This is m_next32.c in view mode; [Download] [Up]
/*
* top - a top users display for Unix
* NEXTSTEP v.0.5 11/26/1996 tpugh
*
* SYNOPSIS: any m68k or intel NEXTSTEP v3.x system
*
* DESCRIPTION:
* This is the machine-dependent module for NEXTSTEP v3.x
* Reported to work for NEXTSTEP v3.0, v3.2, and v3.3 Mach OS:
* NEXTSTEP v3.0 on Motorola machines.
* NEXTSTEP v3.2 on Intel and Motorola machines.
* NEXTSTEP v3.3 on Intel and Motorola machines.
* Problem with command column for: (Choose next33 for fix)
* NEXTSTEP v3.2 on HP machines.
* NEXTSTEP v3.3 on HP and Sparc machines.
* Has not been tested for NEXTSTEP v2.x machines, although it should work.
* Has not been tested for NEXTSTEP v3.1 machines, although it should work.
* Install "top" with the permissions 4755.
* hostname# chmod 4755 top
* hostname# ls -lg top
* -rwsr-xr-x 1 root kmem 121408 Sep 1 10:14 top*
* With the kmem group sticky bit set, we can read kernal memory without problems,
* but to communicate with the Mach kernal for task and thread info, it requires
* root privileges. Therefore, "top" must be setuid 4755 with the owner as root.
*
* LIBS:
*
* Need the compiler flag, "-DSHOW_UTT", to see the user task and thread task
* data structures to report process info.
*
* CFLAGS: -DSHOW_UTT
*
*
* AUTHORS: Tim Pugh <tpugh@oce.orst.edu>
*/
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/param.h>
#include <stdio.h>
#include <nlist.h>
#include <math.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/dk.h>
#include <sys/vm.h>
#include <sys/file.h>
#include <sys/time.h>
#import <mach/mach.h>
#include <sys/vmmeter.h>
#import <mach/vm_statistics.h>
#include "top.h"
#include "utils.h"
#include "machine.h"
#ifdef NEXTSTEP40
#import "machine/m_next40_task.h"
#else NEXTSTEP40
#import "machine/m_next_task.h"
#endif NEXTSTEP40
/* Problems on NS/HPPA machines. Also, not currently used by source code.
*#define DOSWAP
*/
extern int errno, sys_nerr;
extern char *sys_errlist[];
#define strerror(e) (((e) >= 0 && (e) < sys_nerr) ? sys_errlist[(e)] : "Unknown error")
#define VMUNIX "/mach"
#define KMEM "/dev/kmem"
#define MEM "/dev/mem"
#ifdef DOSWAP
#define SWAP "/dev/drum"
#endif
/* NeXT BSD process structure does not contain locations to hold info such as
* cpu usage, memory usage, resident core memory, or cpu time data. So I've made
* a new process structure which composites the NeXT structure and the missing
* system info.
*/
struct proc_unix {
struct proc *p_self; /* Each p_self points to a element in pbase. */
int p_pctcpu; /* Scaled percent cpu usage. */
int p_vsize; /* Total VM memory usage. */
int p_rsize; /* Resident core memory usage. */
int p_cptime; /* scaled CPU Time */
int run_state; /* Task run state. */
int flags; /* Task state flags. */
int nthreads; /* Number of threads per Task. */
int cur_priority; /* Current main thread priority */
};
/* Contains the list of processes. */
struct handle
{
struct proc_unix *list; /* points to list of valid proc pointer */
int count; /* number of pointers */
int current; /* Index of the current process formatting */
};
/* declarations for load_avg */
#include "loadavg.h"
#define LSCALE 1000 /* scaling for "fixed point" arithmetic - <sys/kernel.h> */
/* define what weighted cpu is. */
/*
*#define weighted_cpu(pct, pp) ((pp)->p_time == 0 ? 0.0 : \
* ((pct) / (1.0 - exp((pp)->p_time * logcpu))))
*/
/* The following three variables are not defined in NeXT's process structure.
* So they are zeroed until other ways of obtaining the info are found.
*/
/* what we consider to be process size: */
/* #define PROCSIZE(pp) ((pp)->p_tsize + (pp)->p_dsize + (pp)->p_ssize) */
#define PROCSIZE(pp) (0)
/* #define P_RSSIZE(pp) ((pp)->p_rssize) */
#define P_RSSIZE(pp) (0)
/* #define P_CPTICKS(pp) ((pp)->p_cpticks) */
#define P_CPTICKS(pp) (0)
extern int thread_stats(int p_pid, struct thread_basic_info *info, int *count);
extern int mach_load_avg(void);
extern kern_return_t task_stats(int p_pid, struct task_basic_info *info);
/* definitions for indices in the nlist array */
#define X_AVENRUN 0
#define X_CCPU 1
#define X_NPROC 2
#define X_PROC 3
#define X_TOTAL 4
#define X_CP_TIME 5
#define X_MPID 6
#define X_HZ 7
static struct nlist nlst[] = {
{ "_avenrun" }, /* 0 */
{ "_cpu_clk" }, /* 1 */
{ "_max_proc" }, /* 2 */
{ "_allproc" }, /* 3 */
{ "_total" }, /* 4 */
{ "_cp_time" }, /* 5 */
{ "_mpid" }, /* 6 */
{ "_hz" }, /* 7 */
{ 0 }
};
/*
* These definitions control the format of the per-process area
*/
static char header[] =
" PID X STATE PRI NICE THR VSIZE RSIZE %MEM %CPU TIME COMMAND";
/* static char header[] =
* " PID X STATE PRI NICE THR VSIZE RSIZE %MEM %WCPU %CPU TIME COMMAND";
*/
/* 0123456 -- field to fill in starts at header+6 */
#define UNAME_START 6
#define Proc_format \
"%5d %-8.8s %-5s %3d %4d %4d %5s %5s %6.2f %6.2f %6s %.14s"
/* #define Proc_format \
* "%5d %-8.8s %-5s %3d %4d %4d %5s %5s %6.2f %6.2f %6.2f %6s %.14s"
*/
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
char *state_abbrev[] =
{
"", "sleep", "WAIT", "run\0\0\0", "start", "zomb", "stop"
};
char *mach_state[] =
{
"", "R", "T", "S", "U", "H"
};
char *flags_state[] =
{
"", "W", "I"
};
/* these are for detailing the process states */
int process_states[7];
/* char *procstatenames[] = {
* "", " sleeping, ", " ABANDONED, ", " running, ", " starting, ",
* " zombie, ", " stopped, ",
* NULL
*};
*/
char *procstatenames[] = {
"", " running, ", " stopped, ", " sleeping, ", " uninterruptable, ",
" halted, ", " zombie ", NULL
};
static int kmem, mem;
#ifdef DOSWAP
static int swap;
#endif
/* values that we stash away in _init and use in later routines */
/* static double logcpu; */
/* these are retrieved from the kernel in _init */
static unsigned long proc;
static int nproc;
static long hz;
static load_avg ccpu;
static int ncpu = 0;
/* these are offsets obtained via nlist and used in the get_ functions */
static unsigned long avenrun_offset;
static unsigned long mpid_offset;
static unsigned long total_offset;
static unsigned long cp_time_offset;
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
/* these are for detailing the cpu states */
int cpu_states[4];
char *cpustatenames[] = {
"user", "nice", "system", "idle", NULL
};
/* these are for detailing the memory statistics */
int memory_stats[7];
/* char *memorynames[] = {
* "Real: ", "K/", "K act/tot ", "Virtual: ", "K/",
* "K act/tot ", "Free: ", "K", NULL
* };
*/
char *memorynames[] = {
"K Tot, ", "K Act, ", "K Inact, ", "K Wired, ", "K Free, ", "K in, ", "K out ", NULL
};
/* these are for keeping track of the proc array */
static int bytes;
static int pref_count;
static struct proc *pbase;
static struct proc_unix *pref;
/* these are for getting the memory statistics */
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/* useful externals */
extern int errno;
extern char *sys_errlist[];
long lseek();
long time();
machine_init(struct statics *statics)
{
register int i = 0;
register int pagesize;
if ((kmem = open(KMEM, O_RDONLY)) == -1) {
perror(KMEM);
return(-1);
}
if ((mem = open(MEM, O_RDONLY)) == -1) {
perror(MEM);
return(-1);
}
#ifdef DOSWAP
if ((swap = open(SWAP, O_RDONLY)) == -1) {
perror(SWAP);
return(-1);
}
#endif
/* get the list of symbols we want to access in the kernel */
(void) nlist(VMUNIX, nlst);
if (nlst[0].n_type == 0)
{
fprintf(stderr, "top: nlist failed\n");
return(-1);
}
/* make sure they were all found */
if (i > 0 && check_nlist(nlst) > 0)
{
return(-1);
}
/* get the symbol values out of kmem */
(void) getkval(nlst[X_PROC].n_value, (int *)(&proc), sizeof(proc),
nlst[X_PROC].n_un.n_name);
(void) getkval(nlst[X_NPROC].n_value, &nproc, sizeof(nproc),
nlst[X_NPROC].n_un.n_name);
(void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz),
nlst[X_HZ].n_un.n_name);
/* (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu),
* nlst[X_CCPU].n_un.n_name);
*/
/* stash away certain offsets for later use */
mpid_offset = nlst[X_MPID].n_value;
avenrun_offset = nlst[X_AVENRUN].n_value;
total_offset = nlst[X_TOTAL].n_value;
cp_time_offset = nlst[X_CP_TIME].n_value;
/* this is used in calculating WCPU -- calculate it ahead of time */
/* ccpu = mach_load_avg();
* logcpu = log((double)(ccpu)/LOAD_SCALE);
*/
/* allocate space for proc structure array and array of pointers */
bytes = nproc * sizeof(struct proc);
pbase = (struct proc *)malloc(bytes);
pref = (struct proc_unix *)malloc((nproc+1) * sizeof(struct proc_unix *));
/* Just in case ... */
if (pbase == (struct proc *)NULL || pref == (struct proc_unix *)NULL)
{
fprintf(stderr, "top: can't allocate sufficient memory\n");
return(-1);
}
/* get the page size with "getpagesize" and calculate pageshift from it */
pagesize = getpagesize();
pageshift = ceil(log(pagesize)/log(2.0));
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
/* all done! */
return(0);
}
char *format_header(register char *uname_field)
{
register char *ptr;
ptr = header + UNAME_START;
while (*uname_field != '\0')
{
*ptr++ = *uname_field++;
}
return(header);
}
static int swappgsin = -1;
static int swappgsout = -1;
static vm_statistics_data_t vm_stats;
static host_basic_info_data_t host_stats;
get_system_info(struct system_info *si)
{
long avenrun[3];
long total;
/* get the cp_time array */
(void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
"_cp_time");
/* get load average array */
(void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
"_avenrun");
/* get mpid -- process id of last process */
(void) getkval(mpid_offset, &(si->last_pid), sizeof(si->last_pid),
"_mpid");
/* convert load averages to doubles */
{
register int i;
for(i=0; i<3; i++)
si->load_avg[i] = ((double)avenrun[i])/LSCALE;
}
/* convert cp_time counts to percentages */
total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
/* sum memory statistics */
{
/* get total -- systemwide main memory usage structure */
/* Does not work on NeXT system. Use vm_statistics() for paging info. */
/* struct vmtotal total;
* (void) getkval(total_offset, (int *)(&total), sizeof(total),
* "_total");
*/
/* convert memory stats to Kbytes */
/* memory_stats[0] = -1;
* memory_stats[1] = pagetok(total.t_arm);
* memory_stats[2] = pagetok(total.t_rm);
* memory_stats[3] = -1;
* memory_stats[4] = pagetok(total.t_avm);
* memory_stats[5] = pagetok(total.t_vm);
* memory_stats[6] = -1;
* memory_stats[7] = pagetok(total.t_free);
*/
kern_return_t status;
unsigned int count=HOST_BASIC_INFO_COUNT;
status = vm_statistics(task_self(), &vm_stats);
#ifdef DEBUG
if(status != KERN_SUCCESS)
mach_error("An error calling vm_statistics()!", status);
#endif
status = host_info(host_self(), HOST_BASIC_INFO, (host_info_t)&host_stats, &count);
#ifdef DEBUG
if(status != KERN_SUCCESS)
mach_error("An error calling host_info()!", status);
#endif
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(host_stats.memory_size / vm_stats.pagesize);
memory_stats[1] = pagetok(vm_stats.active_count);
memory_stats[2] = pagetok(vm_stats.inactive_count);
memory_stats[3] = pagetok(vm_stats.wire_count);
memory_stats[4] = pagetok(vm_stats.free_count);
if (swappgsin < 0)
{
memory_stats[5] = 1;
memory_stats[6] = 1;
} else {
memory_stats[5] = pagetok(((vm_stats.pageins - swappgsin)));
memory_stats[6] = pagetok(((vm_stats.pageouts - swappgsout)));
}
swappgsin = vm_stats.pageins;
swappgsout = vm_stats.pageouts;
}
/* set arrays and strings */
si->cpustates = cpu_states;
si->memory = memory_stats;
}
static struct handle handle;
caddr_t get_process_info(struct system_info *si,
struct process_select *sel,
int (*compare)())
{
int i, j;
int total_procs;
int active_procs;
struct proc *pp;
struct task_basic_info taskInfo;
struct thread_basic_info threadInfo;
kern_return_t thread_status;
kern_return_t task_status;
int threadCount;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
int show_command;
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
show_command = sel->command != NULL;
(void) getkval(nlst[X_PROC].n_value, (int *)(&proc), sizeof(proc),
nlst[X_PROC].n_un.n_name);
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
memset((char *)process_states, 0, sizeof(process_states));
i = 0;
j = 0;
do {
if(i == 0) {
/* read first proc structure */
(void) getkval(proc, (int *)&pbase[i], sizeof(struct proc), "first proc");
} else {
(void) getkval(pp->p_nxt, (int *)&pbase[i], sizeof(struct proc), "nxt proc");
}
pp = &pbase[i];
thread_status = thread_stats(pp->p_pid, &threadInfo, &threadCount);
task_status = task_stats(pp->p_pid, &taskInfo);
/*
* Process slots that are actually in use have a non-zero
* status field. Processes with SSYS set are system
* processes---these get ignored unless show_sysprocs is set.
*/
if (pp->p_stat != 0 &&
(show_system || ((pp->p_flag & SSYS) == 0)))
{
total_procs++;
/* Using thread info for process states. */
/* process_states[pp->p_stat]++; */
if(thread_status==KERN_SUCCESS)
process_states[threadInfo.run_state]++;
if ((pp->p_stat != SZOMB) &&
(show_idle || (pp->p_stat == SRUN)) &&
(!show_uid || pp->p_uid == (uid_t)sel->uid))
{
pref[j].p_self = pp;
if(thread_status==KERN_SUCCESS)
{
pref[j].run_state = threadInfo.run_state;
pref[j].flags = threadInfo.flags;
pref[j].p_pctcpu = threadInfo.cpu_usage;
pref[j].p_cptime = threadInfo.user_time.seconds +
threadInfo.system_time.seconds;
pref[j].cur_priority = threadInfo.cur_priority;
pref[j].nthreads = threadCount;
} else {
pref[j].run_state = 0;
pref[j].flags = 0;
pref[j].p_pctcpu = 0;
pref[j].p_cptime = 0;
}
/* Get processes memory usage and cputime */
if(task_status==KERN_SUCCESS)
{
pref[j].p_rsize = taskInfo.resident_size/1024;
pref[j].p_vsize = taskInfo.virtual_size/1024;
} else {
pref[j].p_rsize = 0;
pref[j].p_vsize = 0;
}
active_procs++;
j++;
}
}
i++;
} while(pp->p_nxt != 0);
pref[j].p_self = NULL; /* End list of processes with NULL */
/* if requested, sort the "interesting" processes */
if (compare != NULL)
{
qsort((char *)pref, active_procs, sizeof(struct proc_unix), compare);
}
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_count = active_procs;
/* pass back a handle */
handle.list = pref;
handle.count = active_procs;
handle.current = 0;
return((caddr_t)&handle);
}
char fmt[MAX_COLS]; /* static area where result is built */
char *format_next_process(caddr_t handle, char *(*get_userid)())
{
register struct proc *pp;
register long cputime;
register double pct, wcpu, pctmem;
int where;
struct user u;
struct handle *hp;
register int p_pctcpu;
register int rm_size;
register int vm_size;
register int run_state;
register int flags;
register int nthreads;
register int cur_priority;
char state_str[10];
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = hp->list[hp->current].p_self;
p_pctcpu = hp->list[hp->current].p_pctcpu;
cputime = hp->list[hp->current].p_cptime;
rm_size = hp->list[hp->current].p_rsize;
vm_size = hp->list[hp->current].p_vsize;
run_state = hp->list[hp->current].run_state;
flags = hp->list[hp->current].flags;
nthreads = hp->list[hp->current].nthreads;
cur_priority = hp->list[hp->current].cur_priority;
hp->current++;
hp->count--;
/* get the process's user struct and set cputime */
where = getu(pp, &u);
if (where == -1)
{
(void) strcpy(u.u_comm, "<swapped>");
cputime = 0;
}
else
{
/* set u_comm for system processes */
if (u.u_comm[0] == '\0')
{
if (pp->p_pid == 0)
{
(void) strcpy(u.u_comm, "Swapper");
}
else if (pp->p_pid == 2)
{
(void) strcpy(u.u_comm, "Pager");
}
}
if (where == 1) {
/*
* Print swapped processes as <pname>
*/
char buf[sizeof(u.u_comm)];
(void) strncpy(buf, u.u_comm, sizeof(u.u_comm));
u.u_comm[0] = '<';
(void) strncpy(&u.u_comm[1], buf, sizeof(u.u_comm) - 2);
u.u_comm[sizeof(u.u_comm) - 2] = '\0';
(void) strncat(u.u_comm, ">", sizeof(u.u_comm) - 1);
u.u_comm[sizeof(u.u_comm) - 1] = '\0';
}
/* User structure does not work. Use Thread Info to get cputime for process. */
/* cputime = u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec; */
}
/* calculate the base for cpu percentages */
pct = (double)(p_pctcpu)/TH_USAGE_SCALE;
/* wcpu = weighted_cpu(pct, pp);
*/
pctmem = (double)(rm_size*1024.) / (double)(host_stats.memory_size);
/* Get process state description */
if(run_state)
{
strcpy(state_str, mach_state[run_state]);
strcat(state_str, flags_state[flags]);
} else {
strcpy(state_str, state_abbrev[pp->p_stat]);
}
/* format this entry */
sprintf(fmt,
Proc_format,
pp->p_pid,
(*get_userid)(pp->p_uid),
state_str,
cur_priority,
/* pp->p_pri - PZERO, */
pp->p_nice - NZERO,
nthreads,
format_k(vm_size),
format_k(rm_size),
100.0 * pctmem,
/* 100.0 * wcpu, */
100.0 * pct,
format_time(cputime),
printable(u.u_comm));
/* return the result */
return(fmt);
}
/*
* getu(p, u) - get the user structure for the process whose proc structure
* is pointed to by p. The user structure is put in the buffer pointed
* to by u. Return 0 if successful, -1 on failure (such as the process
* being swapped out).
*/
getu(register struct proc *p, struct user *u)
{
/* int i; */
/* int uutask[40]; */
register int nbytes, n;
struct task task;
struct utask utask;
struct uthread thread;
/*
* Check if the process is currently loaded or swapped out. The way we
* get the u area is totally different for the two cases. For this
* application, we just don't bother if the process is swapped out.
*/
/* NEXTSTEP proc.h
* One structure allocated per active
* process. It contains all data needed
* about the process while the
* process may be swapped out.
* Other per process data (user.h)
* is swapped with the process.
*/
if ((p->p_flag & SLOAD) == 0) {
/* User info is always in core.
* #ifdef DOSWAP
* if (lseek(swap, (long)dtob(p->p_swaddr), 0) == -1) {
* perror("lseek(swap)");
* return(-1);
* }
* if (read(swap, (char *) u, sizeof(struct user)) != sizeof(struct user)) {
* perror("read(swap)");
* return(-1);
* }
* return (1);
* #else
*/
return(-1);
/*#endif
*/
}
/*
* Process is currently in memory, we hope!
*/
/* getkval(p->task, (int *)&uutask, 40*sizeof(int), "task");
for(i=0; i<40; i++) printf("task[%i]=%i\n", i, uutask[i]);
getkval(task.u_address, (int *)&uutask, 40*sizeof(int), "task.u_address");
for(i=0; i<40; i++) printf("utask[%i]=%i, %s\n", i, uutask[i], &uutask[i]);
*/
if(!getkval(p->task, (int *)&task, sizeof(struct task), "task")) {
#ifdef DEBUG
perror("getkval(p->task)");
#endif
/* we can't seem to get to it, so pretend it's swapped out */
return(-1);
}
if(!getkval(task.u_address, (int *)&utask, sizeof(struct utask), "task.u_address")) {
#ifdef DEBUG
perror("getkval(task->utask)");
#endif
/* we can't seem to get to it, so pretend it's swapped out */
return(-1);
}
/* Copy utask and uthread info into struct user *u */
/* This is incomplete. Only copied info needed. */
u->u_procp = utask.uu_procp;
u->u_ar0 = utask.uu_ar0;
u->u_ru = utask.uu_ru;
strcpy(u->u_comm, utask.uu_comm);
nbytes = strlen(u->u_comm);
for(n=nbytes; n<MAXCOMLEN; n++)
u->u_comm[n] = ' ';
u->u_comm[MAXCOMLEN] = '\0';
return(0);
}
/*
* check_nlist(nlst) - checks the nlist to see if any symbols were not
* found. For every symbol that was not found, a one-line
* message is printed to stderr. The routine returns the
* number of symbols NOT found.
*/
int check_nlist(register struct nlist *nlst)
{
register int i;
/* check to see if we got ALL the symbols we requested */
/* this will write one line to stderr for every symbol not found */
i = 0;
while (nlst->n_un.n_name != NULL)
{
if (nlst->n_type == 0 && nlst->n_value == 0)
{
/* this one wasn't found */
fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_un.n_name);
i = 1;
}
nlst++;
}
return(i);
}
/*
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve),
* "refstr" is a reference string used when printing error meessages,
* if "refstr" starts with a '!', then a failure on read will not
* be fatal (this may seem like a silly way to do things, but I
* really didn't want the overhead of another argument).
*
*/
getkval(unsigned long offset, int *ptr, int size, char *refstr)
{
if (lseek(kmem, (long)offset, L_SET) == -1) {
if (*refstr == '!')
refstr++;
(void) fprintf(stderr, "%s: lseek to %s: %s\n", KMEM,
refstr, strerror(errno));
quit(23);
}
if (read(kmem, (char *) ptr, size) == -1) {
if (*refstr == '!')
return(0);
else {
(void) fprintf(stderr, "%s: reading %s: %s\n", KMEM,
refstr, strerror(errno));
quit(23);
}
}
return(1);
}
/* comparison routine for qsort */
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, start, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
*/
static unsigned char sorted_state[] =
{
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4 /* stop */
};
proc_compare(struct proc_unix *pp1, struct proc_unix *pp2)
{
register struct proc *p1 = pp1->p_self;
register struct proc *p2 = pp2->p_self;
register int result;
register pctcpu lresult;
/* compare percent cpu (pctcpu) */
if ((lresult = pp2->p_pctcpu - pp1->p_pctcpu) == 0)
{
/* use cpticks to break the tie */
if ((result = P_CPTICKS(p2) - P_CPTICKS(p1)) == 0)
{
/* use process state to break the tie */
if ((result = sorted_state[p2->p_stat] - sorted_state[p1->p_stat]) == 0)
{
/* use priority to break the tie */
if ((result = p2->p_pri - p1->p_pri) == 0)
{
/* use resident set size (rssize) to break the tie */
if ((result = pp2->p_rsize - pp1->p_rsize) == 0)
{
/* use total memory to break the tie */
result = pp2->p_vsize - pp1->p_vsize;
}
}
}
}
}
else
{
result = lresult < 0 ? -1 : 1;
}
return(result);
}
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int proc_owner(int pid)
{
register int cnt;
register struct proc *pp;
cnt = pref_count;
while (--cnt >= 0)
{
pp = pref[cnt].p_self;
if( pp->p_pid == pid ) /* Modified (pid_t)pid to pid, compiler error. */
{
return((int)pp->p_uid);
}
}
return(-1);
}
int thread_stats(int pid, struct thread_basic_info *info, int *thread_count)
{
int i;
kern_return_t status;
kern_return_t status_dealloc;
task_t p_task;
thread_array_t thread_list, list;
struct thread_basic_info threadInfo;
unsigned int info_count = THREAD_BASIC_INFO_COUNT;
/* Get the task pointer for the process. */
status = task_by_unix_pid( task_self(), pid, &p_task);
if (status!=KERN_SUCCESS)
{
#ifdef DEBUG
printf("pid = %i\n", pid);
mach_error("Error calling task_by_unix_pid()", status);
#endif
return status;
}
/* Get the list of threads for the task. */
status = task_threads(p_task, &thread_list, thread_count);
if (status!=KERN_SUCCESS)
{
#ifdef DEBUG
mach_error("Error calling task_threads()", status);
#endif
return status;
}
/* Get the pctcpu value for each thread and sum the values */
info->user_time.seconds = 0;
info->user_time.microseconds = 0;
info->system_time.seconds = 0;
info->system_time.microseconds = 0;
info->cpu_usage = 0;
info->sleep_time = 0;
for(i=0; i<*thread_count; i++)
{
status = thread_info(thread_list[i], THREAD_BASIC_INFO,
(thread_info_t)&threadInfo, &info_count);
if (status!=KERN_SUCCESS)
{
#ifdef DEBUG
mach_error("Error calling thread_info()", status);
#endif
break;
} else {
if(i==0)
{
info->base_priority = threadInfo.base_priority;
info->cur_priority = threadInfo.cur_priority;
info->run_state = threadInfo.run_state;
info->flags = threadInfo.flags;
info->suspend_count = threadInfo.suspend_count;
info->sleep_time += threadInfo.sleep_time;
}
info->user_time.seconds += threadInfo.user_time.seconds;
info->user_time.microseconds += threadInfo.user_time.microseconds;
info->system_time.seconds += threadInfo.system_time.seconds;
info->system_time.microseconds += threadInfo.system_time.microseconds;
info->cpu_usage += threadInfo.cpu_usage;
}
}
/* Deallocate the list of threads. */
status_dealloc = vm_deallocate(task_self(), (vm_address_t)thread_list,
sizeof(thread_list)*(*thread_count));
if (status_dealloc != KERN_SUCCESS)
{
#ifdef DEBUG
mach_error("Trouble freeing thread_list", status_dealloc);
#endif
status = status_dealloc;
}
return status;
}
int mach_load_avg(void)
{
kern_return_t status;
host_t host;
unsigned int info_count;
struct processor_set_basic_info info;
processor_set_t default_set;
status=processor_set_default(host_self(), &default_set);
if (status!=KERN_SUCCESS){
mach_error("Error calling processor_set_default", status);
exit(1);
}
info_count=PROCESSOR_SET_BASIC_INFO_COUNT;
status=processor_set_info(default_set, PROCESSOR_SET_BASIC_INFO,
&host, (processor_set_info_t)&info, &info_count);
#ifdef DEBUG
if (status != KERN_SUCCESS)
mach_error("Error calling processor_set_info", status);
#endif
return info.load_average;
}
kern_return_t task_stats(int pid, struct task_basic_info *info)
{
kern_return_t status;
task_t p_task;
unsigned int info_count=TASK_BASIC_INFO_COUNT;
/* Get the task pointer for the process. */
status = task_by_unix_pid( task_self(), pid, &p_task);
if (status!=KERN_SUCCESS) {
#ifdef DEBUG
printf("pid = %i\n", pid);
mach_error("Error calling task_by_unix_pid()", status);
#endif
return(status);
}
status=task_info(p_task, TASK_BASIC_INFO, (task_info_t)info, &info_count);
if (status!=KERN_SUCCESS) {
#ifdef DEBUG
mach_error("Error calling task_info()", status);
#endif
return(status);
}
return(KERN_SUCCESS);
}
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.