
TransSys
TM

 DialUp-IP
for the NeXT platform

Documentation and Software
Copyright 1993 by

TransSys, Inc.

Copyright 1991, 1992 by
Louis A. Mamakos

info@TransSys.COM

Some
Release Notes and Documentation

January 1993

- 1 -

TransSys DialUp-IP

Acknowledgements

This software package contains code from two sources. The first is from the
CSNET/CREN DialUpIP software package which states:

/*

** Dialup IP driver interface.

** Based heavily on 4.3 slip driver.

** Copyright (c) 1991 Bolt Beranek and Newman, Inc.

** All rights reserved.

**

** Redistribution and use in source and binary forms are permitted

** provided that: (1) source distributions retain this entire copyright

** notice and comment, and (2) distributions including binaries display

** the following acknowledgement: ‘‘This product includes software

** developed by Bolt Beranek and Newman, Inc. and CREN/CSNET’’ in the

** documentation or other materials provided with the distribution and in

** all advertising materials mentioning features or use of this software.

** Neither the name of Bolt Beranek and Newman nor CREN/CSNET may be used

** to endorse or promote products derived from this software without

** specific prior written permission.

** THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR IMPLIED

** WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF

** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

*/

Other software in the package is derived from code which was written by the
University of California, Berkeley, and carries this notice:
/* Copyright (c) 1989 Regents of the University of California.

 * All rights reserved.

 *

 * Redistribution and use in source and binary forms are permitted provided

 * that: (1) source distributions retain this entire copyright notice and

 * comment, and (2) distributions including binaries display the following

 * acknowledgement: ‘‘This product includes software developed by the

 * University of California, Berkeley and its contributors’’ in the

 * documentation or other materials provided with the distribution and in

 * all advertising materials mentioning features or use of this software.

 * Neither the name of the University nor the names of its contributors may

 * be used to endorse or promote products derived from this software without

 * specific prior written permission.

 * THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF

 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

 */

- 2 -

TransSys DialUp-IP

 What this software package does.

The TransSysTM1 Dial-Up IP software allows your NeXT computer to be
attached to a TCP/IP based network using the serial ports as the network
interface, rather than the Ethernet interface. Once a network connection is
established between your NeXT computer and the remote network server or
router, it is possible to use the connection to support multiple simultaneous
connections for remote login, file transfer, mail, or and other TCP/IP based
network protocol.

Of course, a 9.6 kb/s serial link isn’t nearly as fast as a 10Mb/s Ethernet port.
You’ll probably not want to try to use bandwidth intensive applications, like
NFS (the Network File System).

This software is usually used by a end-system which dials into some network
server which also expects to provide network connections over serial links.
This software contains a kernel or operating system level driver that
transports IP datagrams across the serial link using a trivial encapsulation
called SLIP2 (Serial Line IP). You have to be talking to another device
which also knows how to do SLIP, and not just a terminal server.

This software is also capable of implementing Van Jacobson-style TCP
Header compression, which is a technique to vastly improve interactive
response time for TCP connection across the SLIP link by compressing or
eliminating redundant header information. This is commonly referred to as
CSLIP3

One of the unique capabilities of the CREN/CSNET implementation of SLIP
called DialUpIP, which this NeXT version is based on, is that a companion
user-level daemon is present to automatically dial-up and take down the
SLIP link on demand.

1TransSys is a trandemark of TransSys, Inc.
2 See RFC-1055, "A NONSTANDARD FOR TRANSMISSION OF IP DATAGRAMS
OVER SERIAL LINES: SLIP", J. Romkey, June 1988
3 See RFC-1144, "Compressing TCP/IP Headers for Low-Speed Serial Links", V.
Jacobson, LBL, February 1990.

- 3 -

TransSys DialUp-IP

What is provided as part of this package

There are two versions of this software; one is available free of charge from
various NeXT anonymous FTP software distribution sites as well as via
other channels. This version implements the basic SLIP capability, along
with the dial-on-demand feature.

Another version also implements CSLIP. The "free" version also includes a
demonstration version of the CSLIP capability which can be "test driven."
This version is will available for a modest fee. In the mean time, the demo
version can be used for a limited amount of time after your NeXT is booted;
if you can make it work to your satisfaction, and be convinced that its worth
some money to have the capability, then you can buy a full-time license for
it. There will be no suprises or disappointments after you’ve spent your
money.

This software package is mainly aimed at people which have some
experience configuring and installing IP networks and hosts. It is also
possible to buy supported versions of this software from commercial vendors
which have sub-licensed the package and turned it into a real product.. They
can offer a more traditional “product” with telephone support, improved
manuals, point-and-shoot installation tools, etc. If you require more detailed
assistance or are unfamiliar with SLIP and networking, this is a distribution
channel that you should consider.

This document is finally getting too large and unwieldy for WriteNow. It
suffers from lack of a table of contents or index, neither of which can be
automatically maintained by WriteNow. Perhaps a future version will be in
WordPerfect, except that the only portable form of the document would be
PostScript since not everyone has WordPerfect, and WordPerfect won’t
make RTF. Sigh...

- 4 -

TransSys DialUp-IP

How to use this software

This software is most likely used in the situation where the NeXT system is
at some remote site, and dials into a "SLIP server" host, which might serve
multiple remote sites, in order to obtain a network connection. This
common configuration can be illustrated as:

SLIP
Server Host RS-232

RS-232

Net

Modem
Modem

Telephone
Line

Ethernet

Figure 1

The remote NeXT system (depicted on the right) makes a connection as
required using a modem to a SLIP server host which terminates the other
end of the link. The SLIP server host presumably also has a connection to a
local network (Ethernet, etc) and routes the traffic from the remote NeXT
system to that attached network, and beyond.

Of course, many other configurations are possible. In fact, the NeXT can act
as the "SLIP Server Host" with this software as well.

- 5 -

TransSys DialUp-IP

How to get started

There are a number of activities which need to be correctly performed to
make use of this software on your NeXT computer system. They fall into a
few major areas:

• Hardware configuration: connecting your modem to your NeXT computer
system correctly.

• Network configuration: collecting the proper network configuration and
routing information to enable your NeXT computer to operate correctly on
the SLIP link.

• Modem specific configuration: dialing scripts to cause your modem to
correctly configure itself and dial the remote end of the SLIP connection.

- 6 -

TransSys DialUp-IP

Warning message from kernel driver

When the kernel driver is loaded, you may see a message logged of the
form:

dialupip: Can’t patch tcp_output() MSS option bug: unknown kernel version
dialupip: Note that this is NOT a fatal error. Don’t panic. See manual
dialupip: for further details about this issue.

It is important that you understand the meaning of this message so that you
don’t needlessly worry about problem that you may or may not have. The
kernel driver is attempting to patch around a problem reported to NeXT in
the tcp_output() kernel function.

It relates to an error where a TCP maximum segment size (MSS) option is
not sent if the MTU is smaller than 576 bytes. If you are using a SLIP
connection with both ends agreeing to use a smaller value, then needless IP
fragmentation will take place. This introduces considerable extra space
overhead. This situation usually occurs only if you are using TCP header
compression with smaller MTUs on on order of 256 bytes.

The kernel driver has a table of patch locations that corresponds to various
versions of the NeXT kernel. If the message is logged, then it means that the
driver does not have patch locations for your version of the NeXT kernel.

It is unfortunate that this even needs to be done, as this bug has been
reported to NeXT in the 2.2 Release and the 3.0 PR1 and 3.0 PR2 releases,
along with source code fixes. Perhaps when NeXT gets around to changing
the 3 lines of code necessary to repair this problem, all this will be
unnecessary. It is not clear to me why after 3 reports of this bug, it has gone
unfixed for so long. If you find out what the problem is, be sure to let me
know.

- 7 -

TransSys DialUp-IP

Hardware Configuration

It is very important that you correctly connect the modem (or modems, if
you want to use more than one at a time) to your NeXT system. The
software in the DialUp-IP system requires that all of the modem-control
signals at the modem are properly connected to the correct pins on the serial
port.

Minimally, you should ensure that the Ground, Transmit Data (TXD),
Receive Data (RXD), Data Terminal Ready (DTR) and Carrier Detect
(DCD) are properly wired. If you want to use hardware flow control
between your modem and NeXT system (and this is recommended if your
modem supports it), then you also need to make sure that Request To Send
(RTS) and Clear To Send (CTS) are also correctly wired.

For details of how such a cable should be wired, you should consult the zs(4)
UNIX manual page, or refer to the printed copy of that manual page
reproduced in an appendix in the Network and System Administration
manual provided with your NeXT computer system.

Please note that MacintoshTM serial cables will not work correctly for this
application. Also, you should be running Release 2.1 of the NeXT system
software on your NeXT as this version contains bug fixes in the serial port
kernel drivers which fix some problems in Release 2.0.

For dial-on-demand use, you should make sure that your modem correctly
asserts DCD (Carrier Detect) only when a connection is actually made,
rather than having it asserted at all time. In a similar fashion, ensure that
DTR (Data Terminal Ready) is not ignored by the modem; it is important
that the modem hang up the phone and terminate an existing call if DTR is
dropped by the NeXT.

The DialUp-IP software will work on both Motorola 68030 and Motorola
68040 based NeXT computer systems. The only concern for the 68030
based systems is a consideration of the maximum reliable speed that the
serial ports can be used at. On 68030 system, reliable operation is likely not
possible at speeds greater than 9600 bps. On 68040 systems, using hardware
flow control, operation at speeds as high as 38400 bps is possible.

- 8 -

TransSys DialUp-IP

Network Configuration

Probably the most difficult part of installing and operating this (or any other
networking software) on your NeXT is getting the network configuration
correct. Most of the effort needs to be expended to make sure that the
network routing is correct. Before we get into that too deeply, let’s take a
step back and briefly review how IP (Internet Protocol) networking works.

Hosts on an IP based network communicate with each other by sending
small units of data, called packets to each other. Each packet (also called a
datagram in the IP world) is a self-contained unit as it passes across a
network between computer systems. It is labeled with the destination IP
address of where it’s going, a source IP address that describes which host it
originated from and other information not within the scope of this
discussion. It also, of course, carries the actual data that you are interested
in moving around across the network.

The source and destination IP addresses are of particular concern to us when
configuring any host on an IP network. As the packet traverses the network,
routers along the way examine the destination address and then perform a
routing function to determine which way to send the packet toward its
destination. End system hosts, such as your NeXT also contain a routing
table which describes the possible alternative routes that a packet might be
transmitted to get to its destination.

Why does a host need a routing table? Two major reasons:

• If your host is on an Ethernet network, it might have more than
one router on the network, each of which is the "next hop" for a
certain group of destination networks.

• If your host has more than one network interface (such as an
Ethernet interface, and one or more SLIP interfaces), the route
selects which interface is to be used for a particular destination.

- 9 -

TransSys DialUp-IP

When configuring the routing for your SLIP connection, you must ensure
that routes on your host are installed to correctly route traffic over the SLIP
connection when that’s appropriate. In the “normal” case, where the NeXT
workstation is stand-alone at the remote site, it is assumed that the default
route for all non-local (e.g., on the same host) traffic is over the SLIP
connection. The sample /usr/dialupip/config/rc.slip and
/usr/dialupip/config/config.slip files reflects this, as it
installs a default route which points out over the slip0 SLIP interface.

The NetManager application: or the road to Hell is paved with good
intentions. (Of course, this is just my opinion...)

Each operating network interface on your host needs to be configured; that
is, you set certain values such as the IP address, subnet mask, broadcast
address (for Ethernet interfaces) or remote address (for point-to-point
network interfaces like SLIP). When an address is configured, the UNIX
kernel normally inserts an entry in the routing table which corresponds to the
addresses that you configured the network interface with. This is why it is a
very bad idea to configure the Ethernet interface with the same address
as one or more SLIP interfaces. While it is possible to do so, you must
“know” what the UNIX kernel does and work around it to make it work
successfully.

- 10 -

TransSys DialUp-IP

Now, the NetManager application provided with your NeXT is used to
configure the address and other characteristics of the Ethernet interface
only, and should not be used to set any addresses or other configuration
information for the SLIP interface(s) on your system. If you wish, you can
use NetManager to configure the Hostname of your system. If you are
using your NeXT stand-alone at a remote site and you do not have a local
ethernet network, you should make the following selections on the
NetManager “Local Configuration” panel:

Network Type: Non-NetInfo network
Hostname: your hostname
NetInfo and Configuration Server: . . not checked
NIS Domain Name: None
Address: ethernet-network address

if any
Router: None
Time Standard: Disabled
Netmask: Default
Broadcast Address: Default

Since you don’t have a local Ethernet, you shouldn’t connect either of the
Ethernet interfaces on the NeXT system to a working network (or even a
pair of 50Ω terminators on a BNC “T” connector.

The important thing to remember when trying to configure your NeXT for
SLIP operation is that the NetManager application will be of little to no help
at all. In fact, if you attempt to use NetManager to configure network
addresses, subnet masks, etc, you will become hopelessly confused and lost.
Save yourself! Don’t do it! Just say no to NetManager!

If you do have a local ethernet, then you need to configure the Ethernet
interface’s address with NetManager as appropriate.

- 11 -

TransSys DialUp-IP

Selecting IP addresses

The IP address, subnet mask, and remote IP address that you choose for a
SLIP interface must be appropriate for the environment that you are using.
The SLIP Server has an address which it is expecting you to use, since it is
attempting to route traffic to you. Similarly, you must know the address of
the SLIP server since you are attempting to route traffic to it and other points
beyond. These addresses are normally provided to you by the administrators
of the SLIP server.

Here’s a typical example:

SLIP
Server Host RS-232

RS-232

Net

Modem
Modem

Telephone
Line

Ethernet

Local IP: 224.224.10.2
Remote IP: 224.224.10.1
Mask: 255.255.255.0

slip0

Local IP: 224.224.10.1
Remote IP: 224.224.10.2
Mask: 255.255.255.0

port37

Local IP: 224.224.8.27
Broadcast: 224.244.255.255
Mask: 255.255.255.0

eth0

Figure 2

(Please note that the addresses in this example have been invented, and
should not be used at your site. If you require IP network numbers assigned,
you should apply for one and not inadvertently use someone else’s. This is
considered very rude, and is not a good way to make friends in the Internet
community.)

In this example, the SLIP server is connected to an ethernet network, and has
an address on that ethernet of 224.224.8.27. The class B network
(224.224.0.0) is subnetted, with 8 bits of subnet number (determined by the
subnet mask; note that it is identical on all interfaces on the 224.244.0.0
network). On one of its dial-up SLIP ports, the address is configured on

- 12 -

TransSys DialUp-IP

subnet 10; the local address on the SLIP server is 224.224.10.1, while the
remote address is 224.224.10.2. Note that the configuration on the NeXT
SLIP client host is just the reverse.

Presumably, the SLIP server is advertising routing information for subnet
224.224.10.x on the Ethernet so that other hosts on the Ethernet, and perhaps
on the Internet as a whole “know” how to reach hosts on the back end of the
SLIP server. The dial-in clients will likely have default routes configured to
point out the SLIP line to be able to transmit packets to other hosts on the
network.

Note that the routing configuration has to be thought about and planned in
both directions; it is usually not useful to be able to transmit packets, and
note receive replies. The routing configuration for the “return” traffic to the
dial-in SLIP host must usually be configured by the administrator of the
SLIP server or the network manager. This is why it is essential that the
correct addresses be chosen so that this all “works.”

- 13 -

TransSys DialUp-IP

Three different ways to use the DialUp-IP software

When considering the configuration of the DialUp-IP software and each of
the SLIP interfaces, it is useful to consider some of the common ways to
configure each of the SLIP interfaces as falling into one of three different
models:

° Dial on-demand outgoing interface. This model is such that the interface is
configured to automatically dial the modem when a packet is attempted to be
transmitted on the interface. So, when you invoke a network application like
‘telnet’ or ‘NewsGrazer’ which needs to access a network resource on “the
other end” of the SLIP interface, the modem is dialed.

After some (possibly infinite) period of inactivity, the line is dropped freeing
the modem for other uses.

° Manually initiated outgoing interface. This is much like the case above,
but manual intervention is required to cause the dialing daemon to choose a
modem and dial. This might be useful if you normally use your modem for
other purposes, like transmitting and receiving FAXs, and don’t want it to be
unavailable at unexpected times.

° Passive or server-like interface. This configuration has the NeXT act as a
SLIP server for remote systems. The NeXT system has one or more
modems attached to its serial ports for dial-in access. To configure access to
a network interface (like slip0), it is necessary to generate a user account
with a special shell: /usr/dialupip/bin/dudisc_slip0, for example, for the
slip0 interface. When the remote system “logs in”, the special shell
reconfigures the serial line to be a SLIP interface and connects it to the
named SLIP interface.

Note that it is still necessary to configure an address and other parameters in
the /usr/dialupip/config/config.slip file. It is not necessary to add an entry
in the /usr/dialupip/config/diald.conf file if the SLIP interface will not be
use for dialing out.

- 14 -

TransSys DialUp-IP

Modem Scripting and Dialing on Demand

The DialUp-IP software has the capability of automatically establishing a
link when packets are sent on an interface. When a SLIP interface is
configured but idle, it is normally not “bound” to a particular serial hardware
port. To cause the interface to become active, a binding is done between the
network interface and a particular serial port. This can be accomplished in
one of three ways:

• When a packet needs to be transmitted on a SLIP interface, and it has no
hardware, but is configured for autodialing: a process is created to locate a
free serial port/modem, and to dial the modem and log into the remote SLIP
server.

• Similar to the case above, but where the interface is manually “brought up”
rather than being brought up by sending a packet on the interface.

• When the NeXT is being used itself as a SLIP server; when someone logs
in and runs the dudisc command to put the port into “SLIP mode”.

In the first two cases, it is necessary to configure in the file
/usr/dialupip/config/diald.conf for each SLIP interface (e.g.,
slip0, slip1...) what serial ports, speeds and which dialing script is to
be used to establish the connection. When the time comes that the link
needs to be brought up, this file is consulted to begin the process of
establishing a connection with the remote SLIP server.

It is not necessary to configure SLIP interfaces which are not dialed; the
connection between the serial port login session and the SLIP interface is
done by the dudisc command which is invoked as the login “shell” for that
pseudo-user.

- 15 -

TransSys DialUp-IP

Software Installation

Now that we’ve talked about what and why, lets cover the how part. This section
will cover the step-by-step actions to be followed to installed the DialUp-IP
software on your NeXT computer system.

Installer application and package file

The DialUp-IP software is distributed in one of two ways; either on a floppy
disk or as a UNIX tar archive image. The floppy distribution consists of a
standard NeXT SLIP_v1.pkg directory which is intended to be used with
the NeXT /NextApps/Installer.app program. The tar archive, when
extracted,will create the same .pkg directory for the Installer application.

Invoke the Installer application (while being logged in a the UNIX super-
user, root) on the package by opening the SLIP_v1.pkg directory which
will launch the Installer application. The default location in the UNIX file
system for installation is /usr/dialupip and should not be changed
unless you have a very good reason. The DialUp-IP software assumes that
the various files will be installed in this directory and will likely become
horribly confused and malfunction if this is not the case.

If you need to reinstall the software, you can do so without disturbing and
configuration files that you might have created since these are not part of the
software distribution.

Description of installed files

Quite a number of files are installed; all of which are in the
/usr/dialupip directory on NeXT system. What follows is a quick
description of some of the more important files and what they are used for.

/usr/dialupip/bin/cslip_reloc: This is the actual loadable operating
system kernel device driver. It is automatically loaded into your
kernel by the tcldiald program at system boot time.

/usr/dialupip/bin/cslip_reloc10: Same as cslip_reloc above, but with
10 SLIP interfaces configured rather than the default of 2 interfaces.

- 16 -

TransSys DialUp-IP

/usr/dialupip/bin/tcldiald: This is the dialing daemon program that
will select and dial a modem attached to your system when a SLIP
link need to be brought up on demand. It also loads the kernel device
driver at boot time. The tcldiald program is normally started at boot
time from the rc.slip shell script.

/usr/dialupip/bin/duioctl: The duioctl program allows you to
configure certain parameters of each SLIP interface (such as the
MTU, if TCP header compression is enabled, etc), as well as enabling
and disabling the dial-on-demand capability. It is also used to
examine the state of each SLIP interface and to clear any error status
which might be pending.

/usr/dialupip/Documentation.bshlf: this is a Digital LibrarianTM

bookshelf which contains documentation on the DialUp-IP software.
This document as well as UNIX-style manual pages and other relevant
information is indexed and available.

/usr/dialupip/man: A directory containing the actual documentation
files, directories containing the UNIX manual pages, and other
information (such as RFC’s describing the SLIP protocol and TCP
header compression).

/usr/dialupip/log: Various log files are created and written to in this
directory which provide information about the running of the DialUp-
IP software as well as trace information when that is enabled.

/usr/dialupip/config/diald.conf: This is one of the more important
configuration files which configures the dial-on-demand SLIP
interfaces. Information specified here includes the SLIP interface
name, serial port and speed, system name, dialing script and telephone
number. See the UNIX manual page diald.conf(5) or search for
diald.conf in the Digital Librarian using the Documentation bookshelf
for further information.

Note that this file is not installed since it contains system specific
configuration information, but like other files in the
/usr/dialupip/config directory, a sample is provided in the
/usr/dialupip/config/SAMPLES directory to be modified for your

- 17 -

TransSys DialUp-IP

site.

/usr/dialupip/config/rc.slip: This shell script is invoked at boot time
to run the tcldiald program and configure each of the SLIP interfaces
using both the standard UNIX ifconfig command as well as duioctl.

/usr/dialupip/config/config.slip: Note that all of the SLIP interfaces
are configured here, and not only the ones to be used for dial-on-
demand. This file contains the IP address, encapsulation and other
configuration information for the SLIP interfaces on the system.

Note that a rc.slip file is not installed, but a sample version is
available for modification in the /usr/dialupip/config/SAMPLES
directory.

There are also a number of sample script files available in the
/usr/dialupip/config/SAMPLES directory. Note that some have the
suffix .script (which are used with the diald program), while
others have the suffix of .tcl (which are used with the tcldiald
program). Make sure that you base your scripts on the correct
samples.

The sample scripting files are named according to a pattern (really!
there is a method to this madness!) A series of files named dial-
modemtype.tcl are present which are invoked to configure and dial a
particular modem. Other files, named login-slipserver.tcl are invoked
to possibly log in and put the remote system into SLIP mode. Finally,
a file called hooks.tcl is present which contains utility and boilerplate
information used by most dialing scripts.

The motivation for all of the different script files is to be able to reuse
modem dialing and login scripts easily; they should not contain
configuration sensistive information.

If you are starting from scratch and have no existing scripts, the TCL
based scripts used with tcldiald are recommended.

- 18 -

TransSys DialUp-IP

The /usr/spool/uucp/LCK

The software in this package that dials the modem on demand conforms to
the de facto locking protocol that UUCP (and also kermit, and a number of
other program) uses to arbitrate access to the serial devices on the system.
Lock files are created in the /usr/spool/uucp/LCK directory, and this
file must exist for the dialing function to work properly.

This directory is normally included in as part of the standard NeXT system
software, but may have been deleted inadvertently.

Documentation access with Digital Librarian

The documentation for the DialUp-IP software may be distributed non-
indexed to reduce the size of the software distribution.

To ensure that documentation is indexed, double-click on the icon for the
file /usr/dialupip/Documentation.bshlf from the Workspace
browser to invoke the Digital Librarian application. You can then double
click on the Documentation icon to bring up an indexing panel; click on
“Create Index” to begin the index creation. You will likely have to be
logged in as “root” in order to create the index.

- 19 -

TransSys DialUp-IP

Configuration steps

To configure the DialUp-IP software, the following steps should be
followed:

° If this is an initial installation of the software, you should copy all of the
files in the /usr/dialupip/config/SAMPLES directory into the
/usr/dialupip/config directory to serve as a starting point. This will copy
sample configuration and scripting files which you can edit and customize.
Note that no user modified configuration files in the /usr/dialupip/config
directory will be modified or replaced by installing new versions of the
software. The distribution package will have updated and new files shipped
in the SAMPLES directory only. Thus, it is “safe” to install a new package
on an existing system.

° edit /usr/dialupip/config/config.slip: Copy the sample version of this file
from the /usr/dialupip/config/SAMPLES directory into /usr/dialupip/config,
and edit the copy.

The sample config.slip file configures a single SLIP interface, slip0. The
local, remote and netmask parameters for the SLIP interface are set in the
file; you should change the sample values to those appropriate for your
environment.

For each SLIP interface, a serial of shell variables are initialized with values.
The first three, SLIPxLOCAL, SLIPxREMOTE and SLIPxNETMASK
(where “x” should be replaced with a digit; 0 for interface slip0, for
example) are used to specify the IP address information required for the
interface. The SLIPxCONFIG variable carries options for the duioctl
program which can specify other options for the interface.

By default, the interface configuration specified on the SLIPxCONFIG line
sets the interface for the plain “SLIP” encapsulation. If you wish to use TCP
Header compression, then the SLIPxCONFIG line should be changed to
specify CSLIP rather than SLIP. If the SLIP server that you are using
doesn’t support TCP header compression, you should not specify “CSLIP”.
Also remember that unless you have a valid License Key file which enables
the TCP Header Compressed version of SLIP, this line will have no effect.
See the section “License Keys” for more information on License Keys and

- 20 -

TransSys DialUp-IP

how they work.

If a particular interface should be used as the path for a default route, then
the values of the SLIPxDEFAULT variable should be set to “YES”. Only
one interface should likely have a default route associated with it.

° edit /etc/rc.local: It is necessary to add a line near the end of the
/etc/rc.local file on your system to invoke the /usr/dialupip/config/rc.slip
shell script at boot time. You should put this line near the end of the file:

 sh /usr/dialupip/config/rc.slip >/dev/console 2>&1

It is necessary to invoke the rc.slip file in order to configure the interfaces
and cause the loadable kernel device driver to be installed.

° edit /etc/syslog.conf: This file needs to be modified to direct system
logging messages related to the DialUp-IP software to a specific log file.
Add this line to the /etc/syslog.conf file:

local3.info /usr/dialupip/log/syslog

A sample syslog.conf file is available in the
/usr/dialupip/config/SAMPLES directory with the logging level set to
“debug” rather than “info” for additional diagnostic logging messages.

° /usr/dialupip/config/keyfile: As shipped, no explicit License Key file,
/usr/dialupip/config/keyfile is provided; the rc.slip script will automatically
use the provided /usr/dialupip/config/keyfile.slip as the License Key
instead. If you have another License Key that you wish to use, it should be
installed as the /usr/dialupip/config/keyfile file. For instance, some
versions of this software package are shipped with another keyfile,
keyfile.demo which allows limited use of the TCP Header Compression
feature. See the section on “License Keys” for further details.

° edit /usr/dialupip/config/diald.conf: The diald.conf file contains the
information required to cause the NeXT computer to dial a modem and
connect to a remote site in order to establish a SLIP connection. The
connection establishment can either be initiated manually, or can be done

- 21 -

TransSys DialUp-IP

automatically when a packet needs to be sent on a SLIP interface which is
not currently connected.

A sample prototype diald.conf file is available in the
/usr/dialupip/config/SAMPLES directory, and should be copied to
/usr/dialupip/config/diald.conf and edited. The file consists of a number of
entries, one entry per line. Lines which begin with a “#” character are
considered comments, and are ignored. Let’s examine a sample line in the
diald.conf file:

slip0:annex.dom.ain:cufa#19200:slip-srv.script 555-1234:/usr/dialupip/log/annex@1:slipsrv.access

Each entry consists of a number of fields, each field is separated by “:”
characters from the next. The first field in each entry is the name of the
SLIP interface, in this case slip0; this is the same name used on the ifconfig
and duioctl commands. Note that you are not free to choose the interface
names; they are installed by the kernel device driver and are from the series
slip0, slip1, slip2, etc.

The second field is the name of the remote SLIP server, and is commonly
the doman name associated with the remote address. In this example, it is
annex.dom.ain.

The third field is used to specify the name of the device and speed that the
device should be set to. For example, to use /dev/cufa which is serial
port A, with hardware flow control at 19,200 bits per second, you would
specify cufa#19200 in this field. Note that the /dev/ prefix is omitted. It
is usually necessary to use the /dev/cua (or /dev/cufa) style device name
since this UNIX device will open without carrier detect being present. This
is necessary to be able to send dialing commands to the modem.

The fourth field is used to name the dialing script, and parameters passed to
the dialing script, which will be invoked to dial the modem and connect to
the remote SLIP server. This file name is relative to the
/usr/dialupip/config directory if a complete path name is not
supplied.

The parameter(s) specified are made available as arguments to the dialing
script and are typically used to pass along telephone numbers, user names,

- 22 -

TransSys DialUp-IP

passwords, etc. The tcldiald program itself doesn’t attempt to interpret
any of the parameters.

When using the tcldiald program, the file specified with a suffix of
.tcl will first be used if present, otherwise the named file will be used.
This is for compatiblity with the older dialing daemon, diald and allows
the same diald.conf file to be used even though the script files are
completely different.

The next field is used to name a transaction log for this particular host. This
file is rewritten each time the SLIP link is to be brought up and can be used
to help diagnose connection or scripting problems. This should be a
completely specified pathname which refers to a file in the
/usr/dialupip/log directory. You can append @1 to the file name to
enable futher debugging and tracing the transaction file, including tracing of
all TCL scripting commands which are invoked.

The final field in the entry refers to a file which specifies under which
circumstances (times and protocols) will cause the SLIP connection to be
brought up if it is not currently connected. It is also used to specify the
period of inactivity required for before the line will be hung up after it has
been dialed. The default value in the slip-srv.access file for the inactivity
time is very, very large and the modem will stay connected once the link has
been brought up. This file can be referenced from more than one line in the
diald.conf file is desired.

See the UNIX manaual pages for diad.conf(5) and diald-access(5)
for more details. Refer to the manual page tcldiald(8) for more
information about the dialing daemon. Information on the TCL command
extension language can be found in the Tcl(5) manual page, while the
manual page for tcldiald-script(5) can detailed information about
TCL commands specific to this pacakage for scripting and pattern matching.

Figure 3 depicts the relationship of the various file related to the dial on
demand capability of the package. The motivation for the seemingly large
number of files is to be able to re-use certain files, such a modem dialing
scripts easily. It also isolates invarient information (how to dial a modem)
from information which varies per site (such as which number to dial).

- 23 -

TransSys DialUp-IP

slip0:slip.server.domain:cua#9600:slip-srv.script 555-1234:/usr/dialupip/log/trans@3:slipsrv.access

/usr/dialupip/config/diald.conf

tcldiald TCL script used to establish a SLIP connection.
log "Begin annex.tcl for interface $interface site $site"
source "/usr/dialupip/config/hooks.tcl"
invoke modem specific script to dial the modem
source "/usr/dialupip/config/dial-zyxel.tcl"
put the line into SLIP mode.
source "/usr/dialupip/config/login-annex.tcl"

/usr/dialupip/config/slip-srv.script.tcl

/usr/dialupip/config/hooks.tcl

tcl script to define utility hooks /usr/dialupip/config/login-annex.tcl

tcl script to log into the slip server /usr/dialupip/config/dial-zyxel.tcl

tcl script to dial the modem

SLIP Dial-on-demand script files
script parameter value

transcript file and trace level Access and idle-time parameter file

tcldiald TCL script used to establish a SLIP connection.
log "Begin annex.tcl for interface $interface site $site"
source "/usr/dialupip/config/hooks.tcl"
invoke modem specific script to dial the modem
source "/usr/dialupip/config/dial-zyxel.tcl"
put the line into SLIP mode.
source "/usr/dialupip/config/login-annex.tcl"

Figure 3

- 24 -

TransSys DialUp-IP

A Tour Through the Configuration Files

In this section, a complete set of configuration files is presented, along with
annotated notes and (hopefully) helpfull commentary. The actual text of the file
will be presented in the Courier font, while commentary will be in italics.

The /etc/syslog.conf file:

This file has one line added to it for logging purposes.

*.err;kern.debug;auth.notice /dev/console
kern.debug;daemon,auth.notice;*.err;mail.crit /usr/adm/messages
lpr.debug /usr/adm/lpd-errs
mail.debug /usr/spool/mqueue/syslog

(This next line was added to capture log
messages associated with the Dial-Up IP Software.)

local3.debug /usr/dialupip/log/syslog

*.alert;kern.err;daemon.err operator
*.alert root

*.emerg *

- 25 -

TransSys DialUp-IP

The /usr/dialupip/config/config.slip file:

This file contains the IP address and SLIP configuration information for all
SLIP interfaces on the system:

The initial part of the file is just commentary to help describe how information is
specified.

Specify configuration information for SLIP interfaces.
This file should
consist of sets of shell variable initializations for each interface.

#
replace ’x’ with a number for each SLIP interface in use.
#
SLIPxLOCAL is the address of the SLIP interface on the local host. This
absolutely needs to be coordinated with the SLIP server or host that
you’ll be dialing into.
#
SLIPxREMOTE is the address of the remote (SLIP server) end of the SLIP
link. This must be coordinated with the SLIP server or host that you’ll
be dialing into.
#
SLIPxNETMASK
This is the IP network mask of the subnet which is in use.
#
SLIPxCONFIG
duioctl options for interface
#
SLIPxDEFAULT
default route? Should be set to YES or NO
------------------------------ slip0

SLIP0LOCAL=224.223.11.211

This first configuration directive sets the local IP
address of the slip0 SLIP interface.

SLIP0REMOTE=224.223.11.111

The next directive sets the IP address of the remote
system. If the remote address is unknown or varies
each time its called, configure this the same as the
local address.

- 26 -

TransSys DialUp-IP

SLIP0NETMASK=255.255.255.0

This configures the IP netmask of the local interface.

SLIP0CONFIG=CSLIP

This directive set the commands passed to the
duioctl program to configure the mode of the SLIP
interface. In this case, the interface will be used in
Compressed SLIP mode. Usually, this directive
will have no parameter passed. If you don’t want
this interface to be dialed on demand, specify
DISABLECALL on this line too. This will cause
the link to only be brought up and dialed when
manually invoked by the duioctl program using the
BRINGUP command.

SLIP0DEFAULT=YES

This will cause a default route to be installed using
this interface. You cannot specify a default route
here unless you have also specified a remote
address above. Only one SLIP interface may have
a value of YES for this parameter, and it may be
that no interfaces have the default route to be
installed using this interface.

------------------------------ slip1

The same sort of commands may be specified for each
additional SLIP interface used on the system, for slip0
.. slip9. If you use more than two SLIP interface, you
should be using the cslip_reloc10 kernel driver by
rename it ti cslip_reloc.

- 27 -

TransSys DialUp-IP

A sample slip-srv.script.tcl script file. This is the base script invoked by tcldiald to
bring up the link.

tcldiald TCL script used to establish a SLIP connection.
#

First, say hi to the folks at home...
log "Begin annex.tcl for interface $interface site $site"

Include some base-level support TCL code that
most all dialing scripts will use. We’ll take a look
at the contents of this file in a bit.

#
invoke ’hooks.tcl’ script which contains default hooks and other
setup stuff
#
source "/usr/dialupip/config/hooks.tcl"

The general plan now is to invoke two scripts; the
first to configure and dial the modem. The second
script is used to login to the SLIP server an turn on
SLIP mode.

In this case, we’re using a ZyXEL modem, so we
invoke a script specific to that modem.

#
invoke modem specific script to configure and dial the modem
#
source "/usr/dialupip/config/dial-zyxel.tcl"

The SLIP server we’re dialing into is a Xylogics
Annex terminal server. We’ve got a script to talk
to it and turn on SLIP.

#
and now invoke another script to actually log in and put the line
into SLIP mode.
#
source "/usr/dialupip/config/login-annex.tcl"

- 28 -

TransSys DialUp-IP

This is the standard hooks.tcl file. You can modify as you see fit:

First, get some interface statistics for logging
purposes. duioctl is a TCL primitive that allows
access to the same sorts of information as the
duioctl program.

#
set mtu [duioctl SIOCGIFMTU]
set atimeo [duioctl SIOCGATIMEO]
set wtimeo [duioctl SIOCGWTIMEO]
set ipkts [duioctl SIOCGIPKTS]
set opkts [duioctl SIOCGOPKTS]

log "mtu $mtu atimeo $atimeo wtimeo $wtimeo ipkts $ipkts opkts $opkts"

The main purpose of the stuff in this file is to
define a number of TCL hooks, which are
subroutines invoked by the tcldiald program as
various events occur.

This hook, event_linkdown is invoked when the
SLIP link is going down; either due to inactivity or
loss of carrier from the modem. It is not invoked
with any arguments.

proc event_linkdown {} {
global interface site

For lack of anything better, just log a message.
log "Link DOWN event for $interface for $site"
return "0"

}

- 29 -

TransSys DialUp-IP

This event_linkup hook is invoked after the SLIP
link is invoked and the dialing script returns
normally. It’s only parameter, $why, is a variable
initialized to packet if the link was brougt up due
to a packet being transmitted on the SLIP
interface; or bringup if it was brought up
manually.

proc event_linkup {why} {
global interface site

The variables $interface and $site are initialized
automatically when the interface is first brought
up.

log "Link UP event ($why) for $interface for $site"
}

note here how we only print a message at most every 20 minutes, no
matter how often we are invoked

The event_uptime hook is invoked periodically
(currently, every minute) with a parameter that
specifies how long the link has been up and
running in minutes. This version only logs a
message every 20 minutes. You might also do
something like measure the number of packets
transmitted and received on the interface during
the last minute and compute an average.

proc event_uptime {uptime} {
global interface

if {[expr "$uptime % 20 == 0"]} {
log "SLIP interface $interface up $uptime minutes."

}
}

- 30 -

TransSys DialUp-IP

The following two hooks are invoked when the
state of the SLIP interface changes. They are
invoked with the old value as well as what the new
value will be.

These values are passed as decimal numbers.
event_ifflags is invoked when the interface flags
(as seen by the ifconfig command) change. The
event_softflags hook is invoked when SLIP
specific software state changes (as seen by the
duioctl slipx GSOFTFLAGS command).

proc event_ifflags {oldflags newflags} {
global interface site

log "$interface/$site IF flags changed from $oldflags => $newflags"
}

proc event_softflags {oldflags newflags} {
global interface site

log "$interface/$site SOFT flags changed from $oldflags => $newflags"
}

- 31 -

TransSys DialUp-IP

A sample dialer file, in this case for the ZyXEL V.32/V.32bis/V.42/V.42bis
modem.

#
tcldiald TCL script used to configure and dial a ZyXEL modem.
This script assumes that the zero’th argument is the phone number to be
dialed.
parity zero

This command sets the parity of the transmitted
characters to 8 bits, no parity. You can also
specifiy EVEN, ODD, ZERO or ONE

The phone number to dial is passed as the 0’th argument
set number [lindex $args 0]

Get the phone number to dial. In this case, this is
the zero’th parameter specified in the diald.conf
file after the name of the dialing file. There can be
more than one parameter specified. $args is a
TCL list containing all of the arguments.

log "Start of ZyXEL dialing script, dialing $number"

The log command puts a helpful message in the
syslog file (usually /usr/dialupip/log/syslog) to
indicate that we’ve started up the dialing script.

flush any pending command
xmit {\r}

Send a carriage return character....
sleep 1

...and wait one second.
get modems attention
set timeout 2

The timeout TCL variable contains the number of
seconds subsequent expect and rexpect commands
will wait to match input strings from the modem.
Here, we’re setting it to two seconds as we expect
the modem to respond very quickly to our attemts
to get its attention.

- 32 -

TransSys DialUp-IP

The following foreach statement is an idiom; we
don’t expect it to run more than once, but by being
in a foreach statement, we can easily exit the
scope of the loop by using the break command.
When we want to try something, and then try a few
more times until we receive what we’re expecting,
this sort of method seems handy...

foreach i {once} {
xmit {AT\r}

Transmit the attention sequence to the modem...

expect "{*OK\r*}" break timeout {}

...and we’re expecting to see an OK response from
the modem. If so, then break out of the foreach
loop; if the expect timesout, then do nothing.

xmit {AT\r}

And now we repeat the process a few more time..
expect "{*OK\r*}" break timeout {}
xmit {AT\r}
expect "{*OK\r*}" break timeout {}

And if if didn’t answer by now, then something is
seriously wrong. Abort the dialing attempt by
using the error command, along with a helpful,
explanitory message.

error "Could not get the modem’s attention"
}

set timeout 5

Set the timeout up a little higher. Now we’ll turn
off the command echoing from the modem to
reduce clutter in the trace file.

turn off command echo
xmit {ATE0\r}

Wait for an OK reply. If we get it, do nothing. If
this expect times out, abort the dialing attempt.

expect timeout {error "waiting for OK"} "*OK*"

- 33 -

TransSys DialUp-IP

Now we emark on a rather elaborate attempt to
fetch the firmware version from the modem, just to
log it out of curiosity. We send the modem an ATI
command and wait for the reply to come back.

xmit {ATI\r}

Use the rexpect command, which performs regular
expression pattern matches. If this times out, don’t
worry about it; this isn’t essential. Otherwise, we
are trying to match a pattern as specified. In the
case of the Neuron version of the ZyXEL modem,
the modem will respond with a string like “FAX
1414 “ with some number of trailing blanks. The
data that matches the first pattern in ()
groupingwill be stored in the $1 variable. We then
use the regsub command to strip trailing blanks off
of the version string. Sure seems like a whole lot
of trouble....

rexpect timeout {} \
"(\[A-Za-z].*\[^\r\n]+) \r.*OK\r\n" {set version $1

the regsub to strip trailing spaces
regsub {(.*[^])\ +$} $version {\1} version
log "Modem firmware version $version" }

Send a command to configure the modem with all
of the right modes. See the modem manual for
details of all this junk...

configure modem with proper parameters
xmit {AT&K2&N0M0V1Q0X5&C1&D2&H3&J0&L0&M0&R1&S0N1\r}

Wait for a reply. Expect either “ERROR” which
means we screwed up the parameters specified
above; “OK” which is what we expect, or check
for a timeout..

expect timeout {error "waiting for OK"} \
"{*ERROR\r*}" {log "Modem returned ERROR"} \
"{*OK*}" {log "set parameters"}

Now, we’re finally getting to the point of this
script. Dial the phone with the number we picked
up above.

dial the phone
log "Dialing $number"

- 34 -

TransSys DialUp-IP

xmit "ATDT$number\r"

Since it might take a while to make the phone
connection, have the remote ring a few times, and
the modems handshake with each other, we set the
expect timeout to 60 seconds.

wait for connect message
set timeout 60

Now, look for a variety of connect messages.
Abort the dialing script on timeout, or if the
modem returns “ERROR” or “BUSY”. We
customize the log message based on what speed
and error correcting and compression we are
using. If you want to insist on a particular speed
or protocol, modify the expect and error abort if
you don’t get what you expect.

expect timeout {error "connecting"} \
"{*CONNECT */V.32 9600T/V42*}" {log "Connected V.32/V.42"} \
"{*CONNECT */V.32 9600T/MNP*}" {log "Connected V.32/MNP"} \
"{*CONNECT */V.32b 9600T/V42*}" {log "Connected V.32bis/V.42"} \
"{*CONNECT */V.32b 9600T/MNP*}" {log "Connected V.32bis/MNP?"} \
"{*CONNECT *2400/MNP*}" {log "Connected $expect_match"} \
"{*ERROR\r*}" {error "Modem returned ERROR"} \
"{*BUSY\r*}” {error "Remote modem busy"}

set expect timeout back to somethine "reasonable"
set timeout 20

- 35 -

TransSys DialUp-IP

The /usr/dialupip/config/login-annex.tcl file:

This file contains the TCL script to log into a Xylogics Annex terminal
server and put it into SLIP mode. This version is pretty dumb, in that the Annex
doesn’t prompt for any sort of user name or password. Logic to handle this could
be added if necessary..

TCL script for use with tcldiald.
#
Used to put a Xylogics Annex terminal server into SLIP mode. This version
does not expect any login or password prompts. If these are present with
you terminal server, you can pick up additional arguments from the $args
array and use them to specify user name and password.
#
$Id: login-annex.tcl,v 3.4 1992/01/13 01:33:11 louie Exp $
#

Log a friendly message as we begin
log "Begin annex login"
#
set parity of transmitted data
#

As before, make sure we transmit 8 bits, no parity.
parity ZERO
#
For auto-baud nonsense.. sometimes its necessary to poke at it a couple of
times before it figures out what speed the modem is at.
#

We now begin the autobaud ritual. Set a relatively
short timeout interval and send a carriage return
to the terminal server.

set timeout 2
xmit {\r}
sleep 1

Wait a bit, then begin a few attempts to get the
terminal server prompt

foreach i {once} {
xmit {\r}
#
look for annex command prompt
#

We’re looking for an annex: prompt from the
terminal server. Once we see it, break out of the
“loop”. Else poke it again with another carriage

- 36 -

TransSys DialUp-IP

return and look some more.
expect "*annex:*" {break} timeout {}

xmit {\r}
expect "*annex:*" {break} timeout {}
xmit {\r}
expect "*annex:*" {break} timeout {}
xmit {\r}
expect "*annex:*" {break} timeout {}
error "Couldn’t autobaud annex: prompt from annex terminal server"

}
set timeout 10
#
send command to put terminal server into SLIP mode

#
Now, actually tell the terminal server to put this
port into SLIP mode.

xmit "slip\r"
log "Entering SLIP mode"
#
Use regular-expression based expect command to match addresses in message
that the annex server emits.
#

Look for the response to the “slip” command that
we sent, and pick out the IP addresses from the
message.

rexpect {Annex address is ([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+).+Your address is
([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)}
#
Rather than just printing this message, you could ifconfig the interface,
for example, by using the exec TCL command:
#
exec /etc/ifconfig $interface $2 $1

Though we don’t do anything with the addresses
here, log them for future use.

log "Annex address is $1, my address should be $2"
#
wait a bit for server to switch to SLIP mode
#
sleep 1
return "Connected"

- 37 -

TransSys DialUp-IP

License Keys

The operation of various features of the DialUp-IP software is enabled and
controlled though the use of a License Key file. The license key file has the
ability to enable features such as SLIP, and Compressed SLIP as well as
control the circumstances under which the software will operate (until a
certain date; for an interval after the system has been booted), and which
system it will operate on (by matching the system’s HostID).

There are two License Key files provided with the free version of this
software. One enables “plain vanilla” SLIP operation for an unlimited
length of time with no expiration date. This is supplied in the file
/usr/dialupip/config/keyfile.slip.

The other license key file enables “plain vanilla” SLIP as well as
“Compressed” SLIP (using Van Jacobson’s TCP header compression
algorithm) until a specified date. This is the “try before you buy” license
key, and is supplied in the /usr/dialupip/config/keyfile.demo
file. Versions of software released after this initial version will have a
different version of the “demo” key file which permits operation of the
SLIP software for 60 minutes after the system has been booted.

The /usr/dialupip/bin/tcldiald program reads the license key
file and enables certain functions both within the tcldiald program as well
as the loadable kernel device driver. By default, the tcldiald program
will load a license key from the file /usr/dialupip/config/keyfile;
it is also possible to specify an alternate license key file on the command line
invocation of the tcldiald program.

It is vitally important that you do not modify the contents of the
key files. They must be preserved byte-for-byte exactly as they were
shipped. If they are modified, they will cease to function as they will no
longer pass an the integrity check which is performed. The Key Files are
just plain ASCII, can can be viewed with editors or just “cat” to determine
what capabilities the Key File in question enables.

- 38 -

TransSys DialUp-IP

Software Use

This section discusses some of the more common aspects of running the DialUp-IP
software on your system, and some of the maintenance tasks and diagnostic
techniques you might make use of.

duioctl maintenance program
The duioctl program is used to set and examine software state variables
in the loadable kernel device driver, as well at to request certain operations
be performed.

You will likely use the duioctl program in the rc.slip file to set the
characteristics of each SLIP interface. The interface can be in three different
encapsulation modes:

SLIP
CSLIP
AUTOCOMP

which sets “plain vanilla” SLIP, SLIP with TCP header compression or
“automatic” mode which starts in uncompressed SLIP mode, but will switch
to compressed SLIP if a compressed SLIP frame is received on the interface.
It is not recommended that AUTOCOMP be used, as typically you need to
coordinate the encapsulation with the MTU (see below). Also note that
CSLIP mode (for TCP Header Compression) will not operate if your license
key doesn’t enable CSLIP.

You may also want to set the MTU (Maximum Transmission Unit) of the
interface to a value different from the default (1006 bytes) when using
CSLIP encapsulation.

For example, the typical configuration for a CSLIP interface would be set
with this command in the rc.slip file:

/usr/dialupip/bin/duioctl slip0 CSLIP MTU 256

- 39 -

TransSys DialUp-IP

To enable or disable the dial-on-demand capability on a particular SLIP
interface, you can use either of these two commands:

/usr/dialupip/bin/duioctl slip0 ENABLECALL
/usr/dialupip/bin/duioctl slip0 DISABLECALL

You should not enable calling on an interface which is not listed in the
/usr/dialupip/config/diald.conf file, since the dialing daemon
will not know how to select a modem and dial the call. Note that by default
all SLIP interfaces have ENABLECALL turned on when their address is
configured by the ifconfig command in rc.slip as specified in the
/usr/dialupip/config/config.slip file.

For SLIP interfaces used for incoming calls (to be used in the SLIP server
role) or for interface that you don’t want to be dialed automatically even
though they are configured in the diald.conf file, you should set
DISABLECALL after configuring the interface address in the rc.slip file.

To cause a SLIP interface to be brought up (provided that you’ve configured
it in your diald.conf file), you can use a command like:

/usr/dialupip/bin/duioctl slip0 ENABLECALL BRINGUP

The ENABLECALL is used to make sure that dialing is enabled, and the
BRINGUP command causes the dialing daemon to initiate a call.

- 40 -

TransSys DialUp-IP

Differences from the prior release of SLIP and release notes.

This version differs from the previously released versions of SLIP (which was
available on the various Internet FTP archive servers) in quite a number of
ways. More importantly, it is functionally upward compatible with the previous
versions and it still freely redistributable with the two supplied license keys.
This means that the base-level SLIP function provided by the previous releases
are still present in this version.

(Begin soapbox...) I believe that it is important that the NeXT platform
have a freely available SLIP implementation if it is to be take seriously
by the the UNIX workstation community. We expect SLIP to be
available on Sun, DEC and other platforms; why not NeXT? (The silly
NeXT network API defined in the kernel is one reason, I suppose, which
drives away developers and prevents otherwise available code from just
dropping and and working as it does on other BSD based kernels.) (End
soapbox...)

Future versions of this software will likely include a re-implemented kernel
driver which will hopefully be less sensitive to NeXT operating system kernel
versions and internal changes. Plus, it give me the opportunity to change and
re-do some stuff that I’ve been wanting to clean up a bit. Necessarily, the user-
level dialing daemon tcldiald will also be updated to accomodate the newer
kernel driver. This should be of no consequence to users of the software as
there are no plans nor need to change any of the dialing scripts.

In 920904, since January 1993:
A number of typographic changes have been made in the documentation
to reflect the creation of TransSys, Inc. which now develops and markets
this software.

In 920904:
• This version is the final version in a series which has tracked the testing
and release of NextStep Release 3.0. There were two prior versions,
released following NextStep 3.0 PR1 (pre-release 1) and 3.0 PR2.

• There were some minor bug fixes here and there, with no major
problems reported. One correction of consequence is a fix to the kernel
driver to support changing the MTU (maximum transmission unit) size of

- 41 -

TransSys DialUp-IP

a SLIP interface to a value larger than the default of 1006 bytes.

• An added feature is now a traceback which is logged in the event of an
error in any of the TCL scripts. This is helpful to diagnose just why that
modem dialer script isn’t working as you expected.

In 920506:
• Attention SLIP users! You are very much encouraged to use only the
tcldiald dialing daemon and to move away from using the older diald
program. There are changes in the works and new features being
planned, none of which include the diald program. While this release
still includes diald, don’t count on it being included in subsequent
versions.

• The kernel driver has been tweaked slightly to run under NextStep 3.0
pre-release 1. This was a relatively minor change which should not
affect the operation of the kernel driver under release 2.1 at all.
Obviously, extensive testing under 3.0 have not been done possible; but
no problems have yet been observed.

• TCL error reporting has been enhanced by an error walkback to help
diagnose and locate TCL script errors which may occur. Also, it is now
possible to vary the tracing level from the TCL script. This is handy to
turn off tracing once the connection has been established so that
subsequent TCL hook invocations are not traced.

In 920407:

• Fixed bug in kernel driver which would only allow up to 9 network
interfaces to be attached. This interacted badly with the cslip_reloc10
kernel driver which asked for 10, but only got one. It is now possible to
allocate up to 98 interfaces, though the interface names get weird after
the first 10.

• New kernel driver debug flags will dump a one line to syslog for each
packet sent and received by the kernel SLIP driver. Turned on by the
OPKT and IPKT flags. See the duioctl slipx GDEBUG command.

• Fixed bug in login-annex.tcl script which didn’t escape the literal

- 42 -

TransSys DialUp-IP

period characters when matching for IP addresses.

In 920207:

• Configuration of IP addresses is no longer done by editing the rc.slip
file, but now by editing the /usr/dialupip/config/config.slip file which
contains shell variable initializations which specify SLIP interface
configuration options.

• The sample file, slip-srv.tcl, has been modified to source another file,
/usr/dialupip/config/hooks.tcl, which contains standard boilerplate used
by most dialer scripts.

In 911124:

• Optional support for compressed SLIP. The implementation conforms
to the RFC1144 specification for TCP header compression. This RFC is
supplied in this distribution. Compressed SLIP is the only feature in this
distribution package which “costs extra” and requires a License Key to
activate for more than just demonstration purposes.

• A new dialing daemon, tcldiald, to replace the old daemon diald. This
version replaces the old chat script with a complete scripting language
based on TCL, a popular extension language. This allows quite a bit of
extra flexability which was not possible before. It is also possible to
enable tracing of each TCL command interpreted for additional help in
debugging TCL scripts.

• The tcldiald (and also diald) program can be invoked with the -i ifname
options to bring up the specified interface. When tcldiald is invoked in
the fashion, it does not put it self in the background and it does not
attempt to bring up any other SLIP interfaces. This method of invocation
is meant to make it easier to test the TCL scripts being developed for a
particular modem or SLIP server. See the tcldiald(8) manual page for
more details.

- 43 -

TransSys DialUp-IP

• Really an extension of the the TCL addition, but there is now a set of
features generally called hooks. These hooks are user defined TCL
subroutines which are invoked when certain events occur. Currently,
there are four hooks defined: event_softflags, event_ifflags,
event_linkup and event_linkdown. These are invoked when the
associated event occur allowing the user to perform certain tasks. For
example, in event_linkdown hook, you might want to run a UNIX
command to cause the link to be brought back up again.

• The kernel device driver is now automatically loaded by the dialing
daemon from the rc.slip file, rather than being manually loaded or having
to specify it in the kernel loader configuration file.

• All logging is performed using the standard UNIX syslog facility.
Logging messages are directed to the local3 message class, and an entry
in /etc/syslog.conf need to be added to capture these messages and direct
them to the /usr/dialupip/log/syslog file. The only tracing activity which
is not done using syslog is the per-link transcript file which is written
directly. This is because of the volume of messages and the fact the the
file is re-written each time that the link is brought up.

• You can set the MTU of the interface using the duioctl program.

If you are running the old version of SLIP software, you can continue to use
your existing diald.conf and script files if you want to use the diald program
rather than the new tcldiald. You should install the new package “over” the old
one; the existing configuration files will not be changed. You will need to
update the rc.slip file to invoke diald rather than tcldiald. You will also have
to update the addresses in rc.slip to reflect the addresses you used before. I
recommend that you don’t attempt to use your old rc.slip file since the kernel
device driver is now loaded automatically.

- 44 -

