This is m_aux31.c in view mode; [Download] [Up]
/* * top - a top users display for Unix * * SYNOPSIS: a Mac running A/UX version 3.1 * * DESCRIPTION: * This is the machine-dependent module for A/UX 3.1. * It might work on A/UX 3.0. * == * Although AUX does not generally have a renice systemcall, it can be * implemented by tweeking kernel memory. While such a simple hack should * not be difficult to get right, USE THIS FEATURE AT YOUR OWN RISK! * To turn on setpriority emulation, add "-DIMPLEMENT_SETPRIORITY" to * the CFLAGS when prompted in the configure script. * * CFLAGS: -Dclear=clear_scr -DPRIO_PROCESS=0 * * LIBS: * * AUTHOR: Richard Henderson <richard@atheist.tamu.edu> */ #include <stdio.h> #include <errno.h> #include <fcntl.h> #include <a.out.h> #include <sys/types.h> #include <sys/signal.h> #include <sys/param.h> #include <sys/proc.h> #include <sys/user.h> #include <sys/sysinfo.h> #include <sys/var.h> #define FSCALE 65536.0 #include "top.h" #include "machine.h" #include "loadavg.h" /*=NLIST INFO===========================================================*/ #define X_V 0 #define X_SYSINFO 1 #define X_AVENRUN 2 #define X_MAXMEM 3 #define X_FREEMEM 4 #define X_AVAILRMEM 5 #define X_AVAILSMEM 6 static struct nlist nlst[] = { {"v"}, {"sysinfo"}, {"avenrun"}, {"maxmem"}, {"freemem"}, {0}, /* "availrmem" */ {0}, /* "availsmem" */ {0} }; static int kmem; static int mem; static struct var v; static int maxmem; #define V_OFS (nlst[X_V].n_value) #define SYSINFO_OFS (nlst[X_SYSINFO].n_value) #define AVENRUN_OFS (nlst[X_AVENRUN].n_value) #define MAXMEM_OFS (nlst[X_MAXMEM].n_value) #define FREEMEM_OFS (nlst[X_FREEMEM].n_value) #define AVAILRMEM_OFS (nlst[X_AVAILRMEM].n_value) #define AVAILSMEM_OFS (nlst[X_AVAILSMEM].n_value) /*=SYSTEM STATE INFO====================================================*/ /* these are for calculating cpu state percentages */ static long cp_time[NCPUSTATES]; static long cp_old[NCPUSTATES]; static long cp_diff[NCPUSTATES]; /* these are for keeping track of the proc array */ static struct proc *pbase; /* the current proc structures */ static struct proc *obase; /* the old proc structures */ static struct proc **pref; /* list of active structures */ static struct proc **nextactive; /* for iterating through the processes */ /* these are for passing data back to the mach. ind. portion */ static int cpu_states[NCPUSTATES]; static int process_states[8]; static int memory_stats[5]; /* a few useful macros... */ #define pagetok(pg) ((pg) << (v.v_pageshift - LOG1024)) #define PROCSIZE(pp) ((pp)->p_size) #define proc_name(pp) ((char *)&(pp)->p_compatflags) #define percent_cpu(pp) (*(double *)&(pp)->p_spare[0]) #define weighted_cpu(pp) (*(double *)&(pp)->p_spare[2]) /*=STATE IDENT STRINGS==================================================*/ static char *state_abbrev[] = { "", "sleep", "run", "zomb", "stop", "start", "cpu", "swap", NULL }; static char *procstatenames[] = { "", " sleeping, ", " running, ", " zombie, ", " stopped, ", " starting, ", " on cpu, ", " swapping, ", NULL }; static char *cpustatenames[] = { "idle", "user", "kernel", "wait", "nice", NULL }; static char *memorynames[] = { "K real, ", "K free, ", "K free swap, ", "K locked", NULL }; /*======================================================================*/ machine_init(statics) struct statics *statics; { /* access kernel memory */ #ifndef IMPLEMENT_SETPRIORITY if ((kmem = open("/dev/kmem", O_RDONLY)) < 0) #else if ((kmem = open("/dev/kmem", O_RDWR)) < 0 && (kmem = open("/dev/kmem", O_RDONLY)) < 0) #endif { perror("/dev/kmem"); return -1; } if ((mem = open("/dev/mem", O_RDONLY)) < 0) { perror("/dev/mem"); return -1; } /* get the list of symbols we want to access in the kernel */ nlst[X_AVAILRMEM].n_nptr = "availrmem"; nlst[X_AVAILSMEM].n_nptr = "availsmem"; if (nlist("/unix", nlst) < 0) { fprintf(stderr, "top: nlist failed\n"); return -1; } /* make sure they were all found */ if (check_nlist(nlst) > 0) { return (-1); } /* grab the kernel configuration information */ (void)getkval(V_OFS, (char *)&v, sizeof(v), "v"); (void)getkval(MAXMEM_OFS, (char *)&maxmem, sizeof(maxmem), "maxmem"); /* allocate space for process related info */ pbase = (struct proc *)calloc(v.v_proc, sizeof(struct proc)); obase = (struct proc *)calloc(v.v_proc, sizeof(struct proc)); pref = (struct proc **)calloc(v.v_proc, sizeof(struct proc *)); /* Just in case ... */ if (!pbase || !obase || !pref) { fprintf(stderr, "top: can't allocate sufficient memory\n"); return -1; } /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; /* all done! */ return 0; } get_system_info(info) struct system_info *info; { /* convert load averages */ { load_avg ar[3]; (void)getkval(AVENRUN_OFS, (char *)&ar, sizeof(ar), "avenrun"); /* convert load averages to doubles */ info->load_avg[0] = loaddouble(ar[0]); info->load_avg[1] = loaddouble(ar[1]); info->load_avg[2] = loaddouble(ar[2]); } /* get cpu time counts */ { struct sysinfo si; (void)getkval(SYSINFO_OFS, (char *)&si, sizeof(si), "sysinfo"); memcpy(cp_time, si.cpu, sizeof(cp_time)); percentages(NCPUSTATES, cpu_states, cp_time, cp_old, cp_diff); } /* get memory usage information */ { int freemem, availrmem, availsmem; (void)getkval(FREEMEM_OFS, (char *)&freemem, sizeof(freemem), "freemem"); (void)getkval(AVAILRMEM_OFS, (char *)&availrmem, sizeof(availrmem), "availrmem"); (void)getkval(AVAILSMEM_OFS, (char *)&availsmem, sizeof(availsmem), "availsmem"); memory_stats[0] = pagetok(availrmem - freemem); memory_stats[1] = pagetok(freemem); memory_stats[2] = pagetok(availsmem - availrmem); memory_stats[3] = pagetok(maxmem - availrmem); } info->last_pid = -1; /* set arrays and strings */ info->cpustates = cpu_states; info->memory = memory_stats; } get_process_info(si, sel, compare) struct system_info *si; struct process_select *sel; int (*compare)(); { int i, total_procs, active_procs; struct proc *pp1, *pp2, **a; static struct timeval lasttime; struct timeval thistime; double timediff, alpha, beta; /* these are copied out of sel for speed */ int show_idle, show_system, show_uid, show_command; /* calculate the time difference since our last check */ gettimeofday(&thistime); if (lasttime.tv_sec) timediff = ((thistime.tv_sec - lasttime.tv_sec) + (thistime.tv_usec - lasttime.tv_usec) * 1e-6); else timediff = 1e9; lasttime = thistime; /* calculate constants for the exponental average */ if (timediff < 30.0) { alpha = 0.5 * (timediff / 30.0); beta = 1.0 - alpha; } else alpha = beta = 0.5; /* read all the proc structures in one fell swoop */ { struct proc *tmp = obase; obase = pbase; pbase = tmp; (void)getkval((long)v.ve_proctab, (char *)tmp, sizeof(struct proc)*v.v_proc, "proc array"); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_uid = sel->uid != -1; show_command = sel->command != NULL; /* count up process states and get pointers to interesting procs */ total_procs = active_procs = 0; memset(process_states, 0, sizeof(process_states)); pp1 = pbase; pp2 = obase; a = pref; for (i = 0; i < v.v_proc; i++, pp1++, pp2++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with SSYS set are system * processes---these get ignored unless show_sysprocs is set. */ int state = pp1->p_stat; int flag = pp1->p_flag; if (state != 0 && (show_system || (flag & SSYS) == 0)) { struct user u; /* load user struct -- the utime slot in proc is invalid. stow away the two bits we need in parts of the proc struct that we don't need */ if (lseek(mem, pp1->p_addr, 0) < 0 || read(mem, &u, sizeof(u)) != sizeof(u)) { /* no user struct?? */ pp1->p_utime = pp1->p_stime = 0; strncpy(proc_name(pp1), "<???>", COMMSIZ); /* calculate relevant metrics */ percent_cpu(pp1) = 0.0; if (pp1->p_pid == pp2->p_pid) weighted_cpu(pp1) = percent_cpu(pp2) * beta; else weighted_cpu(pp1) = 0.0; } else { /* update the invalid info */ pp1->p_utime = u.u_utime; pp1->p_stime = u.u_stime; /* tag swapped processes with brackets */ u.u_comm[COMMSIZ] = 0; if (pp1->p_flag & SLOAD) strcpy(proc_name(pp1), printable(u.u_comm)); else sprintf(proc_name(pp1), "<%s>", printable(u.u_comm)); /* calculate relevant metrics */ if (pp1->p_pid == pp2->p_pid) { percent_cpu(pp1) = (pp1->p_utime - pp2->p_utime + pp1->p_stime - pp2->p_stime) / (v.v_hz * timediff); weighted_cpu(pp1) = percent_cpu(pp2) * beta + percent_cpu(pp1) * alpha; } else { weighted_cpu(pp1) = percent_cpu(pp1) = (pp1->p_utime + pp1->p_stime) / (v.v_hz * timediff); } } total_procs++; process_states[state]++; if (state != SZOMB && /* use the same formula for determining active processes as the one used by the A/UX load average computation */ (show_idle || state == SRUN || state == SIDL || state == SONPROC || ((state == SSLEEP || state == SSTOP) && (flag & (SINTR | SSYS)) == 0)) && (!show_uid || pp1->p_uid == (uid_t)sel->uid)) { /* add it to our active list */ *a++ = pp1; active_procs++; } } } /* if requested, sort the "interesting" processes */ if (compare != NULL) qsort((char *)pref, active_procs, sizeof(struct proc *), compare); /* remember active and total counts */ si->p_total = total_procs; si->p_active = active_procs; /* set up to iterate though processes */ nextactive = pref; } char * format_header(uname_field) char *uname_field; { static char header[132]; sprintf(header, " PID PGRP %-8.8s PRI NICE SIZE STATE TIME WCPU CPU COMMAND", uname_field); return header; } char * format_next_process(handle, get_userid) caddr_t handle; char *(*get_userid)(); { static char fmt[128]; /* static area where result is built */ struct proc *pp = *nextactive++; sprintf(fmt, "%5d %5d %-8.8s %3d %4d %5s %-5s %6s %6.2f%% %6.2f%% %.14s", pp->p_pid, pp->p_pgrp, (*get_userid)(pp->p_uid), pp->p_pri - PZERO, pp->p_nice - NZERO, format_k(pagetok(PROCSIZE(pp))), state_abbrev[pp->p_stat], format_time((pp->p_utime + pp->p_stime) / v.v_hz), weighted_cpu(pp) * 100.0, percent_cpu(pp) * 100.0, proc_name(pp)); /* return the result */ return (fmt); } /* * check_nlist(nlst) - checks the nlist to see if any symbols were not * found. For every symbol that was not found, a one-line * message is printed to stderr. The routine returns the * number of symbols NOT found. */ int check_nlist(nlst) register struct nlist *nlst; { register int i; /* check to see if we got ALL the symbols we requested */ /* this will write one line to stderr for every symbol not found */ i = 0; while (nlst->n_name[0]) { if (nlst->n_value == 0) { /* this one wasn't found */ fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name); i = 1; } nlst++; } return (i); } /* * getkval(offset, ptr, size, refstr) - get a value out of the kernel. * "offset" is the byte offset into the kernel for the desired value, * "ptr" points to a buffer into which the value is retrieved, * "size" is the size of the buffer (and the object to retrieve), * "refstr" is a reference string used when printing error meessages, * if "refstr" starts with a '!', then a failure on read will not * be fatal (this may seem like a silly way to do things, but I * really didn't want the overhead of another argument). * */ getkval(offset, ptr, size, refstr) unsigned long offset; int *ptr; int size; char *refstr; { extern int errno; extern char *sys_errlist[]; if (lseek(kmem, offset, 0) < 0 || read(kmem, ptr, size) != size) { if (*refstr == '!') { return (0); } else { fprintf(stderr, "top: getkval for %s: %s\n", refstr, sys_errlist[errno]); quit(23); /*NOTREACHED */ } } return (1); } /* comparison routine for qsort */ /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static unsigned char sorted_state[] = { 0, /* not used */ 3, /* sleep */ 6, /* runable */ 1, /* zombie */ 4, /* stop */ 5, /* start */ 7, /* running */ 2, /* swapping */ }; proc_compare(pp1, pp2) struct proc **pp1, **pp2; { struct proc *p1, *p2; int result; double dresult; /* remove one level of indirection */ p1 = *pp1; p2 = *pp2; /* compare percent cpu */ dresult = percent_cpu(p2) - percent_cpu(p1); if (dresult != 0.0) return (dresult > 0.0 ? 1 : -1); /* compare cpu scheduling ticks */ if ((result = p2->p_cpu - p1->p_cpu) == 0) { /* use resident time to break the tie */ if ((result = p1->p_time - p2->p_time) == 0) { /* use process state to break the tie */ if ((result = (sorted_state[p2->p_stat] - sorted_state[p1->p_stat])) == 0) { /* use priority to break the tie */ if ((result = p2->p_pri - p1->p_pri) == 0) { /* use total memory to break the tie */ result = PROCSIZE(p2) - PROCSIZE(p1); } } } } return (result); } /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(pid) int pid; { struct proc *pp; int i; for (pp = pbase, i = 0; i < v.v_proc; pp++, i++) if (pp->p_stat != 0 && pp->p_pid == pid) return pp->p_uid; return -1; } /* * setpriority(int which, pid_t pid, int val) * This system does not have this system call -- fake it */ int setpriority(which, pid, val) int which, pid, val; { #ifndef IMPLEMENT_SETPRIORITY errno = ENOSYS; return -1; #else int ofs, uid; struct proc *pp; /* sanity check arguments */ val += NZERO; if (val < 0) val = 0; else if (val > 39) val = 39; /* locate the process */ for (ofs = 0, pp = pbase; ofs < v.v_proc; ofs++, pp++) if (pp->p_stat != 0 && pp->p_pid == pid) break; if (ofs == v.v_proc) { errno = ESRCH; return -1; } /* make sure we don't allow nasty people to do nasty things */ uid = getuid(); if (uid != 0) { if (uid != pp->p_uid || val < pp->p_nice) { errno = EACCES; return -1; } } /* renice */ pp->p_nice = val; if (lseek(kmem, v.ve_proctab+((char*)&pp->p_nice-(char*)pbase), 0) < 0 || write(kmem, &pp->p_nice, sizeof(pp->p_nice)) != sizeof(pp->p_nice)) { return -1; } return 0; #endif }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.