TransSys PNI User Manual

Version 1.13

L ouis A. Mamakos, TransSys, Inc.

Copyright (© 1993, 1994 by TransSys, Inc.
All rights reserved.

This beta-test software or documentation may not be redistributed to any other party without prior
permission of TransSys, Inc.

$Header: /local/SRCS/slip2/doc/pni.texinfo,v 1.24 1994/10/03 03:49:34 louie Exp $

Chapter 1: Introduction 1

1 Introduction

1.1 About TransSys PNI

TransSys PNI (Pseudo Network Interface) software is used to create virtua network interfaces
on your NEXTSTEP system which don’t directly correspond to hardware network interfaces. By
creating pseudo- or virtua -network interfaces, network connectivity can be extended over different
types of media using a number of different mechanisms.

1.1.1 PNl asSLIP

TheTransSyspPnI software can beused to build wide-areanetworks by utilizing serial connections
as network links. Thisis done by using the SLIP encapsulation protocol over the links to move
network packets between systems using the serial ports as the network interface, rather than the
Ethernet interface. Once a network connection is established between your NeXT computer and
the remote network access server or router, it is possible to use the connection to support multiple
simultaneous connections for remote login, file transfer, mail, or and other TCP/IP based network
protocol.

Of course, a9.6 kb/s seria link isn't nearly as fast as a 10 Mb/s Ethernet port. You'll probably
not want to try to use bandwidth intensive applications, like NFS (the Network File System).

This software is usualy used by a end-system which dias into some network access server
which also expects to provide network connections over serial links. This software contains a
kernel or operating system level driver that transports |P datagrams across the serial link using a
trivial encapsulation called SLIP (Seria Line IP). You have to be talking to another device which
also knows how to do SLIP, and not just aterminal server.

1.1.2 PNl asCSLIP

This software is al'so capable of implementing Van Jacobson-style TCP Header compression,
which is a technique to vastly improve interactive response time for TCP connection across the
SLIP link by compressing or eliminating redundant header information. Thisiscommonly referred
toasCSLIP.

1.1.3 PNI asvirtual network link

It is possible to create tunnels, or virtual network connections, over existing networks to layer
a new logical network (where the traffic is optionally encrypted for privacy purposes) over some
existing IP infrastructure. In thisinstance, rather than using serial lines to provide transport for the
packets being sent on a network interface, existing network connections are used to carry traffic for
the virtua link.

Oncethelink has been brought up, you can arrange for the link to be dropped When thelink has
goneidlefor some configured period.

Chapter 1: Introduction 2

Extensivefiltering is avail able which can be used to implement site-specific security policy. You
can restrict the flow of traffic both arriving on anetwork connection as well as the traffic being sent
on a connection. These filters can be updated dynamically and programmatically.

1.1.4 IsPNI for you?

TransSys PNI is very much more UNIX tool-like, rather than atraditional NEXTSTEP applica
tion. Partly, thisisbecause itsfunction isto more support the entire system, rather than a particular
user. It isaso useful when there are no users active on the NEXTSTEP system at al — the system
can receive mail, act as a FTP server whilst unattended.

TransSys PNI doesn’t have a GUI-based installation process — it is necessary to actually edit
configuration files to effect a working installation. In some cases, it is necessary to create new
TCL script files if you are using a modem or a network access server for which a script does not
aready exist. Adding a NeXT-specific GUI front-end would significantly extend the devel opment
effort (which has dragged on way to long as it is), as well as increase the cost of the product. It
also detracts from one of the prime motivations of this software - to be much more portable, both to
multiple NEXTSTEP hardware platforms aswell as to other UNIX-like operating systems.

The same scripting capability whichis so powerful and flexible a so makes pni difficult to install
with just a single mouse-click. PNI ismore expert-friendly rather than user-friendly. Thereredly is
alot that you can do; the challenge has been writing it down and documenting it..

So, isPNI for you? In many casesit may not be. It really isnecessary in some cases to understand
how 1P networking actually works and how the packets fly. To really determine if PNI will solve
your problem, get the free SLIP-only version see Section 1.2 [PNI package versions|, page 2, and
try it for yourself. Your only investment isyour own time, which is certainly valuable enough.

1.2 PNI versions

The PNI software is available in 4 different versions: Each version consists of some set of
enabled encapsulator types which defines the available set of functions which can be used by the
pni d process.

o PNI-SLIP—A fredly available version whichimplementsSLIP. Thisversion isavailablefree of
charge viaanonymous FTPfrom FTRUU.NET as/vendor/TransSys/TransSys-PNI-1.13.tar.gz,
and from the usual NeXT Internet FTP archive sites (and eventually on CDROM collections).
This version is available as a public service to the NeXT community - NEXTSTEP systems
should have a SLIP solution available free of charge, as do many other platforms. (It aso
makes a great way to get in the door to demonstrate the product!)

e PNI-BASIC —acommercial version of the software which implements SLIP (as above) aswell
as CSLIP, whichis SLIP with TCP Header Compression.

e PNI-PRO —acommercia version, which, dong with the PNI-BASIC features, also includes
IP packet filtering including idle link timeouts and support for IP tunnels.

e PNI-Enigma— a commercia version, which, along with the PNI-PRO features, also include
the SECURE encapsulator which can be used to ensure that traffic has not been tampered

Chapter 1: Introduction 3

with during its transit over the network. This can be done by employing one of a number
of algorithmsto detect tampering (such as the MD5 Message Digest a gorithm) or to prevent
tampering or capture (such as a data encryption agorithm such as DES or IDEA).

The SECURE encapsulator is most commonly used with the IP TUNNEL encapsul ator when
sending sensitive traffic over “public”’, unsecured networks. Thisversion is not available for
export outside the United States.

The “assurance” agorithms are implemented in different Objective-C classes which conform
to the see Section 12.3 [TamperProof], page 63 protocol.

In fact, PNI-Enigma is not be available for the indefinite future. It may be that is will be
necessary for TransSys, Inc. to register as a manufacturer of defense articles and obtain
additional licenses to sell products which are defense articles. Sigh.

All versions of TransSys PNI require NEXTSTEP release 3.1 or 3.2, and should function on
both Motorolaand Intel based systems.

Support of HP-PA and other platforms will be added when access to suitabl e development and
test platforms can be arranged.

1.3 About this documentation

This documentation was prepared using the GNU Texinfo package, which alows one source
document to be used for creating on-line help and reference material as well as a printed reference
manual. It allows the author to use cross references and hypertext links to other parts of the
document, which can be automatically followed if the document is viewed with a suitable user
interface.

The Texinfo source is also processed by the texiZhtml PERL script to product HTML files
suitablefor usein aWWW server.

The documentation avail able to end users of the PNI software is availablein three forms:

e PostScript, suitable for printing on most PostScript compatible printers. This document only
uses these Type-1 PostScript fonts: Times-Bold, Times-Roman, Courier-Bold and Courier.

You can also view the PostScript form of thefileusingthePr evi ewapplicationon NEXTSTEP
platforms; it works best if you “Zoom In” once. On Motorola-based NEXTSTEP hardware
with a1120 by 832 display resolution, an entire page of text (other than headers and footers) is
visibleat once. The PostScript version of the documentationis provided in the PN distribution.

e GNU i nf o format, which can be browsed using emacs or by the standalone i nf o program.
Theinfo files, ‘pni . i nf o-*" are ASCII text can can aso be viewed using any sort of text
editor. Theinfo format of the documentation is provided in the PNI distribution.

The info format files contain the hypertext links, which can be followed using either the info
reader in the emacs editor or the standalone info reader program.

e HTML (Hypertext Markup Language) format, as used in the Worl dWidewWeb (WWW) project.
Thisversion isnot usually distributed with the PNI software, but is currently available from the
TransSys WWW server, starting at the URL :

http://ww. TransSys. COM TransSys/ PNl / pni -i nf o. ht m

Chapter 1: Introduction 4

This host is on alow-bandwidth SLIP link, so fetching copies of the documentation this way
is not the best option. It is handy, however, for browsing the manual and checking for new
versions, etc.

NEXTSTEP users can use the Omi Web. app application to access WWW servers on the
Internet. It isavailable viaanonymous FTP from

ftp.omi group. com /pub/software/ OQmi Wb. app.tar. gz

1.4 TCL documentation

Since much of the user-visible configuration and customization of the PNI package isdone using
TCL, someadditional documentationis provided on TCL and some extensionsto TCL, TclX. These
fileswill exist in the ‘doc’ sub-directory of the PNI distribution. (see Section 3.2.2 [File Archive
Distribution], page 16).

Two files, ‘doc/ Tcl . man’ and ‘doc/ Tcl X. man’ are UNIX man-formatted files. You can
examine these from a Terminal window:

nroff -man Tcl.man | nore
or, to print a nicely formatted version on the default (PostScript) printer:
ptroff -man Tcl. nan

1.5 TransSys DialUp-I P, the other TransSys SLIP

The TransSys PNI product began as a re-implementation of the existing and popular TransSys
DialUp-1P SLIP/CSLIP software package. That software package enables the NeXT user to par-
ticipate in a wide-area network via serial connections on the NeXT. This brings to the NeXT such
applications as telecommuting as well as part-time, low-cost Internet connectivity. That package,
which has enjoyed wide popularity in its free, demo version (SLIP) as well as a low-priced com-
mercia product (CSLIP), needed some enhancements to respond to specific requirements from
customers and potential new customers. The origina design goals for the follow on product in-
cluded support for the Point-to-Point Protocol (PPP) defined by the Internet Engineering Task Force
(IETF) as well as support for hardware devices other than the NeXT’s two seria ports (such as
TTYDSP and various seria port expansion products).

The scope of the features which needed to be made available in a future product made a
reimplementation rather than a simple retrofit of the existing software an attractive option. While
adding new capabilities, anumber of implementation issuesin thefirst product could be addressed
in the light of considerable operational experience. Among these are to reduce the impact of
future NeX T operating system releases as well as having the software be portable to other vendor
platforms.

It became clear that a reimplementation set the stage for entirely new and unique capabilities
which have never been available before in a software package of thistype. Existing SLIP and PPP
serial networking software for workstations tend to be implemented in a monoalithic fashion, with
limited flexibility. The architecture for the TransSys PNI product is very modular and alows for
expansion to include other functions not originally part of the package.

Chapter 1: Introduction 5

1.6 Acknowledgments

1.6.1 Credits

The TCP header compression feature is derived from software written by Van Jacobson. The

MD5 message digest implementation uses the RSA Data Security, Inc. MD5 Message Digest
Algorithm.

Chapter 1: Introduction 6

1.6.2 Copyright Information

The PNI software and documentationis Copyright (© 1993 by TransSys, Inc., dl rightsreserved.

PNI uses TCL, the Tool Command Language an extension language designed to be embedded

into applications, as the basisfor the control of the software. The complete source code to the base
TCL package is available via anonymous FTP from f t p. cs. ber kel ey. edu inthe‘/ ucb/tcl’

directory.

/*

* tcl.h --

*

* This header file describes the externally-visible facilities
* of the Tcl interpreter.

*

* Copyright 1987-1991 Regents of the University of California
* Permssion to use, copy, nodify, and distribute this

* software and its docunentation for any purpose and without
* fee is hereby granted, provided that the above copyright

* notice appear in all copies. The University of California
* makes no representations about the suitability of this

* software for any purpose. It is provided "as is" without

*

*
~

express or inplied warranty.

The scripting capability that’s used to dial modemsand log into remote systemsisbased on aheavily
modified part of the expect program. The expect program a so uses TCL asthe basisof its scripting
function.

/*

*

* 0% ok X kO

*/

expect.c - expect and trap comrands
Witten by: Don Libes, N ST, 2/6/90

Design and inplenentation of this program was paid for by
US tax dollars. Therefore it is public donmain. However,
the author and NI ST woul d appreciate credit if this program
or parts of it are used.

Some useful extensionsto TCL are also included; these are a subset of the Extended TCL pack-
age, TclX. Complete source code the the TclX package is available via anonymous FTP from
ftp. NeoSof t . COMinthe‘/ pub/tcl/di strib’ directory.

Chapter 1: Introduction 7

tcl Extend. h

External declarations for the extended Tcl library.

Copyright 1992 Karl Lehenbauer and Mark D ekhans.

Perm ssion to use, copy, nodify, and distribute this
software and its docunmentation for any purpose and without
fee is hereby granted, provided that the above copyri ght
notice appear in all copies. Karl Lehenbauer and Mark

D ekhans nake no representati ons about the suitability of
this software for any purpose. It is provided "as is"

* without express or inplied warranty.

*/

L I S B I R S

The packet filtering capability is based on the Berkeley Packet Filter and the t cpdunp program,
which were heavily modified to work as part of another application. Thet cpdunp program is
available viaanonymous FTPfromft p. ee. | bl . gov as‘t cpdunp-2.2. 1. tar. Z'.

Chapter 1: Introduction

L I B R R B B R R T I S S . B S R I N N N N N N N N I N R S R S R R

~

Copyright (c) 1990-1991 The Regents of the University
of California.
Al rights reserved.

This code is derived fromthe Stanford/ CMJ enet packet

filter, (net/enet.c) distributed as part of 4.3BSD, and
code contributed to Berkeley by Steven McCanne and Van

Jacobson both of Law ence Berkeley Laboratory.

Redi stribution and use in source and binary fornms, with
or without nodification, are permtted provided that the
following conditions are net:

1. Redistributions of source code nust retain the above
copyright notice, this list of conditions and the follow ng
di scl ai ner.

2. Redistributions in binary form nust reproduce the above
copyright notice, this list of conditions and the follow ng
di sclaimer in the docunentation and/or other materials
provided with the distribution.

3. Al advertising materials mentioning features or use

of this software nmust display the followi ng acknow edgement:
This product includes software devel oped by the University
of California, Berkeley and its contributors.

4. Neither the nanme of the University nor the nanmes of

its contributors may be used to endorse or pronote products
derived fromthis software wi thout specific prior witten
per mi ssi on.

TH S SOFTWARE |'S PROVI DED BY THE REGENTS AND CONTRI BUTCRS
"*AS IS’ AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG,
BUT NOT LIMTED TO THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY
AND FI TNESS FOR A PARTI CULAR PURPCSE ARE DI SCLAI MED. IN
NO EVENT SHALL THE REGENTS OR CONTRI BUTCRS BE LI ABLE FOR
ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR
CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT NOT LIM TED TO,
PROCUREMENT OF SUBSTI TUTE GOCDS CR SERVI CES; LOSS OF USE,
DATA, OR PRCFITS; OR BUSI NESS | NTERRUPTI ON) HOWNEVER CAUSED
AND ON ANY THECRY OF LIABILITY, WHETHER I N CONTRACT, STRICT
LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE CR OTHERW SE)

ARI SING N ANY WAY QUT OF THE USE OF TH S SOFTWARE, EVEN

| F ADVI SED OF THE PGCSSI BI LI TY OF SUCH DAVAGE.

@ #) bpf. c 7.5 (Berkeley) 7/15/91

Chapter 1: Introduction 9

This package contains an implementation of of the MD5 Message digest algorithm which is
“derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm”. The MD5 digest
algorithmisdescribed in Internet RFC-1321, which also includes a reference implementationin the
C programming language. This RFC can be obtained from avariety of different sources, including
viaanonymous FTP from RSA. COMas ‘/ pub/ nd5. t xt ’.

1.7 Summary

The TransSys PNI product isanew approach to solving the SLIP or dial-up connectivity problem
on the NeXT platform. The product was developed with portability in mind and will be available on
Intel-based NEXTSTEP platforms as well as Motorola 68030 and 68040 platforms. Ports to other
hardware platforms running NEXTSTEP, when they are announced, will aso be performed very
easily.

The modular nature of the product allows it to address new situations and applications easily,
without major redesign of the software. For instance, conversion from SLIPto PPPissimply amatter
of substituting the PPP |oadable encapsulator for the existing SLIP/CSLIP encapsulator. Similarly,
use of ISDN rather than a seria port requires only an ISDN encapsulator (and the requisite ISDN
hardware, of course) and no changesto any of the other encapsulators such asthe DES encryption or
FILTER encapsulators. You can pick and choose the capabilities and features that your application
requires. Want to see how your network based application functions over a wide-area, congested
network? Write an encapsulator that randomly drops some percentage of the traffic passing through
it. Vary the drop rate remotely and watch the effect on your application. You don’t even need a
network connection; use the LOOP encapsulator and simulateit all locally!

This sort of mix-and-match architecture will adapt to meet you needs. The TCL based configu-
ration and scripting language is the most flexible you will find in any SLIP or PPP like product.

Chapter 2: Release Notes 10

2 Release Notes

This manua is not yet completed and isin pretty bad shape at the moment. The information
present is probably not organized in the best possible way. The emphasis thus far is to get what
information is available written down, organization and presentation has suffered as aresult.

2.1 Beta Test Software

Previous versions of PNI software were available for beta testing purposes. You should ensure
that you are not using one of these version instead of the current release version.

2.2 Release History

2.2.1 1.4 Beta Release

Thiswas thefirst betarelease widely available.

2.2.2 1.5 Beta Release

This was an interim release, not available very long, which resolved a number of rather silly
problemsthat crept into the distribution at the last minute. These were mainly confined to anumber
of TCL script files. Also a number of the modem dialing scripts were updated.

2.2.3 1.6 Beta Release

This version corrects a rather serious bug which, while benign and not noticed on Motorola
680x0 hardware, causes pni d on Intel 80486 systemsto dump core due to asegmentation violation.

2.2.4 1.7 Beta Release

e Updated this document with more documentation describing the PnI software, including the
di al er expect command. Also describe how to set up server mode and how to debug dialing
scripts. Still need to thoroughly index the document.

e Added additional information which can be returned by the remote encapsulator query facility
(viathepni t cl program). Thisisn't currently used except in debugging and devel opment.

e When processing key registrationsin the pni d program, resign any set-UlDness. Don’t emit
promptsfor registration string if the standard input isn’'t a tty device.

e Add new TCL command, sysar ch, which returns a two eement list list containing the
operating system and hardware architectures.

¢ InthePNI encapsulator, don’t emit weird error messages when passed a“ runt” packet for input
to the kernel. Check for minimum sized packets and complain if they look broken.

Chapter 2: Release Notes 11

¢ IntheSLIP encapsulator, declare somedatastructuresconst to movethemintothe (read-only)
code segment. When input packets exceed the configured MTU of the interface, ook for the
end of the bloated packet and emit the length in the “ packet too large” error message:

slip slip: rec’'d frane | en=% exceeds ntu=%l

If in auto-CSLIP mode, log a message when switching from uncompressed to compressed
SLIP mode.

e Inthe TTY encapsulator, fix log message to specify the name of the network interface, rather
than just pni .

¢ Added support/login-netblazer.tcl, login script for a Telebit Netblazer.

¢ Insupport/init.tcl, add some additional comments describing the use of ther encnd function to
handle remote commands. Add thest at us command for remote queriesto return asummary.

M ake some debugging messages condition on testMode being defined when pni d isinvoked
with the-t option.

Add support for a summary file which logs start and stop entries only to determine use of PNI.
File nameis specified by the Conf i g(cal | Log) configuration variable.

e Fix bogus commentsin the support/login-annex.tcl file.
e Fix broken code in the support/login-unix.tcl file.

e Change the loadable kernel driver and instalation scripts to use a different character spe-
cia magor device number. This has been assigned to TransSys, and should eliminate the
incompatibility with Novell IPX.

e Fixestothepni st at script, including anew command to return the processid of a particular
instance of the pni d daemon process. It isaso now possibleto query more than one instance
of the daemon in oneinvocation of the script.

e Theinstal scriptsshould be abit less prone to complaining about device conflicts when PNI is
re-installed on the same host.

e Added (yet unused) Feature array to pni d which can easily be set by acommand line option.

2.25 1.8 Beta Release

e The TCL interpreter used by PNI has been upgraded to the latest version, TCL 7.3. The
corresponding version of the TCL extensions package, Tcl X has also been upgraded.

e A bug in the inactivity timer of the FILTER encapsulator has been fixed. The timer wasn't
started until thefirst packet which matches the inactivity timer reset filter was seen, rather than
when the encapsul ator wasinitiaized.

e Important: only config files of the form ‘/ et ¢/ pni / confi g/ f 0o. confi g- aut o’ will be
automaticaly started at boot time. Thisis a change from the previous version.

2.2.6 1.9 Beta Release

Chapter 2: Release Notes 12

Fixed a bug which required that a file ‘/usr/local /tcl X/ 7.3a/ TclInit.tcl’ exist
on the machine which the PNnI package was installed on. This was a side-effect of hav-
ing a pathname compiled into the TclX software. This is now overridden, and uses
‘letc/pni/Tcllnit.tcl’ instead. This bug caused the pni busy program to not func-
tion.

Reworked the ‘/ et ¢/ pni / pni run’ shell script to correctly handle the convention used to
specify configuration files which are invoked automatically when the system boots. The
behavior described for the previousrel ease, see Section 2.2.5 [1.8 Beta Release], page 11, now
actually works!

Repaired a bug which kept the SLIP-only, non-expiring license key from working. Important:
this change unfortunately will cause dl of the license keys which have been previously issued
to now be considered invalid, and unusable with the 1.9 Beta and later rel eases.

Added support to the makei nf o program, thet exi nf ops. t ex TeX texinfo macro package,
andt exi 2ht m for anew set of @fhtml and @nd ifhtml directives.

The demo license key strings no longer include the PPP feature. This was only specified for
future use; there is not currently PPP encapsulator available. Sorry for getting your hopes up.

Fixed the priority queuing in the loadable kernel driver to convert TCP port numbers from
network byte order (“big-endian”) to host byte order when checking for traffic to and from
“interactive” services. This wasn't working on Intel-based systems which have the wrong
(“little-endian’) byte order.

The TclX package has been upgraded to TCLX 7.3a patchlevel 2. TclX is a package of
useful extensions to the TCL interpreter, which is used extensively in the PNI package. More
information on Tcl X is available on harbor.ecn.purdue.edu in ‘pub/ t cl / ext ensi ons’.

2.2.7 1.10 Beta Release

Thepni t ¢l program wasn't printing promptsin interactive mode; thiswas due to changesin
the most recent version of TclX. pni t cl nhow printsaprompt composed of the program name
and the history list item number.

The pni d program no longer performs a set pri ority(PRI O PROCESS, 0, -20). The
daemon runs at “normal” priority, which should reduce the impact on the rest of the system.
You can cause it to revert to the previous behavior by adding the - o pri ori t y=-20 to the
pni d invocation.

Add - debug and - down optionsto the pni r un shell script. The - debug option can be used
to run apni d daemon process interactively while debugging dialing and login TCL scripts.

The - down option can be used to halt a named instance of thepni d process which is running.
Documentation restructuring - moved supporting information into an appendix.

Fixed a bug in the packet decoder/dumper subroutine which inadvertently applied ntohs() to
the ICMP type and code fields, which are only 8 bits wide.

New utility TCL function, pri nti f y, defined which will convert carriage return, linefeed and
tab charactersin a stringsto printabl e representations. Thisis useful since messages which are

Chapter 2: Release Notes 13

logged using the syslog facility are truncated at thefirst newline character. Thel og, dl og, and
war n TCL functions are updated to use pri nti f y to clean up the message text to be logged.

The pni st at TCL script has been updated to be a little more graceful when invoked and no
daemon is running. Rather than amany line TCL traceback being dumped, a simple one line
warning message is emitted instead.

2.2.8 1.11 Release

Converted TCL scriptsto usethe swi t ch primitive rather than the depricated case primitive.
Fixed error message in the pni busy script.

For hard-wired serid lines, added the ability to have pni d ignorethe statethethe DCD (Carrier
Detect) RS232 control signal. The use of this feature is not recommended since you cannot
detect when a modem connection has dropped, which is signified by the modem dropping the
DCD signdl. It is useful, however, when a hardwired connection exists between two directly
connected computers and the cable doesn’t correctly driver one computer’s DCD signal from
other other computer’'s DTR signal as a correct “null modem” cable should.

Check the documentation on the TTY encapsulator for information on how to configure this
features.

Thepni d daemon now correctly respondstothenull RPC call. Now, r pci nf o - u | ocal host
pni 0 works as expected.

Initialize syslog a bit earlier to catch errors during early initialization activities.

2.29 1.12 Release

Thepni d daemon will now more gracefully deal with failures during the phasel initiaization,
and not attempt to perform phase2 initidization procedures. This means that if the network
interface is already active and in use by another daemon, further initiaization will not be
attempted.

If an error occursinthe‘PNI . encap/ PNI _obj I ni t . t cl ’ file containing initial zation scripts
for the PNI encapsulator, then don’t try to log the contents of the er r or | nf o variableiif it's
not set. Previously, thisresulted in aanother TCL error traceback which was confusing.

And the previous error occured because the er r or I nf o variable wasn’t declared gl obal in
the TCL procedure.

We now periodically reset the the priority of the pnid process. Thisis because it tends to get
“auto-niced” after it's been running for awhile. This causes performance to suffer somewhat,
and manifestsitself as not as snappy remote-echo performance.

Fix errorinthe ‘support /1 ogi n- pni . t cl ’ script which incorrectly referenced an incorrect
variable when trying to log an error message.

The kernd driver will now mark the network interface as “down” when the associated pni d
daemon process exits and closes the pseudo network interface kernel driver.

The kernel driver no longer (incorrectly) identifies itself as Beta Test Software.

Chapter 2: Release Notes 14

Fix abugintheInstaler's post-install script which causes aliteral “*” to inadvertantly get file
globbed. This happens when creating new groups usingtheni uti | program.

2.2.10 1.13 Release

The pni busy script isno longer used. It should now be possible for anyonein thepni group
to start an instance of the pni d daemon without running as root.

Fix various login scriptsto not usethe TCL fi |l e readabl e ... construct, it TCl usesthe
access() system cal internally. This doesn’t do the Right Thing since access() check file
access based the real UID of the process, rather than the effective UID. Since pni d runs setuid
to root, this causes things not to work correctly.

The PNI encapsulator now keeps track of which routes it actually succeeded in instaling (a
default routeand/or aroutefor theloca address of the PNI interface viatheloopback interface),
so it can properly clean up after itself.

2.3 FuturePlans

These are some of the feature which are not currently implemented:

First, and most obvious: the documentation isinadequate for use by mere mortals.

The PNnI software uses a UNIX character specia device to communicate with the kernel-level
pseudo network interface driver See Section A.3 [pni _r el oc kerndl driver], page 81. This
is currently hardcoded to attempt to use a mgjor device number of 29. On Motorola-based
NEXTSTEP systems, it is necessary to use afixed major device number, while on Intel based
systems, it is possible to have one dynamicaly assigned. The dynamic assignment is not yet
done on those systems, so apotential for conflict exists. The major device number used by PNI
was assigned by NeXT to TransSys exclusively, Inc. so there should be minimal opportunity
for conflict.

Control and monitoring is yet somewhat minimal. The PNI software uses Sun RPC to commu-
nicate to the daemon process. There is a program to initiate the RPCs (viaa TCL primitive);
the daemon process will receive them and authenticate their origin using an MD5 digest over
the message and a password.

There isa TCL script provided, ‘/ et c/ pni / bi n/ pni st at’ which uses a TCL interpreter
augmented with PNI specific commands (/ et ¢/ pni / bi n/ pni t cl), to extract statistics from
instances of the pni d daemon.

One known problem currently isthat whilst the daemonisin the midst of processing themodem
dialing and login scripts, it will not respond to remote queries from the monitoring tools.

Chapter 3: Installation 15

3 Installation

In this chapter, we'll examine briefly the steps required to install the PNI software on your
NEXTSTEP computer system. We'll cover only the basic structure and steps of theinstallation and
configuration process; the details will follow in later sections.

3.1 System requirements and prerequisites

The PN package will run on NEXTSTEP versions 3.1 and 3.2 on both Motorolaand Intel based
platforms. Installing is requires approximately 1 MB of disk space.
A few issuesto consider:

e 68030-based NeXT Cube systemsdo not have seria portswhich support hardwareflow control.
This means that SLIP applications over a seria port will have to be run at no faster than the
modem link speed, before any compression, for best effects.

e Thedistributed serial driver for Intel NEXTSTEP 3.1 systemsis defective, and will cause the
system to crash under moderate load. Upgrade to 3.2 as soon as possible.

e Motorola-based NEXTSTEP 3.2 systemsusing TTYDSP seria hardware will likely require a
TTYDSP driver update, as the earlier versions would consume agreat deal of CPU time when
used by PNI.

e There is currently no support for HP NEXTSTEP platforms due to lack of available cross-
development tool shosted on 68040 based NEXTSTEP systems, targeted to generate HP object
code.

3.2 Installing the distribution

The software distribution containing the PNI software will consist of a NEXTSTEP Instaler
package. The package may have been providedtoyou on afloppy disk. Alternatively, you may have
thefile inits electronic distribution format intheformof a“. tar’, “. tar. Z', or ‘. conpr essed’
file.

To install and use the PNI package, the following tasks need to be compl eted:

1. Load the software distribution on the NEXTSTEP system from the distribution medium (or
electronic distribution) using the Installer application.

2. Acquiretheinformation needed to configure anetwork connection using the PNI package. This
information include 1P network addresses, the subnet mask, and routing information. In the
case of dial-out SLIP or CSLIP connections, it is also necessary to determine what type of
modem is to be used, the telephone number to be diaed, the type of remote network access
server and any username and password information that's required to bring up the link.

3. Prepare aPNI configuration for each network connection. Thisis afile where the information
that we collected is specified for the PNI software to use.

Subsequent sections in this chapter will detail the installation steps, and will also include a
“quick start” to acommon PNI configuration: adia-up SLIP connection.

Chapter 3: Installation 16

3.2.1 Beforelnstallation

Before installing the PNI software, you heed to consider afew installation choices.

First, the PNI software makes use of a UNIX group caled pni which will be the group-owner
for a number of files. By default, if no pni group exists at instalation time, one will be created
with a UNIX group id of 42. If thisgroup id is aready in use, the installation process will begin
examining group id sequentially increasing group id vaues until it finds an available group.

If youwould prefer to specify agroupid, createapni group usingtheUser Manager application
prior to installing the PNI software.

The other choice isto consider where you would like the software installed. By default, it will
beinstaledinthe'/ Local Apps/ PNI " directory. You may chose other locations for the software
to be installed if you like; the installation script will create a symbolic link from ‘/ et ¢/ pni ’ to
the actual installed location. The */ et ¢/ pni * path name is the only path hard-coded in the PNI
package; it is used to identify the location of the package. (Actualy, the other hard-coded path
names are the character special devices‘/ dev/ pni *. ")

3.2.2 Electronic file archive installation

If you have obtained an el ectronic file archive distribution, either by FTP from an archive site on
the Internet, or perhaps via NeXTMail, or by some other download process then it is hecessary to
unpack the distribution archive so it can beinstalled. This processis necessary because the archive
isused to group together (and compress to reduce the size of) a collection of filesas asinglefile for
transmission. The distributionwill be an archive of adirectory (or folder) caled ‘PNI - ver si on’,
where ‘ver si on’ will indicate which revision of the PnI software is being distributed. Within this
folder will be apackagefile aswell as some other support files such asa‘READVE’ or other auxiliary
information.

From thea UNIX shdll:

cd /tnp
gzip -d -c < /some/path/to/PN -1.13.tar.gz | tar -xvf -

3.2.3 Diskette Distribution

You may have received the PnI software on adistribution disk; either on a1.44MB floppy disk or
perhaps on aCDROM. In thiscase, thereisno file archive which need to be unpacked or unarchived;
all of therequisitefiles are directly accessible. On afloppy disk, al of the fileswill be stored at the
root of thefile system. On aCDROM, thefiles will likely be stored in afolder corresponding to the
PNI product.

3.2.4 Using the Installer Package

To install the package, you must run the NEXTSTEP ‘I nst al | er. app’ application. To do
this, log into your system as the system administrator root, and double-click onthe‘PNI . pkg’ icon
in the Workspace. Thiswill launchthethe‘l nst al | er. app’ application.

Chapter 3: Installation 17

Now clock on the ‘I nstal | * button. You will be given an opportunity to choose where the
software will be installed. You can just use the default location (‘/ Local Apps’), or perhaps you
can choose someother location (such as‘/ usr /1 ocal ’ or‘/ usr/ pni). Caution: You should not
install it as ‘I et c/ pni ’! Later on, during the installation process, a symboliclink a ‘/ et ¢/ pni’
will be created to point to the actual installed location; it isimportant to not preempt thisfile name.

You aso have the option to choose which hardware architectures are to be supported. The PNI
package is distributed as a “fat” binary that supports both Motorola 680x0 and Intel platforms. By
default, only the current hardware architecture will be select (Intel for 1486 and Pentium based

systems, and Motorolafor NeXT “Black Hardware”. If you like, you can install both architectures,
though you probably don’t want to, as the package will consume more disk space.

Onceyou have decided on thelocation, click on the‘OK’ button. You will bewarned by an Alert
panel that installation programs will be run; click OK to continue.

The pre-installation installer program will indeed verify that you are running asroot; please do
not attempt to disable this check. Part of the installation process updates some system file and your
local Netinfo domain. It isrequired that the user be root to perform these operations.

After thefileshave beeninstaled from thelnstaller packageto thelocal disk, the post-installation
program will be invoked. The post-installation program will then continue and perform other tasks
to compl ete the installation.

3.2.5 Installation-time system changes

A number of changes are made to your system by the post-installation program that’s invoked
automatically by theinstaller. You should be avare of the changes that are made so that you do not
inadvertently un-do them in the course of normal system administration functions.

3.25.1 ThePNI package symbolic link

It isnecessary to be ableto reference the whole subtree of installed files after they areinstalled to
locate various configuration files, and other files required for operation of the pni d daemon. Since
the package can beinstalled anywhere in the UNIX file system, it is necessary to have an “anchor”
somewhere that can be used to discover the installed location of the package.

When the package is instaled, the post-installer program will create a symbolic link at
‘I et c/ pni’ which points to the installed package. All of the references to the installed files
are donerelativeto thissymboliclink, so it isimportant that thissymbolic link be present and point
to the correct location.

If the post-installer program discovers apre-existing symboliclink, it assumesthat it isan artifact
of aprevioudy installed version of the PNI package and replaces it. If ‘/ et ¢/ pni ' isaplain file,
then an Alert panel is used to query the user and determine if the file will be removed or if the
installation will be aborted.

Chapter 3: Installation 18

3.25.2 Device namesin ‘/ dev’

A number of character special devicefileswill becreated inthe'/ dev’ directory. Theseare used
to communicate with the loadable kernel device driver and are each one“half” of apseudo network
interface. There will be 16 files created inthe‘/ dev’ directory: ‘/ dev/ pni 0’, ‘/ dev/pni 1', ...,
‘/dev/ pni 9’,‘/ dev/pnia’,‘'/dev/pnib’,..., "/dev/pnif’.

The critical issue relating to the character special device files is which character specia magjor
device number is used. The major device number can be considered to be an index into atable that
isused to reference different UNIX kernel drivers. Only asingledriver can use aparticular entry in
thistable, soitisessentia that conflicts with existing drivers be avoided.

The PNI package uses character special major device number 29. The post-install program will
examinetheexistingfilesinthe'/ dev’ directory for conflicts; if any filesare found that conflict, they
are displayed and you are asked if you want to continue. If thefilesthat arelistedare‘/ dev/ pni 0’,
etc,, thenitslikely that you are installing a new version of the PNI package, and there redlly is no
conflict.

3.2.5.3 Changesto therpcs NetInfo directory

The post-installation program will install a set of new RPC (Remote Procedure Call) program
names. The PNI package uses Sun RPC to monitor and control the pni d programs that are running.
Each pni d daemon registers for a different RPC program number which is used to select which
daemon you are interested in monitoring.

A mapping exists between symbolic program names, which are mnemonic and hopefully easy
to understand and remember, and the actual RPC program numbers which are used to rendezvous
with the program willing to perform the RPCs. Thismappingis stored inthe local NetInfo database
inthe‘/ r pcs’ location in the NetInfo database.

The program names that are used are ‘pni 0’ ... ‘pni 9’, ‘pni a’ ... ‘pni f . These correspond
directly to the names of the network interfaces as well as the names of the character special device
files created in ‘/ dev’. (Although there is no requirement that they have this correspondence, it
sureis handy!)

The program numbersthat are used by the PNI package are in arange which start from 395250.
This number range has been assigned by Sun Microsystems (who administer this space) for the
exclusive use of TransSys, Inc. and our software. You should not experience any conflicts; if you
do, we'd be very interested in hearing about it!

The post-installation script will usetheni uti | program to install the RPC mappings. You can
examinethese at any later time by using this command at the a UNIX shell:

ni dunmp rpc
you should see the following (though they may be in adifferent order);

pni 0 395250
pni 1 395251
pni 2 395252

Chapter 3: Installation 19

pni 3 395253
pni 4 395254
pni 5 395255
pni 6 395256
pni 7 395257
pni 8 395258
pni 9 395259
pni a 395260
pni b 395261
pni c 395262
pni d 395263
pni e 395264
pni f 395265

3.25.4 Changesto‘/etc/rc. | ocal’

The'/etc/rc.local’ fileis modified during installation so that the various pni d daemons
can be started when the system is booted. The modifications that are made are of a very specific
format that can berecognized at alater time and removed should you decide to uninstal the software
package.

Thefollowing lineswill be added tothe‘/ et c/rc. | ocal ’ file:
PNl :: START: :

Hit

Danger! Warning! Do not renove the

Hit # PN ::START:: or the # PN ::END: :

lines in this file. The are used to autonate

installation and de-installation of this
software package.

Ht
if [-f /etc/pni/pnirun]; then
(/etc/pni/pnirun -all -boot -core & echo -n ' pnid) \
>/ dev/ consol e 2>&1
f
Ht
PNl :: END: :

It isvery important the the two delimiting lines
PNl :: START: :
PN :: END: :

not be modified or removed. If they are, then it will not be possible for the PNnI package to be
completely removed automatically. Any other lines added between the delimiting lineswill aso be
removed should you choose to de-install the package.

Chapter 3: Installation 20

If you aregoingto usea TTYDSP seria port on your Motorola-based NEXTSTEP system, then
it may be necessary to move these modificationto the‘/ et c/rc. | ocal ’ file to a place after the
TTYDSP product isinitialized.

3.25.5 Changesto‘/ et ¢/ sysl og. conf’

The‘/ et ¢/ sysl og. conf’ fileisaso modified so that |og messages produced by the PNI pack-
age are collected together into on elog file for easy perusal. The following lines are automatically
added tothe'/ et ¢/ sysl og. conf’ file:

PNl :: START:: 1.0
| ocal 5. debug [usr/adn pni .| og
PNI::END:: 1.0

You may wish to change the debug level specified to i nf o or perhaps not i ce to see fewer
messages once you have installed the package and it is functioning correctly.

Inasimilar manner tothe‘/ et c/ rc. | ocal ’ file (see Section 3.2.5.4 [Changesto /etc/rc.locdl],
page 19) the file changes are marked with distinctive delimitersto allow the change to be removed if
the packageisde-instaled. Do not modify or remove the delimiting lines or this automatic removal
will not function.

3.2.6 License Key Registration

The next step in the installation process is to register the software by using the License Key
String supplied with the software. Thisinformation is used to register the software on the system it
has been installed on.

When the registration panel appears, pleasefill in therequired informationincluding the License
Key String. Note: to avoid confusion between characters which have similar appearance, the set of
characters that are used to make the License Key string are restricted to:

e ThelOdigits0123456789

e The25UPPER CASE characterSABCDEFGHI J KL MNPQRSTUVWXY Z. Notethat the
letter O(oh) isnot included so it will not be confused with the number zero.

e The 25 lower case charactersabcdef ghi j kmnopqgr st uvwxy z. Notethat the
letter | (ell) isnot included in this set so that it will not be confused with the number one.

e The 4 punctuation characters + / @%

The License Key String will be at least 16 characters from the set defined above (and longer
if it is ademonstration key with an expiration date). The License Key String, along with the user
information supplied on the registration panel is used to construct a ‘/ et c/ pni / keyfil e’ file
which the pni d daemon uses. Do not delete thisfile, or you will need to reregister the software.

Some distributions of the PNI software will have a‘/ et ¢/ pni / keyfi | e’ pre-installed. If this
is the case, you will be asked during the installation process if you would like to keep the existing
keyfile. You should answer yes to keep the existing demo keyfile.

Chapter 3: Installation 21

3.3 Configuration Preview

Now that the software has been installed and registered, it is necessary to configure the software
for your specific environment.

To perform this configuration, it is necessary to create a configuration file for each Pseudo
Network Interface that you wish to use. In many cases, asingle network interfacefor aSLIP/CSLIP
connection isal that's required.

It may a so be necessary to modify or create from scratch additional support files which are used
to dia modemsand “log in” to remote systems.

For network linkswhich are originated or established from thelocal host, the configuration files
are stored in‘/ et c/ pni / config’'. Support files are located in ‘/ et ¢/ pni / support’. (Recal
that ‘/ et ¢/ pni’ is a symbolic link to the installed directory.) Please note that files which you
create or modify inthe ‘/ et ¢/ pni / confi g’ directory will not be modified or overwritten if you
install newer versions of the PNI package.

For network linksthat are originated remotely, See Section 4.4.1 [PNI Network Access Server
configuration], page 29, for more information.

3.3.1 Quick Start

There are three sections of information in the sample configuration files; your configurations
will likely reflect this structure as well. Simply put thereis:

1. Theinformation needed by each of the components (encapsulators) of thepni d program. This
section consists of aseriesof TCL set commands.

2. Alist of the components (encapsul ators) being used in this particular information. Thissection
consists of aordered list of TCL st ack commands.

3. Procedure definitionsfor special purpose, custom actionsto be performed when alink become
active or goes inactive. This section consists of a series of TCL proc commands to define
procedures to be invoked.

We'll briefly cover the sample configuration; detail information is available in later chapters of
the manual, organized according to each encapsulator.

3.3.2 Tour through sample SLIP configuration

If you are just bringing up a remote SLIP or CSLIP link from your host, dialing some network
access server, you can probably take an existing sample configuration and modify it for your use.

A sample configuration, found in ‘/ et ¢/ pni / SAMPLES/ confi g. sl i p’ should be copied
to a file named ‘/ et c/ pni/confi g/ pni 0.config’. Note that if you want a pni d dae
mon started automatically at boot time, you must append - aut o to the file file name, eg.,
‘I etc/ pni/config/pni0.config-auto’. See Section 13.4 [The /etc/pni/pnirun shell script],
page 70, for details and more information.

For abit more through commentary, look at the‘/ et ¢/ pni / SAMPLES/ conf i g’ filewhich has
abit more detail, or skip to the next chapter.

Chapter 3: Installation 22

#

Pretty close to nininmal configuration file for just
plain SLIP using a ZyXEL nodem dialing into a

Xylogics Annex SLIP server.

#

PART |.

First, we will specify the configuration information for the pni encapsulator which corresponds
to the network interface and associated | P address information. We specify the name of the network
interface which will be used (‘pni 0’ in this case); a network interface can only be used by one
pni d daemon process at atime. The MTU (Maximum Transmission Unit) of the interface is also
set; for plain SLIP connections, this usually defaults to 1006 bytes, though some remote systems
used as dial-in network access servers use 1500 bytes.

set Config(pni: | NTERFACE) pni 0
set Config(pni: MrU) 1006

Now it is necessary to specify the IP address information. A SLIP connection is implemented
using a point-to-point network interface; thistype of interface is defined to have alocal address (for
your host) and a remote address (for the other end of the point-to-point link). A subnet mask should
also be specified to indicate what part of the address is the network part, and what part is the host
part. You network administrator should be able to supply you with thisinformation.

set Confi g(pni: ADDRESS) 229.230.11. 211
set Confi g(pni: REMOTEADDRESS) 229.230.11.111
set Confi g(pni: NETWORKMASK) 255, 255. 255. 0

If you'd like a default route installed which uses this interface when the link is established (and
removed when the link is dropped), then include the next line. If you don't want a default route
dynamically installed when the link is established, omit thisline

set Confi g(pni: DEFAULT) 1

The configuration for the ‘sl i p’ encapsulator is rather simple: you only specify the MODE
of the encapsulator which can be either ‘sl i p’ or ‘csl i p’ (if your License Key authorizes use of
CSLIP).

set Config(slip: MODE) slip

Now we specify the configuration for the ‘t t y’ encapsulator; its job is to talk to a seria tty
device to send and receive characters. We specify what device to use, and what speed the port
should be set to use.

set Config(tty: DEVI CE) / dev/ cuf a
set Config(tty: SPEED) 38400

We aso indicate what type of modem is connected to the serial port and what type of net-
work access server will be called. The names that are used refer to support scripts in the script
search path, which are the following directories. ‘/ et ¢/ pni/config’, ‘/ et c/ pni / support’,
‘/'etc/ pni/ TTY. encap’. So, if you need to modify one of the scripts which are provided by the
PNI software, place them inthe '/ et ¢/ pni / confi g’ directory where they will not be deleted or
over-written should you install a new version of software.

Chapter 3: Installation 23

The ' MODEMTYPE' specification refers to the
‘/etc/pni/support/dial-*.tcl’
files, while the * SERVERTYPE' specification refers to the
‘/etc/pni/support/login-*.tcl’
files.

If a dialer script or login script doesn't exist, you can create your own modeled on the
existing scripts, name them ‘l ogi n-foo.tcl’ or ‘dial-bar.tcl’ and install them in the
‘/ et c/ pni/config’ directory.

set Config(tty: MODEMTYPE) zyxel
set Config(tty: SERVERTYPE) annex

Now it is necessary to specify someinformation required by modem dialing and network access
server login scripts. First, we specify the name of the network access server that we'll be dialing
into. Thereisnothing specia about the namethat is picked, it isused in asubsequent configuration
specification so it must be consistent .

Then the phone number to be dialed, and how the dialing isto occur (either TONE or PULSE).

set Config(tty: SERVERNAME) your Sl i pServer Nane
set Config(tty: NUVBER) 555-1212
set Config(yourSlipServer Nane: DI ALTYPE) TONE

Finally, if the network access server you are connecting to requires you to “log in”, then you
must supply the user name and passwordfor the‘/ et ¢/ pni / | ogi n-f o0o. t ¢l ’ scripttouse. There
are two ways to do this. A file name can be specified which contains TCL commands to set the
username and password:

set Config(your Sli pServer Nane: SECRETFI LE) \
"/ etc/pni/config/password. pni 0"

Thefile‘/ et ¢/ pni / confi g/ passwor d. pni 0’ would contain two lines:

set usernane sliplogi n37
set password theSecretWrd

The motivation for this option is that the regular configuration would contain no sensitive
information and could be readable by anyone. The sensitive username and password could be kept
protected in its own file, and only readable by the “root” user. Infact if you use a separate file, you
must ensurethat thefile it not readable by “group” or “other” based on the UNIX permissionsset on
thefile. Thisis checked for by the pni d scripts and an error will occur to notify the administrator
that he may have inadvertently allow sensitive information to be exposed.

Alternatively, it is possible to encode the the user name and password in the configuration file.
Thisisabit ssmpler to configure, and may be appropriate in some situation where having the main
configuration readable is not necessary.
set Config(your Sli pServer Nane: USERNAME) sl i pl ogi n37
set Config(your Sli pServer Nane: PASSWORD) t heSecret Wrd

The next command set a password which is used to control what users have monitoring and
control access to the pni d daemon process.

set Confi g(CVD: passwor d) "The secret word"

Chapter 3: Installation 24

If thisis omitted, then a password that was randomly generated at installation timewill be used
instead. The random passwordisinthe ‘/ et c/ pni / confi g/ passwor d’ file, and readable only
by root and the pni UNIX group. Thisisthe preferred mechanism.

The next part of the configuration indicates what encapsul ators will be used together to connect
this particular network interface to the network. The specification of encapsulators are done in
order, starting from the host’s logical network interface and working towards the physical network
connection.

The specification of encapsulatorsisdone using the st ack command. Thiscommand takestwo
arguments:

e The type of encapsulator. This is one of a few predefined names, and are always in UPPER
CASE. These names correspond thethe‘/ et ¢/ pni / *. encap’ directories.

e The name of the encapsulator. This name is use to refer to a particular instance of an
encapsulator. Although not used in this particular configuration, it is possible to use an
encapsul ator type more than once; each would have a unique name. The encapsulator nameis
reference in the set commands in thefirst section of the configuration.

The very first encapsulator is aways the ‘PNl encapsulator. The very last encapsulator is
what actually talks to the “hardware”; the physical connection to the network. In between are the
encapsulators that take you from one end to the other.

For a SLIP application, the sequence of ‘PNI ", ‘SLI P’, ‘TTY' iswhat is required: ‘PNI " will
hand complete IP packets to the ‘SLI P’ encapsulator. ‘SLI P* will take IP packets, and perform
the SLIP-protocol “byte-stuffing” and framing, resulting in a stream of characters. The ‘TTY’
encapsulators takes streams of characters and puts them on the seria port.

The same sort of operation takes for input packets. The ‘TTY' encapsulators hands a few
charactersat atime (asthey arrive ontheseria port) tothe'SLI P’ encapsulator. ‘SLI P’ accumulates
characters until it receives an entire frame, decodes thisto an |P packet, and then handsit to ‘PNl ’.
The ‘PNI " encapsulator then causes the IP packet to be handled as input to the kernel’s network
interface.

PART I1.

stack PN pni
stack SLIP slip
stack TTY tty

There is a “globa”, non-encapsulator specific configuration variable called cal | Log, which
specifies the name of afile which will receive logging records each time the link is established and
broken.

set Config(calllLog) "/usr/adm pni.call-Iog"

The records logged look likethis:

STOP pni 0 Mon Mar 14 22:01:26 1994 - Mon Mar 14 22:04:18 1994
START pni 0 Mon Mar 14 22:05:12 1994
STOP pni 0 Mon Mar 14 22:05:12 1994 - Mon Mar 14 23:01:54 1994
START pni 0 Mon Mar 14 23:07:23 1994
STOP pni 0 Mon Mar 14 23:07:23 1994 - NMon NMar 14 23:17:47 1994
START pni O Tue Mar 15 10:32:07 1994

Chapter 3: Installation 25

STOP pni0 Tue Mar 15 10:32:07 1994 - Tue Mar 15 12:37:19 1994
START pni 0 Tue Mar 15 12:42:34 1994
STOP pni 0 Tue Mar 15 12:42:34 1994 - Thu Mar 17 16:42:35 1994

Finally, there are two TCL “hooks’ that can be defined which can perform specific actions
as events occur. The two events currently available are a “start” event and a “stop” event. The
correspond to when thelast encapsul ator in thelist establishesalink (usually the TTY encapsul ator).
You can cause any local actionsto occur here that you with. One possibility is to run the sendmail
gueue when the link comes up by using the exec TCL command to run a program (if you do this,
make sure the program run is put in the background).
PART I11.

proc LINK start { encap } {
log "LINK $encap connected"
}

proc LINK stop { encap } {
log "LINK $encap di sconnected"”
}

Moredetailed information on how each encapsul ator can be configured follow in the next chapter.

Chapter 4: Configuration 26
4 Configuration

Configuration of the PNI package is done using TCL, the Tool Control Language. TCL is a
procedural embedded extension language; it supplies al of the control structures, data structures,
and a set of standard commands. TCL is then extended by adding application specific command
which can be invoked.

It isinstances of the pni d daemon which need to be configured; the loadable kernel driver that
implementsthe Pseudo Network Interfacesis generally not customized or configured. It ispossible,
under certain circumstances to change some operational parameters of the loadable kernd driver;
particularly which character special major device number it uses (see Section A.3 [pni_reloc kernel
driver], page 81).

All of the interesting functions of the pni d program lie in the individua encapsulators. The
basic pni d program serves asthe supporting framework to alow these encapsul atorsto functionand
be controlled. It should be of no surprise that almost al of the configuration information required
pertains to the individua encapsulators, rather to the pni d program itself.

The configuration information for a particular instance of apni d program is stored in aplain
ASCII text file. Inthe case where thelocal host is actively initiating the link, the configuration files
are stored as ‘/ et ¢/ pni / conf i g/ pni unit. confi g’, where unit is used to distinguish between
different interfaces (‘pni 0, pni 1, ' etc). Thepni r un shell script will automatically use thesefiles
at boot time (see Section 13.4 [The pni r un script], page 70).

The configuration file consists of lines of text which are taken to be a series of TCL commands
to be invoked as the pni d program isinitializing itself.

In addition to the configuration file, two other files of TCL commandsare a so loaded and run by
thepni d program. Thesefilesare'/ et ¢/ pni / pnid. tcl 'and‘/ et ¢/ pni / support/init.tcl’
which provide support. These files consist mainly of TCL procedure definitions.

Other TCL files that are loaded by the pni d program are specific to the encapsulators which
are being used. Encapsulators are Objective-C loadable classes, and reside in bundles stored
in the ‘/ et ¢/ pni ’ directory. Each bundle consists of code that is dynamicaly loaded at run
time as well as other supporting files; in this case, these files include two files that contain
TCL commands. For example, consider the ‘PN’ encapsulator (which will be present in ev-
ery configuration). The bundle directory is ‘/ et c/ pni / PNl . encap’; the actual machine code
that implements the Objective-C class would be found in the file ‘/ et ¢/ pni / PNI . encap/ PNl ",
Supporting TCL commandswouldbefoundinthefiles‘/ et ¢/ pni / PNI . encap/ PNl _Init.tcl’
and ‘/ etc/pni /PNl .encap/ PNl _objInit.tcl’. The difference between the two files is that
thefirst file is loaded only once if the encapsulator isin use. The second file of TCL commandsis
loaded once for each instance of the encapsulator; it may be that the same encapsul ator classis used
more than once, with each configured differently.

4.1 Encapsulators

The operation of each of the encapsulators is configured by invoking encapsulator specific TCL
commands. Normally, these commands are not from the “simplified” (!?) configuration file

Chapter 4: Configuration 27

that’s normally used. The normal course of events is that only elements in the Config TCL array
are specified by the user; the encapsulator specific TCL commands are invoked by configuration
procedures that operate based on the user specified configuration information.

At initialization time, a TCL procedure is invoked for each encapsulator. For example, if
the SLIP encapsulator was used in a particular configuration, and it was “named” dlip, the
TCL procedure that would be invoked to configure that encapsulator would be called slip_
confi gure. Theseconfi gur e procedures are normally defined when the encapsulator’s various
‘letc/pni/*.encap/*Init.tcl’ filesareloaded. Theseprocedure, when invoked, examinethe
defined vaues in the Config array, and perform the required low-level encapsulator-specific TCL
commands.

In the following sections, the commands specific to each encapsulator are listed. In most
cases, you can do what is required by using the simplified “Configuration Directives’ that each
encapsulator’'s conf i gur e procedure examines

4.2 Configuration Directive Conventions

The Configuration Directives are normally just specific values set in the the globa TCL Config
array. Thisarray, likeall TCL arrays, is subscripted by astring. The string subscript by convention
consists of a prefix name, which refers to the encapsulator name defined on the stack command.
The prefix name is followed by acolon and then the name of some configuration parameter.

set Config(slip: MODE) cslip

This configuration naming structure is used since it may be possible to have more than one
instance of an encapsulator used in one configuration (two SL1P encapsulators, for instance). Using
this scheme, it is possible to have different instances of an encapsulator have much different
configurations.

4.3 Configuration Primitive Conventions

The encapsulator’s configuration primitives map directly to aC function or Objective-C method
invocation. These primitives aso have a particular naming structure. When an encapsulator (of a
particular type) isinstantiated (with a specified name). The name of thisinstance is used to create
aTCL command. So, when making a configuration like:

st ack PN pni

st ack FILTER filter
st ack SLIP slip
st ack TTY seri al

Four additional global TCL commands are created, named: pni ,filt,slipandserial . These
commands are used in such away that they expect a*“ sub-command” name to follow the command
name. Each encapsulator inherits a set of “sub-commands’ that are implemented by the encapsula-
tor's abstract super-class. These sub-commandsincludehashst at s, conmands, debug and afew
others.

Chapter 4: Configuration 28

For example, each instance of the PNI encapsulator hasa TCL sub-command created called nt u
tosettheMTU of theinterface. Assumingthe PNI encapsulator wasnamed ‘pni ’, the subcommand
could be used likethis:

pni ntu 1006
to set the MTU to 1006 bytes.

The configuration primitives associated with each encapsul ator are not generaly documented, as
the user of the PNI software should not find it necessary to usethem directly. Instead, a“higher-level”
set of configuration variablesisused, and TCL code specific to each encapsulator isresponsiblefor
invoking the configuration primitives as required.

4.4 Configuration asa Network Access Server

The PNI package can be used as a Network Access Server, to accept incoming sessions, rather
than initiating sessionsto aremote server. A network access server is a device which accepts some
manner of connection from some remote user, and provides |P-level accessto the network. That is,
it actsas arouter to switch | P packets between the just-established connection and the network it is
connected to. Thisdiffers from a simpletermina server which expects terminal's to be connecting
with streams of ASCII characters being sent and received as part of a login session. Rather, it
expects to transmit and receive entire packets from an I P capable host.

There are two major tasks that need to be performed to configure an incoming session. Thefirst
is to create a specia user account for the incoming session. Then you must configure the pni d
process, as usud, for that network interface.

Thethe special user account is needed so that when the remote system logsinto thelocal system,
an instance of the pni d daemon will be available to terminate the connection. This also allows
the use of the seria port(s) for other purposes when they are not being used for a seria network
connection. For example, FAX transmission and reception (PN workswell with the NX Fax product),
the UNIX ti p program, and outbound PNI connections.

The user name for the account needs to be the same as the network interface to be configured
for that link. So the user names would be named pni 0, pni 1, etc. The user nameis used to pick
the appropriate pni d configuration file to be loaded when the pni d program is started up for this
connection.

The UNIX UID should be one assigned for use exclusively for incoming PNI sessions. All of the
pseudo-users created can sharethe same UID vaueif desired. The UNIX group for the pseudo-user
should be set to that group id for the pni group. This group was automatically added when the P
software wasinstalled. By default, the GID of 42 isused. Using the UserManager application, you
can simply choose the pni group from thelist as you create the user.

The home directory for the user can be set to ‘/ t np’, since it is not readly used. Another
possibility, if you choose, may be‘/ et c/ pni / runti me’.

The shell for the user must be ‘/ et ¢/ pni / pni | ogi n’ which is a shell script that eventually
invokes the pni d daemon with the appropriate configuration file.

Chapter 4: Configuration 29

The password for the account should be something that need only be known to the remote SLIP
user, for use whilst completing the login process. Choose a“good” password which is not easily
guessed.

The resultant password file entries that are created will look something like these:
pni 1:j Jj k3450sfj 12: 20: 42: test SLIP login:/tnp:/etc/ pni/pnilogin
pni 2: 4j 912JKk| 3894A: 20: 42: test SLIP login:/tnp:/etc/ pni/pnilogin

(These can be displayed by using ni dunp passwd . from a Terminal window.)

4.4.1 PNI Network Access Server configuration

When the PNI software is used as a Network Access Server, the pni d daemon isinvoked when
the remote session is established, rather than running as along-lived process. An account iscreated
on the host acting as a Network Access Server corresponding; the account name should be named
the same as the network interface to be used to communicate with the remote host.

For example, if a network interface pnilisto be used to communicate with a particular remote
host, alocal user aso caled pniliscreated, with itslogin shell settobe‘/ et ¢/ pni / pni | ogi n’.

A configuration file need to be created for the pni d daemon used in aserver role, just aswhen it
isusedinitsusud clientrole. A special naming convention needs to be followed when creating the
configuration for use in server mode. In the case of an inbound connection for the pnil interface,
the name of thefile needsto be‘/ et ¢/ pni / confi g/ pni 1. confi g-i nbound’.

he same sort of information need to be specified in the configuration file in server mode; one
large difference has to do with the scripts that are used for dialing and logging in when in server
mode.

Since the connection is established remotely, there is no dialing script required to establish the
connection. When in server mode, the PNI encapsulator will the the standard input and standard-
output of the process to receive and send characters on the serial connection.

Thereisaspecia loginscript: ‘/ et ¢/ pni / support/ | ogi n- pni server. tcl’ whichisused
in conjunction with with the ‘/ et ¢/ pni / support /| ogi n- pni . t cl ’ script on the other end of
the link (assuming that the other end is also using PNI). The purpose of the special login file is
to emit certain bits of information that the remote system may be expecting, such as the fact that
the PNI software is now running and ready; what the configured 1P address of the local and remote
systems are; and when SLIP operation actually begins.

4.5 PNl specific TCL commands

Beyond the standard set of commands and features availablein the TCL scripting language, there
are a number of commands available which are specific to the PNI package. These can be useful
to authors of dialing scripts or anyone that needs to modify any of the TCL scripts provided which
control the operation of the PNI package.

Most of the PNI specific TCL commands are specific to a particular encapsulator; those are
described in section that documents the function and configuration of that particular encapsulator.

Chapter 4: Configuration 30

There are, however, anumber of commands which are generally available which will be described
here.

45.1 Logging TCL commands

log Message-args... TCL Command
This command will log a message using the current sysl og facility, a the logging
level of LOG_INFO.

dlog Message-args... TCL Command
This command will log a message using the current sysl og facility, at the logging
level of LOG_.DEBUG.

notice Message-args... TCL Command
This command will log a message using the current sysl og facility, at the logging
level of LOG_NOTICE.

warn Message-args... TCL Command
This command will log a message using the current sysl og facility, at the logging
level of LOG_WARNING.

sysdog LEVEL MESSAGE TCL Command
This command will log a message with the severity level specified by LEVEL, which
can be one of DEBUG, NOTI CE, WARNI NG, ERR, CRI TI CAL, ALERT or EMERGENCY.
The level can optional be prefixed with LOG_, so that LOG_ERROR is equivaent to
ERROR.

The MESSAGE argument is the string which is logged. Due to the implementation of
the sysl ogd logging daemon, only the text up to the first newline character will be
logged - the rest of the message text will be truncated. Thisis a consideration when
logging text which has been matched in a modem dider or login chat script, which
may include multiply lines. Thereisautility TCL procedure, pri nti fy, which will
remove the embedded newline, carriage return and tab characters and replace them
with a printabl e representation.

45.2 pnitcl specific TCL commands

Thepni t cl program is asupport program which included a TCL interpreter with the standard
set of TCL commands, and the TCLX extensions. It aso has a set of commands to perform RPC
operations to running instances of the pni d program.

cmdopen hostname rpc-program-number TCL Command
Creates an RPC client handle to perform commandsto the pni d daemon registered as
RPC program ‘r pc- pr ogr am nunber’ on host ‘host nane’. Returns a handle that
is passed to the crdr pc and cndcl ose commands.

Chapter 4: Configuration 31

cmdrpc handle command [authinfo] TCL Command

cmdclose handle TCL Command
Frees theresources associated withthe handl e specified and makesthe handleinvalid
for any future uses.

Chapter 5: PNI Encapsul ator 32

5 PNl Encapsulator

The PNI encapsulator manages the operation of the virtual network interface. As such, it
communicates with and configured the PNI kernel resident driver.

5.1 Configuration Directives

Config(pni:INTERFACE) Configuration Variable
The | NTERFACE parameter is used to select which kerndl pseudo network interfaceis
to be used by thisinstance of the pni d daemon process. The parameter will usualy
be ‘pni 0’ to use the first pseudo network interface.

Config(pni:MTU) Configuration Variable
Each network interface has an associated Maximum Transmission Unit associated
with it, which is the largest packet size (in octets or bytes) which can be transmitted
or received on the interface. This configuration variable can be used to specify the
desired MTU for theinterface.

It isimportant that for given network link or media, that each host agree on acommon
MTU to be used. If no MTU isexplicitly specified, then other encapsulators (such as
the SLIP encapsulator) may supply a default value.

Config(pni:ADDRESS) Configuration Variable
When the pseudo network interface is enabled and configured, this parameter specifies
what theloca | P address of theinterface will be. 1t should be expressed in the decimal
digits dotted-quad notation, suchas‘10. 1. 0. 17’ or ‘192. 5. 214. 1'.

Config(pni:REM OTEADDRESS) Configuration Variable
Normally the pseudo network interface is used as a point-to-point network interface.
The REMOTEADDRESS parameter specifies the IP address of the host at the other end
of the point-to-point interface. It is dso specified in the decimal digits dotted-quad
notation.

Config(pni:NETWORKMASK) Configuration Variable
Along with the Confi g(pni: | NTERFACE) and Confi g(pni : REMOTEADDRESS)
variables, thisis used to specify the subnet mask associated with the local address of
the network interface.

Config(pni:DEFAULT) Configuration Variable
This configuration variable takes an integer value. If the value of non-zero, then a
default route pointing out this interface is installed. The default route will also be
removed when the pni d daemon exits. Thisis only performed if the interface is a
point-to-point network interface, like a SLIP serid line.

Chapter 5: PNI Encapsul ator 33

Config(PNI:NOLOOPBACK) Configuration Variable
If the network interface is a point-to-point network interface (it has a REMOTEAD-
DRESS defined), then the usua case is to have the PNI encapsulator install a host
route for the local |P address viathe loopback interface. It will literally perform:

/usr/etc/routeadd loca-address127.0.0.10
When the PNI interface is initialized. To inhibit this, define a value for Con-
fig(pni:NOLOOPBACK).

5.2 Configuration Primitives

This section still under construction. . .

Chapter 6: FI LTER Packet Filter Encapsulator 34

6 FI LTER Packet Filter Encapsulator

The FI LTER encapsulator’s purpose is to examine the packet which are being received and
transmitted, and to take some action when the packet matches one or more of a set of filters. There
are separate filters which are evaluated for inbound packets (i.e. those packets being decapsulated
as they arrive from the network bound for the local host) as well as outbound packets (i.e. those
packets sourced from the local host being transmitted to the network).

The actions which can be taken fall into one of athe following categories:
e Packets which are to be filtered out, or dropped if they appear.

e Packets which are used to reset the inactivity timer, if one exists, for thisinterface. Note that
since there separate filters for inbound and outbound packets, you can have different inactivity
times for each direction of packet travel.

e Packets which are interesting in some way, will will cause a one line log message to be
written. For example. you might want to log theinitial and final packets associated with every
TCP connection which traverses the network interface associated with this encapsulator. The
message logged is of the form:
log-input: 192.48.96.9 => 144.202.1.1 len 40 pr TCP port 20 -> 2704 SYN

The packet filters are specified in the form of symbolic packet filter expressions see Section 6.3
[Packet Filter Expressions], page 36. Thisis a very powerful and general mechanism which can
specify the types of packets which you desireto select.

6.1 Configuration Directives

Config(filter:INPUTFILTER) Configuration Variable
The value of this configuration variable is a packet filter expression see Section 6.3
[Packet Filter Expressions], page 36 which defines which input packets are to be
excluded and dropped on input.

Config(filter:INPUTFILTER_RPCYS) Configuration Variable
Thisconfigurationvariable, if present, should containalist of Sun RPC program names.
Any input packets directed to any of the specified RPC services will be dropped on
input.
Examples of RPC program names are ‘nfs’, ‘ypserv’ and ‘neti nf od’. See man
r pci nf o for more details.

Config(filter:OUTPUTFILTER) Configuration Variable
The value of this configuration variable is a packet filter expression (see Section 6.3
[Packet Filter Expressions], page 36) which defines which output packets are to be
excluded and dropped when transmitted.

Config(filter:OUTPUTFILTER_RPCYS) Configuration Variable

Chapter 6: FI LTER Packet Filter Encapsulator 35

Config(filter:INPUT_LOG) Configuration Variable
The value of this configuration variable is a packet filter expression (see Section 6.3
[Packet Filter Expressions], page 36) which defines which input packets should cause
alog entry to be made.

Config(filter:OUTPUT _LOG) Configuration Variable
The value of this configuration variable is a packet filter expression (see Section 6.3
[Packet Filter Expressions], page 36) which defines which output packets should cause
alog entry to be made.

Config(filter:INPUT _ACT_INTERVAL) Configuration Variable
Specify input inactivity timeout period. If no input packets arrive within the specified
number of seconds, then the link will be taken down.

Config(filter:INPUT_ACT_FILTER) Configuration Variable
A packet filter expression which specified which input packetswill causetheinactivity
timer to be reset. If no filter is specified, then any input packet will reset the input
inactivity timer.

Config(filter:INPUT_ACT_ACTION) Configuration Variable
If specified, aset of TCL commandswhich will be evaluated when the input inactivity
period expires. If not specified, the default action will be to sever the connection.

Config(filter:OUTPUT _ACT_INTERVAL) Configuration Variable
Specify output inactivity timeout period. If no packets are transmitted within the
specified number of seconds, the link will be taken down.

Config(filter:OUTPUT _ACT_FILTER) Configuration Variable
A packet fil ter expressi on which specified which output packetswill causetheinactivity
timer to bereset. If nofilter is specified, then any output packet will serveto reset the
output inactivity timer.

Config(filter:OUTPUT _ACT _ACTION) Configuration Variable
If specified, aset of TCL commandswhichwill be evaluated when the output inactivity
period expires. If not specified, the default action will be to sever the connection.

Config(filter:DEMAND_FILTER) Configuration Variable
(Not yet fully functional). The value of this configuration variable is a packet filter
expression (see Section 6.3 [Packet Filter Expressions], page 36) which defines which
output packetswill causealink level connection to actually be established, rather than
immediately establishing a connection when the pni d processis started. Thisis used
to implement “dia -on-demand”

6.2 Configuration Primitives

Chapter 6: FI LTER Packet Filter Encapsulator 36

6.3 Packet Filter Expressions

The packet filter expressions used by the FI LTER encapsulator are based on those used in the
t cpdunp program. The symbolic packet filter expression is compiled into a program which is
evaluated by the Section 6.3.3 [Filter Machine], page 40, which is a simple state machine with a
few registers and scratch memory store.

6.3.1 Packet Filter Syntax

1

The expression consists of one or more primitives. Primitives usualy consist of an id (hame
or number) preceded by one or more qualifiers. There are three different kinds of qudlifier: type
qualifiers say what kind of thing theid name or number refers to. Possibletypesarehost , net and
port. E.g., host f oo, net 128. 3, port 20. If thereisno type qualifier, host isassumed.

dir qualifiers specify a particular transfer direction to and/or from i d. Possible directions are
src, dst, srcor dst, and src anddst. E.g., srcfoo, dst net 128. 3, src or dst port
ft p- dat a. If thereisno dir qualifier, src or dst isassumed.

proto quaifiersrestrict the match to a particular protocol. Possible protosare: i p,t cp and udp.
E.g., i pnet 128. 3,tcp port 21. If thereisno proto qualifier, al protocols consistent with the
type are assumed. E.g., src f oo meansi p src f 0o, net bar meansi p net bar and port 53
means(t cp or udp) port 53.

Inadditionto theabove, thereare somespecia ‘ primitive’ keywordsthat don’t follow the pattern:
| ess, great er and arithmetic expressions. All of these are described bel ow.

More complex filter expressions are built up by using the words and, or and not to combine
primitives. E.g., host f oo and not port ftp and not port ftp-data. To save typing, identi-
cal qualifier listscan be omitted. E.g., t cp dst port ftpor ftp-dataor domai nisexactly the
sameast cp dst port ftpor tcpdst port ftp-dataor tcpdst port domain.
Allowable primitives are:
dst host ‘host’
Trueif the IP destination field of the packet is‘host ’.

src host ‘host’
Trueif the IP sourcefield of the packet is ‘host .

host ‘host’
True if either the IP source or destination of the packet is ‘host '. Any of the above
host expressions can be prepended with the keywords, i p.

dst net ‘net’
Trueif the IP destination address of the packet has a network number of ‘net ', which
must be an must be an address.

! This section is an excerpt of the tcpdump(1) man page. Thet cpdunp program and man page
was written by Van Jacobson (van@helios.ee.lbl.gov), Craig Leres (leres@nelios.ee.lbl.gov) and
Steven M cCanne (mccanne@helios.ee.lbl.gov), al of Lawrence Berkeley Laboratory, University
of California, Berkeley, CA.

Chapter 6: FI LTER Packet Filter Encapsulator 37

src net ‘net’
Trueif the IP source address of the packet has a network number of ‘net’

net ‘net’ Trueif either the IP source or destination address of the packet has a network number
of ‘net’.

dst port ‘port’
True if the packet isip/tcp or ip/udp and has a destination port value of ‘port’. The
‘por t’ can beanumber or aname used in /etc/services (see tcp (4P) and udp (4P)).

If aname is used, both the port number and protocol are checked. If a number or
ambiguous name is used, only the port number is checked (e.g., dst port 513 will
select both tep/login traffic and udp/who traffic, and port domai n will select both
tcp/domain and udp/domain traffic).

src port ‘port’
Trueif the packet has a source port value of ‘port .
port ‘port’
True if either the source or destination port of the packet is‘port’'. Any of the above
port expressions can be prepended with the keywords, t cp or udp, asin:
tcp src port ‘port’
which matches only tcp packets.
l ess ‘l ength’
Trueif the packet has alength lessthan or equal to ‘I engt h'. Thisisequivaent to:
len <= ‘length’
greater ‘l ength’
True if the packet has a length greater than or equal to ‘I engt h’. Thisisequivaent
to:
len >= *length’
i pproto ‘protocol’
True if the packet is an ip packet (see ip (4P)) of protocal type ‘protocol .
‘Pr ot ocol ' can be a number or one of the names i cnp, udp, nd, or t cp. Note

that the identifiersi cnp, udp, and t cp are aso keywords and must be escaped via
backslash\\ , whichis\\\\ inthe C-shdl.

i p broadcast
True if the packet is an IP broadcast packet. It checks for both the all-zeroes and
all-ones broadcast conventions, and looks up the local subnet mask.

i prul ticast
Trueif the packet isan |P multicast packet.

tcp, udp, i cnp
Abbreviationsfor:

ip proto ‘1Ip’
where ‘I p’ isone of the above protocols.

Chapter 6: FI LTER Packet Filter Encapsulator 38

expr rel op expr
Trueif the relation holds, wherer el op isoneof >, <, >=, <=, =, 1= and ‘expr’ isan
arithmetic expression composed of integer constants (expressed in standard C syntax),
the normal binary operators[+, -, *,/, &, |], alength operator, and special packet data
accessors. To access datainside the packet, use the following syntax:
proto [‘expr’ : ‘size’]

Protoisoneofi p, tcp, udp, ori cnp, and indicatesthe protocol layer for the index
operation. The byte offset, relative to the indicated protocol layer, isgiven by ‘expr’.
‘Si ze’ isoptional and indicates the number of bytesin the field of interest; it can be
either one, two, or four, and defaults to one.

The length operator, indicated by the keyword | en, gives the length of the packet.
Theexpressioni p[0] &O0xf ! =5 catchesall IP packetswith options. The expression
i p[2: 2] &0x1fff =0 catches only unfragmented datagrams and fragment zero of
fragmented datagrams. This check is implicitly applied to the t cp and udp index
operations. For instance, t cp[0] aways means the first byte of the TCP header, and
never means the first byte of an intervening fragment.
Primitives may be combined using:
e A parenthesized group of primitives and operators (parentheses are special to the Shell and
must be escaped).
e Negation (! or not).
e Concatenation (and).
e Alternation (or).
Negation has highest precedence. Alternation and concatenation have equal precedence and
associateleft toright. Notethat explicit and tokens, not juxtaposition, arerequired for concatenation.
If an identifier is given without a keyword, the most recent keyword is assumed. For example,
not host vs and ace
isshort for
not host vs and host ace
which should not be confused with
not (host vs or ace)
BPF EXAMPLES
tcp[13] &3!=0
To select thestart and end packets (the SY N and FIN packets) of each TCP conversation.

i p[2:2] >576
To select | P packets longer than 576 bytes.
i p[16] >=224

To select |P broadcast or multicast packets

icnmp[0] '=8andicnp[0] !'=0
To select dl ICMP packets that are not echo requests/replies (i.e., not ping packets).

Chapter 6: FI LTER Packet Filter Encapsulator 39

6.3.2 Packet Filter Expression Test Program

Thetestfilt program, availableas‘/ et c/ pni / FI LTER encap/testfilt’ canbeusedto
test the syntax of a packet filter expression as it is being developed for use in the PNI package.
It is not used at al in the normal operation of the package, and exists solely as a debugging and
development aid.

Thetestfilt program takes as arguments the packet filter expression. Note that to ensure
that expression are correctly evauated and not interpreted by the shell, the expression should be
enclosed in single quote characters. Thetestfilt program will then display the compiled BPF
program in symbolic form, and will then attempt to eval uate the expression against abuilt in sasmple
packet.

The sample packet isa TCP segment from host 1.1.1.2 t0 1.1.1.2, from port 23 to port 4006 with
aRST bit set in the flagsfield. Hereis the exact contents of the sample packet:

static unsigned char pkt[] = {
0x45, 0x00, 0x00, 0x28,
0x21, Ox6c, 0x00, 0x00,
0x3c, 0x06, 0x59, O0Ox5f,
0x01, O0x01, 0x01, 0x02, /* src addr */
0x01, O0x01, 0x01, 0x02, /* dst addr */

0x00, 0x17, OxOf, Oxa6, /* src port, dst port */
0x77, Oxa8, 0x42, Oxcl, /* seq */

0x00, 0x00, 0x00, 0xO00, /* ack */

0x50, 0x04, 0x00, 0xO00, /* flags = RST, win = 0 */
Oxel, Oxb4, 0x00, 0x00 /* cksum wurgent pointer */

B
This sample packet is then evaluated against the compiled packet filter program alarge number
of timesto determine the length of timerequired to perform the evaluation.

Hereisasampleinvocation of thet est fi | t program:

$ /etc/pni/FILTER encap/testfilt 'not (src host 111.11.128.10 or
src host 111.11.253.10 or src host 111.11.254.10) and

(udp dst port 161 or tcp dst port login or tcp dst port shell)’
wor ked

(000) Id #0x0

(001) Id [12]

(002) jeq #0x6f 0b800a jt 20 jf 3
(003) jeq #0x6f Obf dOa jt 20 jf 4
(004) jeq #0x6f Obf e0a jt 20 jf 5
(005) Idb [9]

(006) jeq #0x11 jt 7 jf 12
(007) Idh [6]

(008) jset #Ox1ff f jt 20 jf 9
(009) Idxb 4* ([0] &0xf)

(010) Idh [x + 2]

(011) jeq #0xal jt 19 jf 20
(012) jeq #0x6 jt 13 jf 20
(013) Idh [6]

(014) jset #Ox1ff f jt 20 jf 15
(015) Idxb 4* ([0] &0xf)

(016) 1dh [x + 2]

Chapter 6: FI LTER Packet Filter Encapsulator 40

(017) jeq #0x201 jt 19 jf 18
(018) jeq #0x202 jt 19 jf 20
(019) ret #149

(020) ret #0

Ti m ng 100000 invocations of filter..
Filter: 25. 83456 mcrosecs per eval

To interpret the generated packet filter program, refer to the following section, Section 6.3.3
[Filter Machine], page40. Thetimereportedbyt est fi | t only appliestothetimetakento evaluate
against the “test” packet; it may take more or less time in actua use depending on the types of
packets coming across the link and the complexity of the packet filter expression.

6.3.3 Filter Machine

A filter program is an array of instructions, with all branches forwardly directed, terminated by
ar et ur n instruction. Each instruction performs some action on the pseudo-machine state, which
consists of an accumulator, index register, scratch memory store, and implicit program counter.

The material presented in this section is background information, and is of assistance when
examining the output of thetestfilt program described above. It is not necessary (or even
possible) to specify packet filter programsin this“raw” format.

The following structure defines the instruction format:

struct bpf_insn {
u_short code;

u_char jt;
u_char jf;
I ong k;

b

Thek field isused in different ways by different instructions, and the jt and jf fieldsare used as
offsets by the branch instructions. The opcodes are encoded in a semi-hierarchical fashion. There
are eight classes of instructions: BPF_LD, BPF_LDX, BPF_ST, BPF_STX, BPF_ALU, BPF_JMP,
BPF_RET, and BPF_M SC. Various other mode and operator bits are or'd into the class to give the
actual instructions.

Below are the semantics for each defined BPF instruction. We use the convention that A isthe
accumulator, X is the index register, P[] packet data, and M[] scratch memory store. Pli:n] gives
the data at byte offset “i” in the packet, interpreted as a word (n=4), unsigned hafword (n=2), or
unsigned byte (n=1). M[i] givesthei’th word in the scratch memory store, which isonly addressed
in word units. The memory store is indexed from 0 to BPF-MEMWORDS-1. Kk, jt, and jf are the
corresponding fields in the instruction definition. “len” refers to the length of the packet.

BPF_LD These instructions copy a valueinto the accumulator. The type of the source operand
is specified by an “addressing mode” and can be a constant (BPF_I MV), packet data

2 This section is excerpted from the bpf(4) manua page which described the Berkeley Packet
Filter. The Berkeley Packet Filter wasoriginaly implemented by Steven McCanne of Lawrence
Berkeley Laboratory. Much of the design is due to Van Jacobson.

Chapter 6: FI LTER Packet Filter Encapsulator 41

BPF_LDX

BPF_ST

BPF_STX

a afixed offset (BPF_ABS), packet data at a variable offset (BPF_I ND), the packet
length (BPF_LEN), or aword in the scratch memory store (BPF_MEM). For BPF_I ND
and BPF_ABS, the data size must be specified as a word (BPF_W, halfword (BPF_H),
or byte (BPF_B). The semantics of all the recognized BPF_LD instructions follow.

BPF_LD+BPF_WBPF_ABS
A <- P[k:4]
BPF_LD+BPF_H+BPF_ABS
A <- Fk:2]
BPF_LD+BPF_B+BPF_ABS
A <- Pk:1]
BPF_LD+BPF_W-BPF_| ND
A <- P[X+k:4]
BPF_LD+BPF_H+BPF_| ND
A <- F[X+k:2]
BPF_LD+BPF_B+BPF_| ND
A <- F[X+k:1]
BPF_LD+BPF_W-BPF_LEN
A<-len
BPF_LD+BPF_| MV
A <-k
BPF_LD+BPF_MEM
A <- M[K]

Theseinstructionsload a valueinto the index register. Note that the addressing modes
are more restricted than those of the accumulator loads, but they include BPF_MSH, a
hack for efficiently loading the |P header length.

BPF_LDX+BPF_W-BPF_| MM
X <-k

BPF_LDX+BPF_\WBPF_NEM
X <- M[K]

BPF_LDX+BPF_\WBPF_LEN
X <-len

BPF_LDX+BPF_B+BPF_NSH
X <- 4* (P[k:1] & Oxf)

This instruction stores the accumulator into the scratch memory. We do not need an
addressing mode since there is only one possibility for the destination.

BPF_ST M[K] <- A
Thisinstruction stores the index register in the scratch memory store.
BPF_STX MI[K] <-X

Chapter 6: FI LTER Packet Filter Encapsulator 42

BPF_ALU Theadu instructions perform operations between the accumulator and index register or
constant, and store the result back in the accumulator. For binary operations, a source
mode is required BPF_K or BPF_X).
BPF_ALU+BPF_ADD+BPF_K

A<-A+k
BPF_ALU+BPF_SUB+BPF_K
A<-A-k
BPF_ALU+BPF_MUL+BPF_K
A<-A*k
BPF_ALU+BPF_DI V+BPF_K
A<-Alk
BPF_ALU+BPF_AND+BPF_K
A<-A&Kk
BPF_ALU+BPF_OR+BPF_K
A<-Al Kk
BPF_ALU+BPF_LSH+BPF_K
A<-A<<k
BPF_ALU+BPF_RSH+BPF_K
A<-A>>k
BPF_ALU+BPF_ADD+BPF_X
A<-A+X
BPF_ALU+BPF_SUB+BPF_X
A<-A-X
BPF_ALU+BPF_MJUL+BPF_X
A<-A*X
BPF_ALU+BPF_DI V+BPF_X
A<-A/lX
BPF_ALU+BPF_AND+BPF_X
A<-A&X
BPF_ALU+BPF_OR+BPF_X
A<-A| X
BPF_ALU+BPF_LSH+BPF_X
A<-A<<X
BPF_ALU+BPF_RSH+BPF_X
A<-A>>X

BPF_ALU+BPF_NEG
A <--A

BPF_JMP Thejump instructions ater flow of control. Conditional jumps compare the accumu-
lator against a constant (BPF_K) or the index register (BPF_X). If the result is true
(or non-zero), the true branch is taken, otherwise the false branch is taken. Jump

Chapter 6: FI LTER Packet Filter Encapsulator 43

BPF_RET

BPF_M SC

offsets are encoded in 8 bits so the longest jump is 256 instructions. However, the
jump aways (BPF_JA) opcode usesthe 32 bit k field as the offset, allowing arbitrarily
distant destinations. All conditionals use unsigned comparison conventions.
BPF_JMP+BPF_JA

pc+=k
BPF_JMP+BPF_JGT+BPF_K

pc+=(A>k)?jt: |f
BPF_JMP+BPF_JGE+BPF_K

pc+=(A>=Kk)?jt: |f
BPF_JMP+BPF_JEQ+BPF_K

pc+=(A==Kk) ?jt: jf
BPF_JMP+BPF_JSET+BPF_K

pc+=(A & k) ?jt: jf
BPF_JMP+BPF_JGT+BPF_X

pc+=(A > X) ?jt: jf
BPF_JMP+BPF_JGE+BPF_X

pc+=(A>=X)?jt: jf
BPF_JMP+BPF_JEQ+BPF_X

pc+=(A ==X) ?jt: jf
BPF_JMP+BPF_JSET+BPF_X

pc+=(A & X) ?jt: jf
The return instructions terminate the filter program and specify the amount of packet
to accept (i.e., they return the truncation amount). A return value of zero indicates
that the packet should be ignored. Thereturn valueis either a constant (BPF_K) or the
accumulator (BPF_A).
BPF_RET+BPF_A

accept A bytes
BPF_RET+BPF_K

accept k bytes
The miscellaneous category was created for anything that doesn't fit into the above
classes, and for any new instructionsthat might need to be added. Currently, these are
the register transfer instructionsthat copy theindex register to the accumul ator or vice
versa
BPF_M SC+BPF_TAX

X<-A
BPF_M SC+BPF_TXA

A<-X

The BPF interface provides the following macros to facilitate array initializers:

BPF_STMT(opcode, operand)
and
BPF_JUMP(opcode, operand, true_offset, false_offset)

Chapter 7: SLI P SLIP/CSLIP Encapsulator 44

7 SLI PSLIP/CSLIP Encapsulator

The SLIP encapsulator implements the Seria Line IP encapsulation over a character stream,
such ason aserid line. It usesatrivial encapsulation to denote boundaries between packets, and a
simple byte-stuffing transparency scheme to escape the framing characters when they appear. SLIP
is described in RFC-1055, A NONSTANDARD FOR TRANSMISSION OF IP DATAGRAMS
OVER SERIAL LINES: SLIP by John Romkey.

TheSLI1P encapsulator al soimplementsVan Jacobson TCP Header Compression, as documented
in RFC-1144, Compressing TCP/IP Headers for L ow-Speed Seria Links by Van Jacobson.

Use of the SLIP and CSLIP encapsulators is controlled by the specific license key string that
was used to enable the software when it wasinstalled.

If noMTU isspecified as part of the configuration for the Chapter 5 [PNI Encapsul ator], page 32,
then the SLIP encapsulator will supply a default. If plain SLIP encapsulation is being used, the
default MTU is 1006 bytes. If CSLIP encapsulation on the link is used instead, the default MTU
is 256 bytes. The type of encapsulation used is specified by the Config(slip:M ODE) configuration
variable, described below.

7.1 Configuration Directives

Config(dip:MODE) Configuration Variable
This configuration variable varies the operation of the SLIP encapsulator. By default,
it operations in plain SLIP mode. Setting the configuration variable to ‘SLI P’ will
result in the same effect.

Setting thisvariabletoavalueof ‘CSLI P’ will enable the use of the Van Jacobson TCP
Header Compression agorithm on thislink. This resultsin less header overhead for
TCP connections. Notethat thisislogically a different encapsulation than plain SLIP,
so both end of the connection must agree on the encapsulation they are to use.

7.2 Configuration Primitives

This section still under construction. . .

Chapter 8: TTY Seria Device Encapsulator 45
8 TTY Serial Device Encapsulator

The TTY encapsulator sinks and sources streams of characters via seria tty-like device running
in RAWmode (see the tty(4) UNIX manua page for a description of the various TTY modes).
The TTY encapsulator open a seria device, usualy ‘/ dev/ cufa’ or ‘/ dev/ cuf b’ for outgoing
connections, and will use the tty-device attached to file descriptor O (‘st andar d- i nput ') when
used in “network access server” mode.

Since any tty device that implementsthe usual i oct | commands such as TI OCSETP is compat-
ible with the TTY encapsulator, non-traditional serial devices such as ‘TTYDSP' or SCSl attached
seria port expansion products can also be used. The PNI software can also be used in network ac-
cess server mode over incoming telnet or rlogin connections (which use UNIX pseudo-tty devices),
unlike TransSys DialUp-IP.

8.1 Configuration Directives

Config(tty:DEVICE) Configuration Variable
The value of this configuration variable should contain the name of the device to be
used for outgoing connections (e.g., '/ dev/ cuf a’).

Thisvalue need not be set for configurations used in network access server (incoming)
connections.

Config(tty:LOCKINGPROTO) Configuration Variable
Thisconfiguration variabl e specifieswhat /ocking protocol isusedto arbitrate accessto
theserial device. Serial devicesarecommonly shared amongst different programs such
as‘uucp’,‘kermit’,‘cu’ and‘ti p’ aswell as other subsystemssuch as FAX modem
drivers like ‘NXFax’. By observing the locking protocol, more than one program will
not attempt the use of adevice whileit isin use by another user or another program.

There are two locking protocols supports by PNI: The *UUCP Locki ng Pr ot ocol ’
which is denoted by the UUCPLOCK keyword, which creates lock files in the
‘I usr/ spool / uucp/ LCK' directory. The other is no locking protocol at al, de-
noted by the NONE keyword. In the latter case, pni d will not attempt any locking at
all before using the device named inthe Conf i g(tty: DEVI CE) variable.

Config(tty:DEVOPTYS) Configuration Variable
This configuration parameter is used to specify other device optionsto be enabled or
disabled by the TTY encapsulator. The values of this configuration variable should be
aTCL list of one or more of the following options:

Currently, on asingle option is enabled:
IGNOREDCD
Ignorethe state of DCD or Carrier Detect. Normally, the TTY encapsula

tor will end the current session if it discovers that the DCD has been lost
on the serial connection. Specifying IGNOREDCD in the list of options

Chapter 8: TTY Seria Device Encapsulator

will cause the DCD state to be ignored; this may be useful if thereis no
way to provide the correct modem control signalsto the seria port.

Config(tty: SPEED) Configuration Variable

This configuration parameter is used to specify the seria port speed to be used for
outgoing connections. It takes an integer value from the set of serial device speeds
documented in the tty(4) UNIX manual page.
The supported speeds are: ‘50’, ‘75, ‘110’, ‘134’, ‘150’, ‘200", ‘300", ‘1200,
‘2400, ‘48007, '9600’, 19200’ and ‘38400’. On NEXTSTEP 3.0 and later systems
some additional speedsare available: ‘14400’, ‘28800’, ‘43200’, and ‘57600’. Note
that whileit may be possibleto set the speed of the device at one of the higher speeds,
the actual system may not be able to service the data arriving fast enough without
dropping characters.

Experience has shown that a25MHz 68040 CPU in aNeXTStation or NeXT Cube can
comfortably support a seria port at 38400 bits per second.

For usersof TTYDSP, the TTY encapsul ator recognizesaTTY DSP serid port and will
allow direct specification of any speed support by the TTYDSP product, rather than
just the standard UNIX seria speeds.

Config(tty:DIALER) Configuration Variable
The DIALER configuration variable is used to specify which Dialer object is to be
used by the TTY encapsulator to dial the modem and log into remote network access
servers. The Diaer object implementsthe TCL -based scripting languageto implement
the chat scripts that talk to the modem and remote systems.

Currently, there is only one Diader implementation available which is caled Didler.
Theclassisdynamicaly loaded fromthe'/ et ¢/ pni / Di al er. bundl e’ directory on
demand. ThisDiaer isused if no other oneis specified.

Config(tty:MODEMTYPE) Configuration Variable
Thisvariableisused to specify the type of modem which isbeing used for an outgoing
connection. It is assumed to be attached to the device specified above. The modem
typeisused to select afile containing adialing script to initiaize, control and dial the
modem to connect to a modem at a specified tel ephone number.

If, for example, the modemisaZyX EL modem, the configuration would be something
like:

set Config(tty: MODEMIYPE) zyxel

which would causethe script in thefile‘/ et ¢/ pni / support/ di al - zyxel . tcl ' to
be used. The modem dialing file (e.g., ‘di al - zyxel . t cl ') will be searched for in
anumber of directoriesinthisorder: ‘/ et c/ pni/config’,‘/ et c/ pni/support’,
andinthe‘/ et c/ pni / TTY. encap’ directory.

Standard supplied dialing scripts are:

di al -di gi comtcl
For the Digicom Systems 9624LE V.32 external modem. Not a modem
which is particularly recommended.

Chapter 8: TTY Seria Device Encapsulator

dial-multitech.tcl
For the Multitech MT932EA V.32 modem.

dial-multitechl1432.tcl
For the Multitech MT1432EA V.32/V.32bis modem.

dial-null.tcl
This dialing script assume no modem at al; that is a direct, hardwired
connection exists between two systems. This script is null and does
nothing at all.

di al -wor | dbl azer. tcl
This dialing script is for the Telebit Worldblazer modem, which is con-
figures for V.32/V.32bis connections and not PEP connections which
operate badly in SLIP and PPP applications.

di al -wor | dport.tcl
This dialing script can be used with the US Robotics WorldPort pocket
modem, configured for V.32/V.32bis connections, with hardware flow
control.

di al - zyxel . tcl
Dialing script for the ZyXEL U1496, U1496E and U1496E+ series of
modems. Connections are made using V.32, V.32bis, or the ZyXEL
proprietary 16800bps and 19200bps modulations. V.42bis is used for
reliability and data compression. This modem is recommended and is
also supported by NXFax.

Config(tty: SERVERTYPE) Configuration Variable
In a manner similar to the MODEMTY PE variable just described, this configuration
variable specified the type of remote network access server which is being called
for outgoing connections. This is used to select a file which contains TCL scripting
commands which “log in” to the remote network access server system, and condition
it to enter its SL1P or PPP mode of operation. As part of this process, it may negotiate
a user-name and password dialog as well.

The following network access server login scripts exist inthe‘/ et ¢/ pni / support’

directory:

| ogi n- annex. t cl
Script filefor aXylogics (formerly Encore) Annex terminal server. It can
go through a user name and password login process, and will put the port
into SLIP mode from the CLI command prompt after login.

| ogi n-ci sco.tcl
Script file to log into a Cisco terminal server and enter SLIP mode.

login-null.tcl
Null script file which is used when the remote network access server
is dready in SLIP mode and doesn't require any login or interactive
command process.

Chapter 8: TTY Seria Device Encapsulator

[ogi n-pni . tcl
Script file to be used when the remote system is another instance of the
PNI package running in “network access server” mode.

| ogi n- pni server.tcl
Not normally specified by the user, but the script file that isused by pni d
when operating in server mode.

| ogi n-portmaster.tcl
Simpl e script file which has been used to log into a Livingston Portmaster
server. It assumes that the account to be used is configured to operatein
SLIP mode.

| ogi n-uni x. tcl
Generic login script for a remote UNIX system that handles login and
password dialog. Good starting point, perhaps for other systems.

There may be additional diaer and login scripts included which are not listed here.
Please check the '/ et ¢/ pni / support’ directory to see which are available.

Config(tty:NUMBER) Configuration Variable
Used to specify the telephone number to dial. More than one number may belistedin
aTCL list:

set Config(tty: NUMBER) 555-1212
or for multiple numbers..
set Config(tty: NUMBER) { 555-1212 555-2121 }

Config(tty: SERVERNAME) Configuration Variable
This variable specified the name of the remote server. This name only have loca
significance, and is used to select, among other thing, the remote user name and
password associated with a particular remote server.

Thereasonfor thislevel of indirectionisthat itispossibleto configurearather complex
configuration where multiple devices (each with their own modem type) have multiple
telephone numbers and multiple remote servers associated with them. Each remote
server might have its own distinct username and password that is required to complete
the connection. (This complex configuration isnot currently described.)

Config(tty:DIALSCRIPT) Configuration Variable
Interna configuration variable computed from other configuration information.

Config(tty:DEVICEYS) Configuration Variable
Interna configuration variable computed from other configuration information.

Config(tty: PHONENUMBERS) Configuration Variable
Interna configuration variable computed from other configuration information.

8.2 Configuration Primitives

This section still under construction. . .

48

Chapter 9: Di al er support module 49

9 Di al er support module

TheDi al er objectisused to support someencapsulators, likethe TTY encapsulator, which need
to perform scripting actions to establish alink-level connection. This usualy involvesinitidizing
a modem, dialing the remote system, navigating through a login/password sequence, etc. The
Di al er objectis(theonly, sofar) implementation of an object which can perform thisscripting and
interaction on behalf of an encapsulator. The TTY encapsulator, for instance, alow the specification
of theaDialer object class to be specified, though it will default to the supplied Di al er object.

The purpose of the Dialer object isto communicate and interact with some remote entity using
seria streams of characters. The encapsulator which uses the Dider object (the TTY encapsulator
in the PNI package) is responsiblefor the actual sending and receiving of the character streams.

The interaction done by the Di al er object is controlled by a powerful procedura language
implementation, based on TCL with extensions. This is much more powerful than the usua
SEND/EXPECT interface provided by diaersin UUCP and other software.

When the Diader object is instantiated (again, usually by the TTY encapsulator), a hew TCL
command is created in the “current” TCL interpreter; by default, it iscaled “Dialer”. However, in
the PNI package, the name of the command is passed into the dialing procedure as an argument, so it
is not necessary to know the name of the new TCL command when creating ascript file. The Didler
TCL command then has a number of sub-commands which are used to perform the interactions
required.

dialer break Dialer TCL subcommand
Thiswill cause a 750 millisecond break to be transmitted. A break is not a character,
but a line condition, where the serid line, which normally idles in the “marking” (or
1) state is pulled to the “space” (or 0) condition for a period of time that exceeds the
longest timeit takes a character to be transmitted.

dialer deep snooze-time Diaer TCL subcommand
This causes execution of the dialing script to pause for the specified interva (in
seconds).

dialer status Diaer TCL subcommand

Thiscommandwill return alist which describesthe current state of the communications
line that the Dialer command is using. This state normally includes a list of which
RS-232 modem control signa s are asserted.

dialer parity zero| ond even| odd Dialer TCL subcommand
This command can be used to set the parity of the data which is sent by the xmi t or
send command. By default, al strings are sent with 8 bit, no parity. That is, normal
ASCII characters are transmitted with the high bit set to zero. Other possibilitiesare
specifying even or odd parity, or one to cause the high bit to be set to one.

dialer xmit string Dialer TCL subcommand
The xmit subcommand is used to transmit a character string as part as adidog to dial
amodem or log into a remote system. Each character in the string is transmitted with
the current parity setting.

Chapter 9: Di al er support module 50

dialer delay inter-char-delay Diaer TCL subcommand
On some occasions, it is necessary to transmit strings of characters to remote devices
and modems, but with some delay between each character. This is usualy the case
with some modemsthat cannot accept astream of charactersat “full” speed, and cannot
perform flow control while in command mode. The del ay subcommand takes one
parameter, which is the delay time (in milliseconds) to be inserted betwixt characters
being transmitted.

dialer expect pattern action.. Diaer TCL subcommand
The expect diaer command is used to scan the input stream for patterns or strings
of characters. The command takes alist of one or more pairs of arguments. The first
TCL argument of each pair is the pattern to be matched, while the second of each pair
isaTCL expression to be evaluated should the pattern match.

It is important to recal how TCL programs are scanned and broken up into list
arguments. It may be necessary to quote or group strings of wordsin patterns or TCL
expressions so that they are treated as one argument to the expect command.

If thereisa“missing” final argument (that is, an odd number of arguments), then there
iS no action associated the the last pattern specified.

The expect command will attempt matching of the input stream, subject to a timeout
interval. Should that interval expire, a timeout condition occurs. The interval is
defined (and can be modified by setting) the TCL variable timeout. When an expect
command is invoked, the value of a local variable named timeout will be used; else
the value of the global variable timeout is used instead.

The expect command will attempt to match each pattern as each character or group
of characters arrive from the input stream. The input stream and patterns need not
match lines of input, but rather any sequence of characters. As each pattern matching
attempt occurs, each pattern is tested in order; the first pattern that matches will stop
processing of the expect command after the TCL command associated with the pattern
is evaluated.

Thereisaspecid instanceof apattern, t i meout , which“matches’ atimeout condition.
If a timeout condition occurs, and there is no timeout pattern specified in an expect
command, then a TCL error israised.

Patterns can be specified in either UNIX ed regular expressions or by using shell
wildcard or glob patterns. By default, the expect command uses the shell wildcard-
style patterns, whilst the r expect command uses regular expressions. It is possible
to use both types of patternsin an expect or rexpect command by prefixing the pattern
with an option to override the default expression type. For example, a pattern can be
prefixed with an argument - r e to cause the following expression to be treated as a
regular expression. A prefix argument of - gl ob can be used to cause theimmediately
following pattern to be interpreted as a shell wildcard or glob type pattern.

The TCL expression associated with the pattern can beasingle command or a sequence
of TCL statements separated by semi-colons. (In the examples that follow, $DIALER

Chapter 9: Di al er support module

is the name of the Diaer object being used and which implements the expect sub-
command.)

$DI ALER expect "*|ogin: *" { send "$password\n" }

The text matched by a “glob” type pattern is available in the expect_.match TCL
variable. However, thisislikely not of tremendous use as in the example above all of
current input text would have been matched.

If the patternis specified using regul ar expressions, then muchfiner control isavailable,
and it is possible to fetch parts of the text being matched when using the grouping
constructsin aregular expression. As an example:

$DI ALER expect -re \
{Your |IP address is ([0-9]+\.[0-9]+\.[0-9]+\ .[0-9]+)}

Will look for an IP address specified in the dotted-decimal notation to immediately
follow the phrase Your IP address is. The text that matches the part of the pattern
enclosed in the () grouping constructsis availablein aTCL variable. If there are more
than one set of balanced () pairs, they are also available making it possible to match
and capture multiple bit of information on each patter match.

Anarray, caled $DIAL ER_expect_out is created which containsthe members for each
grouped patterned specified in the pattern, starting with 1. The array elements defined
for thefirst pattern are:

1start The starting character position of the grouped pattern in the string which
was matched.

lend The ending character position of the grouped pattern i the string which
was matched.

1,string The substring associated with the grouped pattern in the string which
was matched. This string could be referenced as set f oo $DI ALER
expect _out (1, string)

The string which match each of the grouped patterns are also availablein the variables
$1, $2, $3, etc.

When a pattern match succeeds, the complete string that was matched against (that
is, the current input buffer) is available in the TCL variable expect_match. Thisisthe
string which the start and end indices described above index into.

Note that strings which were matched and captured in the variables described may
have multiple embedded carriage return, line feed and other control characters. This
can cause problemswith thesysl og command since the system logging daemon will
truncate text at thefirst newline character. Thepri nti fy TCL command can be used
to protect against this problem.

51

Chapter 9: Di al er support module 52

9.1 Sample Dialer Scripts

Included in this section are two scripts which are used by the Di al er class. A sample modem
dialer and remote network access server login script are presented with commentary to describe
their operation.

9.1.1 Sample Modem Dialer Script

Thescript that followsisbasedonthe‘/ et ¢/ pni / support/ di al - zyxel . t cl ' modemdiaer
script. It should be substantially similar to the one included with the i distribution.

Each modem dialing script is composed of a TCL procedure definition. This procedure will be
invoked at the appropriate time when a seria line has been made available and the link needs to
be established. The name of the TCL procedure should be prefixed by the constant string di al -
followed by the name of the modem type (e.g., zyxel). The modem type hameisthe one specified
in the configuration file when specifying the type of modem in use.

The modem dialing procedure will be invoked with exactly three arguments:

1. Thenameof the Dialer object in use, sothat itssubcommands(likeexpect) can bereferenced.
2. Thetelephone number to be dialed.

3. The name to be used to reference configuration information in the Conf i g array.

#

TCL script used to configure and dial a ZyXEL U 1496-type
V.32bis external nodem
#
p

roc dial-zyxel { D ALER nunber cfg} {
#
This script assunes that the zero’'th argunent is the dialer object
to be used, and the next argument be nunber to be dial ed.

#
gl obal Config testMde

syslog LOG I NFO "$DIALER Start of ZyXEL dialing script, dialing $nunber"

Set the default dialing method (DTMF/Tone or pulse) to TONE.
set how TONE

Now we attempt to get the attention of the modem to ensure that it is attached, turned on and
functioning. The attention string (“AT") is transmitted to the modem, and we wait for it to respond
with “OK”. We'll make three attempts before giving up.

Note that the t i meout action in the expect commands is null, which allows execution to
continueto the next TCL command should atimeout condition occur. Thetimeout interval is set to
2 seconds.

The f or each { once} loop is an idiom which allows us to quickly exit the loop (which only
occurs one time) by using the br eak TCL command.

Chapter 9: Di al er support module 53

flush any pendi ng command
$DI ALER xmit {\r}
$DI ALER sleep 1

get nodens attention

set tineout 2

foreach i {once} {
$DI ALER xnit {AT\r}
$DI ALER expect "{*OK\r*}" break tineout {}
$DI ALER xnit {AT\r}
$DI ALER expect "{*OK\r*}" break tineout {}
$DI ALER xnit {AT\r}
$DI ALER expect "{*OK\r*}" break tineout {}
error "Could not get the nodenis attention"

}

set tineout 5

Now we turn off the command echo by the modem by sending it an “ATEQ” command and
waiting for it to reply with a string containing “ OK”. Since thisis no action specified for the * OK*
pattern, execution just continues to the next TCL command when the OK response arrives.

If atimeout condition occurs, the script raises an error by using the TCL er r or command.
turn off command echo

$DI ALER xnit {ATEO\r}
$DI ALER expect tinmeout {error "waiting for COK'} "*OK*"

Thisnext sequenceof code queriesthemodem for identifyinginformation which usually includes
the type of modem and the version of firmware running in the modem. On some occasions, it is
useful to know what version firmware a modem has installed when debugging connections.

Note that in this code fragment, the r expect command is used, which results in the patterns
being interpreted as regular expressions rather than “glob” style patterns.

An “ATI” command is sent to the modem to query it for its type. If the response returned
includes the strings “1496”, which is a model number then we query the modem again with an
“ATI1" command to get additional information.

Note the use of () grouped patterns to isolate a part of the string being matched so that it may
be referenced later on as $1.

$DIALER xnit {ATI\r}
set version ""
$DI ALER rexpect tineout {} \
"\ n1496\r\ n" {
$DIALER xnit {ATI1\r}
$DI ALER rexpect \
tineout {} \
"\[\r\n]+(.*).*OK\r\n" {set version $1}
P
"\[\r\n]+(.*).*OK\r\n" {set version $1} \
ti neout {error "Could not get nodem version"}

Chapter 9: Di al er support module 54

Now we clean up the string that was matched and extracted, replacing al tab, carriage return and
line feed characters with asingle space using the TCL r egsub command. We then squeeze out al
occurrences of more than one blank to a single blank with the second r egsub command. Finaly,
leading and trailing spaces are deleted using thelast r egsub command, and the message islogged.

if {[string length $version] >0} ({

}

regsub -all "(\t|\r]\n)+" $version ver si on
regsub -all " +" $version " " version
regsub { +$} $version "" version

sysl og LOG DEBUG "Mdem firnmwvare version is '$version' "

$DI ALER sleep 1

We now prepare to configure the modem so that it can correctly pass SLIP traffic over thelink.
These parameters are, of course, specific to each type of modem and will surely be different for
modems other than the ZyXEL 1496 series of modems.

HHEHFHFHFHFFEHFHHFHHFH R

configure nodem wi th proper paraneters
&K4 - V. 42/ V. 42bi s or NM\P4/ MNP5
&N\O - auto-negotiate highest possible link rate

speaker off
ver bose responses
di spl ay responses

&Cl1 - CD tracks carrier presence
&D3 - hang up and reset to profile 0 when DTR dropped
&H3 - hardware (RTS/CTS) flow control
&J0 - single phone line RJ11 jack
&L0 - nornmal phone line (not |eased)
&\WD - async node
&R1 - ignore RTS, assune always on
&S0 - DSR override, assune always on
- ring vol une

=128 - turn off escape into command node
$42.1=0 - disabl e throughput averagi ng
S38. 5=1 - disable use of MNP5 (only use V.42bis)
$46. 2=1 - disable pesky "RING NG' nessages

AT+FCLASS=0 - nake sure the nodemisn't in FAX node

Theset upst r variableisset tobeaTCL list of parameters to be sent to the modem as described
in the comments above. If we're in test mode (indicated by thet est Mode TCL variable existing),
then append amodem command to enabl e the speaker whil st dialing themodem and until it connects.

set setupstr { +FCLASS=0 S42.1=0 S38.3=1 S38.5=1 S2=128 $46.2=1

&K4 &NO M) V1 QO X5 &Cl1 &D3 &H3 &JO &0 &WD &R1 &S0 N1 }

Chapter 9: Di al er support module 55

turn on speaker during dialing and connect sequence if in test node
if [info exists testMde] {
| append setupstr "ML"

Now, interate over each element of the list of modem commands specified above and sent it to
the modem and await an OK response. Each command is done one at a time because some modem
have problemswill along command string being sent to them in command mode. We can also tell
which modem command cased an error by sending them one at atime.

foreach s $setupstr {
$D ALER xmt "AT $s\r"
$DI ALER expect timeout {error "waiting for OK for parm $s"} \
"{*ERROR\r*}" {warn "Mdem returned ERROR setting $s"} \
||{*G<*}n

Check the configuration array to see if adialing type was specified or not.

allow override of dialing type

if {[info exists Config($cfg:D ALTYPE)]} {
set how $Confi g($cf g: DI ALTYPE)

}

Now did the phone. If the diding type is neither “dtmf” or “tone’, the pulse dial using the
modem’s ATDP command. Otherwise, dia using the modem’s ATDT command.

dial the phone
if { [string conpare [string tolower $how] tone] &&
[string conpare [string tol ower $how] dtnf] } {
notice "Dialing (pulse) $nunmber ..."
$DI ALER xnmit "ATDP$nunmber\r"
} else {
notice "Dialing (DTMF) S$nunber
$DI ALER xnmit "ATDT$nunmber\r"

We now wait for the modem to connect. This can take arather long time for the since the call
has to be made through the tel gphone system, and the modems train and connect. To accommodate
that, we set the timeout for theexpect command to be 45 seconds.

wait for connect nessage
set tineout 45

set rng 0

Chapter 9: Di al er support module 56

We loop examining responsesfrom themodem. Thesecanincludeerrorslike*NODIALTONE",
“NO CARRIER” or “BUSY"; or progress messages such as “RINGING”; or a “CONNECT”
message which we hopefor.

while 1 {
$DI ALER rexpect \
ti neout {
error "Timeout waiting for mbdemto connect to $nunber "} \
" (CONNECT. *)\ r +\ n" {
sysl og LOG | NFO "Connect ed: $di al er _expect _out (1,string)"; \

break \
P
"\r\nERROR\ r\ n" {error "Mddem returned ERROR'} \
"\r\nRI NG NG r\n" {syslog LOGINFO "Ringing.. ($rng)"; incr rng} \

"\r\nNO CARRI ER r" {error "Modem returned NO CARRIER'} \
"\r\nNO DIAL TONE\r" {error "Mddem returned NO DIAL TONE'} \
"\r\nBUSY\r\ n" {error "Renote nobdem busy"}

}

9.1.2 Sample Network Access Server Login Script

Thissection examplesascript with“logsin” to anetwork access server; inthisparticular instance
itisaTelebit Netblazer. Thisfileisderivedfrom*/ et c/ pni / support /1 ogi n- net bl azer.tcl’.

It beginswith asmall “helper” TCL procedure which is called by the main procedure bel ow.

proc nb-password { DI ALER usernane password } {

$DI ALER xmit "$username\r"

$DI ALER expect "*assword:*" {$DI ALER xnit "$password\r"} \

tineout {error "waiting for password pronpt"}
}
As was the case with the modem dialing scripts, the login scripts are expected to declarea TCL

procedure named | ogi n- SystemType, where SystemType is the type of remote network access
server, and will be referenced in the configuration file's Conf i g array.

The login procedure takes exactly two arguments, the first being the name of the Diader object
(asinthe modem script), and the second being the name used to reference configurationinformation
inthe Confi g array.

To perform the login action, the remote network access server (in this case) requires auser name
and password. This information is not embedded in the login script, but is stored elsewhere. It
can be specified in the configuration file, but that may needlessly expose sensitive information. It
is also possible to store that information in a separate file which can have restricted access (only
to root, for instance) to protect it. Thislogin script accommodate either approach and will in fact
complainif thefile which stores the username and password isinsecure with inappropriate directory
permissions.

The usernane and password to be used are stored in a
separate file. The name of the file is specified in the
Config array.

#
This file should contain (at least) two TCL set conmands to

Chapter 9: Di al er support module 57

set the variables ’'usernane’ and 'password’ . Its likely

that you don’t want these files generally readable for

security purposes, so a check is made for you, and the

script will fail if the file is readable.

#

Alternatively, the menmbers of the keyed |ist "usernane" and

"password" can be used to specify the usernane and password to be
passed to the termnal server.

proc | ogi n-netblazer { DIALER cfg } {
gl obal Config

sysl og LOG | NFO "Begi n netbl azer |ogin"

set username
set password ""

if {[info exists Config($cfg: SECRETFI LE)] &&
[file exists $Config($cfg: SECRETFILE)]} {

if {[file readable $Config($cfg: SECRETFILE)]} {
source $Confi g($cf g: SECRETFI LE)
}

file stat $Confi g($cfg: SECRETFI LE) st at
if {[expr $stat(node)&04]} {
error "File with password, $Config($cfg: SECRETFILE), \
is readable by 'other’'!"

} else {
if {[info exists Config($cfg: USERNAVE)]} {
set usernane $Confi g($cf g: USERNANE)

}

if {[info exists Config($cfg: PASSWORD)]} {
set password $Confi g($cf g: PASSWORD)

}

Set the parity of the transmitted data to 8 bits, no parity. Thisisn’t really necessary asthisisthe
default state. Of course, the modem dialing script could have changed it, so we reset it here just to
be safe.

A pair of carriage return characters are transmitted in case some auto-baud action needs to occur,
and then we look for alogin prompt from the network access server.

Chapter 9: Di al er support module 58

#

set parity of transnitted data
#

$DI ALER parity ZERO

#

For auto-baud nonsense.. sonetines its necessary to poke at it a couple

of tines before it figures out what speed the nodemis at.
#

set tineout 2
$DI ALER xmit {\r\r}
$DI ALER sleep 1

foreach i {once} {
$DI ALER xnmit {\r}
#
look for host pronpt
#
$DI ALER expect tinmeout {} \
"*login:*" {nb-password $DI ALER $usernane $password; break}

$DI ALER xnmit {\r}
$DI ALER expect tinmeout {} \
"*login:*" {nb-password $DI ALER $usernane $password; break}

$DI ALER xnmit {\r}
$DI ALER expect tinmeout {} \
"*login:*" {nb-password $DI ALER $usernane $password; break}

error "Couldn't autobaud |ogin: pronpt from NetBlazer"

}

set tineout 10

In the loop above, the nb-password procedure that was defined first isinvoked to actually handle
sending the username and password when alogin prompt is seen.

This particular network access server is configured to automatically enter SLIP mode when the
appropriate username and password is received, so there’s no need to transmit a command to do so.
We simply wait for amessage indicating it is switching into packet mode and return.

#
send command to put termnal server into SLIP node
#
set node SLIP
if {[info exists Config($%cfg: MDE)]} {
set node $Confi g($cfg: MODE)
}

$DI ALER expect {*Packet\ node\ enabled*} {} \
tinmeout {error "Tineout waiting for Packet Mdde nessage"}

sysl og LOG DEBUG "Entering Packet Mode"

Chapter 9: Di al er support module

#

that’'s all

#

return "Connected"

59

Chapter 10: LOOP Loopback Encapsulator 60

10 LOCP L oopback Encapsulator

The LOOP encapsulator is a debugging aid which simply loops back any packets being encapsu-
lated as input data. It can typically be used in place of a TTY (or even a combination of SLI P and
TTY) encapsulator.

10.1 Configuration Directives

The LOOP encapsulator has no configuration directives.

10.2 Configuration Primitives

The LOOP encapsulator has no configuration primitives.

Chapter 11: TUNNEL Virtual Path Tunnel Encapsulator 61

11 TUNNEL Virtual Path Tunnel Encapsulator

The TUNNEL encapsulator is used as an aternate means of transport in place of the TTY encap-
sulator. Rather then sending a stream of characters out a seria port by using a combination of the
SLI P encapsulator followed by aTTY encapsulator, the TUNNEL encapsulator can be used. It will
accept an input | P packet, and use UDP (User Datagram Protocol) to transport the packet to be sent
across the internet. This capability makeit possibleto build a virtual network composed of virtual
link over an existing IP infrastructure. That is, the tunnel encapsulator can be used to construct
virtual “wires’ which packets are transported over; it just so happens that the “wires’ are carried
over existing IP networks.

The TUNNEL encapsul ator maintai nsatablewhich associatesfor each next-hop gateway or router
address the tunnel endpoint |P address and UDP port number which the encapsulated packet is to
be sent to.

Consider for amoment an Ethernet environment. When a packet needs to be transmitted, the
network software determines the next hop for the packet. Thisis either the destination host’s IP
addressif it ison the same ethernet or the next hop isthe IP address of an intermediate router on the
local ethernet. Inthe case of apoint-to-point network interface, the* next hop” addressisawaysthe
I P address of the host on the other end of the point-to-point link, since there are no other alternatives
on that point-to-point network.

Let's take an example. Consider that we've defined an interface to be an tunnel endpoint. The
interface’s address is 10.1.0.1, with a subnet mask of 255.255.255.0. If we'd like to configure this
as a point-to-point interface, we would need to have the address of the “other” side of the point to
point link. Consider that it is10.1.0.2 in this case.

So we have apoint to point interface defined; thelocal addressis10.1.0.1 and theremote address
is10.1.0.2; so far thisisn’t much different than a normal serid interface. Here's where things start
to get different: we define the virtua “wire” in the tunnel interface.

First we need to define the local host’s end of the wire. The end of the wireislogicaly a UDP
port on thelocal host. In thisexamplewewould choose port number 4342. Now we need to identify
the other end of the virtua wire; it is going to terminal on another host on the Internet with the IP
address of 26.0.0.73 on UDP port 2357, in this example. This means that there is another instance
of the PNI software running on the remote system terminating the virtual wire.

Thevirtua wireisidentified by the destination | P address associated with the network interface;
in the case of a point-to-point interface, there can only bethe“other” end. It is possibleto configure
a non point-to-point tunnel interface where there are multiple virtual wires, one to each other host
on the virtua “network” which they al share. In the example scenario, the only virtual wire is
identified by the remote host’s IP address: 10.1.0.2. It would then be necessary to establish a
mapping:

10.1.0.2 = (ip addr 26.0.0.73, port 2357)

conversely, there would be a similar mapping on the remote system which maps our address on

the 10.1.0.0 subnet to our local ip address and port number.

How does the encapsulated packet to 10.1.0.2 get to the 26.0.0.73 host? Via some other
functioning network interface on the host, following whatever route exists to that remote host. The

Chapter 11: TUNNEL Virtual Path Tunnel Encapsulator 62

tunnel encapsulator is the logical end of a string of encapsulators consisting usualy of the PNI,
(perhaps FILTER), and then TUNNEL.

11.1 Configuration Directives

Config(tunnel:PORT) Configuration Variable
Thisistheinteger port number (from 1 to 65535) which the local tunnel encapsulator
will bind and receive incoming packets on. The value of this selection must be
coordinated with the remote host or hosts using tunnels.

Config(tunne: TUNNELYS) Configuration Variable
This configuration variable consists of a list of 3-tuples (each 3 element list) which
map the next-hop | P address to a tunnel end-point | P address and UDP port number.

set Config(tunnel: TUNNELS) {
{ 10.1.2.3 144.202.0.1 1203 }
{ 10.1.3.3 26.0.0.73 1792 }

}

In this example, we have configured two different tunnel end-points (either because
this is a non-point-to-point network or because this part of the configuration file is
share by both ends). Packets input to this TUNNEL encapsulator whose next hop 1P
address are 10.1.2.3 will be wrapped inside of UDP and sent over the Internet to
the host 144.202.0.1, UDP port 1203 where, presumably, another PNI is running and
waiting for packets to arrive. The remote host should also have an inverse mapping
will will alow the return traffic to be sent back to this host to the UDP port number
that we configured earlier.

11.2 Configuration Primitives

This section still under construction. . .

Chapter 12: SECURE Data Security Encapsulator 63

12 SECURE Data Security Encapsulator

12.1 Configuration Directives

Config(secure KEYS) Configuration Variable
Config(secure:HOSTYS) Configuration Variable

12.2 Configuration Primitives

This section still under construction. . .

12.3 Tamper-Proof Objective-C protocol definition

The SECURE encapsulator relies on a companion class to actualy perform the verification
algorithm on the data being transmitted and received. This companion class must conform to the
Tanper Pr oof protocol described below.

/*

*

Copyright (c) 1993 by TransSys, Inc.
* All rightsreserved. This source code document is an unpublished
* work and contains confidential and proprietary information.

*/

/*

* Thisfile defines a protocol, TamperProof, which is used by the
* SECURE encapsulator to verify that datawhich is transmitted
* and received will not be tampered with in transit.

*/

@rotocol TamperProof

/*
Thisfirst group of methodsis used to discover what characteristics
the implementation of TamperProof has.

First, define what the block size of the data to be checked is. It
isthe responsibility of the encapsulator to provide datato be
tamperproofed in multiples of the block size.

* % X X X

*/
- (int) tamperBlockSize;

Chapter 12: SECURE Data Security Encapsulator 64

/*
* Some TamperProof agorithms may compute aresult of of some sort; this
* method returns what the size of that result may be. Itisthe
* responsibility of the caler to set aside space for thisresult, which
* jscarried from end to end to aid in verification.
*/
- (int) tamperResultSize;

/*

* Specify keying datawhich is used to implement the TamperProof-ing
* adgorithm. Thisdatais passed in as apointer and length, and is

* otherwise opaque. This samekeying datais used for data being

* prepared for transmission, as well as checking arriving datato

* ensure it has not been tampered with.

*/

- tamperSetTamperKey: (void *)key length:(int) length;

/*

Verify that the input data received isvalid and has not

been tampered with in transit. Thisdatawill be evaluated in

the context of the" tamper key" set in the method above, and with
the signature data, if any, that was passed in. Thissignature

data is assumed to be of fixed length (returned by tamperResultSize).

* X X X

*/
- (BOOL) tamperVerifylnput:(void *)data length:(int)length
with:(void *)signature;

* Prepare datawhich isto be transmitted for tamper prevention or

* detection. The computed output " signature” , if any, will be returned

* and be of length specified by the tamperResultSize method. The output
* datawill be secured in the context of the key specified by

* tamperSetTamperKey: above.

- tamperSecureOutput: (void *)data length:(int)length
to:(void *)signature;
@nd

Chapter 13: Operation 65

13 Operation

131 pnid

The pni d program is the central component of the PNI package. For more information on the
operation of the pni d program, See Section A.4 [Thepni d daemon], page 82.

The other major operational component of the PNI package, the pni _r el oc kernel driver is not
anorma UNIX program, but rather aloadable kernel driver, See Section A.3 [pni _r el oc kernel
driver], page 81.

13.1.1 Arguments and Options

-d This option is used for debugging. It configures the logging of the pni d program to
be sent to standard error only. The usual logging isdone by using thesysl og facility.
Also, this performsthe - C option as well.

-C This option enables core-dump filesif the pni d program terminates abnormally. Core
dumps may not be produced by default if the ‘ul i mi t* command has disabled them.
-nlogtag
This option takes a parameter, which is a string to be used to mark the logging
messages produced by this instance of the pni d program. In the absence of this
option, log messages ook like this:
Cct 11 21:19:01 wa3ynmh pnid[215]: TransSys PNl 1.1 ...
witha‘- n pni 0’ option specified, the message would look like thisinstead:
Cct 11 21:19:01 wa3ynmh pnid-pni0[215]: TransSys PNI 1.1 ...
-f configfile
This option takes a single argument which is the pathname of the configuration file to
beloaded. If thisoptionisnot specified, thenthefile‘confi g’ inthe current directory
will be loaded.

-0 opt Set thevalue of the Option(opt) variabletothevalueof 1. Alternatively, if the syntax of
‘opt ' isof theform ‘opt =val ue’, thenthe Opt i on(opt) variableisset to ‘val ue’
instead of ‘1’.
The only option currently used is Option(priority), which is used to vary the priority
that the pni d process runs at. Note that to cause the daemon to run at a higher,
preferred scheduling priority, a negative priority should be specified.

- A debugging option. After loading the ‘/ et ¢/ pni / support/init.tcl’ fileand
beforeload the configuration file, the pni d program enters an interactive mode. It will
read and evaluate TCL expressions from standard input.

-C If specified, the pni d program will operate in ‘cl i ent’ mode; the usua case when
dialing out to aremote system. This has the effect of setting the TCL ‘node’ variable
tothevaue CLI ENT.

Chapter 13: Operation 66

-S If specified, the pni d program will operatein ‘net wor k access ser ver’ mode; the
usual case when being connected to by aremote system. This has the effect of setting
the TCL ‘node’ variableto the value SERVER.

- e expression
While parsing optionsand initializing, evaluatethe‘expr essi on’ argument asaTCL
expression.

-t Debugging option. When specified, the pni d program operates in test mode. This
has the effect of settingthe TCL ‘t est Mode’ variable to the value 1. Otherwise, the
‘t est Mbde’ variableisleft unset.

-Rkeystring
Register the program using the license key string specified. User is prompted on
standard output for registration information (name, address, etc.), which isread from
standard input.

13.1.2 Updated License Key Registration

The operation of the pni d program is controlled by a license key string supplied with the
software. When the PNI software isinstalled, you will be asked if you would liketo install it with a
demonstration license key provided with the distribution or to specify one of your own.

The demonstration license key allows operation of various features for alimited time.

To re-register the PNI software with a different license key, it is necessary to run the pni d
program as root. Perform the following commands, as root, from a UNIX shell window:

mv [etc/pni/keyfile /etc/pni/keyfile.save
/etc/pni/pnid -R "supplied-key-string
You will then be prompted for your name, address and other information which is stored on the
local host in the file ‘/ et ¢/ pni / keyfile'. In many cases, it will not be possible to move this
keyfile to another machine asitsinstallation istied to the particular hardware. Thisfileisstoredin
a binary-encoded format and is not in atextual format. Do not attempt to modify the contents of
that file, asit will render the installed keyfile invalid.

Should you need to move the software to another host, you can re-install it using the process
described above.

13.1.3 pni d output and logging

Thepni d daemonisnormally started at boot time, and runs as a system daemon process. Since
it is not interactive, when it needs to communicate with the system administrator or note some
useful information, it will use syslog to do do, rather the writing messages to its standard output or
standard error stream.

Dialing and login scripts can cause messages to be logged by using thesys!| og TCL command.

The sydlog facility can route log messages based upon a facility and a priority. The facility can
be used to identify a source of log messages or a particular class of messages. The pni d daemon

Chapter 13: Operation 67

uses the local5 facility code when creating log messages; during installation (see Section 3.2.5.5
[Changes to /etc/syslog.conf], page 20) and entry is made in the syslog configuration file to direct
these messagesto thefile‘/ usr/ adni pni . | og’ where they can be examined.

It is possible, however, to invoked the pni d program with the - d option to cause messages
which would have otherwise been logged to be directed to the standard error stream instead (see
Section 13.1.1 [Arguments and Options], page 65).

13.1.4 pni d termination conditions

Normally, the pni d process is relatively long-lived; it is started at boot time to establish a
network connection and then continues to run until the system is halted or rebooted. Alternatively,
the pni d process may be started “manually” either by a user directly, or from the cron program at
ascheduled time.

The pni d process will normally run continuously. It is possible to configure it to exit after a
period of network inactivity (see Chapter 6 [FILTER Packet Filter Encapsulator], page 34). The
process will also exit if the physical connection in use becomes unavailable; e.g., the modem hangs
up dueto loss of carrier from the remote.

To manually cause the pni d program to exit the pni st at script (see Section 13.3 [pnistat],
page 67) can be used to issue an authenticated command to the pni d daemon to causeit to exit. A
less el egant approach isto send the daemon process an interrupt (SIGINT) or terminate (SIGTERM)
signal. A hangup signa (SIGHUP) will aso cause the daemon to exit as if the carrier from the
modem dropped.

13.2 Thepni t cl program

The pni t cl program is an augmented, standalone TCL (Tool Control Language) interpreter
used to build monitoring and control tools. It is an implementation of TCL as a standa one tool,
rather than being embedded within another application program (such aswithinpni d). Thepni t cl
program can be used to execute standalone TCL scripts, in much the same way the the shell execute
shell scripts.

There are three distinct set of commands available within the pni t ¢l program:

1. The standard set of core primitives available as part of the normal TCL package.

2. A set of extension primitivesprovided by the TCLX extension package. Notethat afew of the
extensionsin TCLX have not been included which are not commonly used or otherwise might
interfere with the use of TCL inthepni d program.

3. A set of extensions specific to the PNI package, including a primitive to perform RPC calls to
instances of the pni d daemon.

13.3 Thepni st at script

Thepni st at script isused to query the operation of arunning instance of the pni d daemon.

Chapter 13: Operation 68

13.3.1 pni st at usage

Thepni st at program isinvoked from a UNIX shell to query and control arunning instance of
the pni d daemon. It isinvoked as:

pni stat ‘options’ ‘pnidaenon_nane’
It takes the following options:

-a Run anonymously. This performs an unauthenticated query to the remote pni d dae-
mon, rather than using a password from the ‘/ et ¢/ pni / conf i g/ passwor d’ file or
from the PNI PASSWORD environment variable.

- ¢ commandnane
Perform the command, ‘commandnane’, in the remote pni d process. The default
command is ‘st at’ to obtain the status of the daemon process. The other useful
command you might useis ‘down’, to cause the pni d process to shutdown and exit.

-d Increment the debug level. Not normally used.

-eencap Whenusingthe ‘st at’ command, thisallow you to specify a particular encapsulator,
‘encap’, to obtain information about rather than all encapsulators.

-h host Query the host ‘host ’ rather then the local host. Useful for monitoring the operation
of apni d daemon on aremote machine, assuming that there is network connectivity
to the remote.

- P password
Specify an aternative password to perform an authenticated operation to the remote
pni d daemon.

-p pni N Add the pni daemon process, pni N, to thelist to be queried. The values specified are
the symbolic names such as ‘pni 0’, ‘pni 1’, etc.

-V Set verbose mode. Not normally used. When verbose mode is enabled, the raw data
returned by the daemon process is displayed.

13.3.2 pni st at stat command

The default output produced by the pni st at script is for the stat command which displays
hopefully useful or interesting statistics about the pni d daemon. The output produced looks like
this:

$ pni st at
Encapsul at ed Decapsul at ed
Type Encap state Buf s Byt es Buf s Byt es
PNI * pni phase2 71417 5674790 69560 17260117

FILTER* filter phase2 71417 3389446 69560 17260117
SLI P* slip phase2 71417 3389446 795123 15104232
TTY* tty phase2 71418 1375574 795123 15104232

Thisformat of output reports stati stics gathered by each encapsul ator in therunning configuration.

Chapter 13: Operation 69

The first column is the type of the encapsulator, whilst the second column is the name of a
particular instance of an encapsulator. While not obviously useful in normal situations, itis possible
to have more than one instance of a particular encapsulator in a single configuration.

The asterisk next to the encapsulator type indicates that the encapsulator is active; this will
always be the case except when debugging certain situations during devel opment.

The state column indicates the current state of the encapsulator; this should aways be either
‘phasel’ or ‘phase2’ to indicate what stage of initialization the encapsulator has completed.
The usual stateis ‘phase2’, which indicates that the associated encapsulator has been initialized
completely and is up and ready to receive or transmit data.

The next two sets of columns count buffers of dataand byte counts which are encapsulated and
decapsulated at each layer. Encapsulated refers the process of moving the network traffic from the
operating system out towards the network hardware. Decgpsulated is the reverse; that is, taking
streams of data from the network hardware and parsing them into frames and packets to be handed
to the operating system network protocol stack.

More information is available when the pni st at script isinvoked with the - v option:

$ pnistat -v
pni 0: running since Fri Nov 26 00:07:21 1993 (22 hours, 9 ninutes, 45 seconds)

Encapsul at ed Decapsul at ed
Type Encap state Buf s Byt es Buf s Byt es
PNI * pni phase2 71765 5700150 69908 17356184

FILTER* filter phase2 71765 3403670 69908 17356184
Idle time: 8 seconds
SLI P* slip phase2 71765 3403670 799580 15189576
VJ TCP Hdr conp: 6415 unconp/ 63459 conp 1380 unconp/ 67025 conp
TTY* tty phase2 71765 1380568 799580 15189576

In this example, certain encapsulators report back statistics specific to their type. For instance,
the ‘FI LTER encapsulator reports the length of time that traffic has been idle, since it enforces
idle traffic timeouts. The ‘SLI P’ encapsulator reports statistics specific to the Van Jacobson TCP
Header Compression algorithm.

Also reported in the verbose format isthe time that the pni d process was started (in UTC), and
the time elapsed since the start time.

We note that this daemon has been pretty busy, with an almost constant stream of input data.
The resources used by this daemon as reported by the ps command are;
$ ps xalgrep pnid

335 2 S 29:19 /etc/pni/pnid -C-c -n pni0 -f /etc/pni/config/pniO.config
10279 p2 S 0: 00 grep pnid

$ ps v335
PID TT STAT TIME SL RE PACEIN VS| ZE RSI ZE LIM TSI Z TRS %PU %EM COVMAND
33 ? S 29:20 0 O 0 2.11M 736K 0 OK O 1.5 3.6 pnid

$ ps nB35

USER PID TT % PU STAT PRI SYSTEM USER COVWAND

r oot 335 72 6.1 S 20 21:17.56 8:03.04 J/etc/pni/pnid -C-c -n pni0

Chapter 13: Operation 70

$ ps 1335
F UD PID PPID CP PRI BASE VSI ZE RSI ZE WCHAN STAT TT TI ME COMVAND
80000001 0 335 317 0 20 20 2.11M 736K 0 S ? 29:23 /etc/pnilp

13.3.3 pni st at control operations - the down command

The down command is used to cause the pni d daemon to immediately exit. Thiswill cause,
in the usua case, the modem used for the connection to hang up and the physical connection be
terminated.

The down command is used likethis:
$ pnistat -c down pni 0

Thiswill cause the pni d daemon for the pniO network interface to exit. In order to successfully
perform the down command, you must perform an authenticated interaction with the pni d daemon.
Thisrequiresthat you know the proper password to authenti catethe command. Normally, the proper
password will be obtained from ‘/ et ¢/ pni / conf i g/ passwor d’ which is protected the UNIX
file permissions so that only the root superuser has access as well asthose usersin the UNIX group
pni:

$1s -Ig /etc/pnil/configl/password
SITW----- 1 root pni 33 Sep 17 22:54 /etc/pni/configl/ password

13.4 The‘/ et c/ pni / pni run’ shell script

The pni r un shell script is used to start (and stop) instances of the pni d daemon process. Itis
intended to be used in two different ways. at boot time, invoked fromthe‘/ et c/rc. | ocal ’ file
and interactively, invoked by hand to bring up (or take down) a network connection as desired.

Thepni r un script takes anumber of options:

-V

- X These options set the corresponding ‘/ bi n/ sh’ options and are used for debugging
purposes only.

-all Start instances of the pni d daemon process for all interfaces for which configuration
files exist.

- boot Indicatesthat thepni r un script wasinvoked at boot timefromthe‘/ et c/rc. | ocal’
script. This option causes some one-time clean-up activities to be performed, such as
log file maintenance.

-core This option, when specified, will alow all of the pni d daemons that are started to
create ‘cor e’ files if they should abnormally exit. Thisis used to debug the pni d
program.

- debug Thiswill cause apni d daemon process to be run interactively with debug out sent to
standard error. This hasthe effect of invoking the daemon with the-t and - d options.

Chapter 13: Operation 71

- down Thiswill cause the named instance of thepni d daemon processto exit if itiscurrently
running. In this case, you should specify a daemon instance by name: pni 0, pni 1,
etc:

/etc/pni/pnirun -down pni0

configfile
A list of interfaces can now be specified. For example, if ‘pni 0’ was specified, and a
filenamed '/ et ¢/ pni / confi g/ pni 0. confi g’ exists, then apni d daemon will be
started with that configuration file.

If the-al I option was specified, then the pni r un script will build alist of configuration files.

A pni d daemon will be started for each configuration file. The configuration files are located by
the following process:

1. If thefile‘/etc/pni/config/autostart’ exists, then it is expected to exactly contain a
list of configuration file names, one per line. No other punctuation or commentary is allowed.
2. Elsg, if adirectory ‘/ et ¢/ pni / confi g’ exists, dl thefiles of theform
“/etc/pni/config/*.config-auto’
aretreated as pni d configuration files.

Theusual caseisthe second; where all of the
“/etc/pni/config/*.config
filesare used and apni d daemon started for each.

Note that the pni r un script isused for outbound instances of the daemon, where the local host
is initiating some connection to a remote network access server. Inbound connections are handled
by the‘/ et ¢/ pni / pni | ogi n” script.

Chapter 14: Troubleshooting and trivia 72

14 Troubleshooting and trivia

14.1 PNI not working - now what?

The very first thing which you should do when encountering problems with the PNI software to
look at the log files. Since the pni d daemon process runs detached from any particular user on the
system, it can only leave messages in log files to advise the system administrator and users of the
host of any problemsit might be having.

M ost of theerror messages, warningsand other commentary will appearin‘/ usr/ adn pni . | og’.
More seriouserrors and messageswill also appear in‘/ usr / adm messages’, aswell asonthesys-
tem console‘/ dev/ consol e’. You can use any text editor to view thetwofilesinthe‘/ usr/ adni
directory, and the Console Tool from the workspace to view messages displayed on the system
console.

Thelocation of thelog files are specifiedinthe‘/ et c/ sysl og. conf’ file. Thisfileismodified
when the PNI software was installed to add these lines:
PN ::START:: 1.0
| ocal 5. debug /usr/adm pni. | og
| ocal 5. war ni ng / dev/ consol e
PNI::END: : 1.0

Thel ocal 5 syslogfacility isused for al logging messages generated by the pni d program. It
is not possibleto change thislogging facility to another value.

14.2 What about HostM anager ?

The Host Manager application is used to configure the “standard” network interface on
NEXTSTEP system. In most cases, you do not want to use it to assign |P addresses, names
or default routes for any network interfaces created and managed by PNI.

14.3 Problemswith netinfo, lookupd and M ach messaging

There are a class of problems which you might experience which are caused by software not
dealing well with network interfaces which were created after the program was started. Most of the
software running on UNIX platforms were written with the assumption that network connectivity
isadtatic state of affairs (other than when there are actual network failure, in which case some are
not so graceful anyway).

For example, thennser ver daemonisresponsiblefor forwarding Mach |PC messages between
computers on a network. When the nmserver daemon is started at system boot time, it examines
the configuration of the active network interfaces and initialized appropriately. Should additiona
network interfaces be added, it is hecessary to “poke” the daemon and have it re-initidizeitself. An
example of this can be seen at theend of the‘/ et ¢/ rc. net’ shdll script, where a USR2 signd is
sent to the process to cause it to be reinitialized.

Chapter 14: Troubleshooting and trivia 73

14.4 Kernel panics

If you are using PNI on a Intel based NeX TSTEP system, and are experiencing system crashes
due to akernel pani c, you are probably experiencing a bug in the NEXTSTEP serial driver. This
has been reported on NEXTSTEP 3.2 systems, especially when using PNI in Network Access Server
mode.

The solution to this problem is to obtain the MUX driver from one of the NeXT FTP archive
sites, and useit instead of the default seria driver.

14.5 Common error messages

If you see a message of the form PNI pni : runt packet 4 byt es dr opped, thisisthe PNI
encapsulator telling you that it has been handed a packet which is smaller than the minimum size
of an |P datagram header. When thisisthe case, the PNI encapsulator doesn’t even attempt to hand
the erroneous packet the operating system kernel, but drops it and logs a message.

Why would this occur? One reason, which would be consistent with seeing only a very few
of these messages could indicate a noisy or error prone seria link where an “extra” SLIP framing
character may be been detected. The more likely case, however, is probably due to the reception
of a TCP segment which was sent using Van Jacobson TCP header compression (CSLIP), but the
local PNI software was not configured to use CSLIP, but rather, plain SLIP. Thus, the small header
compressed packet was handed to the PNI encapsul ator without having the compressed IP and TCP
header replaced with a complete header.

14.6 Serial Device Troubles

14.7 Dialing Script Troubles

To aid debugging of dialing scripts, you can invoke the pni d daemon directly rather than using
the pni r un shell script. The additional debugging becomes available by usingthe-t optionto put
the daemon into test mode. In this mode, messages which are usually logged via syslog will be
emitted on standard output and standard error. Also, higher debug levelsfor the TTY encapsulator
will cause the Dialer scriptsto log data received and transmitted to standard output.

A typical invocation would be:

/etc/pni/pnid -C-c -n pni0 -t -d -f /etc/pni/config/pniO0.config
or, slightly more simply, viathe pni r un script:
[etc/pni/pnirun -debug pni0

Higher debug levels for the encapsulators can be set by using the debug subcommand in the

config file, after thelist of st ack commands:

stack PN pni
stack FILTER filter

Chapter 14: Troubleshooting and trivia 74

stack SLIP slip
stack TTY tty
tty debug 8

proc LINK start { encap } {
log "LINK $encap connected"
}

proc LINK stop { encap } {
log "LINK $encap di sconnected"
}

The values passed to the debug subcommand correspond to the syslog debug levels:
Debug
Informational
Notice
Warning
Error
Critica
Alert

O P N W 01 O N

Emergency

It is possible to have values larger than 7; these enable even more extensive debug output in
some cases. Debug values at level 7 or greater are not recommended for normal production use of
the software due to the volume of debug and trace messages that may be generated.

Each encapsulator has its debug level set independently of the others.

Log messages will be written to ‘/ usr/ adm pni . | og’. This can be changed by editing the
‘I et ¢/ sysl og. conf’ file.

14.8 Modem Troubles

Make surethat you are using the correct cable to your modem. Specifically, on NeXT hardware,
aMacintosh seria cable will not work on 68040 systems.

Due to hardware constraints, you can’t do hardware flow control on 68030 systems, where you
likely need it the most.

In most cases, you'll want to run the serial port speed at the highest speed possible to take
advantage of any compression that’s done in the modem (via MNP5 or V.42bis). This means you
must usethe‘/ dev/ cuf *’ devices and the modem must be configured for hardware flow control.
The dialing scripts provided should do this, if you need to write your own, you'll need to make sure
thisisthe case, too.

Chapter 14: Troubleshooting and trivia 75

Make sure that the modem and cable is configured so that the DCD line (Data Carrier Detect)
from the modem is available at the serial port on the correct pin. This is how the pni d process
checks to seeif the modem is still connected or if the line has been disconnected.

14.8.1 TTYDSP related problems

If you are using TTYDSP, you should ensure that you have maintained the modified version
of the | ogi nwi ndow program which is created when the TTYDSP package is installed. This
maodification is necessary since thel ogi nwi ndow program resets the sound driver when each user
logs in. Since the TTYDSP package uses the sound driver to communicate to the DSP and the
DSP's serid port, thiswill disrupt the use of the seria port.

The | ogi nwi ndow program may be replaced when you upgrade from one operating system
release to the next.

14.9 Network Problems

Can you ping yourself? Can you ping the other end of thelink? Can you ping systems past the
other end of the connection? If you can only get so far, then you have routing problems. Most of
thetime, your packets can get to where they’re going with no problem; it isthe returning traffic that
can't find itsway.

If you are a remote, standalone host dialing in over a SLIP connection, you probably do not
want to be configured as being on a NetInfo network.

If youtry very, very hard, you can probably configure thingsso that - NXHost works. But you'll
find that the performance over a SLIP link is so bad, its unusable. | have yet to find anyone that
finds otherwise.

14.9.1 Routing Issues

To effectively use the PNI package to communi cation with other hosts, it is necessary to arrange
for proper routing to be in effect. There are two aspects to this. the local routing configuration
must be set so that traffic can be correctly transmitted, and the routing configuration on the remote
systems must be set so that traffic can find itsway back to thelocal system.

14.9.2 Domain Name System | ssues

A common desire when using the PNI package isto be able to communi cate with many different
hosts on the Internet. Thisusualy requires the use of the Domain Name System to resolve domain
names into | P addresses.

By default, the NEXTSTEPsystemswill only query the Netlnfo directory service, which contains
only loca host information. To enable the use of the DNS on NEXTSTEP systems, you must create
the‘/ et c/ resol v. conf ' file. Once thisfile has been created, any attemptsto lookup host names
will result in a DNS query if the name does not exist in Netinfo. See “man resolver” for more
details.

Chapter 14: Troubleshooting and trivia 76

Of course, if you can't contact external name servers because your SLIP link is down most of
thetime, havinga‘/ et c/ resol v. conf ’ file may betroublesome at thosetimes. Later versions of
PNI will delete any default route which it installed when link becomes inactive which should cause
theresolver to give up quickly with a“Host Unreachable” error message. Notethat in thiscase, you
will trigger a bug in NeXT’s | ookupd daemon - it incorrectly caches DNS “Temporary Failure”
returns (e.g., can’'t contact name server) as “Host Unknown” errors for some period of time. This
means that even after the link comes back up, you may still get cached “Host Unknown” errors for
ashort period of time, or until the | ookupd process s restarted.

14.10 Questionsand Answers

14.10.1 Weird telnet operation

Here's an bug report that was received regarding strange behavior of telnet sessionsover a PNI
SLIPIink:

I"ve run into what appears to be a bug with PNI-1.11. The problemis
that, under certain circunstances which | will describe below <cr>
(and very occasionally <If>) characters disappear.

Here's the circunstance where | noticed the problem M honme NeXT
(running NS 3.2) is running PNl as a client, establishing a SLIP
connection to an Annex in ny department. | have a Sun Sparcstation 1
at ny office running SunCs 4.1.3 and X-wi ndows. The probl em occurred
with a telnet session froman xtermon the Sparc to the NeXT, via the
Annex and SLIP |ink.

Here are the synptons: |If | do an "Is" on a mediumsized directory,
the first dozen or so lines are fine but after that nany of the <cr>'s
are mssing, so the lines
continue on the screen
like this. |I'm
running SLIP with an MU of 256, which is the default on our Annex.
The dropped <cr>'s seemto always occur after the first 256 bytes.

After further experinentation with Is on very short directories, |Is on
very long directories, and cat of a rather long file, |’ve cone to the
conclusion that the errors always occur on the |last packet of a burst
but never before. The cat of the long file was correct, screenful after
screenful, until the very end, leading ne to believe that the problemis
NOT with flow control on the nodem (I am using hardware flow control.)
On the other hand, all 3 <cr>'s were missing in a 3-line "Is" listing of
a small directory.

How could this occur? M conjecture is that PNl handl es short bursts
differently than long ones in an attenpt to inprove responsiveness and
that that section of the code sonehow | oses the <cr>'s. O course, if |
enable "Auto Linefeed" nbde in ny xterm w ndow, then the missing <cr>'s
are not noticed and everything appears to be working fine, which could
explain why it hasn’'t been reported before. Aso, | don't notice any

Chapter 14: Troubleshooting and trivia 77

problenms telnetting *out* of ny NeXT to ny Sparc, just inbound. | don't
know whet her or not this problem affects other network services such as
FTP.

Thisisn'tabug in PNI. PNI isn't aware of any of the actual characters being transmitted in the
packets going by, and certainly doesn’t muck with the contents of any TCP connections which is
carries. PNI is definately not doing anything with CR or LF characters in the user’s data stream. |f
it did, then the TCP checksums wouldn’t work, and the connection would hang or reset.

This is indictive of an application level program which is being provoked by either timing
differences (slower network connectin), or just an incompatibility.

There are two potential problems:

Wheat's going on here could be atiming interaction withthe TTY driver. You are probably using
ashdl like bash or tcsh on the remote system. Thisshell normally operatesin cbreak or raw mode,
but switchesto cooked modeto run programs. When the tty is switched from one mode to another,
pending characters in the queue are flushed. In this case, before they are transmitted to the network.

The other more likely case is that they telnet daemon isn't implementing telnet line mode
correctly, which includes setting up the tty into the correct mode when switching from raw modeto
cooked mode, etc.

One way to test thisisto userlogin and seeif it operates differently; it doesn’t try to be quite a
clever at thetelnet deemoniis.
14.10.2 pni st at questions

Consider the output for an invocation of the‘/ et c/ pni / bi n/ pni st at’ program invocation:
pni st at

Encapsul at ed Decapsul at ed
Type Encap state Buf s Byt es Buf s Byt es
PNI * pni phase2 27192 2018308 38633 8455145

FILTER* filter phase2 27194 1148244 38635 8455657
SLI P* slip phase2 27195 1148284 146807 7207990
TTY* tty phase2 27196 290858 146813 7208499

There are several bitsof triviato be gleaned from this example.

First, note that ascending number of bufferslisted under ‘Encapsul at ed’; thisis an artifact of
the measuring process. At the time, abulk file transfer was taking place, with constant input. The
statistics are gathered one encapsulator at a time, and during the reporting process, packet traffic
was in progress. The packets being transmitted (encapsulated) at the time consisted of TCP ACK
segments.

Also noticethat the encapsul ated byte count of the‘PNI ' encapsulator (‘2018308’) issomewhat
higher than that of the ‘FI LTER encapsulator (‘1148244’). Thisis reflects the fact the that PNI
kernel driver returns a fixed length header of 32 bytes on every packet transmitted by the kernel.
This header is stripped off before handing the IP packet up to the next encapsulator.

Chapter 14: Troubleshooting and trivia 78

Notethat the Van Jacobson TCP header compression algorithmisresulting in asignificant savings
of bytes transmitted over the serial line; consider the difference between the *SLI P* encapsulator
bytecount, ‘1148284’ andthe'TTY’ encapsulator byte count, ‘290858’. Thisreflectsthereduction
of a40 byte TCP ACK segment down to just a few characters per packet. A similar reduction can
be seeninthe‘Decapsul at ed’ statistics, which are large in this example because bulk movement
of datainto the host. The percent reduction is not as large since the 40 byte overhead of the TCP
packet isrelatively small compared to the actual user-data being carried.

14.11 Internal Organization

The general architecture of the PNI package has already been described in another part of this
document (See Appendix A [Architecture], page 80). Here, we'll present some of the more more
nitty-gritty details of how the software fits together and functions.

14.12 Encapsulator Internals

Encapsulators are implemented as Objective-C classes which are dynamically loadable from
bundliesinthe‘/ et ¢/ pni * directory. The bundles al have an extension of ‘. encap’ and are, by
convention, al in upper case. Within each bundle directory, there can usually be found threefiles.

There is an object file which contains the compiled (multiple-architecture) binary code for the
class which implements the Objective-C class. All encapsulators are subclasses of a common
encapsulator class. Currently, the interface specifications of the super-class are unpublished and
subject to change.

There may also be two TCL filesin the bundle directory. One TCL file contains code which is
loaded oncethefirst time aparticular encapsulator isinstantiated by the pni d daemon process. The
other isloaded each time the encapsulator classisused. In usua configuration, it isnot likely that
the encapsulator will be used more than once per configuration so each file of TCL code is |oaded
once.

For example, for the*SLI P* encapsulator thefiles are:

‘' etc/ pni/SLIP.encap/ SLI P
The binary file which contains the compiled code and data.

‘/etc/pni/SLIP.encap/ SLIP Init.tcl’
The per-class encapsulator initidization file. When thisfile is loaded, the globa TCl
variable encapType is set to the encapsulator type; in thisexample SLI P.
‘/etc/pni/SLIP.encap/ SLIP objlInit.tcl’
The per-instance encapsulator initidization file. When this file is |oaded, the global
TCL variables encapType and encapNane are set to the encapsulator type (in this
example SLI P) and the name of the encapsulator as specified on thest ack command.

The usua contents of these initialization files are procedure definitions. In particular, the
following TCL proceduresare expected to be defined and will beinvoked if defined when appropriate
(inthisexample, for the ‘SLI P’ type encapsulator named ‘sl i p’ in the configuration)

slip_start{}

Chapter 14: Troubleshooting and trivia 79

slip_stop{}
slip_configure{ encapNane }

14.13 pni d internals

This section still under construction.

For astarting point,look at the‘/ et c/ pni / pni d. tcl "and‘/ et c/ pni / support/init.tcl’
files.

Appendix A: Architecture 80

Appendix A Architecture

This section will describe the general shape and architecture of the PNI package. Whileiit is not
necessary to know all of the details described in order to use the software, it will give you a better
sense of how it PNI is put together and how it might be used.

A.1 Network Interface Architecture

A Network Interface is the logical connection point of your computer system to a network. It
corresponds to the logical “hardware” device which allows the flow of data into and out of your
computer system. The most common instance of a network interface on a computer system or
workstation isthe Ethernet interface.

The term Network Interface is aso used to refer to the software abstraction or data structure
used by the operating system running on your UNIX computer system or workstation. The network
interface has some state associated with it (such as an |P address, subnet mask, broadcast address)
and is referenced by other operating system data structures, such as the routing table which is
consulted to determine the path to transmit network traffic for a particular destination.

TheTransSys PNI product providesaway of creating additional network interface abstractionsor
data structuresto augment the usual Ethernet network interface. 1t also has software which handles
the network traffic being sent on these network interfaces and that traffic which will be received
on those network interfaces. Network interfaces are named; for instance, the Ethernet interfaceis
usualy named en0; network interfaces created by the PNI software are named pni 0, pni 1, €tc.

The TransSys PNI product consists of anumber of daemon processes, each of which corresponds
to a particular logical network interface. Not al network interfaces need be active at once; when
traffic begins on a particular network interface a connection can be established on demand (“dia on
demand”). Please note that in the current beta version of the software, dial-on-demand is not yet
available for use.

A.2 PNI Software Architecture

When configuring and operating the PNI software, it isoften hel pful to understand the underlying
architecture of the software. Often, thereis somecritical piece of information missing when trying
to communicate a complicated set of information. In many cases, this critical information is the
underlying model which the software was written to conform to. Or “What was he thinking when
hediditlikethat?’

There are two main software components which constitute the PNI package:
e pni _rel oc — theloadable kernel device driver.
e pni d — the user-level support daemon process.

Appendix A: Architecture 81

A.3 pni _rel oc kerndl driver

Thepni _rel oc kernel driver isautomatically loaded into the UNIX operating system. It'stask
isto create a standard network interface abstraction for the existing kernel TCP/IP networking code
to use. It very similar to the existing ‘en0’ Ethernet interface in the sense that network code in the
operating system uses the ‘pni * interfaces the same way that it might use the ethernet (‘en0’) or
system loopback (‘| 00’) network interfaces.

The main difference between the standard network interfaces and the ‘pni ' network interfaces
is that there is no actua hardware resource directly associated with the ‘pni ’ network interface.
Rather than having some hardware for the driver to use, we use a virtual hardware interface.

Thisisactudly quite similar to the UNIX pt y (pseudo teletype) devicesthat UNIX uses. There
are not actual seria devices associated with the pt y devices, but another, specia interfacewhichis
used to control asimulated seria device. Thisis how remote network loginswork; your sessionis
associated with a pseudo tty device; it is controlled by atelnet daemon process which interfaces to
the operating system to read and write characters to and from the network. There network character
streamsare then made availableviathept y device, and the UNIX shell and other commandsbelieve
that they are attached to aterminal type device.

The pni _r el oc device uses a similar abstraction (in fact, pni originaly was an acronym for
Pseudo-Network Interface). For each pseudo network interface device that’s created (e.g., ‘pni 0')
there is a corresponding character specia device (‘/ dev/ pni 0’) which is used to control the
network interface and transfer the data. When the operating system transmits a packet of data to
the network viathe ‘pni 0’ network interface, that transmitted package is available to be read on
the ‘/ dev/ pni 0’ character special devicefile. Conversely, when the‘/ dev/ pni 0’ fileiswritten
to with the correctly formatted data, that data appears as input from the ‘pni 0’ network interface.

So far, it sounds as if the pseudo network interface kernel driver isn't really doing al that much
for us; it's mostly just shoving the data that come in from one end (output from kernel networking
code) and sending out the other (to be read from the ‘/ dev/ pni X' device file). Actudly, that
simplicity is one of the primary design goals for the kernel driver; it isas simpleasit can possibly
be. Thissimplicity is a great advantage in a kernel device driver - the less the kernel driver code
needs to perform, the lesstimeit will take to debug that code. Mafunctioning kernel drivers, rather
than just dumping a core file like an application might do, will panic or crash the entire system.

While just implementing SLIP or CSLIP in a kerndl driver is not very difficult (and TransSys
has aready donethis — our TransSys Dial-Up | P package for NeXT 68040-based systems), more
complex protocols such as PPP and other features (such as packet filtering) become somewhat
unwieldy when implemented within the framework of akernel devicedriver. Theintent of thepni _
r el oc driver wasto create as minimal akernd driver as possible (or necessary), and implement the
remaining functionality in auser-level (that is, not a kernel-based) process.

The other advantage of this approach is that the user-level process can be written in a portable
fashion, insulated from operating system changes because it uses a defined (and presumably un-
changing) API to get its work done. Only the (much smaller) kernel driver actually needs to be
“ported” as the operating system has mgjor upgrade or when moving from one type of platform
(NEXTSTEP/UNIX/Mach) to another (SunOS? AIX? Who knows?).

Appendix A: Architecture 82

A.4 pni d daemon process

The pni d program is what is on the “other end” of a pseudo network interface. It opens the
‘/ dev/ pni 0" (or ‘/ dev/ pni 1’, etc) character specia device file, and reads data from the file
(output packets from the corresponding ‘pni 0’ network interface) and writes datato the file (input
packetsto the ‘pni 0’ network interface).

Thepni d program is the bridge between the pseudo network interface and somerea hardware
or transport for the packets. For example, the pni d program might also have open a tty serial
devicelike'/ dev/ cuf a’ so that it might receive and transmit network packets over a serial port to
amodem.

If you have arranged to use more than one PNI pseudo network interface (perhaps because you
have multiple Pni-based network links), you will have a separate and distinct pni d daemon process
for each active pseudo network interface. Strictly speaking, the architecture of the software doesn’t
require a daemon process per pseudo network interface; but implementation and operational issues
make the one process per interface approach an attractive approach to use.

Thepni d processisimplementedin arather novel way. Since the kernel-level pseudo network
interface driver isso simplein function, al of the interesting functions need to be implemented in
the pni d daemon program. The daemon is built from anumber of well defined, reusable modules
which can be arranged and configured in different ways depending upon the circumstances.

The best way to describe these modules is to explain how they are used to build a network
connection and how the modules handle and modify the data corresponding to the packets flowing
over the network connection. Let's enumerate the steps which occur for a SLIP connection’s flow
of data

1. First, obvioudly, isthe fact that a network interface must exist which is the source and sink of
the packetsto be sent and received. Thisisfunction isimplemented by thepni _r el oc kernel
driver.

2. There must be amechanism for obtaining the packets which are being transmitted on anetwork
interface. Thisisdone by opening and reading the*/ dev/ pni X’ character specia devicefile.
Thisisdone by amodulein the pni d processthat’s called PNI .

3. The SLIP protocol specifies certain conventions for encoding and framing an |P datagram so
that it may be transmitted over a serial link. This encoding and framing process consists of
adding a frame delimiter character to separate one packet from the next, and a mechanism
for escaping the specia characters that are reserved for framing purposes. This function is
implemented by the SLI P module. The SLIP module processes as input packets which are to
be sent and produces as output a stream of characters which are the encoded and framed input
packets.

4. Findly, the character stream of encoded and framed packetsis actualy transmitted on a serial
port. On UNIX systems, thisisdone by opening atty-likedevice (for example, ‘/ dev/ cuf b’),
setting thetty devicein RAW mode, and then writing streams of charactersto that device. This
isdone by the TTY module.

Of course, for incoming packets the same functions and operations are required, but simply
applied in reverse order in an inverse fashion.

Appendix A: Architecture 83

Each of these functions are performed in essentialy a linear fashion; the “data’ starts at one
end, and is successively processed or transformed as it moves aong. Each moduleisreferred to as
an Encapsulator; encapsulators have standard interfaces which allow one encapsulator to use any
compatible encapsulator asits “input” or “output”.

The design of the pni d program is such that each instance of the daemon services a particular
network interface. So if multiple pseudo network interfaces are configured for dialing-out, there
will likely be more than one pni d process running.

Each encapsulator has well defined interfaces for input and output, and thus a set of them can
be arranged in order to provide the desired function. The encapsulators are actually implemented
as Objective-C loadable classes. Future encapsulators can then easily be accommodated so long as
they implement the standard interfaces.

Appendix B: Bibliography 84
Appendix B Bibliography

Some references to useful information are included here.

TCP/IP TCP/IP Network Administration by Craig Hunt, O'Reilly & Associates, Inc. 1992.
ISBN 0-937175-82-X

DNS DNS and BIND by Paul Albitz & Cricket Liu, O’'Reilly & Associates, Inc. 1992.
ISBN 1-56592-010-4

Tcl and Tk
Tcl and the Tk Toolkit by Dr John K Ousterhout. Addison-Wesley Publishing 1994.
ISBN 0-201-63337-X. A clear and readable introduction to TCL (whichisused exten-
sively in PnI) and Tk.

Practical Programmingin Tcl and Tk
Practica Progranming in Tcl and Tk by Brent Welch. Draft of book to
be published by Prentice hal. A tutoria-style introduction to Tck and TK.
Draft version available via anonymous FTP from parcftp. xerox. com in
‘/ pub/ sprite/wel ch/tcl book2. 1. ps.Z.

Concept Index

Concept I ndex

/

fetclresolv.conf. ... 75
JLOCAIAPDS .« et 16
A

Annexterminal server................... 47
anonymousFTP ... 2,6,7,9
architectures, other. 3
B

bring down,pnido 70
bundles............... 78
C

callog....ooovn 24
carrierdetect. 45
control password. 23
CraSN . 73
CU ettt e e e e e e s 45
D

DCD. ..o 45
defaultroute........... 22
Dialer. ... 46
Didler ScriptS. . ..oovvvei 23
DialUp-IP. ... 45
Digicom9624LE i 46
DNS . 75
DomainNameSystemoooove... 75
E

BMIACS . . ottt e 3
F

FTR @anonymous.ocoviiiiiiiniiiiea .. 2
FTRPUUNET ... 2
G

OrOUP . ..ttt 16, 28

85
H
HP-PA . 3
HTML o 3
I
IPaddress. ... 22
IPC . 72
K
kermit. ... 45
L
LOCAlAPPS. .« et 16
Lockingprotocol ...t 45
Locking Protocol, UUCP......................... 45
log,calls. ... 24
LOgiNnSCriptS ..o ovve e 23
M
MachIPC 72
MOCEM. . .. 46
monitoring password.l 23
MTU .o 22,44
MultitechMT1432EA 47
MultitechMTO32EA 47
MUX driver. ... 73
N
Network AccessServer 1,15, 21, 22, 23, 28
NEXthop......cooii 61
NMSEIVEL ...ttt e e e 72
NXFEX. oo 45, 47
P
PANIC. .ot 73
PasSWONd ... oee e 23
password, monitoring andcontrol 23
PEP. . 47
PNI . 1
PRigroup ... ovee e 16, 24, 28
pnid, hating..............o. oo 70

Concept Index

pnid, starting. 71
pnilogin....... ..o i 28,71
PRITUN. .o 21
PRIStat . ..o 13
POSESCIIPt .. oo 3
Protocol, locking ... 45
R

route, default. 22
S

scriptsearchpath. ... ool 22
Scripts, Dialer. ... 23
Scripts, Login. . ..o 23
serial driver. ... 73
server-modeshell. ... 28
shell ..o 28
SIONAIS . ..t 67
SLIPMTU ..o 44
SLIPServer.......cooovvviiiiiiiiiii.. 22,23,28
stackcommand........................... 24, 27,73
startingup, pnid. 71
subnetmask ... 22
SYSIOQ - e 66, 72,73
T

TamperProof 3

TamperProofclass. ...t 3

86
TCL o 2,4,6,12,46,47,67,84
T X 4
TCLX 6
Telebit Worldblazer 47
1] 0 1P 45
TransSysDialUp-IP....... ...t 45
BY(4) o 45, 46
TTYDSP........o 19, 45, 46, 75
U
UDP. . 61
UNIXQroup. ..o 16, 28
USRoboticsWorldPort. 47
USEINAME . . oottt et et e e 23
UUCP ..ttt 45
UUCP ... 45
UUCP Locking Protocol 45
W
Worldblazer. 47
Worldport, USR. ... 47
WWW . 3
X
XylogicsAnnexterminal server................... 47
Z
ZYXEL .o 46, 47

Function Index

Function Index

C

di al er
di al er
di al er
di al er
dialersleep..........coociiiiiit.

delaycooooiiiiii i

dialer xmt

EXPECt ..o
parity ...

87

L

1o o P 12,30
N

NOLI CB it e 30
P

printify. 12
S

SYSI 00 i 30
W

17172 o 1 12,30

Variable Index

Variable Index

C

Config(filter: DEMAND.FILTER) 35
Config(filter: | NPUT_ACTAACTION) 35
Config(filter: | NPUT_ACT_FILTER) 35
Config(filter: | NPUT_ACT.I NTERVAL) 35
Config(filter:INPUT_LLOG) 35
Config(filter: I NPUTFILTER) 34
Config(filter: | NPUTFILTERRPCS) 34
Config(filter: OQUTPUT_ACT_ACTIQN) 35
Config(filter: OQUTPUT_ACT_FILTER) 35
Config(filter: OQUTPUT_ACT.I NTERVAL) 35
Config(filter: QUTPUT_LOG) 35
Config(filter: OUTPUTFILTER) 34
Config(filter: OQUTPUTFI LTER.RPCS) 34
Config(pni:ADDRESS)c.cocvvvvnnenn.. 32
Config(pni:DEFAULT) ...t 32
Config(pni:INTERFACE)ccout... 32
Config(pni:MIU) ... 32
Config(pni: NETWORKMASK) 32
Confi g(PN : NOLOOPBACK)c....tn. 33

Confi g(pni : REMOTEADDRESS) 32

88
Config(secure:HOSTS)t 63
Config(secure:KEYS)coooviiiiinnn. 63
Config(slip:MDE) ..., 44
Config(tty:DEVICE)oovvviiiiennn... 45
Config(tty:DEVICES)cccvvivvnennn. 48
Config(tty: DEVOPTS)ccvviiinivnnnnn. 45
Config(tty:DIALER)c.oooiiiiiiiint... 46
Config(tty:DIALSCRIPT)oovvvvnntn. 48
Config(tty: LOCKINGPROTO)cvven.t. 45
Config(tty: MODEMIYPE)c..coo.... 46
Config(tty:NUMBER)ooeiue... 48
Config(tty: PHONENUMBERS) 48
Config(tty: SERVERNAME) 48
Config(tty: SERVERTYPE) 47
Config(tty:SPEED)coiiiiiiiii. 46
Config(tunnel :PORT)oiiiiiitn. 62
Config(tunnel : TUNNELS) 62
E
expect _match................. .ol 51

Table of Contents
1 INtroducCtionot 1
1.1 ADOUt TransSyS PNo e e 1
121 PNEASSLIP. e 1
112 PNIEASCOLIP. . 1
1.1.3 PNl asvirtua network [ink. ..o 1
114 ISPNITOryoU? . ..o e e e 2
L2 PNIEVEISIONS . . e ettt ettt et e et e e e e 2
1.3 About thiSAOCUMENTALIONottt e i 3
1.4 TCL dOCUMENALIONttt e e 4
15 TransSys DiaUp-IP, the other TransSysSLIP. ... oat, 4
1.6 ACKNOWIEAgMENLS.ttt e 5
1.6.1 Credits. ..ot 5
1.6.2 Copyright Information.............coiiiiiiiiiii .. 6
L7 SUMMAEIY . ..ttt et e e e e e 9
2 REEASENOLES. ... 10
21 BetaTest SOftWare . ..o 10
22 ReEEESEHISIONY ... 10
221 1ABeaREEASE. ..o 10
222 15BeEaREEASE. ..o 10
223 16BetaREEASE. ... 10
224 17 BetaREEASE. ..o 10
225 18BetaREEASE. ..o 11
226 19BeEaREEASE. ..o 11
227 1I10BeElaREEASE. ... 12
228 L ALREEESE. .. 13
229 112 REEESE. .. 13
2210 1 ABREEGESE. ..o 14
2.3 FUIUrE PLaNS. . .. 14
3 Installation 15
3.1 Systemrequirementsand PrereqUISItES v e it 15
3.2 Instalingthedistribution....... ... i 15
321 Beforelnstalation.........c.cooii 16
3.2.2 Electronicfilearchiveinstdlation.. ..., 16
3.2.3 Diskette DistribUtiono 16
324 UsingthelnstallerPackage ..., 16
3.25 |Instalation-timesystemchanges.c.cooeiiiii ... 17
3.25.1 ThepPNI package symboliclink 17
3.252 Devicenamesin‘/dev’iiiiiiiiii 18

3.25.3 ChangestotherpcsNetinfodirectory..................... 18

3254 Changesto‘/etc/rc.local’.......ccooiiiiiiiiiii... 19

3255 Changesto‘/etc/syslog.conf’ 20

326 LicenseKey Registrationc.uvuiiiiiiiii i 20

3.3 Configuration Previawot e 21
331 QUICK Start. ..o 21

3.3.2 Tour through sample SLIP configuration. 21
Configuration. ... e 26
41 ENCAPSUIALOIS.ottt et et 26
4.2 Configuration Directive CONVENtionS.ouuttii it 27
4.3 Configuration Primitive Conventions.ttt i, 27
4.4 Configuration asaNetwork ACCESS SEIVErottt 28
44.1 PNI Network Access Server configuration..............c..cooen... 29

45 PN Specific TCL COMMENGS.ottt et ee e 29
451 Logging TCL COMMANAS. cuvttentnt et 30

452 pnitcl specific TCL commands..........covvveininienineennnn. 30

PNl Encapsulatoro i 32
51 Configuration DIreCtiVES.ot 32
5.2 Configuration Primitives. e 33

FI LTER Packet Filter Encapsulatorcooin., 34
6.1 Configuration DIreCtiVES.ttt 34
6.2 Configuration Primitives. e 35
6.3 Packet Filter EXPressions.ouei it 36
6.3.1 Packet Filter SyntaxXc.ovuiiiiiiiiiiiii i 36

6.3.2 Packet Filter Expression Test Program.ccooviiiivinne.. 39

6.3.3 Filter Machine.o 40

SLI PSLIP/CSLIP Encapsulator ..., 44
7.1 Configuration DIreCtiVESottt e 44
7.2 Configuration Primitives. e 44
TTY Serial DeviceEncapsulator ..., 45
8.1 Configuration DIreCtIVES.ttt 45
8.2 Configuration Primitives.t 48

Di al er supportmodule.o 49
9.1 SampleDialer SCriptS . ..o ou ettt e 52
9.1.1 SampleModemDiaer SCript........ooeiiini i 52

9.1.2 Sample Network Access Server Login Script........cooveeeveenn.a.. 56

10 LOOP Loopback Encapsulator ..., 60
10.1 Configuration DITECIVES. oo v it e e 60

10.2 Configuration PrimitiveS.t e 60

11 TUNNEL Virtual Path Tunnel Encapsulator 61
11.1 Configuration DITECIVES. oo vt e 62

11.2 Configuration PrimitiveS. e 62

12 SECURE Data Security Encapsulator 63
121 Configuration DITECIVES. oottt e e 63

122 Configuration PrimitiveS. e 63

12.3 Tamper-Proof Objective-C protocol definition.....................cooaa.. 63

13 OPErationttt e 65
G 75 o T o PP 65

13.1.1 Argumentsand OpLioNS.c.vvntent it 65

13.1.2 Updated License Key Registration.............ccoovvninn .. 66

13.1.3 pnidoutputand [0ggingovvueiiiniii i 66

13.1.4 pnidterminationconditions..............oiiii i 67

132 Thepnitcl Programeeu ottt 67

13.3 Thepnistat SCript........ouuintiiii e 67

1331 pnistat USAgE. .. .ovtitt ittt et e 68

1332 pnistat staacommand...........ooiiiiiiiii 68

13.3.3 pni st at control operations- the down command.................. 70

134 The'/etc/pni/pnirun’ shelscript.........co i 70

14 Troubleshootingandtrivia...............coooiiiiiiiii ... 72
141 PNInotworking- now What?.o 72

14.2 What about HOStManager?.oei i 72

14.3 Problems with netinfo, lookupd and Mach messaging.............c..coee... 72

144 KeNE PaniCS. . ..ottt et e e 73

145 COMIMON EITON MESSATES. .« . et ettt ettt ettt et et a e eaeenneens 73

146 Serid Device Troubleso 73

14.7 Diding Script Troubles. 73

148 Modem Troubles.o e 74

1481 TTYDSPreatedproblems.o 75

149 Nework Problems. 75

1491 ROULINGISSUES. . ..ottt e 75

149.2 Domain Name SyStem ISSUES.ot iniin e 75

1410 QUESHIONS AN ANSWENS. . . .ottt ettt et et e e 76
14.10.1 Weird telnet operation..........oovitin i 76

14.10.2 pnistat QUESLIONS..outtntit e i 77

1411 Internal Organization.c.uenuen ettt i 78

14.12 Encapsulator INtErNalS.ou i e 78

1423 pnidinternals.o e 79
Appendix A Architecture. ... 80
A.1 Network Interface Architecture 80
A.2 PNI Software Architectureo 80
A3 pnirelockernd driver. 81
A4 pNid daEMON PrOCESS. . .« ettt ettt et et e e e 82
Appendix B Bibliography. 84
CoNCEPL INAEX. 85
FUNCLION INAEX e 87

Variable INdeX 88

