In addition to the above, there are some special ‘primitive’ keywords that don’t follow the pattern:
less, greater and arithmetic expressions. All of these are described below.

More complex filter expressions are built up by using the words and, or and not to combine
primitives. E.g., host foo and not port ftp and not port ftp-data. To save typing, identi-
cal qualifier lists can be omitted. E.g., tcp dst port ftp or ftp-data or domain is exactly the
same as tcp dst port ftp or tcp dst port ftp-data or tcp dst port domain.

Allowable primitives are:
dst host ‘host’

True if the IP destination field of the packet is ‘host’.
src host ‘host’

True if the IP source field of the packet is ‘host’.
host ‘host’

True if either the IP source or destination of the packet is ‘host’. Any of the above
host expressions can be prepended with the keywords, ip.

dst net ‘net’
True if the IP destination address of the packet has a network number of ‘net’, which
must be an must be an address.

1 This section is an excerpt of the tcpdump(1) man page. The tcpdump program and man page
was written by Van Jacobson (van@helios.ee.lbl.gov), Craig Leres (leres@helios.ee.lbl.gov) and
Steven McCanne (mccanne@helios.ee.lbl.gov), all of Lawrence Berkeley Laboratory, University
of California, Berkeley, CA.

Chapter 6: FILTER Packet Filter Encapsulator 37

src net ‘net’
True if the IP source address of the packet has a network number of ‘net’

net ‘net’ True if either the IP source or destination address of the packet has a network number
of ‘net’.

dst port ‘port’
True if the packet is ip/tcp or ip/udp and has a destination port value of ‘port’. The
‘port’ can be a number or a name used in /etc/services (see tcp (4P) and udp (4P)).

If a name is used, both the port number and protocol are checked. If a number or
ambiguous name is used, only the port number is checked (e.g., dst port 513 will
select both tcp/login traffic and udp/who traffic, and port domain will select both
tcp/domain and udp/domain traffic).

src port ‘port’
True if the packet has a source port value of ‘port’.

port ‘port’
True if either the source or destination port of the packet is ‘port’. Any of the above
port expressions can be prepended with the keywords, tcp or udp, as in:

tcp src port ‘port’

which matches only tcp packets.

less ‘length’
True if the packet has a length less than or equal to ‘length’. This is equivalent to:

len <= ‘length’

greater ‘length’
True if the packet has a length greater than or equal to ‘length’. This is equivalent
to:

len >= ‘length’

ip proto ‘protocol’
True if the packet is an ip packet (see ip (4P)) of protocol type ‘protocol’.
‘Protocol’ can be a number or one of the names icmp, udp, nd, or tcp. Note
that the identifiers icmp, udp, and tcp are also keywords and must be escaped via
backslash \\, which is \\\\ in the C-shell.

ip broadcast
True if the packet is an IP broadcast packet. It checks for both the all-zeroes and
all-ones broadcast conventions, and looks up the local subnet mask.

ip multicast
True if the packet is an IP multicast packet.

tcp, udp, icmp
Abbreviations for:

ip proto ‘Ip’

where ‘Ip’ is one of the above protocols.

Chapter 6: FILTER Packet Filter Encapsulator 38

expr relop expr
True if the relation holds, where relop is one of >, <, >=, <=, =, !=, and ‘expr’ is an
arithmetic expression composed of integer constants (expressed in standard C syntax),
the normal binary operators [+, -, *, /, &, |], a length operator, and special packet data
accessors. To access data inside the packet, use the following syntax:

proto [‘expr’ : ‘size’]

Proto is one of ip, tcp, udp, or icmp, and indicates the protocol layer for the index
operation. The byte offset, relative to the indicated protocol layer, is given by ‘expr’.
‘Size’ is optional and indicates the number of bytes in the field of interest; it can be
either one, two, or four, and defaults to one.
The length operator, indicated by the keyword len, gives the length of the packet.
The expression ip[0] & 0xf != 5 catches all IP packets with options. The expression
ip[2:2] & 0x1fff = 0 catches only unfragmented datagrams and fragment zero of
fragmented datagrams. This check is implicitly applied to the tcp and udp index
operations. For instance, tcp[0] always means the first byte of the TCP header, and
never means the first byte of an intervening fragment.

Primitives may be combined using:
� A parenthesized group of primitives and operators (parentheses are special to the Shell and

must be escaped).
� Negation (! or not).
� Concatenation (and).
� Alternation (or).

Negation has highest precedence. Alternation and concatenation have equal precedence and
associate left to right. Note that explicitand tokens, not juxtaposition,are required for concatenation.

If an identifier is given without a keyword, the most recent keyword is assumed. For example,
not host vs and ace

is short for
not host vs and host ace

which should not be confused with
not (host vs or ace)

BPF EXAMPLES
tcp[13] & 3 != 0

To select the start and end packets (the SYN and FIN packets) of each TCP conversation.
ip[2:2] > 576

To select IP packets longer than 576 bytes.
ip[16] >= 224

To select IP broadcast or multicast packets
icmp[0] != 8 and icmp[0] != 0

To select all ICMP packets that are not echo requests/replies (i.e., not ping packets).

Chapter 6: FILTER Packet Filter Encapsulator 39

6.3.2 Packet Filter Expression Test Program

The testfilt program, available as ‘/etc/pni/FILTER.encap/testfilt’ can be used to
test the syntax of a packet filter expression as it is being developed for use in the PNI package.
It is not used at all in the normal operation of the package, and exists solely as a debugging and
development aid.

The testfilt program takes as arguments the packet filter expression. Note that to ensure
that expression are correctly evaluated and not interpreted by the shell, the expression should be
enclosed in single quote characters. The testfilt program will then display the compiled BPF
program in symbolic form, and will then attempt to evaluate the expression against a built in sample
packet.

The sample packet is a TCP segment from host 1.1.1.2 to 1.1.1.2, from port 23 to port 4006 with
a RST bit set in the flags field. Here is the exact contents of the sample packet:
static unsigned char pkt[] = {

0x45, 0x00, 0x00, 0x28,
0x21, 0x6c, 0x00, 0x00,
0x3c, 0x06, 0x59, 0x5f,
0x01, 0x01, 0x01, 0x02, /* src addr */
0x01, 0x01, 0x01, 0x02, /* dst addr */
0x00, 0x17, 0x0f, 0xa6, /* src port, dst port */
0x77, 0xa8, 0x42, 0xc1, /* seq */
0x00, 0x00, 0x00, 0x00, /* ack */
0x50, 0x04, 0x00, 0x00, /* flags = RST, win = 0 */
0xe1, 0xb4, 0x00, 0x00 /* cksum, urgent pointer */

};

This sample packet is then evaluated against the compiled packet filter program a large number
of times to determine the length of time required to perform the evaluation.

Here is a sample invocation of the testfilt program:
$ /etc/pni/FILTER.encap/testfilt ’not (src host 111.11.128.10 or
src host 111.11.253.10 or src host 111.11.254.10) and
(udp dst port 161 or tcp dst port login or tcp dst port shell)’
worked
(000) ld #0x0
(001) ld [12]
(002) jeq #0x6f0b800a jt 20 jf 3
(003) jeq #0x6f0bfd0a jt 20 jf 4
(004) jeq #0x6f0bfe0a jt 20 jf 5
(005) ldb [9]
(006) jeq #0x11 jt 7 jf 12
(007) ldh [6]
(008) jset #0x1fff jt 20 jf 9
(009) ldxb 4*([0]&0xf)
(010) ldh [x + 2]
(011) jeq #0xa1 jt 19 jf 20
(012) jeq #0x6 jt 13 jf 20
(013) ldh [6]
(014) jset #0x1fff jt 20 jf 15
(015) ldxb 4*([0]&0xf)
(016) ldh [x + 2]

Chapter 6: FILTER Packet Filter Encapsulator 40

(017) jeq #0x201 jt 19 jf 18
(018) jeq #0x202 jt 19 jf 20
(019) ret #149
(020) ret #0

Timing 100000 invocations of filter..
Filter: 25.83456 microsecs per eval

To interpret the generated packet filter program, refer to the following section, Section 6.3.3
[Filter Machine], page 40. The time reported by testfilt only applies to the time taken to evaluate
against the “test” packet; it may take more or less time in actual use depending on the types of
packets coming across the link and the complexity of the packet filter expression.

6.3.3 Filter Machine

A filter program is an array of instructions, with all branches forwardly directed, terminated by
a return instruction. Each instruction performs some action on the pseudo-machine state, which
consists of an accumulator, index register, scratch memory store, and implicit program counter.2

The material presented in this section is background information, and is of assistance when
examining the output of the testfilt program described above. It is not necessary (or even
possible) to specify packet filter programs in this “raw” format.

The following structure defines the instruction format:
struct bpf_insn {
u_short code;
u_char jt;
u_char jf;
long k;
};

The k field is used in different ways by different instructions, and the jt and jf fields are used as
offsets by the branch instructions. The opcodes are encoded in a semi-hierarchical fashion. There
are eight classes of instructions: BPF_LD, BPF_LDX, BPF_ST, BPF_STX, BPF_ALU, BPF_JMP,
BPF_RET, and BPF_MISC. Various other mode and operator bits are or’d into the class to give the
actual instructions.

Below are the semantics for each defined BPF instruction. We use the convention that A is the
accumulator, X is the index register, P[] packet data, and M[] scratch memory store. P[i:n] gives
the data at byte offset “i” in the packet, interpreted as a word (n=4), unsigned halfword (n=2), or
unsigned byte (n=1). M[i] gives the i’th word in the scratch memory store, which is only addressed
in word units. The memory store is indexed from 0 to BPF MEMWORDS-1. k, jt, and jf are the
corresponding fields in the instruction definition. “len” refers to the length of the packet.

BPF_LD These instructions copy a value into the accumulator. The type of the source operand
is specified by an “addressing mode” and can be a constant (BPF_IMM), packet data

2 This section is excerpted from the bpf(4) manual page which described the Berkeley Packet
Filter. The Berkeley Packet Filter was originally implemented by Steven McCanne of Lawrence
Berkeley Laboratory. Much of the design is due to Van Jacobson.

Chapter 6: FILTER Packet Filter Encapsulator 41

at a fixed offset (BPF_ABS), packet data at a variable offset (BPF_IND), the packet
length (BPF_LEN), or a word in the scratch memory store (BPF_MEM). For BPF_IND
and BPF_ABS, the data size must be specified as a word (BPF_W), halfword (BPF_H),
or byte (BPF_B). The semantics of all the recognized BPF LD instructions follow.

BPF_LD+BPF_W+BPF_ABS
A <- P[k:4]

BPF_LD+BPF_H+BPF_ABS
A <- P[k:2]

BPF_LD+BPF_B+BPF_ABS
A <- P[k:1]

BPF_LD+BPF_W+BPF_IND
A <- P[X+k:4]

BPF_LD+BPF_H+BPF_IND
A <- P[X+k:2]

BPF_LD+BPF_B+BPF_IND
A <- P[X+k:1]

BPF_LD+BPF_W+BPF_LEN
A <- len

BPF_LD+BPF_IMM
A <- k

BPF_LD+BPF_MEM
A <- M[k]

BPF_LDX These instructions load a value into the index register. Note that the addressing modes
are more restricted than those of the accumulator loads, but they include BPF_MSH, a
hack for efficiently loading the IP header length.

BPF_LDX+BPF_W+BPF_IMM
X <- k

BPF_LDX+BPF_W+BPF_MEM
X <- M[k]

BPF_LDX+BPF_W+BPF_LEN
X <- len

BPF_LDX+BPF_B+BPF_MSH
X <- 4*(P[k:1]&0xf)

BPF_ST This instruction stores the accumulator into the scratch memory. We do not need an
addressing mode since there is only one possibility for the destination.

BPF_ST M[k] <- A

BPF_STX This instruction stores the index register in the scratch memory store.

BPF_STX M[k] <- X

Chapter 6: FILTER Packet Filter Encapsulator 42

BPF_ALU The alu instructions perform operations between the accumulator and index register or
constant, and store the result back in the accumulator. For binary operations, a source
mode is required BPF_K or BPF_X).
BPF_ALU+BPF_ADD+BPF_K

A <- A + k
BPF_ALU+BPF_SUB+BPF_K

A <- A - k
BPF_ALU+BPF_MUL+BPF_K

A <- A * k
BPF_ALU+BPF_DIV+BPF_K

A <- A / k
BPF_ALU+BPF_AND+BPF_K

A <- A & k
BPF_ALU+BPF_OR+BPF_K

A <- A | k
BPF_ALU+BPF_LSH+BPF_K

A <- A << k
BPF_ALU+BPF_RSH+BPF_K

A <- A >> k
BPF_ALU+BPF_ADD+BPF_X

A <- A + X
BPF_ALU+BPF_SUB+BPF_X

A <- A - X
BPF_ALU+BPF_MUL+BPF_X

A <- A * X
BPF_ALU+BPF_DIV+BPF_X

A <- A / X
BPF_ALU+BPF_AND+BPF_X

A <- A & X
BPF_ALU+BPF_OR+BPF_X

A <- A | X
BPF_ALU+BPF_LSH+BPF_X

A <- A << X
BPF_ALU+BPF_RSH+BPF_X

A <- A >> X
BPF_ALU+BPF_NEG

A <- -A

BPF_JMP The jump instructions alter flow of control. Conditional jumps compare the accumu-
lator against a constant (BPF_K) or the index register (BPF_X). If the result is true
(or non-zero), the true branch is taken, otherwise the false branch is taken. Jump

Chapter 6: FILTER Packet Filter Encapsulator 43

offsets are encoded in 8 bits so the longest jump is 256 instructions. However, the
jump always (BPF_JA) opcode uses the 32 bit k field as the offset, allowing arbitrarily
distant destinations. All conditionals use unsigned comparison conventions.
BPF_JMP+BPF_JA

pc += k
BPF_JMP+BPF_JGT+BPF_K

pc += (A > k) ? jt : jf
BPF_JMP+BPF_JGE+BPF_K

pc += (A >= k) ? jt : jf
BPF_JMP+BPF_JEQ+BPF_K

pc += (A == k) ? jt : jf
BPF_JMP+BPF_JSET+BPF_K

pc += (A & k) ? jt : jf
BPF_JMP+BPF_JGT+BPF_X

pc += (A > X) ? jt : jf
BPF_JMP+BPF_JGE+BPF_X

pc += (A >= X) ? jt : jf
BPF_JMP+BPF_JEQ+BPF_X

pc += (A == X) ? jt : jf
BPF_JMP+BPF_JSET+BPF_X

pc += (A & X) ? jt : jf

BPF_RET The return instructions terminate the filter program and specify the amount of packet
to accept (i.e., they return the truncation amount). A return value of zero indicates
that the packet should be ignored. The return value is either a constant (BPF_K) or the
accumulator (BPF_A).
BPF_RET+BPF_A

accept A bytes
BPF_RET+BPF_K

accept k bytes

BPF_MISC The miscellaneous category was created for anything that doesn’t fit into the above
classes, and for any new instructions that might need to be added. Currently, these are
the register transfer instructions that copy the index register to the accumulator or vice
versa.
BPF_MISC+BPF_TAX

X <- A
BPF_MISC+BPF_TXA

A <- X

The BPF interface provides the following macros to facilitate array initializers:
BPF_STMT(opcode, operand)

and
BPF_JUMP(opcode, operand, true_offset, false_offset)

Chapter 7: SLIP SLIP/CSLIP Encapsulator 44

7 SLIP SLIP/CSLIP Encapsulator

The SLIP encapsulator implements the Serial Line IP encapsulation over a character stream,
such as on a serial line. It uses a trivial encapsulation to denote boundaries between packets, and a
simple byte-stuffing transparency scheme to escape the framing characters when they appear. SLIP
is described in RFC-1055, A NONSTANDARD FOR TRANSMISSION OF IP DATAGRAMS
OVER SERIAL LINES: SLIP by John Romkey.

The SLIP encapsulator also implements Van Jacobson TCP Header Compression, as documented
in RFC-1144, Compressing TCP/IP Headers for Low-Speed Serial Links by Van Jacobson.

Use of the SLIP and CSLIP encapsulators is controlled by the specific license key string that
was used to enable the software when it was installed.

If no MTU is specified as part of the configuration for the Chapter 5 [PNI Encapsulator], page 32,
then the SLIP encapsulator will supply a default. If plain SLIP encapsulation is being used, the
default MTU is 1006 bytes. If CSLIP encapsulation on the link is used instead, the default MTU
is 256 bytes. The type of encapsulation used is specified by the Config(slip:MODE) configuration
variable, described below.

7.1 Configuration Directives

Configuration VariableConfig(slip:MODE)
This configuration variable varies the operation of the SLIP encapsulator. By default,
it operations in plain SLIP mode. Setting the configuration variable to ‘SLIP’ will
result in the same effect.
Setting this variable to a value of ‘CSLIP’ will enable the use of the Van Jacobson TCP
Header Compression algorithm on this link. This results in less header overhead for
TCP connections. Note that this is logically a different encapsulation than plain SLIP,
so both end of the connection must agree on the encapsulation they are to use.

7.2 Configuration Primitives

This section still under construction: : :

Chapter 8: TTY Serial Device Encapsulator 45

8 TTY Serial Device Encapsulator

The TTY encapsulator sinks and sources streams of characters via serial tty-like device running
in RAW mode (see the tty(4) UNIX manual page for a description of the various TTY modes).
The TTY encapsulator open a serial device, usually ‘/dev/cufa’ or ‘/dev/cufb’ for outgoing
connections, and will use the tty-device attached to file descriptor 0 (‘standard-input’) when
used in “network access server” mode.

Since any tty device that implements the usual ioctl commands such as TIOCSETP is compat-
ible with the TTY encapsulator, non-traditional serial devices such as ‘TTYDSP’ or SCSI attached
serial port expansion products can also be used. The PNI software can also be used in network ac-
cess server mode over incoming telnet or rlogin connections (which use UNIX pseudo-tty devices),
unlike TransSys DialUp-IP.

8.1 Configuration Directives

Configuration VariableConfig(tty:DEVICE)
The value of this configuration variable should contain the name of the device to be
used for outgoing connections (e.g., ‘/dev/cufa’).
This value need not be set for configurations used in network access server (incoming)
connections.

Configuration VariableConfig(tty:LOCKINGPROTO)
This configuration variable specifies what locking protocol is used to arbitrate access to
the serial device. Serial devices are commonly shared amongst different programs such
as ‘uucp’, ‘kermit’, ‘cu’ and ‘tip’ as well as other subsystems such as FAX modem
drivers like ‘NXFax’. By observing the locking protocol, more than one program will
not attempt the use of a device while it is in use by another user or another program.

There are two locking protocols supports by PNI: The ‘UUCP Locking Protocol’
which is denoted by the UUCPLOCK keyword, which creates lock files in the
‘/usr/spool/uucp/LCK’ directory. The other is no locking protocol at all, de-
noted by the NONE keyword. In the latter case, pnid will not attempt any locking at
all before using the device named in the Config(tty:DEVICE) variable.

Configuration VariableConfig(tty:DEVOPTS)
This configuration parameter is used to specify other device options to be enabled or
disabled by the TTY encapsulator. The values of this configuration variable should be
a TCL list of one or more of the following options:

Currently, on a single option is enabled:

IGNOREDCD
Ignore the state of DCD or Carrier Detect. Normally, the TTY encapsula-
tor will end the current session if it discovers that the DCD has been lost
on the serial connection. Specifying IGNOREDCD in the list of options

Chapter 8: TTY Serial Device Encapsulator 46

will cause the DCD state to be ignored; this may be useful if there is no
way to provide the correct modem control signals to the serial port.

Configuration VariableConfig(tty:SPEED)
This configuration parameter is used to specify the serial port speed to be used for
outgoing connections. It takes an integer value from the set of serial device speeds
documented in the tty(4) UNIX manual page.
The supported speeds are: ‘50’, ‘75’, ‘110’, ‘134’, ‘150’, ‘200’, ‘300’, ‘1200’,
‘2400’, ‘4800’, ‘9600’, ‘19200’ and ‘38400’. On NEXTSTEP 3.0 and later systems
some additional speeds are available: ‘14400’, ‘28800’, ‘43200’, and ‘57600’. Note
that while it may be possible to set the speed of the device at one of the higher speeds,
the actual system may not be able to service the data arriving fast enough without
dropping characters.
Experience has shown that a 25MHz 68040 CPU in a NeXTStation or NeXT Cube can
comfortably support a serial port at 38400 bits per second.
For users of TTYDSP, the TTY encapsulator recognizes a TTYDSP serial port and will
allow direct specification of any speed support by the TTYDSP product, rather than
just the standard UNIX serial speeds.

Configuration VariableConfig(tty:DIALER)
The DIALER configuration variable is used to specify which Dialer object is to be
used by the TTY encapsulator to dial the modem and log into remote network access
servers. The Dialer object implements the TCL-based scripting language to implement
the chat scripts that talk to the modem and remote systems.
Currently, there is only one Dialer implementation available which is called Dialer.
The class is dynamically loaded from the ‘/etc/pni/Dialer.bundle’ directory on
demand. This Dialer is used if no other one is specified.

Configuration VariableConfig(tty:MODEMTYPE)
This variable is used to specify the type of modem which is being used for an outgoing
connection. It is assumed to be attached to the device specified above. The modem
type is used to select a file containing a dialing script to initialize, control and dial the
modem to connect to a modem at a specified telephone number.
If, for example, the modem is a ZyXEL modem, the configuration would be something
like:
set Config(tty:MODEMTYPE) zyxel

which would cause the script in the file ‘/etc/pni/support/dial-zyxel.tcl’ to
be used. The modem dialing file (e.g., ‘dial-zyxel.tcl’) will be searched for in
a number of directories in this order: ‘/etc/pni/config’, ‘/etc/pni/support’,
and in the ‘/etc/pni/TTY.encap’ directory.
Standard supplied dialing scripts are:
dial-digicom.tcl

For the Digicom Systems 9624LE V.32 external modem. Not a modem
which is particularly recommended.

Chapter 8: TTY Serial Device Encapsulator 47

dial-multitech.tcl
For the Multitech MT932EA V.32 modem.

dial-multitech1432.tcl
For the Multitech MT1432EA V.32/V.32bis modem.

dial-null.tcl
This dialing script assume no modem at all; that is a direct, hardwired
connection exists between two systems. This script is null and does
nothing at all.

dial-worldblazer.tcl
This dialing script is for the Telebit Worldblazer modem, which is con-
figures for V.32/V.32bis connections and not PEP connections which
operate badly in SLIP and PPP applications.

dial-worldport.tcl
This dialing script can be used with the US Robotics WorldPort pocket
modem, configured for V.32/V.32bis connections, with hardware flow
control.

dial-zyxel.tcl
Dialing script for the ZyXEL U1496, U1496E and U1496E+ series of
modems. Connections are made using V.32, V.32bis, or the ZyXEL
proprietary 16800bps and 19200bps modulations. V.42bis is used for
reliability and data compression. This modem is recommended and is
also supported by NXFax.

Configuration VariableConfig(tty:SERVERTYPE)
In a manner similar to the MODEMTYPE variable just described, this configuration
variable specified the type of remote network access server which is being called
for outgoing connections. This is used to select a file which contains TCL scripting
commands which “log in” to the remote network access server system, and condition
it to enter its SLIP or PPP mode of operation. As part of this process, it may negotiate
a user-name and password dialog as well.

The following network access server login scripts exist in the ‘/etc/pni/support’
directory:

login-annex.tcl
Script file for a Xylogics (formerly Encore) Annex terminal server. It can
go through a user name and password login process, and will put the port
into SLIP mode from the CLI command prompt after login.

login-cisco.tcl
Script file to log into a Cisco terminal server and enter SLIP mode.

login-null.tcl
Null script file which is used when the remote network access server
is already in SLIP mode and doesn’t require any login or interactive
command process.

Chapter 8: TTY Serial Device Encapsulator 48

login-pni.tcl
Script file to be used when the remote system is another instance of the
PNI package running in “network access server” mode.

login-pniserver.tcl
Not normally specified by the user, but the script file that is used by pnid
when operating in server mode.

login-portmaster.tcl
Simple script file which has been used to log into a Livingston Portmaster
server. It assumes that the account to be used is configured to operate in
SLIP mode.

login-unix.tcl
Generic login script for a remote UNIX system that handles login and
password dialog. Good starting point, perhaps for other systems.

There may be additional dialer and login scripts included which are not listed here.
Please check the ‘/etc/pni/support’ directory to see which are available.

Configuration VariableConfig(tty:NUMBER)
Used to specify the telephone number to dial. More than one number may be listed in
a TCL list:
set Config(tty:NUMBER) 555-1212

or for multiple numbers..
set Config(tty:NUMBER) { 555-1212 555-2121 }

Configuration VariableConfig(tty:SERVERNAME)
This variable specified the name of the remote server. This name only have local
significance, and is used to select, among other thing, the remote user name and
password associated with a particular remote server.
The reason for this level of indirection is that it is possible to configure a rather complex
configuration where multiple devices (each with their own modem type) have multiple
telephone numbers and multiple remote servers associated with them. Each remote
server might have its own distinct username and password that is required to complete
the connection. (This complex configuration is not currently described.)

Configuration VariableConfig(tty:DIALSCRIPT)
Internal configuration variable computed from other configuration information.

Configuration VariableConfig(tty:DEVICES)
Internal configuration variable computed from other configuration information.

Configuration VariableConfig(tty:PHONENUMBERS)
Internal configuration variable computed from other configuration information.

8.2 Configuration Primitives

This section still under construction: : :

Chapter 9: Dialer support module 49

9 Dialer support module
The Dialer object is used to support some encapsulators, like the TTY encapsulator, which need

to perform scripting actions to establish a link-level connection. This usually involves initializing
a modem, dialing the remote system, navigating through a login/password sequence, etc. The
Dialer object is (the only, so far) implementation of an object which can perform this scripting and
interaction on behalf of an encapsulator. The TTY encapsulator, for instance, allow the specification
of the a Dialer object class to be specified, though it will default to the supplied Dialer object.

The purpose of the Dialer object is to communicate and interact with some remote entity using
serial streams of characters. The encapsulator which uses the Dialer object (the TTY encapsulator
in the PNI package) is responsible for the actual sending and receiving of the character streams.

The interaction done by the Dialer object is controlled by a powerful procedural language
implementation, based on TCL with extensions. This is much more powerful than the usual
SEND/EXPECT interface provided by dialers in UUCP and other software.

When the Dialer object is instantiated (again, usually by the TTY encapsulator), a new TCL
command is created in the “current” TCL interpreter; by default, it is called “Dialer”. However, in
the PNI package, the name of the command is passed into the dialing procedure as an argument, so it
is not necessary to know the name of the new TCL command when creating a script file. The Dialer
TCL command then has a number of sub-commands which are used to perform the interactions
required.

Dialer TCL subcommanddialer break
This will cause a 750 millisecond break to be transmitted. A break is not a character,
but a line condition, where the serial line, which normally idles in the “marking” (or
1) state is pulled to the “space” (or 0) condition for a period of time that exceeds the
longest time it takes a character to be transmitted.

Dialer TCL subcommanddialer sleep snooze-time
This causes execution of the dialing script to pause for the specified interval (in
seconds).

Dialer TCL subcommanddialer status
This command will return a list which describes the current state of the communications
line that the Dialer command is using. This state normally includes a list of which
RS-232 modem control signals are asserted.

Dialer TCL subcommanddialer parity zero|one|even|odd
This command can be used to set the parity of the data which is sent by the xmit or
send command. By default, all strings are sent with 8 bit, no parity. That is, normal
ASCII characters are transmitted with the high bit set to zero. Other possibilities are
specifying even or odd parity, or one to cause the high bit to be set to one.

Dialer TCL subcommanddialer xmit string
The xmit subcommand is used to transmit a character string as part as a dialog to dial
a modem or log into a remote system. Each character in the string is transmitted with
the current parity setting.

Chapter 9: Dialer support module 50

Dialer TCL subcommanddialer delay inter-char-delay
On some occasions, it is necessary to transmit strings of characters to remote devices
and modems, but with some delay between each character. This is usually the case
with some modems that cannot accept a stream of characters at “full” speed, and cannot
perform flow control while in command mode. The delay subcommand takes one
parameter, which is the delay time (in milliseconds) to be inserted betwixt characters
being transmitted.

Dialer TCL subcommanddialer expect pattern action..
The expect dialer command is used to scan the input stream for patterns or strings
of characters. The command takes a list of one or more pairs of arguments. The first
TCL argument of each pair is the pattern to be matched, while the second of each pair
is a TCL expression to be evaluated should the pattern match.

It is important to recall how TCL programs are scanned and broken up into list
arguments. It may be necessary to quote or group strings of words in patterns or TCL
expressions so that they are treated as one argument to the expect command.

If there is a “missing” final argument (that is, an odd number of arguments), then there
is no action associated the the last pattern specified.

The expect command will attempt matching of the input stream, subject to a timeout
interval. Should that interval expire, a timeout condition occurs. The interval is
defined (and can be modified by setting) the TCL variable timeout. When an expect
command is invoked, the value of a local variable named timeout will be used; else
the value of the global variable timeout is used instead.

The expect command will attempt to match each pattern as each character or group
of characters arrive from the input stream. The input stream and patterns need not
match lines of input, but rather any sequence of characters. As each pattern matching
attempt occurs, each pattern is tested in order; the first pattern that matches will stop
processing of the expect command after the TCL command associated with the pattern
is evaluated.

There is a special instance of a pattern, timeout, which “matches” a timeout condition.
If a timeout condition occurs, and there is no timeout pattern specified in an expect
command, then a TCL error is raised.

Patterns can be specified in either UNIX ed regular expressions or by using shell
wildcard or glob patterns. By default, the expect command uses the shell wildcard-
style patterns, whilst the rexpect command uses regular expressions. It is possible
to use both types of patterns in an expect or rexpect command by prefixing the pattern
with an option to override the default expression type. For example, a pattern can be
prefixed with an argument -re to cause the following expression to be treated as a
regular expression. A prefix argument of -glob can be used to cause the immediately
following pattern to be interpreted as a shell wildcard or glob type pattern.

The TCL expression associated with the pattern can be a single command or a sequence
of TCL statements separated by semi-colons. (In the examples that follow, $DIALER

Chapter 9: Dialer support module 51

is the name of the Dialer object being used and which implements the expect sub-
command.)

$DIALER expect "*login:*" { send "$password\n" }

The text matched by a “glob” type pattern is available in the expect match TCL
variable. However, this is likely not of tremendous use as in the example above all of
current input text would have been matched.

If the pattern is specified using regular expressions, then much finer control is available,
and it is possible to fetch parts of the text being matched when using the grouping
constructs in a regular expression. As an example:

$DIALER expect -re \
{Your IP address is ([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)}

Will look for an IP address specified in the dotted-decimal notation to immediately
follow the phrase Your IP address is. The text that matches the part of the pattern
enclosed in the () grouping constructs is available in a TCL variable. If there are more
than one set of balanced () pairs, they are also available making it possible to match
and capture multiple bit of information on each patter match.

An array, called $DIALER expect out is created which contains the members for each
grouped patterned specified in the pattern, starting with 1. The array elements defined
for the first pattern are:

1,start The starting character position of the grouped pattern in the string which
was matched.

1,end The ending character position of the grouped pattern i the string which
was matched.

1,string The substring associated with the grouped pattern in the string which
was matched. This string could be referenced as set foo $DIALER_
expect_out(1,string)

The string which match each of the grouped patterns are also available in the variables
$1, $2, $3, etc.

When a pattern match succeeds, the complete string that was matched against (that
is, the current input buffer) is available in the TCL variable expect match. This is the
string which the start and end indices described above index into.

Note that strings which were matched and captured in the variables described may
have multiple embedded carriage return, line feed and other control characters. This
can cause problems with the syslog command since the system logging daemon will
truncate text at the first newline character. The printify TCL command can be used
to protect against this problem.

Chapter 9: Dialer support module 52

9.1 Sample Dialer Scripts

Included in this section are two scripts which are used by the Dialer class. A sample modem
dialer and remote network access server login script are presented with commentary to describe
their operation.

9.1.1 Sample Modem Dialer Script

The script that follows is based on the ‘/etc/pni/support/dial-zyxel.tcl’ modem dialer
script. It should be substantially similar to the one included with the PNI distribution.

Each modem dialing script is composed of a TCL procedure definition. This procedure will be
invoked at the appropriate time when a serial line has been made available and the link needs to
be established. The name of the TCL procedure should be prefixed by the constant string dial-
followed by the name of the modem type (e.g., zyxel). The modem type name is the one specified
in the configuration file when specifying the type of modem in use.

The modem dialing procedure will be invoked with exactly three arguments:

1. The name of the Dialer object in use, so that its subcommands (like expect) can be referenced.

2. The telephone number to be dialed.

3. The name to be used to reference configuration information in the Config array.
#
TCL script used to configure and dial a ZyXEL U-1496-type
V.32bis external modem.
#
proc dial-zyxel { DIALER number cfg} {

#
This script assumes that the zero’th argument is the dialer object
to be used, and the next argument be number to be dialed.
#
global Config testMode

syslog LOG_INFO "$DIALER: Start of ZyXEL dialing script, dialing $number"

Set the default dialing method (DTMF/Tone or pulse) to TONE.
set how TONE

Now we attempt to get the attention of the modem to ensure that it is attached, turned on and
functioning. The attention string (“AT”) is transmitted to the modem, and we wait for it to respond
with “OK”. We’ll make three attempts before giving up.

Note that the timeout action in the expect commands is null, which allows execution to
continue to the next TCL command should a timeout condition occur. The timeout interval is set to
2 seconds.

The foreach {once} loop is an idiom which allows us to quickly exit the loop (which only
occurs one time) by using the break TCL command.

Chapter 9: Dialer support module 53

flush any pending command
$DIALER xmit {\r}
$DIALER sleep 1

get modems attention
set timeout 2
foreach i {once} {

$DIALER xmit {AT\r}
$DIALER expect "{*OK\r*}" break timeout {}
$DIALER xmit {AT\r}
$DIALER expect "{*OK\r*}" break timeout {}
$DIALER xmit {AT\r}
$DIALER expect "{*OK\r*}" break timeout {}
error "Could not get the modem’s attention"

}
set timeout 5

Now we turn off the command echo by the modem by sending it an “ATE0” command and
waiting for it to reply with a string containing “OK”. Since this is no action specified for the *OK*
pattern, execution just continues to the next TCL command when the OK response arrives.

If a timeout condition occurs, the script raises an error by using the TCL error command.
turn off command echo
$DIALER xmit {ATE0\r}
$DIALER expect timeout {error "waiting for OK"} "*OK*"

This next sequence of code queries the modem for identifying information which usually includes
the type of modem and the version of firmware running in the modem. On some occasions, it is
useful to know what version firmware a modem has installed when debugging connections.

Note that in this code fragment, the rexpect command is used, which results in the patterns
being interpreted as regular expressions rather than “glob” style patterns.

An “ATI” command is sent to the modem to query it for its type. If the response returned
includes the strings “1496”, which is a model number then we query the modem again with an
“ATI1” command to get additional information.

Note the use of () grouped patterns to isolate a part of the string being matched so that it may
be referenced later on as $1.

$DIALER xmit {ATI\r}
set version ""
$DIALER rexpect timeout {} \

"\n1496\r\n" {
$DIALER xmit {ATI1\r}
$DIALER rexpect \

timeout {} \
"\[\r\n]+(.*).*OK\r\n" {set version $1}

} \
"\[\r\n]+(.*).*OK\r\n" {set version $1} \
timeout {error "Could not get modem version"}

Chapter 9: Dialer support module 54

Now we clean up the string that was matched and extracted, replacing all tab, carriage return and
line feed characters with a single space using the TCL regsub command. We then squeeze out all
occurrences of more than one blank to a single blank with the second regsub command. Finally,
leading and trailing spaces are deleted using the last regsub command, and the message is logged.

if {[string length $version]>0} {
regsub -all "(\t|\r|\n)+" $version " " version
regsub -all " +" $version " " version
regsub { +$} $version "" version
syslog LOG_DEBUG "Modem firmware version is ’$version’"

}

$DIALER sleep 1

We now prepare to configure the modem so that it can correctly pass SLIP traffic over the link.
These parameters are, of course, specific to each type of modem and will surely be different for
modems other than the ZyXEL 1496 series of modems.

configure modem with proper parameters
&K4 - V.42/V.42bis or MNP4/MNP5
&N0 - auto-negotiate highest possible link rate
M0 - speaker off
V1 - verbose responses
Q0 - display responses
X5
&C1 - CD tracks carrier presence
&D3 - hang up and reset to profile 0 when DTR dropped
&H3 - hardware (RTS/CTS) flow control
&J0 - single phone line RJ11 jack
&L0 - normal phone line (not leased)
&M0 - async mode
&R1 - ignore RTS, assume always on
&S0 - DSR override, assume always on
N1 - ring volume
S2=128 - turn off escape into command mode
S42.1=0 - disable throughput averaging
S38.5=1 - disable use of MNP5 (only use V.42bis)
S46.2=1 - disable pesky "RINGING" messages
AT+FCLASS=0 - make sure the modem isn’t in FAX mode

The setupstr variable is set to be a TCL list of parameters to be sent to the modem as described
in the comments above. If we’re in test mode (indicated by the testMode TCL variable existing),
then append a modem command to enable the speaker whilst dialing the modem and until it connects.

set setupstr { +FCLASS=0 S42.1=0 S38.3=1 S38.5=1 S2=128 S46.2=1
&K4 &N0 M0 V1 Q0 X5 &C1 &D3 &H3 &J0 &L0 &M0 &R1 &S0 N1 }

Chapter 9: Dialer support module 55

turn on speaker during dialing and connect sequence if in test mode
if [info exists testMode] {

lappend setupstr "M1"
}

Now, interate over each element of the list of modem commands specified above and sent it to
the modem and await an OK response. Each command is done one at a time because some modem
have problems will a long command string being sent to them in command mode. We can also tell
which modem command cased an error by sending them one at a time.

foreach s $setupstr {
$DIALER xmit "AT $s\r"
$DIALER expect timeout {error "waiting for OK for parm $s"} \

"{*ERROR\r*}" {warn "Modem returned ERROR setting $s"} \
"{*OK*}"

}

Check the configuration array to see if a dialing type was specified or not.

allow override of dialing type
if {[info exists Config($cfg:DIALTYPE)]} {

set how $Config($cfg:DIALTYPE)
}

Now dial the phone. If the dialing type is neither “dtmf” or “tone”, the pulse dial using the
modem’s ATDP command. Otherwise, dial using the modem’s ATDT command.

dial the phone
if { [string compare [string tolower $how] tone] &&

[string compare [string tolower $how] dtmf] } {
notice "Dialing (pulse) $number ..."
$DIALER xmit "ATDP$number\r"

} else {
notice "Dialing (DTMF) $number ..."
$DIALER xmit "ATDT$number\r"

}

We now wait for the modem to connect. This can take a rather long time for the since the call
has to be made through the telephone system, and the modems train and connect. To accommodate
that, we set the timeout for the expect command to be 45 seconds.

wait for connect message
set timeout 45

set rng 0

Chapter 9: Dialer support module 56

We loop examining responses from the modem. These can include errors like “NO DIALTONE”,
“NO CARRIER” or “BUSY”; or progress messages such as “RINGING”; or a “CONNECT”
message which we hope for.

while 1 {
$DIALER rexpect \

timeout {
error "Timeout waiting for modem to connect to $number "} \

"(CONNECT.*)\r+\n" {
syslog LOG_INFO "Connected: $dialer_expect_out(1,string)"; \
break \

} \
"\r\nERROR\r\n" {error "Modem returned ERROR"} \
"\r\nRINGING\r\n" {syslog LOG_INFO "Ringing.. ($rng)"; incr rng} \
"\r\nNO CARRIER\r" {error "Modem returned NO CARRIER"} \
"\r\nNO DIAL TONE\r" {error "Modem returned NO DIAL TONE"} \
"\r\nBUSY\r\n" {error "Remote modem busy"}

}
}

9.1.2 Sample Network Access Server Login Script

This section examples a script with “logs in” to a network access server; in this particular instance
it is a Telebit Netblazer. This file is derived from ‘/etc/pni/support/login-netblazer.tcl’.

It begins with a small “helper” TCL procedure which is called by the main procedure below.
proc nb-password { DIALER username password } {

$DIALER xmit "$username\r"
$DIALER expect "*assword:*" {$DIALER xmit "$password\r"} \

timeout {error "waiting for password prompt"}
}

As was the case with the modem dialing scripts, the login scripts are expected to declare a TCL
procedure named login-SystemType, where SystemType is the type of remote network access
server, and will be referenced in the configuration file’s Config array.

The login procedure takes exactly two arguments, the first being the name of the Dialer object
(as in the modem script), and the second being the name used to reference configuration information
in the Config array.

To perform the login action, the remote network access server (in this case) requires a user name
and password. This information is not embedded in the login script, but is stored elsewhere. It
can be specified in the configuration file, but that may needlessly expose sensitive information. It
is also possible to store that information in a separate file which can have restricted access (only
to root, for instance) to protect it. This login script accommodate either approach and will in fact
complain if the file which stores the username and password is insecure with inappropriate directory
permissions.
The username and password to be used are stored in a
separate file. The name of the file is specified in the
Config array.
#
This file should contain (at least) two TCL set commands to

Chapter 9: Dialer support module 57

set the variables ’username’ and ’password’. Its likely
that you don’t want these files generally readable for
security purposes, so a check is made for you, and the
script will fail if the file is readable.
#
Alternatively, the members of the keyed list "username" and
"password" can be used to specify the username and password to be
passed to the terminal server.

proc login-netblazer { DIALER cfg } {
global Config

syslog LOG_INFO "Begin netblazer login"

set username ""
set password ""

if {[info exists Config($cfg:SECRETFILE)] &&
[file exists $Config($cfg:SECRETFILE)]} {

if {[file readable $Config($cfg:SECRETFILE)]} {
source $Config($cfg:SECRETFILE)

}

file stat $Config($cfg:SECRETFILE) stat
if {[expr $stat(mode)&04]} {

error "File with password, $Config($cfg:SECRETFILE), \
is readable by ’other’!"

}
} else {

if {[info exists Config($cfg:USERNAME)]} {
set username $Config($cfg:USERNAME)

}
if {[info exists Config($cfg:PASSWORD)]} {

set password $Config($cfg:PASSWORD)
}

}

Set the parity of the transmitted data to 8 bits, no parity. This isn’t really necessary as this is the
default state. Of course, the modem dialing script could have changed it, so we reset it here just to
be safe.

A pair of carriage return characters are transmitted in case some auto-baud action needs to occur,
and then we look for a login prompt from the network access server.

Chapter 9: Dialer support module 58

#
set parity of transmitted data
#
$DIALER parity ZERO
#
For auto-baud nonsense.. sometimes its necessary to poke at it a couple
of times before it figures out what speed the modem is at.
#
set timeout 2
$DIALER xmit {\r\r}
$DIALER sleep 1

foreach i {once} {
$DIALER xmit {\r}
#
look for host prompt
#
$DIALER expect timeout {} \

"*login:*" {nb-password $DIALER $username $password; break}

$DIALER xmit {\r}
$DIALER expect timeout {} \

"*login:*" {nb-password $DIALER $username $password; break}

$DIALER xmit {\r}
$DIALER expect timeout {} \

"*login:*" {nb-password $DIALER $username $password; break}

error "Couldn’t autobaud login: prompt from NetBlazer"
}
set timeout 10

In the loop above, the nb-password procedure that was defined first is invoked to actually handle
sending the username and password when a login prompt is seen.

This particular network access server is configured to automatically enter SLIP mode when the
appropriate username and password is received, so there’s no need to transmit a command to do so.
We simply wait for a message indicating it is switching into packet mode and return.

#
send command to put terminal server into SLIP mode
#
set mode SLIP
if {[info exists Config($cfg:MODE)]} {

set mode $Config($cfg:MODE)
}

$DIALER expect {*Packet\ mode\ enabled*} {} \
timeout {error "Timeout waiting for Packet Mode message"}

syslog LOG_DEBUG "Entering Packet Mode"

Chapter 9: Dialer support module 59

#
that’s all
#
return "Connected"

}

Chapter 10: LOOP Loopback Encapsulator 60

10 LOOP Loopback Encapsulator

The LOOP encapsulator is a debugging aid which simply loops back any packets being encapsu-
lated as input data. It can typically be used in place of a TTY (or even a combination of SLIP and
TTY) encapsulator.

10.1 Configuration Directives

The LOOP encapsulator has no configuration directives.

10.2 Configuration Primitives

The LOOP encapsulator has no configuration primitives.

Chapter 11: TUNNEL Virtual Path Tunnel Encapsulator 61

11 TUNNEL Virtual Path Tunnel Encapsulator

The TUNNEL encapsulator is used as an alternate means of transport in place of the TTY encap-
sulator. Rather then sending a stream of characters out a serial port by using a combination of the
SLIP encapsulator followed by a TTY encapsulator, the TUNNEL encapsulator can be used. It will
accept an input IP packet, and use UDP (User Datagram Protocol) to transport the packet to be sent
across the internet. This capability make it possible to build a virtual network composed of virtual
link over an existing IP infrastructure. That is, the tunnel encapsulator can be used to construct
virtual “wires” which packets are transported over; it just so happens that the “wires” are carried
over existing IP networks.

The TUNNEL encapsulator maintains a table which associates for each next-hop gateway or router
address the tunnel endpoint IP address and UDP port number which the encapsulated packet is to
be sent to.

Consider for a moment an Ethernet environment. When a packet needs to be transmitted, the
network software determines the next hop for the packet. This is either the destination host’s IP
address if it is on the same ethernet or the next hop is the IP address of an intermediate router on the
local ethernet. In the case of a point-to-point network interface, the “next hop” address is always the
IP address of the host on the other end of the point-to-point link, since there are no other alternatives
on that point-to-point network.

Let’s take an example. Consider that we’ve defined an interface to be an tunnel endpoint. The
interface’s address is 10.1.0.1, with a subnet mask of 255.255.255.0. If we’d like to configure this
as a point-to-point interface, we would need to have the address of the “other” side of the point to
point link. Consider that it is 10.1.0.2 in this case.

So we have a point to point interface defined; the local address is 10.1.0.1 and the remote address
is 10.1.0.2; so far this isn’t much different than a normal serial interface. Here’s where things start
to get different: we define the virtual “wire” in the tunnel interface.

First we need to define the local host’s end of the wire. The end of the wire is logically a UDP
port on the local host. In this example we would choose port number 4342. Now we need to identify
the other end of the virtual wire; it is going to terminal on another host on the Internet with the IP
address of 26.0.0.73 on UDP port 2357, in this example. This means that there is another instance
of the PNI software running on the remote system terminating the virtual wire.

The virtual wire is identified by the destination IP address associated with the network interface;
in the case of a point-to-point interface, there can only be the “other” end. It is possible to configure
a non point-to-point tunnel interface where there are multiple virtual wires, one to each other host
on the virtual “network” which they all share. In the example scenario, the only virtual wire is
identified by the remote host’s IP address: 10.1.0.2. It would then be necessary to establish a
mapping:

10.1.0.2) (ip addr 26.0.0.73, port 2357)

conversely, there would be a similar mapping on the remote system which maps our address on
the 10.1.0.0 subnet to our local ip address and port number.

How does the encapsulated packet to 10.1.0.2 get to the 26.0.0.73 host? Via some other
functioning network interface on the host, following whatever route exists to that remote host. The

Chapter 11: TUNNEL Virtual Path Tunnel Encapsulator 62

tunnel encapsulator is the logical end of a string of encapsulators consisting usually of the PNI,
(perhaps FILTER), and then TUNNEL.

11.1 Configuration Directives

Configuration VariableConfig(tunnel:PORT)
This is the integer port number (from 1 to 65535) which the local tunnel encapsulator
will bind and receive incoming packets on. The value of this selection must be
coordinated with the remote host or hosts using tunnels.

Configuration VariableConfig(tunnel:TUNNELS)
This configuration variable consists of a list of 3-tuples (each 3 element list) which
map the next-hop IP address to a tunnel end-point IP address and UDP port number.
set Config(tunnel:TUNNELS) {

{ 10.1.2.3 144.202.0.1 1203 }
{ 10.1.3.3 26.0.0.73 1792 }

}

In this example, we have configured two different tunnel end-points (either because
this is a non-point-to-point network or because this part of the configuration file is
share by both ends). Packets input to this TUNNEL encapsulator whose next hop IP
address are 10.1.2.3 will be wrapped inside of UDP and sent over the Internet to
the host 144.202.0.1, UDP port 1203 where, presumably, another PNI is running and
waiting for packets to arrive. The remote host should also have an inverse mapping
will will allow the return traffic to be sent back to this host to the UDP port number
that we configured earlier.

11.2 Configuration Primitives

This section still under construction: : :

Chapter 12: SECURE Data Security Encapsulator 63

12 SECURE Data Security Encapsulator

12.1 Configuration Directives

Configuration VariableConfig(secure:KEYS)

Configuration VariableConfig(secure:HOSTS)

12.2 Configuration Primitives

This section still under construction: : :

12.3 Tamper-Proof Objective-C protocol definition

The SECURE encapsulator relies on a companion class to actually perform the verification
algorithm on the data being transmitted and received. This companion class must conform to the
TamperProof protocol described below.
/*
* Copyright (c) 1993 by TransSys, Inc.
* All rights reserved. This source code document is an unpublished
* work and contains confidential and proprietary information.
*
*/

/*
* This file defines a protocol, TamperProof, which is used by the
* SECURE encapsulator to verify that data which is transmitted
* and received will not be tampered with in transit.
*/

@protocol TamperProof

/*
* This first group of methods is used to discover what characteristics
* the implementation of TamperProof has.
*
* First, define what the block size of the data to be checked is. It
* is the responsibility of the encapsulator to provide data to be
* tamperproofed in multiples of the block size.
*/

- (int) tamperBlockSize;

Chapter 12: SECURE Data Security Encapsulator 64

/*
* Some TamperProof algorithms may compute a result of of some sort; this
* method returns what the size of that result may be. It is the
* responsibility of the caller to set aside space for this result, which
* is carried from end to end to aid in verification.
*/

- (int) tamperResultSize;

/*
* Specify keying data which is used to implement the TamperProof-ing
* algorithm. This data is passed in as a pointer and length, and is
* otherwise opaque. This same keying data is used for data being
* prepared for transmission, as well as checking arriving data to
* ensure it has not been tampered with.
*/

- tamperSetTamperKey:(void *)key length:(int) length;

/*
* Verify that the input data received is valid and has not
* been tampered with in transit. This data will be evaluated in
* the context of the "tamper key" set in the method above, and with
* the signature data, if any, that was passed in. This signature
* data is assumed to be of fixed length (returned by tamperResultSize).
*/

- (BOOL) tamperVerifyInput:(void *)data length:(int)length
with:(void *)signature;

/*
* Prepare data which is to be transmitted for tamper prevention or
* detection. The computed output "signature", if any, will be returned
* and be of length specified by the tamperResultSize method. The output
* data will be secured in the context of the key specified by
* tamperSetTamperKey: above.
*/

- tamperSecureOutput:(void *)data length:(int)length
to:(void *)signature;

@end

Chapter 13: Operation 65

13 Operation

13.1 pnid

The pnid program is the central component of the PNI package. For more information on the
operation of the pnid program, See Section A.4 [The pnid daemon], page 82.

The other major operational component of the PNI package, the pni_reloc kernel driver is not
a normal UNIX program, but rather a loadable kernel driver, See Section A.3 [pni_reloc kernel
driver], page 81.

13.1.1 Arguments and Options

-d This option is used for debugging. It configures the logging of the pnid program to
be sent to standard error only. The usual logging is done by using the syslog facility.
Also, this performs the -C option as well.

-C This option enables core-dump files if the pnid program terminates abnormally. Core
dumps may not be produced by default if the ‘ulimit’ command has disabled them.

-n logtag
This option takes a parameter, which is a string to be used to mark the logging
messages produced by this instance of the pnid program. In the absence of this
option, log messages look like this:
Oct 11 21:19:01 wa3ymh pnid[215]: TransSys PNI 1.1 : : :

with a ‘-n pni0’ option specified, the message would look like this instead:
Oct 11 21:19:01 wa3ymh pnid-pni0[215]: TransSys PNI 1.1 : : :

-f configfile
This option takes a single argument which is the pathname of the configuration file to
be loaded. If this option is not specified, then the file ‘config’ in the current directory
will be loaded.

-o opt Set the value of the Option(opt) variable to the value of 1. Alternatively, if the syntax of
‘opt’ is of the form ‘opt=value’, then the Option(opt) variable is set to ‘value’
instead of ‘1’.
The only option currently used is Option(priority), which is used to vary the priority
that the pnid process runs at. Note that to cause the daemon to run at a higher,
preferred scheduling priority, a negative priority should be specified.

-i A debugging option. After loading the ‘/etc/pni/support/init.tcl’ file and
before load the configuration file, the pnid program enters an interactive mode. It will
read and evaluate TCL expressions from standard input.

-c If specified, the pnid program will operate in ‘client’ mode; the usual case when
dialing out to a remote system. This has the effect of setting the TCL ‘mode’ variable
to the value CLIENT.

Chapter 13: Operation 66

-s If specified, the pnid program will operate in ‘network access server’ mode; the
usual case when being connected to by a remote system. This has the effect of setting
the TCL ‘mode’ variable to the value SERVER.

-e expression
While parsing options and initializing, evaluate the ‘expression’ argument as a TCL
expression.

-t Debugging option. When specified, the pnid program operates in test mode. This
has the effect of setting the TCL ‘testMode’ variable to the value 1. Otherwise, the
‘testMode’ variable is left unset.

-R keystring
Register the program using the license key string specified. User is prompted on
standard output for registration information (name, address, etc.), which is read from
standard input.

13.1.2 Updated License Key Registration

The operation of the pnid program is controlled by a license key string supplied with the
software. When the PNI software is installed, you will be asked if you would like to install it with a
demonstration license key provided with the distribution or to specify one of your own.

The demonstration license key allows operation of various features for a limited time.

To re-register the PNI software with a different license key, it is necessary to run the pnid
program as root. Perform the following commands, as root, from a UNIX shell window:

mv /etc/pni/keyfile /etc/pni/keyfile.save
/etc/pni/pnid -R ’supplied-key-string’

You will then be prompted for your name, address and other information which is stored on the
local host in the file ‘/etc/pni/keyfile’. In many cases, it will not be possible to move this
keyfile to another machine as its installation is tied to the particular hardware. This file is stored in
a binary-encoded format and is not in a textual format. Do not attempt to modify the contents of
that file, as it will render the installed keyfile invalid.

Should you need to move the software to another host, you can re-install it using the process
described above.

13.1.3 pnid output and logging

The pnid daemon is normally started at boot time, and runs as a system daemon process. Since
it is not interactive, when it needs to communicate with the system administrator or note some
useful information, it will use syslog to do do, rather the writing messages to its standard output or
standard error stream.

Dialing and login scripts can cause messages to be logged by using the syslog TCL command.

The syslog facility can route log messages based upon a facility and a priority. The facility can
be used to identify a source of log messages or a particular class of messages. The pnid daemon

Chapter 13: Operation 67

uses the local5 facility code when creating log messages; during installation (see Section 3.2.5.5
[Changes to /etc/syslog.conf], page 20) and entry is made in the syslog configuration file to direct
these messages to the file ‘/usr/adm/pni.log’ where they can be examined.

It is possible, however, to invoked the pnid program with the -d option to cause messages
which would have otherwise been logged to be directed to the standard error stream instead (see
Section 13.1.1 [Arguments and Options], page 65).

13.1.4 pnid termination conditions

Normally, the pnid process is relatively long-lived; it is started at boot time to establish a
network connection and then continues to run until the system is halted or rebooted. Alternatively,
the pnid process may be started “manually” either by a user directly, or from the cron program at
a scheduled time.

The pnid process will normally run continuously. It is possible to configure it to exit after a
period of network inactivity (see Chapter 6 [FILTER Packet Filter Encapsulator], page 34). The
process will also exit if the physical connection in use becomes unavailable; e.g., the modem hangs
up due to loss of carrier from the remote.

To manually cause the pnid program to exit the pnistat script (see Section 13.3 [pnistat],
page 67) can be used to issue an authenticated command to the pnid daemon to cause it to exit. A
less elegant approach is to send the daemon process an interrupt (SIGINT) or terminate (SIGTERM)
signal. A hangup signal (SIGHUP) will also cause the daemon to exit as if the carrier from the
modem dropped.

13.2 The pnitcl program

The pnitcl program is an augmented, standalone TCL (Tool Control Language) interpreter
used to build monitoring and control tools. It is an implementation of TCL as a standalone tool,
rather than being embedded within another application program (such as withinpnid). The pnitcl
program can be used to execute standalone TCL scripts, in much the same way the the shell execute
shell scripts.

There are three distinct set of commands available within the pnitcl program:
1. The standard set of core primitives available as part of the normal TCL package.

2. A set of extension primitives provided by the TCLX extension package. Note that a few of the
extensions in TCLX have not been included which are not commonly used or otherwise might
interfere with the use of TCL in the pnid program.

3. A set of extensions specific to the PNI package, including a primitive to perform RPC calls to
instances of the pnid daemon.

13.3 The pnistat script

The pnistat script is used to query the operation of a running instance of the pnid daemon.

Chapter 13: Operation 68

13.3.1 pnistat usage

The pnistat program is invoked from a UNIX shell to query and control a running instance of
the pnid daemon. It is invoked as:

pnistat ‘options’ ‘pnidaemon_name’

It takes the following options:

-a Run anonymously. This performs an unauthenticated query to the remote pnid dae-
mon, rather than using a password from the ‘/etc/pni/config/password’ file or
from the PNIPASSWORD environment variable.

-c commandname
Perform the command, ‘commandname’, in the remote pnid process. The default
command is ‘stat’ to obtain the status of the daemon process. The other useful
command you might use is ‘down’, to cause the pnid process to shutdown and exit.

-d Increment the debug level. Not normally used.

-e encap When using the ‘stat’ command, this allow you to specify a particular encapsulator,
‘encap’, to obtain information about rather than all encapsulators.

-h host Query the host ‘host’ rather then the local host. Useful for monitoring the operation
of a pnid daemon on a remote machine, assuming that there is network connectivity
to the remote.

-P password
Specify an alternative password to perform an authenticated operation to the remote
pnid daemon.

-p pniN Add the pni daemon process, pniN , to the list to be queried. The values specified are
the symbolic names such as ‘pni0’, ‘pni1’, etc.

-v Set verbose mode. Not normally used. When verbose mode is enabled, the raw data
returned by the daemon process is displayed.

13.3.2 pnistat stat command

The default output produced by the pnistat script is for the stat command which displays
hopefully useful or interesting statistics about the pnid daemon. The output produced looks like
this:
$ pnistat

Encapsulated Decapsulated
Type Encap state Bufs Bytes Bufs Bytes
PNI* pni phase2 71417 5674790 69560 17260117

FILTER* filter phase2 71417 3389446 69560 17260117
SLIP* slip phase2 71417 3389446 795123 15104232
TTY* tty phase2 71418 1375574 795123 15104232

This format of output reports statistics gathered by each encapsulator in the running configuration.

Chapter 13: Operation 69

The first column is the type of the encapsulator, whilst the second column is the name of a
particular instance of an encapsulator. While not obviously useful in normal situations, it is possible
to have more than one instance of a particular encapsulator in a single configuration.

The asterisk next to the encapsulator type indicates that the encapsulator is active; this will
always be the case except when debugging certain situations during development.

The state column indicates the current state of the encapsulator; this should always be either
‘phase1’ or ‘phase2’ to indicate what stage of initialization the encapsulator has completed.
The usual state is ‘phase2’, which indicates that the associated encapsulator has been initialized
completely and is up and ready to receive or transmit data.

The next two sets of columns count buffers of data and byte counts which are encapsulated and
decapsulated at each layer. Encapsulated refers the process of moving the network traffic from the
operating system out towards the network hardware. Decapsulated is the reverse; that is, taking
streams of data from the network hardware and parsing them into frames and packets to be handed
to the operating system network protocol stack.

More information is available when the pnistat script is invoked with the -v option:
$ pnistat -v
pni0: running since Fri Nov 26 00:07:21 1993 (22 hours, 9 minutes, 45 seconds)

Encapsulated Decapsulated
Type Encap state Bufs Bytes Bufs Bytes
PNI* pni phase2 71765 5700150 69908 17356184

FILTER* filter phase2 71765 3403670 69908 17356184
Idle time: 8 seconds

SLIP* slip phase2 71765 3403670 799580 15189576
VJ TCP Hdr comp: 6415 uncomp/63459 comp 1380 uncomp/67025 comp

TTY* tty phase2 71765 1380568 799580 15189576

In this example, certain encapsulators report back statistics specific to their type. For instance,
the ‘FILTER’ encapsulator reports the length of time that traffic has been idle, since it enforces
idle traffic timeouts. The ‘SLIP’ encapsulator reports statistics specific to the Van Jacobson TCP
Header Compression algorithm.

Also reported in the verbose format is the time that the pnid process was started (in UTC), and
the time elapsed since the start time.

We note that this daemon has been pretty busy, with an almost constant stream of input data.
The resources used by this daemon as reported by the ps command are:
$ ps xa|grep pnid

335 ? S 29:19 /etc/pni/pnid -C -c -n pni0 -f /etc/pni/config/pni0.config
10279 p2 S 0:00 grep pnid

$ ps v335
PID TT STAT TIME SL RE PAGEIN VSIZE RSIZE LIM TSIZ TRS %CPU %MEM COMMAND
335 ? S 29:20 0 0 0 2.11M 736K 0 0K 0 1.5 3.6 pnid

$ ps m335
USER PID TT %CPU STAT PRI SYSTEM USER COMMAND
root 335 ? 6.1 S 20 21:17.56 8:03.04 /etc/pni/pnid -C -c -n pni0

Chapter 13: Operation 70

$ ps l335
F UID PID PPID CP PRI BASE VSIZE RSIZE WCHAN STAT TT TIME COMMAND

80000001 0 335 317 0 20 20 2.11M 736K 0 S ? 29:23 /etc/pni/p

13.3.3 pnistat control operations - the down command

The down command is used to cause the pnid daemon to immediately exit. This will cause,
in the usual case, the modem used for the connection to hang up and the physical connection be
terminated.

The down command is used like this:

$ pnistat -c down pni0

This will cause the pnid daemon for the pni0 network interface to exit. In order to successfully
perform the down command, you must perform an authenticated interaction with the pnid daemon.
This requires that you know the proper password to authenticate the command. Normally, the proper
password will be obtained from ‘/etc/pni/config/password’ which is protected the UNIX
file permissions so that only the root superuser has access as well as those users in the UNIX group
pni :
$ ls -lg /etc/pni/config/password
-rw-r----- 1 root pni 33 Sep 17 22:54 /etc/pni/config/password

13.4 The ‘/etc/pni/pnirun’ shell script

The pnirun shell script is used to start (and stop) instances of the pnid daemon process. It is
intended to be used in two different ways: at boot time, invoked from the ‘/etc/rc.local’ file;
and interactively, invoked by hand to bring up (or take down) a network connection as desired.

The pnirun script takes a number of options:

-v

-x These options set the corresponding ‘/bin/sh’ options and are used for debugging
purposes only.

-all Start instances of the pnid daemon process for all interfaces for which configuration
files exist.

-boot Indicates that the pnirun script was invoked at boot time from the ‘/etc/rc.local’
script. This option causes some one-time clean-up activities to be performed, such as
log file maintenance.

-core This option, when specified, will allow all of the pnid daemons that are started to
create ‘core’ files if they should abnormally exit. This is used to debug the pnid
program.

-debug This will cause a pnid daemon process to be run interactively with debug out sent to
standard error. This has the effect of invoking the daemon with the -t and -d options.

Chapter 13: Operation 71

-down This will cause the named instance of the pnid daemon process to exit if it is currently
running. In this case, you should specify a daemon instance by name: pni0, pni1,
etc:
/etc/pni/pnirun -down pni0

configfile
A list of interfaces can now be specified. For example, if ‘pni0’ was specified, and a
file named ‘/etc/pni/config/pni0.config’ exists, then a pnid daemon will be
started with that configuration file.

If the -all option was specified, then the pnirun script will build a list of configuration files.
A pnid daemon will be started for each configuration file. The configuration files are located by
the following process:

1. If the file ‘/etc/pni/config/autostart’ exists, then it is expected to exactly contain a
list of configuration file names, one per line. No other punctuation or commentary is allowed.

2. Else, if a directory ‘/etc/pni/config’ exists, all the files of the form
‘/etc/pni/config/*.config-auto’

are treated as pnid configuration files.

The usual case is the second; where all of the
‘/etc/pni/config/*.config’

files are used and a pnid daemon started for each.
Note that the pnirun script is used for outbound instances of the daemon, where the local host

is initiating some connection to a remote network access server. Inbound connections are handled
by the ‘/etc/pni/pnilogin’ script.

Chapter 14: Troubleshooting and trivia 72

14 Troubleshooting and trivia

14.1 PNI not working - now what?

The very first thing which you should do when encountering problems with the PNI software to
look at the log files. Since the pnid daemon process runs detached from any particular user on the
system, it can only leave messages in log files to advise the system administrator and users of the
host of any problems it might be having.

Most of the error messages,warnings and other commentary will appear in ‘/usr/adm/pni.log’.
More serious errors and messages will also appear in ‘/usr/adm/messages’, as well as on the sys-
tem console ‘/dev/console’. You can use any text editor to view the two files in the ‘/usr/adm’
directory, and the Console Tool from the workspace to view messages displayed on the system
console.

The location of the log files are specified in the ‘/etc/syslog.conf’ file. This file is modified
when the PNI software was installed to add these lines:
PNI::START::1.0
local5.debug /usr/adm/pni.log
local5.warning /dev/console
PNI::END::1.0

The local5 syslog facility is used for all logging messages generated by the pnid program. It
is not possible to change this logging facility to another value.

14.2 What about HostManager?

The HostManager application is used to configure the “standard” network interface on
NEXTSTEP system. In most cases, you do not want to use it to assign IP addresses, names
or default routes for any network interfaces created and managed by PNI.

14.3 Problems with netinfo, lookupd and Mach messaging

There are a class of problems which you might experience which are caused by software not
dealing well with network interfaces which were created after the program was started. Most of the
software running on UNIX platforms were written with the assumption that network connectivity
is a static state of affairs (other than when there are actual network failure, in which case some are
not so graceful anyway).

For example, the nmserver daemon is responsible for forwarding Mach IPC messages between
computers on a network. When the nmserver daemon is started at system boot time, it examines
the configuration of the active network interfaces and initialized appropriately. Should additional
network interfaces be added, it is necessary to “poke” the daemon and have it re-initialize itself. An
example of this can be seen at the end of the ‘/etc/rc.net’ shell script, where a USR2 signal is
sent to the process to cause it to be reinitialized.

Chapter 14: Troubleshooting and trivia 73

14.4 Kernel panics

If you are using PNI on a Intel based NeXTSTEP system, and are experiencing system crashes
due to a kernel panic, you are probably experiencing a bug in the NEXTSTEP serial driver. This
has been reported on NEXTSTEP 3.2 systems, especially when using PNI in Network Access Server
mode.

The solution to this problem is to obtain the MUX driver from one of the NeXT FTP archive
sites, and use it instead of the default serial driver.

14.5 Common error messages

If you see a message of the form PNI pni: runt packet 4 bytes dropped, this is the PNI
encapsulator telling you that it has been handed a packet which is smaller than the minimum size
of an IP datagram header. When this is the case, the PNI encapsulator doesn’t even attempt to hand
the erroneous packet the operating system kernel, but drops it and logs a message.

Why would this occur? One reason, which would be consistent with seeing only a very few
of these messages could indicate a noisy or error prone serial link where an “extra” SLIP framing
character may be been detected. The more likely case, however, is probably due to the reception
of a TCP segment which was sent using Van Jacobson TCP header compression (CSLIP), but the
local PNI software was not configured to use CSLIP, but rather, plain SLIP. Thus, the small header
compressed packet was handed to the PNI encapsulator without having the compressed IP and TCP
header replaced with a complete header.

14.6 Serial Device Troubles

14.7 Dialing Script Troubles

To aid debugging of dialing scripts, you can invoke the pnid daemon directly rather than using
the pnirun shell script. The additional debugging becomes available by using the -t option to put
the daemon into test mode. In this mode, messages which are usually logged via syslog will be
emitted on standard output and standard error. Also, higher debug levels for the TTY encapsulator
will cause the Dialer scripts to log data received and transmitted to standard output.

A typical invocation would be:
/etc/pni/pnid -C -c -n pni0 -t -d -f /etc/pni/config/pni0.config

or, slightly more simply, via the pnirun script:
/etc/pni/pnirun -debug pni0

Higher debug levels for the encapsulators can be set by using the debug subcommand in the
config file, after the list of stack commands:

stack PNI pni
stack FILTER filter

Chapter 14: Troubleshooting and trivia 74

stack SLIP slip
stack TTY tty

tty debug 8

proc LINK_start { encap } {
log "LINK $encap connected"

}

proc LINK_stop { encap } {
log "LINK $encap disconnected"

}

The values passed to the debug subcommand correspond to the syslog debug levels:

7 Debug

6 Informational

5 Notice

4 Warning

3 Error

2 Critical

1 Alert

0 Emergency

It is possible to have values larger than 7; these enable even more extensive debug output in
some cases. Debug values at level 7 or greater are not recommended for normal production use of
the software due to the volume of debug and trace messages that may be generated.

Each encapsulator has its debug level set independently of the others.

Log messages will be written to ‘/usr/adm/pni.log’. This can be changed by editing the
‘/etc/syslog.conf’ file.

14.8 Modem Troubles

Make sure that you are using the correct cable to your modem. Specifically, on NeXT hardware,
a Macintosh serial cable will not work on 68040 systems.

Due to hardware constraints, you can’t do hardware flow control on 68030 systems, where you
likely need it the most.

In most cases, you’ll want to run the serial port speed at the highest speed possible to take
advantage of any compression that’s done in the modem (via MNP5 or V.42bis). This means you
must use the ‘/dev/cuf*’ devices and the modem must be configured for hardware flow control.
The dialing scripts provided should do this, if you need to write your own, you’ll need to make sure
this is the case, too.

Chapter 14: Troubleshooting and trivia 75

Make sure that the modem and cable is configured so that the DCD line (Data Carrier Detect)
from the modem is available at the serial port on the correct pin. This is how the pnid process
checks to see if the modem is still connected or if the line has been disconnected.

14.8.1 TTYDSP related problems

If you are using TTYDSP, you should ensure that you have maintained the modified version
of the loginwindow program which is created when the TTYDSP package is installed. This
modification is necessary since the loginwindow program resets the sound driver when each user
logs in. Since the TTYDSP package uses the sound driver to communicate to the DSP and the
DSP’s serial port, this will disrupt the use of the serial port.

The loginwindow program may be replaced when you upgrade from one operating system
release to the next.

14.9 Network Problems

Can you ping yourself? Can you ping the other end of the link? Can you ping systems past the
other end of the connection? If you can only get so far, then you have routing problems. Most of
the time, your packets can get to where they’re going with no problem; it is the returning traffic that
can’t find its way.

If you are a remote, standalone host dialing in over a SLIP connection, you probably do not
want to be configured as being on a NetInfo network.

If you try very, very hard, you can probably configure things so that -NXHostworks. But you’ll
find that the performance over a SLIP link is so bad, its unusable. I have yet to find anyone that
finds otherwise.

14.9.1 Routing Issues

To effectively use the PNI package to communication with other hosts, it is necessary to arrange
for proper routing to be in effect. There are two aspects to this: the local routing configuration
must be set so that traffic can be correctly transmitted, and the routing configuration on the remote
systems must be set so that traffic can find its way back to the local system.

14.9.2 Domain Name System Issues

A common desire when using the PNI package is to be able to communicate with many different
hosts on the Internet. This usually requires the use of the Domain Name System to resolve domain
names into IP addresses.

By default, the NEXTSTEP systems will only query the NetInfo directory service,which contains
only local host information. To enable the use of the DNS on NEXTSTEP systems, you must create
the ‘/etc/resolv.conf’ file. Once this file has been created, any attempts to lookup host names
will result in a DNS query if the name does not exist in NetInfo. See “man resolver” for more
details.

Chapter 14: Troubleshooting and trivia 76

Of course, if you can’t contact external name servers because your SLIP link is down most of
the time, having a ‘/etc/resolv.conf’ file may be troublesome at those times. Later versions of
PNI will delete any default route which it installed when link becomes inactive which should cause
the resolver to give up quickly with a “Host Unreachable” error message. Note that in this case, you
will trigger a bug in NeXT’s lookupd daemon - it incorrectly caches DNS “Temporary Failure”
returns (e.g., can’t contact name server) as “Host Unknown” errors for some period of time. This
means that even after the link comes back up, you may still get cached “Host Unknown” errors for
a short period of time, or until the lookupd process is restarted.

14.10 Questions and Answers

14.10.1 Weird telnet operation

Here’s an bug report that was received regarding strange behavior of telnet sessions over a PNI
SLIP link:
I’ve run into what appears to be a bug with PNI-1.11. The problem is
that, under certain circumstances which I will describe below, <cr>
(and very occasionally <lf>) characters disappear.

Here’s the circumstance where I noticed the problem. My home NeXT
(running NS 3.2) is running PNI as a client, establishing a SLIP
connection to an Annex in my department. I have a Sun Sparcstation 1
at my office running SunOS 4.1.3 and X-windows. The problem occurred
with a telnet session from an xterm on the Sparc to the NeXT, via the
Annex and SLIP link.

Here are the symptoms: If I do an "ls" on a medium-sized directory,
the first dozen or so lines are fine but after that many of the <cr>’s
are missing, so the lines

continue on the screen
like this. I’m

running SLIP with an MTU of 256, which is the default on our Annex.
The dropped <cr>’s seem to always occur after the first 256 bytes.

After further experimentation with ls on very short directories, ls on
very long directories, and cat of a rather long file, I’ve come to the
conclusion that the errors always occur on the last packet of a burst
but never before. The cat of the long file was correct, screenful after
screenful, until the very end, leading me to believe that the problem is
NOT with flow control on the modem. (I am using hardware flow control.)
On the other hand, all 3 <cr>’s were missing in a 3-line "ls" listing of
a small directory.

How could this occur? My conjecture is that PNI handles short bursts
differently than long ones in an attempt to improve responsiveness and
that that section of the code somehow loses the <cr>’s. Of course, if I
enable "Auto Linefeed" mode in my xterm window, then the missing <cr>’s
are not noticed and everything appears to be working fine, which could
explain why it hasn’t been reported before. Also, I don’t notice any

Chapter 14: Troubleshooting and trivia 77

problems telnetting *out* of my NeXT to my Sparc, just inbound. I don’t
know whether or not this problem affects other network services such as
FTP.

This isn’t a bug in PNI. PNI isn’t aware of any of the actual characters being transmitted in the
packets going by, and certainly doesn’t muck with the contents of any TCP connections which is
carries. PNI is definately not doing anything with CR or LF characters in the user’s data stream. If
it did, then the TCP checksums wouldn’t work, and the connection would hang or reset.

This is indictive of an application level program which is being provoked by either timing
differences (slower network connectin), or just an incompatibility.

There are two potential problems:

What’s going on here could be a timing interaction with the TTY driver. You are probably using
a shell like bash or tcsh on the remote system. This shell normally operates in cbreak or raw mode,
but switches to cooked mode to run programs. When the tty is switched from one mode to another,
pending characters in the queue are flushed. In this case, before they are transmitted to the network.

The other more likely case is that they telnet daemon isn’t implementing telnet line mode
correctly, which includes setting up the tty into the correct mode when switching from raw mode to
cooked mode, etc.

One way to test this is to use rlogin and see if it operates differently; it doesn’t try to be quite a
clever at the telnet daemon is.

14.10.2 pnistat questions

Consider the output for an invocation of the ‘/etc/pni/bin/pnistat’ program invocation:
pnistat

Encapsulated Decapsulated

Type Encap state Bufs Bytes Bufs Bytes

PNI* pni phase2 27192 2018308 38633 8455145

FILTER* filter phase2 27194 1148244 38635 8455657

SLIP* slip phase2 27195 1148284 146807 7207990

TTY* tty phase2 27196 290858 146813 7208499

There are several bits of trivia to be gleaned from this example.

First, note that ascending number of buffers listed under ‘Encapsulated’; this is an artifact of
the measuring process. At the time, a bulk file transfer was taking place, with constant input. The
statistics are gathered one encapsulator at a time, and during the reporting process, packet traffic
was in progress. The packets being transmitted (encapsulated) at the time consisted of TCP ACK
segments.

Also notice that the encapsulated byte count of the ‘PNI’ encapsulator (‘2018308’) is somewhat
higher than that of the ‘FILTER’ encapsulator (‘1148244’). This is reflects the fact the that PNI
kernel driver returns a fixed length header of 32 bytes on every packet transmitted by the kernel.
This header is stripped off before handing the IP packet up to the next encapsulator.

Chapter 14: Troubleshooting and trivia 78

Note that the Van Jacobson TCP header compression algorithm is resulting in a significant savings
of bytes transmitted over the serial line; consider the difference between the ‘SLIP’ encapsulator
byte count, ‘1148284’ and the ‘TTY’ encapsulator byte count, ‘290858’. This reflects the reduction
of a 40 byte TCP ACK segment down to just a few characters per packet. A similar reduction can
be seen in the ‘Decapsulated’ statistics, which are large in this example because bulk movement
of data into the host. The percent reduction is not as large since the 40 byte overhead of the TCP
packet is relatively small compared to the actual user-data being carried.

14.11 Internal Organization

The general architecture of the PNI package has already been described in another part of this
document (See Appendix A [Architecture], page 80). Here, we’ll present some of the more more
nitty-gritty details of how the software fits together and functions.

14.12 Encapsulator Internals

Encapsulators are implemented as Objective-C classes which are dynamically loadable from
bundles in the ‘/etc/pni’ directory. The bundles all have an extension of ‘.encap’ and are, by
convention, all in upper case. Within each bundle directory, there can usually be found three files.

There is an object file which contains the compiled (multiple-architecture) binary code for the
class which implements the Objective-C class. All encapsulators are subclasses of a common
encapsulator class. Currently, the interface specifications of the super-class are unpublished and
subject to change.

There may also be two TCL files in the bundle directory. One TCL file contains code which is
loaded once the first time a particular encapsulator is instantiated by the pnid daemon process. The
other is loaded each time the encapsulator class is used. In usual configuration, it is not likely that
the encapsulator will be used more than once per configuration so each file of TCL code is loaded
once.

For example, for the ‘SLIP’ encapsulator the files are:
‘/etc/pni/SLIP.encap/SLIP’

The binary file which contains the compiled code and data.
‘/etc/pni/SLIP.encap/SLIP_Init.tcl’

The per-class encapsulator initialization file. When this file is loaded, the global TCl
variable encapType is set to the encapsulator type; in this example SLIP.

‘/etc/pni/SLIP.encap/SLIP_objInit.tcl’
The per-instance encapsulator initialization file. When this file is loaded, the global
TCL variables encapType and encapName are set to the encapsulator type (in this
example SLIP) and the name of the encapsulator as specified on the stack command.

The usual contents of these initialization files are procedure definitions. In particular, the
following TCL procedures are expected to be defined and will be invoked if defined when appropriate
(in this example, for the ‘SLIP’ type encapsulator named ‘slip’ in the configuration)
slip_start{ }

Chapter 14: Troubleshooting and trivia 79

slip_stop{ }
slip_configure{ encapName }

14.13 pnid internals

This section still under construction: : :

For a starting point, look at the ‘/etc/pni/pnid.tcl’ and ‘/etc/pni/support/init.tcl’
files.

Appendix A: Architecture 80

Appendix A Architecture

This section will describe the general shape and architecture of the PNI package. While it is not
necessary to know all of the details described in order to use the software, it will give you a better
sense of how it PNI is put together and how it might be used.

A.1 Network Interface Architecture

A Network Interface is the logical connection point of your computer system to a network. It
corresponds to the logical “hardware” device which allows the flow of data into and out of your
computer system. The most common instance of a network interface on a computer system or
workstation is the Ethernet interface.

The term Network Interface is also used to refer to the software abstraction or data structure
used by the operating system running on your UNIX computer system or workstation. The network
interface has some state associated with it (such as an IP address, subnet mask, broadcast address)
and is referenced by other operating system data structures, such as the routing table which is
consulted to determine the path to transmit network traffic for a particular destination.

The TransSys PNI product provides a way of creating additional network interface abstractions or
data structures to augment the usual Ethernet network interface. It also has software which handles
the network traffic being sent on these network interfaces and that traffic which will be received
on those network interfaces. Network interfaces are named; for instance, the Ethernet interface is
usually named en0; network interfaces created by the PNI software are named pni0, pni1, etc.

The TransSys PNI product consists of a number of daemon processes, each of which corresponds
to a particular logical network interface. Not all network interfaces need be active at once; when
traffic begins on a particular network interface a connection can be established on demand (“dial on
demand”). Please note that in the current beta version of the software, dial-on-demand is not yet
available for use.

A.2 PNI Software Architecture

When configuring and operating the PNI software, it is often helpful to understand the underlying
architecture of the software. Often, there is some critical piece of information missing when trying
to communicate a complicated set of information. In many cases, this critical information is the
underlying model which the software was written to conform to. Or “What was he thinking when
he did it like that?”

There are two main software components which constitute the PNI package:

� pni_reloc � the loadable kernel device driver.

� pnid � the user-level support daemon process.

Appendix A: Architecture 81

A.3 pni_reloc kernel driver

The pni_reloc kernel driver is automatically loaded into the UNIX operating system. It’s task
is to create a standard network interface abstraction for the existing kernel TCP/IP networking code
to use. It very similar to the existing ‘en0’ Ethernet interface in the sense that network code in the
operating system uses the ‘pni’ interfaces the same way that it might use the ethernet (‘en0’) or
system loopback (‘lo0’) network interfaces.

The main difference between the standard network interfaces and the ‘pni’ network interfaces
is that there is no actual hardware resource directly associated with the ‘pni’ network interface.
Rather than having some hardware for the driver to use, we use a virtual hardware interface.

This is actually quite similar to the UNIX pty (pseudo teletype) devices that UNIX uses. There
are not actual serial devices associated with the pty devices, but another, special interface which is
used to control a simulated serial device. This is how remote network logins work; your session is
associated with a pseudo tty device; it is controlled by a telnet daemon process which interfaces to
the operating system to read and write characters to and from the network. There network character
streams are then made available via the pty device, and the UNIX shell and other commands believe
that they are attached to a terminal type device.

The pni_reloc device uses a similar abstraction (in fact, pni originally was an acronym for
Pseudo-Network Interface). For each pseudo network interface device that’s created (e.g., ‘pni0’)
there is a corresponding character special device (‘/dev/pni0’) which is used to control the
network interface and transfer the data. When the operating system transmits a packet of data to
the network via the ‘pni0’ network interface, that transmitted package is available to be read on
the ‘/dev/pni0’ character special device file. Conversely, when the ‘/dev/pni0’ file is written
to with the correctly formatted data, that data appears as input from the ‘pni0’ network interface.

So far, it sounds as if the pseudo network interface kernel driver isn’t really doing all that much
for us; it’s mostly just shoving the data that come in from one end (output from kernel networking
code) and sending out the other (to be read from the ‘/dev/pniX’ device file). Actually, that
simplicity is one of the primary design goals for the kernel driver; it is as simple as it can possibly
be. This simplicity is a great advantage in a kernel device driver - the less the kernel driver code
needs to perform, the less time it will take to debug that code. Malfunctioning kernel drivers, rather
than just dumping a core file like an application might do, will panic or crash the entire system.

While just implementing SLIP or CSLIP in a kernel driver is not very difficult (and TransSys
has already done this � our TransSys Dial-Up IP package for NeXT 68040-based systems), more
complex protocols such as PPP and other features (such as packet filtering) become somewhat
unwieldy when implemented within the framework of a kernel device driver. The intent of the pni_
reloc driver was to create as minimal a kernel driver as possible (or necessary), and implement the
remaining functionality in a user-level (that is, not a kernel-based) process.

The other advantage of this approach is that the user-level process can be written in a portable
fashion, insulated from operating system changes because it uses a defined (and presumably un-
changing) API to get its work done. Only the (much smaller) kernel driver actually needs to be
“ported” as the operating system has major upgrade or when moving from one type of platform
(NEXTSTEP/UNIX/Mach) to another (SunOS? AIX? Who knows?).

Appendix A: Architecture 82

A.4 pnid daemon process

The pnid program is what is on the “other end” of a pseudo network interface. It opens the
‘/dev/pni0’ (or ‘/dev/pni1’, etc) character special device file, and reads data from the file
(output packets from the corresponding ‘pni0’ network interface) and writes data to the file (input
packets to the ‘pni0’ network interface).

The pnid program is the bridge between the pseudo network interface and some real hardware
or transport for the packets. For example, the pnid program might also have open a tty serial
device like ‘/dev/cufa’ so that it might receive and transmit network packets over a serial port to
a modem.

If you have arranged to use more than one PNI pseudo network interface (perhaps because you
have multiple PNI-based network links), you will have a separate and distinct pnid daemon process
for each active pseudo network interface. Strictly speaking, the architecture of the software doesn’t
require a daemon process per pseudo network interface; but implementation and operational issues
make the one process per interface approach an attractive approach to use.

The pnid process is implemented in a rather novel way. Since the kernel-level pseudo network
interface driver is so simple in function, all of the interesting functions need to be implemented in
the pnid daemon program. The daemon is built from a number of well defined, reusable modules
which can be arranged and configured in different ways depending upon the circumstances.

The best way to describe these modules is to explain how they are used to build a network
connection and how the modules handle and modify the data corresponding to the packets flowing
over the network connection. Let’s enumerate the steps which occur for a SLIP connection’s flow
of data.

1. First, obviously, is the fact that a network interface must exist which is the source and sink of
the packets to be sent and received. This is function is implemented by the pni_reloc kernel
driver.

2. There must be a mechanism for obtaining the packets which are being transmitted on a network
interface. This is done by opening and reading the ‘/dev/pniX’ character special device file.
This is done by a module in the pnid process that’s called PNI.

3. The SLIP protocol specifies certain conventions for encoding and framing an IP datagram so
that it may be transmitted over a serial link. This encoding and framing process consists of
adding a frame delimiter character to separate one packet from the next, and a mechanism
for escaping the special characters that are reserved for framing purposes. This function is
implemented by the SLIP module. The SLIP module processes as input packets which are to
be sent and produces as output a stream of characters which are the encoded and framed input
packets.

4. Finally, the character stream of encoded and framed packets is actually transmitted on a serial
port. On UNIX systems, this is done by opening a tty-like device (for example, ‘/dev/cufb’),
setting the tty device in RAW mode, and then writing streams of characters to that device. This
is done by the TTY module.

Of course, for incoming packets the same functions and operations are required, but simply
applied in reverse order in an inverse fashion.

Appendix A: Architecture 83

Each of these functions are performed in essentially a linear fashion; the “data” starts at one
end, and is successively processed or transformed as it moves along. Each module is referred to as
an Encapsulator; encapsulators have standard interfaces which allow one encapsulator to use any
compatible encapsulator as its “input” or “output”.

The design of the pnid program is such that each instance of the daemon services a particular
network interface. So if multiple pseudo network interfaces are configured for dialing-out, there
will likely be more than one pnid process running.

Each encapsulator has well defined interfaces for input and output, and thus a set of them can
be arranged in order to provide the desired function. The encapsulators are actually implemented
as Objective-C loadable classes. Future encapsulators can then easily be accommodated so long as
they implement the standard interfaces.

Appendix B: Bibliography 84

Appendix B Bibliography

Some references to useful information are included here.

TCP/IP TCP/IP Network Administration by Craig Hunt, O’Reilly & Associates, Inc. 1992.
ISBN 0-937175-82-X

DNS DNS and BIND by Paul Albitz & Cricket Liu, O’Reilly & Associates, Inc. 1992.
ISBN 1-56592-010-4

Tcl and Tk
Tcl and the Tk Toolkit by Dr John K Ousterhout. Addison-Wesley Publishing 1994.
ISBN 0-201-63337-X. A clear and readable introduction to TCL (which is used exten-
sively in PNI) and Tk.

Practical Programming in Tcl and Tk
Practical Programming in Tcl and Tk by Brent Welch. Draft of book to
be published by Prentice hall. A tutorial-style introduction to Tck and TK.
Draft version available via anonymous FTP from parcftp.xerox.com in
‘/pub/sprite/welch/tclbook2.1.ps.Z’.

Concept Index 85

Concept Index

/
/etc/resolv.conf : 75
/LocalApps : 16

A
Annex terminal server : 47
anonymous FTP : 2, 6, 7, 9
architectures, other : 3

B
bring down, pnid : 70
bundles : 78

C
call log : 24
carrier detect : 45
control password : 23
crash : 73
cu : 45

D
DCD : 45
default route : 22
Dialer : 46
Dialer Scripts : 23
DialUp-IP : 45
Digicom 9624LE : 46
DNS : 75
Domain Name System : 75

E
emacs : 3

F
FTP, anonymous : 2
FTP.UU.NET : 2

G
group : 16, 28
group, pni : 24

H
HP-PA : 3
HTML : 3

I
IP address : 22
IPC : 72

K
kermit : 45

L
LocalApps :: 16
Locking protocol : 45
Locking Protocol, UUCP : 45
log, calls : 24
Login Scripts : 23

M
Mach IPC : 72
modem : 46
monitoring password : 23
MTU : 22, 44
Multitech MT1432EA : 47
Multitech MT932EA : 47
MUX driver: 73

N
Network Access Server : : : : : : : : : : : 1, 15, 21, 22, 23, 28
next hop : 61
nmserver : 72
NXFax : 45, 47

P
panic : 73
password :: 23
password, monitoring and control : : : : : : : : : : : : : : : : : : 23
PEP: 47
PNI : 1
pni group : 16, 24, 28
pnid, halting : 70

Concept Index 86

pnid, starting : 71
pnilogin : 28, 71
pnirun : 21
pnistat : 13
PostScript : 3
Protocol, locking : 45

R
route, default : 22

S
script search path : 22
Scripts, Dialer : 23
Scripts, Login : 23
serial driver : 73
server-mode shell : 28
shell : 28
signals : 67
SLIP MTU : 44
SLIP Server : 22, 23, 28
stack command : 24, 27, 73
starting up, pnid : 71
subnet mask : 22
syslog : 66, 72, 73

T
TamperProof : 3
TamperProof class : 3

TCL : 2, 4, 6, 12, 46, 47, 67, 84
TclX : 4
TCLX : 6
Telebit Worldblazer : 47
tip : 45
TransSys DialUp-IP : 45
tty(4) : 45, 46
TTYDSP : 19, 45, 46, 75

U
UDP : 61
UNIX group : 16, 28
US Robotics WorldPort : 47
username : 23
uucp : 45
UUCP : 45
UUCP Locking Protocol : 45

W
Worldblazer: 47
Worldport, USR : 47
WWW : 3

X
Xylogics Annex terminal server : : : : : : : : : : : : : : : : : : : 47

Z
ZyXEL : 46, 47

Function Index 87

Function Index

C
cmdclose : 31
cmdopen : 30
cmdrpc : 31

D
dialer : 49
dialer delay : 50
dialer expect : 50
dialer parity : 49
dialer sleep : 49
dialer xmit : 49
dlog : 12, 30

L
log : 12, 30

N
notice : 30

P
printify : 12

S
syslog : 30

W
warn : 12, 30

Variable Index 88

Variable Index

C
Config(filter:DEMAND FILTER) : : : : : : : : : : : 35
Config(filter:INPUT ACT ACTION) : : : : : : : : 35
Config(filter:INPUT ACT FILTER) : : : : : : : : 35
Config(filter:INPUT ACT INTERVAL) : : : : : 35
Config(filter:INPUT LOG) : : : : : : : : : : : : : : : : 35
Config(filter:INPUTFILTER) : : : : : : : : : : : : : 34
Config(filter:INPUTFILTER RPCS) : : : : : : : 34
Config(filter:OUTPUT ACT ACTION) : : : : : : 35
Config(filter:OUTPUT ACT FILTER) : : : : : : 35
Config(filter:OUTPUT ACT INTERVAL) : : : : 35
Config(filter:OUTPUT LOG) : : : : : : : : : : : : : : : 35
Config(filter:OUTPUTFILTER) : : : : : : : : : : : : 34
Config(filter:OUTPUTFILTER RPCS) : : : : : : 34
Config(pni:ADDRESS) : 32
Config(pni:DEFAULT) : 32
Config(pni:INTERFACE) : 32
Config(pni:MTU) : 32
Config(pni:NETWORKMASK) : : : : : : : : : : : : : : : : : 32
Config(PNI:NOLOOPBACK) : : : : : : : : : : : : : : : : : : 33
Config(pni:REMOTEADDRESS) : : : : : : : : : : : : : : 32

Config(secure:HOSTS) : 63
Config(secure:KEYS) : 63
Config(slip:MODE) : 44
Config(tty:DEVICE) : 45
Config(tty:DEVICES) : 48
Config(tty:DEVOPTS) : 45
Config(tty:DIALER) : 46
Config(tty:DIALSCRIPT) : : : : : : : : : : : : : : : : : : 48
Config(tty:LOCKINGPROTO) : : : : : : : : : : : : : : : : 45
Config(tty:MODEMTYPE) : 46
Config(tty:NUMBER) : 48
Config(tty:PHONENUMBERS) : : : : : : : : : : : : : : : : 48
Config(tty:SERVERNAME) : : : : : : : : : : : : : : : : : : 48
Config(tty:SERVERTYPE) : : : : : : : : : : : : : : : : : : 47
Config(tty:SPEED) : 46
Config(tunnel:PORT) : 62
Config(tunnel:TUNNELS) : : : : : : : : : : : : : : : : : : 62

E
expect match : 51

i

Table of Contents

1 Introduction : 1
1.1 About TransSys PNI : 1

1.1.1 PNI as SLIP : 1
1.1.2 PNI as CSLIP: 1
1.1.3 PNI as virtual network link : 1
1.1.4 Is PNI for you? : 2

1.2 PNI versions : 2
1.3 About this documentation : 3
1.4 TCL documentation : 4
1.5 TransSys DialUp-IP, the other TransSys SLIP : 4
1.6 Acknowledgments : 5

1.6.1 Credits : 5
1.6.2 Copyright Information : 6

1.7 Summary : 9

2 Release Notes : 10
2.1 Beta Test Software : 10
2.2 Release History : 10

2.2.1 1.4 Beta Release : 10
2.2.2 1.5 Beta Release : 10
2.2.3 1.6 Beta Release : 10
2.2.4 1.7 Beta Release : 10
2.2.5 1.8 Beta Release : 11
2.2.6 1.9 Beta Release : 11
2.2.7 1.10 Beta Release : 12
2.2.8 1.11 Release : 13
2.2.9 1.12 Release : 13
2.2.10 1.13 Release: 14

2.3 Future Plans : 14

3 Installation : 15
3.1 System requirements and prerequisites : 15
3.2 Installing the distribution : 15

3.2.1 Before Installation : 16
3.2.2 Electronic file archive installation : 16
3.2.3 Diskette Distribution : 16
3.2.4 Using the Installer Package : 16
3.2.5 Installation-time system changes : 17

3.2.5.1 The PNI package symbolic link : 17
3.2.5.2 Device names in ‘/dev’ : 18
3.2.5.3 Changes to the rpcs NetInfo directory : 18

ii

3.2.5.4 Changes to ‘/etc/rc.local’ : 19
3.2.5.5 Changes to ‘/etc/syslog.conf’ : 20

3.2.6 License Key Registration : 20
3.3 Configuration Preview : 21

3.3.1 Quick Start : 21
3.3.2 Tour through sample SLIP configuration : 21

4 Configuration : 26
4.1 Encapsulators : 26
4.2 Configuration Directive Conventions : 27
4.3 Configuration Primitive Conventions : 27
4.4 Configuration as a Network Access Server : 28

4.4.1 PNI Network Access Server configuration : 29
4.5 PNI specific TCL commands : 29

4.5.1 Logging TCL commands : 30
4.5.2 pnitcl specific TCL commands : 30

5 PNI Encapsulator : 32
5.1 Configuration Directives : 32
5.2 Configuration Primitives : 33

6 FILTER Packet Filter Encapsulator : 34
6.1 Configuration Directives : 34
6.2 Configuration Primitives : 35
6.3 Packet Filter Expressions : 36

6.3.1 Packet Filter Syntax : 36
6.3.2 Packet Filter Expression Test Program : 39
6.3.3 Filter Machine : 40

7 SLIP SLIP/CSLIP Encapsulator : 44
7.1 Configuration Directives : 44
7.2 Configuration Primitives : 44

8 TTY Serial Device Encapsulator : 45
8.1 Configuration Directives : 45
8.2 Configuration Primitives : 48

9 Dialer support module : 49
9.1 Sample Dialer Scripts : 52

9.1.1 Sample Modem Dialer Script : 52
9.1.2 Sample Network Access Server Login Script : 56

iii

10 LOOP Loopback Encapsulator : 60
10.1 Configuration Directives : 60
10.2 Configuration Primitives : 60

11 TUNNEL Virtual Path Tunnel Encapsulator : 61
11.1 Configuration Directives : 62
11.2 Configuration Primitives : 62

12 SECURE Data Security Encapsulator : 63
12.1 Configuration Directives : 63
12.2 Configuration Primitives : 63
12.3 Tamper-Proof Objective-C protocol definition : 63

13 Operation : 65
13.1 pnid : 65

13.1.1 Arguments and Options : 65
13.1.2 Updated License Key Registration : 66
13.1.3 pnid output and logging : 66
13.1.4 pnid termination conditions : 67

13.2 The pnitcl program : 67
13.3 The pnistat script : 67

13.3.1 pnistat usage : 68
13.3.2 pnistat stat command : 68
13.3.3 pnistat control operations - the down command : : : : : : : : : : : : : : : : : : 70

13.4 The ‘/etc/pni/pnirun’ shell script : 70

14 Troubleshooting and trivia : 72
14.1 PNI not working - now what? : 72
14.2 What about HostManager? : 72
14.3 Problems with netinfo, lookupd and Mach messaging : 72
14.4 Kernel panics : 73
14.5 Common error messages : 73
14.6 Serial Device Troubles : 73
14.7 Dialing Script Troubles : 73
14.8 Modem Troubles : 74

14.8.1 TTYDSP related problems : 75
14.9 Network Problems : 75

14.9.1 Routing Issues : 75
14.9.2 Domain Name System Issues : 75

14.10 Questions and Answers : 76
14.10.1 Weird telnet operation : 76
14.10.2 pnistat questions : 77

14.11 Internal Organization : 78
14.12 Encapsulator Internals : 78

iv

14.13 pnid internals : 79

Appendix A Architecture : 80
A.1 Network Interface Architecture : 80
A.2 PNI Software Architecture : 80
A.3 pni reloc kernel driver : 81
A.4 pnid daemon process : 82

Appendix B Bibliography : 84

Concept Index : 85

Function Index : 87

Variable Index : 88

