This is m_next32.c in view mode; [Download] [Up]
/* * top - a top users display for Unix * NEXTSTEP v.0.5 11/26/1996 tpugh * * SYNOPSIS: any m68k or intel NEXTSTEP v3.x system * * DESCRIPTION: * This is the machine-dependent module for NEXTSTEP v3.x * Reported to work for NEXTSTEP v3.0, v3.2, and v3.3 Mach OS: * NEXTSTEP v3.0 on Motorola machines. * NEXTSTEP v3.2 on Intel and Motorola machines. * NEXTSTEP v3.3 on Intel and Motorola machines. * Problem with command column for: (Choose next33 for fix) * NEXTSTEP v3.2 on HP machines. * NEXTSTEP v3.3 on HP and Sparc machines. * Has not been tested for NEXTSTEP v2.x machines, although it should work. * Has not been tested for NEXTSTEP v3.1 machines, although it should work. * Install "top" with the permissions 4755. * hostname# chmod 4755 top * hostname# ls -lg top * -rwsr-xr-x 1 root kmem 121408 Sep 1 10:14 top* * With the kmem group sticky bit set, we can read kernal memory without problems, * but to communicate with the Mach kernal for task and thread info, it requires * root privileges. Therefore, "top" must be setuid 4755 with the owner as root. * * LIBS: * * Need the compiler flag, "-DSHOW_UTT", to see the user task and thread task * data structures to report process info. * * CFLAGS: -DSHOW_UTT * * * AUTHORS: Tim Pugh <tpugh@oce.orst.edu> */ #include <sys/types.h> #include <sys/signal.h> #include <sys/param.h> #include <stdio.h> #include <nlist.h> #include <math.h> #include <sys/dir.h> #include <sys/user.h> #include <sys/proc.h> #include <sys/dk.h> #include <sys/vm.h> #include <sys/file.h> #include <sys/time.h> #import <mach/mach.h> #include <sys/vmmeter.h> #import <mach/vm_statistics.h> #include "top.h" #include "utils.h" #include "machine.h" #ifdef NEXTSTEP40 #import "machine/m_next40_task.h" #else NEXTSTEP40 #import "machine/m_next_task.h" #endif NEXTSTEP40 /* Problems on NS/HPPA machines. Also, not currently used by source code. *#define DOSWAP */ extern int errno, sys_nerr; extern char *sys_errlist[]; #define strerror(e) (((e) >= 0 && (e) < sys_nerr) ? sys_errlist[(e)] : "Unknown error") #define VMUNIX "/mach" #define KMEM "/dev/kmem" #define MEM "/dev/mem" #ifdef DOSWAP #define SWAP "/dev/drum" #endif /* NeXT BSD process structure does not contain locations to hold info such as * cpu usage, memory usage, resident core memory, or cpu time data. So I've made * a new process structure which composites the NeXT structure and the missing * system info. */ struct proc_unix { struct proc *p_self; /* Each p_self points to a element in pbase. */ int p_pctcpu; /* Scaled percent cpu usage. */ int p_vsize; /* Total VM memory usage. */ int p_rsize; /* Resident core memory usage. */ int p_cptime; /* scaled CPU Time */ int run_state; /* Task run state. */ int flags; /* Task state flags. */ int nthreads; /* Number of threads per Task. */ int cur_priority; /* Current main thread priority */ }; /* Contains the list of processes. */ struct handle { struct proc_unix *list; /* points to list of valid proc pointer */ int count; /* number of pointers */ int current; /* Index of the current process formatting */ }; /* declarations for load_avg */ #include "loadavg.h" #define LSCALE 1000 /* scaling for "fixed point" arithmetic - <sys/kernel.h> */ /* define what weighted cpu is. */ /* *#define weighted_cpu(pct, pp) ((pp)->p_time == 0 ? 0.0 : \ * ((pct) / (1.0 - exp((pp)->p_time * logcpu)))) */ /* The following three variables are not defined in NeXT's process structure. * So they are zeroed until other ways of obtaining the info are found. */ /* what we consider to be process size: */ /* #define PROCSIZE(pp) ((pp)->p_tsize + (pp)->p_dsize + (pp)->p_ssize) */ #define PROCSIZE(pp) (0) /* #define P_RSSIZE(pp) ((pp)->p_rssize) */ #define P_RSSIZE(pp) (0) /* #define P_CPTICKS(pp) ((pp)->p_cpticks) */ #define P_CPTICKS(pp) (0) extern int thread_stats(int p_pid, struct thread_basic_info *info, int *count); extern int mach_load_avg(void); extern kern_return_t task_stats(int p_pid, struct task_basic_info *info); /* definitions for indices in the nlist array */ #define X_AVENRUN 0 #define X_CCPU 1 #define X_NPROC 2 #define X_PROC 3 #define X_TOTAL 4 #define X_CP_TIME 5 #define X_MPID 6 #define X_HZ 7 static struct nlist nlst[] = { { "_avenrun" }, /* 0 */ { "_cpu_clk" }, /* 1 */ { "_max_proc" }, /* 2 */ { "_allproc" }, /* 3 */ { "_total" }, /* 4 */ { "_cp_time" }, /* 5 */ { "_mpid" }, /* 6 */ { "_hz" }, /* 7 */ { 0 } }; /* * These definitions control the format of the per-process area */ static char header[] = " PID X STATE PRI NICE THR VSIZE RSIZE %MEM %CPU TIME COMMAND"; /* static char header[] = * " PID X STATE PRI NICE THR VSIZE RSIZE %MEM %WCPU %CPU TIME COMMAND"; */ /* 0123456 -- field to fill in starts at header+6 */ #define UNAME_START 6 #define Proc_format \ "%5d %-8.8s %-5s %3d %4d %4d %5s %5s %6.2f %6.2f %6s %.14s" /* #define Proc_format \ * "%5d %-8.8s %-5s %3d %4d %4d %5s %5s %6.2f %6.2f %6.2f %6s %.14s" */ /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ char *state_abbrev[] = { "", "sleep", "WAIT", "run\0\0\0", "start", "zomb", "stop" }; char *mach_state[] = { "", "R", "T", "S", "U", "H" }; char *flags_state[] = { "", "W", "I" }; /* these are for detailing the process states */ int process_states[7]; /* char *procstatenames[] = { * "", " sleeping, ", " ABANDONED, ", " running, ", " starting, ", * " zombie, ", " stopped, ", * NULL *}; */ char *procstatenames[] = { "", " running, ", " stopped, ", " sleeping, ", " uninterruptable, ", " halted, ", " zombie ", NULL }; static int kmem, mem; #ifdef DOSWAP static int swap; #endif /* values that we stash away in _init and use in later routines */ /* static double logcpu; */ /* these are retrieved from the kernel in _init */ static unsigned long proc; static int nproc; static long hz; static load_avg ccpu; static int ncpu = 0; /* these are offsets obtained via nlist and used in the get_ functions */ static unsigned long avenrun_offset; static unsigned long mpid_offset; static unsigned long total_offset; static unsigned long cp_time_offset; /* these are for calculating cpu state percentages */ static long cp_time[CPUSTATES]; static long cp_old[CPUSTATES]; static long cp_diff[CPUSTATES]; /* these are for detailing the cpu states */ int cpu_states[4]; char *cpustatenames[] = { "user", "nice", "system", "idle", NULL }; /* these are for detailing the memory statistics */ int memory_stats[7]; /* char *memorynames[] = { * "Real: ", "K/", "K act/tot ", "Virtual: ", "K/", * "K act/tot ", "Free: ", "K", NULL * }; */ char *memorynames[] = { "K Tot, ", "K Act, ", "K Inact, ", "K Wired, ", "K Free, ", "K in, ", "K out ", NULL }; /* these are for keeping track of the proc array */ static int bytes; static int pref_count; static struct proc *pbase; static struct proc_unix *pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) /* useful externals */ extern int errno; extern char *sys_errlist[]; long lseek(); long time(); machine_init(struct statics *statics) { register int i = 0; register int pagesize; if ((kmem = open(KMEM, O_RDONLY)) == -1) { perror(KMEM); return(-1); } if ((mem = open(MEM, O_RDONLY)) == -1) { perror(MEM); return(-1); } #ifdef DOSWAP if ((swap = open(SWAP, O_RDONLY)) == -1) { perror(SWAP); return(-1); } #endif /* get the list of symbols we want to access in the kernel */ (void) nlist(VMUNIX, nlst); if (nlst[0].n_type == 0) { fprintf(stderr, "top: nlist failed\n"); return(-1); } /* make sure they were all found */ if (i > 0 && check_nlist(nlst) > 0) { return(-1); } /* get the symbol values out of kmem */ (void) getkval(nlst[X_PROC].n_value, (int *)(&proc), sizeof(proc), nlst[X_PROC].n_un.n_name); (void) getkval(nlst[X_NPROC].n_value, &nproc, sizeof(nproc), nlst[X_NPROC].n_un.n_name); (void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz), nlst[X_HZ].n_un.n_name); /* (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu), * nlst[X_CCPU].n_un.n_name); */ /* stash away certain offsets for later use */ mpid_offset = nlst[X_MPID].n_value; avenrun_offset = nlst[X_AVENRUN].n_value; total_offset = nlst[X_TOTAL].n_value; cp_time_offset = nlst[X_CP_TIME].n_value; /* this is used in calculating WCPU -- calculate it ahead of time */ /* ccpu = mach_load_avg(); * logcpu = log((double)(ccpu)/LOAD_SCALE); */ /* allocate space for proc structure array and array of pointers */ bytes = nproc * sizeof(struct proc); pbase = (struct proc *)malloc(bytes); pref = (struct proc_unix *)malloc((nproc+1) * sizeof(struct proc_unix *)); /* Just in case ... */ if (pbase == (struct proc *)NULL || pref == (struct proc_unix *)NULL) { fprintf(stderr, "top: can't allocate sufficient memory\n"); return(-1); } /* get the page size with "getpagesize" and calculate pageshift from it */ pagesize = getpagesize(); pageshift = ceil(log(pagesize)/log(2.0)); /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; /* all done! */ return(0); } char *format_header(register char *uname_field) { register char *ptr; ptr = header + UNAME_START; while (*uname_field != '\0') { *ptr++ = *uname_field++; } return(header); } static int swappgsin = -1; static int swappgsout = -1; static vm_statistics_data_t vm_stats; static host_basic_info_data_t host_stats; get_system_info(struct system_info *si) { long avenrun[3]; long total; /* get the cp_time array */ (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), "_cp_time"); /* get load average array */ (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun), "_avenrun"); /* get mpid -- process id of last process */ (void) getkval(mpid_offset, &(si->last_pid), sizeof(si->last_pid), "_mpid"); /* convert load averages to doubles */ { register int i; for(i=0; i<3; i++) si->load_avg[i] = ((double)avenrun[i])/LSCALE; } /* convert cp_time counts to percentages */ total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); /* sum memory statistics */ { /* get total -- systemwide main memory usage structure */ /* Does not work on NeXT system. Use vm_statistics() for paging info. */ /* struct vmtotal total; * (void) getkval(total_offset, (int *)(&total), sizeof(total), * "_total"); */ /* convert memory stats to Kbytes */ /* memory_stats[0] = -1; * memory_stats[1] = pagetok(total.t_arm); * memory_stats[2] = pagetok(total.t_rm); * memory_stats[3] = -1; * memory_stats[4] = pagetok(total.t_avm); * memory_stats[5] = pagetok(total.t_vm); * memory_stats[6] = -1; * memory_stats[7] = pagetok(total.t_free); */ kern_return_t status; unsigned int count=HOST_BASIC_INFO_COUNT; status = vm_statistics(task_self(), &vm_stats); #ifdef DEBUG if(status != KERN_SUCCESS) mach_error("An error calling vm_statistics()!", status); #endif status = host_info(host_self(), HOST_BASIC_INFO, (host_info_t)&host_stats, &count); #ifdef DEBUG if(status != KERN_SUCCESS) mach_error("An error calling host_info()!", status); #endif /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(host_stats.memory_size / vm_stats.pagesize); memory_stats[1] = pagetok(vm_stats.active_count); memory_stats[2] = pagetok(vm_stats.inactive_count); memory_stats[3] = pagetok(vm_stats.wire_count); memory_stats[4] = pagetok(vm_stats.free_count); if (swappgsin < 0) { memory_stats[5] = 1; memory_stats[6] = 1; } else { memory_stats[5] = pagetok(((vm_stats.pageins - swappgsin))); memory_stats[6] = pagetok(((vm_stats.pageouts - swappgsout))); } swappgsin = vm_stats.pageins; swappgsout = vm_stats.pageouts; } /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; } static struct handle handle; caddr_t get_process_info(struct system_info *si, struct process_select *sel, int (*compare)()) { int i, j; int total_procs; int active_procs; struct proc *pp; struct task_basic_info taskInfo; struct thread_basic_info threadInfo; kern_return_t thread_status; kern_return_t task_status; int threadCount; /* these are copied out of sel for speed */ int show_idle; int show_system; int show_uid; int show_command; /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_uid = sel->uid != -1; show_command = sel->command != NULL; (void) getkval(nlst[X_PROC].n_value, (int *)(&proc), sizeof(proc), nlst[X_PROC].n_un.n_name); /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *)process_states, 0, sizeof(process_states)); i = 0; j = 0; do { if(i == 0) { /* read first proc structure */ (void) getkval(proc, (int *)&pbase[i], sizeof(struct proc), "first proc"); } else { (void) getkval(pp->p_nxt, (int *)&pbase[i], sizeof(struct proc), "nxt proc"); } pp = &pbase[i]; thread_status = thread_stats(pp->p_pid, &threadInfo, &threadCount); task_status = task_stats(pp->p_pid, &taskInfo); /* * Process slots that are actually in use have a non-zero * status field. Processes with SSYS set are system * processes---these get ignored unless show_sysprocs is set. */ if (pp->p_stat != 0 && (show_system || ((pp->p_flag & SSYS) == 0))) { total_procs++; /* Using thread info for process states. */ /* process_states[pp->p_stat]++; */ if(thread_status==KERN_SUCCESS) process_states[threadInfo.run_state]++; if ((pp->p_stat != SZOMB) && (show_idle || (pp->p_stat == SRUN)) && (!show_uid || pp->p_uid == (uid_t)sel->uid)) { pref[j].p_self = pp; if(thread_status==KERN_SUCCESS) { pref[j].run_state = threadInfo.run_state; pref[j].flags = threadInfo.flags; pref[j].p_pctcpu = threadInfo.cpu_usage; pref[j].p_cptime = threadInfo.user_time.seconds + threadInfo.system_time.seconds; pref[j].cur_priority = threadInfo.cur_priority; pref[j].nthreads = threadCount; } else { pref[j].run_state = 0; pref[j].flags = 0; pref[j].p_pctcpu = 0; pref[j].p_cptime = 0; } /* Get processes memory usage and cputime */ if(task_status==KERN_SUCCESS) { pref[j].p_rsize = taskInfo.resident_size/1024; pref[j].p_vsize = taskInfo.virtual_size/1024; } else { pref[j].p_rsize = 0; pref[j].p_vsize = 0; } active_procs++; j++; } } i++; } while(pp->p_nxt != 0); pref[j].p_self = NULL; /* End list of processes with NULL */ /* if requested, sort the "interesting" processes */ if (compare != NULL) { qsort((char *)pref, active_procs, sizeof(struct proc_unix), compare); } /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_count = active_procs; /* pass back a handle */ handle.list = pref; handle.count = active_procs; handle.current = 0; return((caddr_t)&handle); } char fmt[MAX_COLS]; /* static area where result is built */ char *format_next_process(caddr_t handle, char *(*get_userid)()) { register struct proc *pp; register long cputime; register double pct, wcpu, pctmem; int where; struct user u; struct handle *hp; register int p_pctcpu; register int rm_size; register int vm_size; register int run_state; register int flags; register int nthreads; register int cur_priority; char state_str[10]; /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = hp->list[hp->current].p_self; p_pctcpu = hp->list[hp->current].p_pctcpu; cputime = hp->list[hp->current].p_cptime; rm_size = hp->list[hp->current].p_rsize; vm_size = hp->list[hp->current].p_vsize; run_state = hp->list[hp->current].run_state; flags = hp->list[hp->current].flags; nthreads = hp->list[hp->current].nthreads; cur_priority = hp->list[hp->current].cur_priority; hp->current++; hp->count--; /* get the process's user struct and set cputime */ where = getu(pp, &u); if (where == -1) { (void) strcpy(u.u_comm, "<swapped>"); cputime = 0; } else { /* set u_comm for system processes */ if (u.u_comm[0] == '\0') { if (pp->p_pid == 0) { (void) strcpy(u.u_comm, "Swapper"); } else if (pp->p_pid == 2) { (void) strcpy(u.u_comm, "Pager"); } } if (where == 1) { /* * Print swapped processes as <pname> */ char buf[sizeof(u.u_comm)]; (void) strncpy(buf, u.u_comm, sizeof(u.u_comm)); u.u_comm[0] = '<'; (void) strncpy(&u.u_comm[1], buf, sizeof(u.u_comm) - 2); u.u_comm[sizeof(u.u_comm) - 2] = '\0'; (void) strncat(u.u_comm, ">", sizeof(u.u_comm) - 1); u.u_comm[sizeof(u.u_comm) - 1] = '\0'; } /* User structure does not work. Use Thread Info to get cputime for process. */ /* cputime = u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec; */ } /* calculate the base for cpu percentages */ pct = (double)(p_pctcpu)/TH_USAGE_SCALE; /* wcpu = weighted_cpu(pct, pp); */ pctmem = (double)(rm_size*1024.) / (double)(host_stats.memory_size); /* Get process state description */ if(run_state) { strcpy(state_str, mach_state[run_state]); strcat(state_str, flags_state[flags]); } else { strcpy(state_str, state_abbrev[pp->p_stat]); } /* format this entry */ sprintf(fmt, Proc_format, pp->p_pid, (*get_userid)(pp->p_uid), state_str, cur_priority, /* pp->p_pri - PZERO, */ pp->p_nice - NZERO, nthreads, format_k(vm_size), format_k(rm_size), 100.0 * pctmem, /* 100.0 * wcpu, */ 100.0 * pct, format_time(cputime), printable(u.u_comm)); /* return the result */ return(fmt); } /* * getu(p, u) - get the user structure for the process whose proc structure * is pointed to by p. The user structure is put in the buffer pointed * to by u. Return 0 if successful, -1 on failure (such as the process * being swapped out). */ getu(register struct proc *p, struct user *u) { /* int i; */ /* int uutask[40]; */ register int nbytes, n; struct task task; struct utask utask; struct uthread thread; /* * Check if the process is currently loaded or swapped out. The way we * get the u area is totally different for the two cases. For this * application, we just don't bother if the process is swapped out. */ /* NEXTSTEP proc.h * One structure allocated per active * process. It contains all data needed * about the process while the * process may be swapped out. * Other per process data (user.h) * is swapped with the process. */ if ((p->p_flag & SLOAD) == 0) { /* User info is always in core. * #ifdef DOSWAP * if (lseek(swap, (long)dtob(p->p_swaddr), 0) == -1) { * perror("lseek(swap)"); * return(-1); * } * if (read(swap, (char *) u, sizeof(struct user)) != sizeof(struct user)) { * perror("read(swap)"); * return(-1); * } * return (1); * #else */ return(-1); /*#endif */ } /* * Process is currently in memory, we hope! */ /* getkval(p->task, (int *)&uutask, 40*sizeof(int), "task"); for(i=0; i<40; i++) printf("task[%i]=%i\n", i, uutask[i]); getkval(task.u_address, (int *)&uutask, 40*sizeof(int), "task.u_address"); for(i=0; i<40; i++) printf("utask[%i]=%i, %s\n", i, uutask[i], &uutask[i]); */ if(!getkval(p->task, (int *)&task, sizeof(struct task), "task")) { #ifdef DEBUG perror("getkval(p->task)"); #endif /* we can't seem to get to it, so pretend it's swapped out */ return(-1); } if(!getkval(task.u_address, (int *)&utask, sizeof(struct utask), "task.u_address")) { #ifdef DEBUG perror("getkval(task->utask)"); #endif /* we can't seem to get to it, so pretend it's swapped out */ return(-1); } /* Copy utask and uthread info into struct user *u */ /* This is incomplete. Only copied info needed. */ u->u_procp = utask.uu_procp; u->u_ar0 = utask.uu_ar0; u->u_ru = utask.uu_ru; strcpy(u->u_comm, utask.uu_comm); nbytes = strlen(u->u_comm); for(n=nbytes; n<MAXCOMLEN; n++) u->u_comm[n] = ' '; u->u_comm[MAXCOMLEN] = '\0'; return(0); } /* * check_nlist(nlst) - checks the nlist to see if any symbols were not * found. For every symbol that was not found, a one-line * message is printed to stderr. The routine returns the * number of symbols NOT found. */ int check_nlist(register struct nlist *nlst) { register int i; /* check to see if we got ALL the symbols we requested */ /* this will write one line to stderr for every symbol not found */ i = 0; while (nlst->n_un.n_name != NULL) { if (nlst->n_type == 0 && nlst->n_value == 0) { /* this one wasn't found */ fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_un.n_name); i = 1; } nlst++; } return(i); } /* * getkval(offset, ptr, size, refstr) - get a value out of the kernel. * "offset" is the byte offset into the kernel for the desired value, * "ptr" points to a buffer into which the value is retrieved, * "size" is the size of the buffer (and the object to retrieve), * "refstr" is a reference string used when printing error meessages, * if "refstr" starts with a '!', then a failure on read will not * be fatal (this may seem like a silly way to do things, but I * really didn't want the overhead of another argument). * */ getkval(unsigned long offset, int *ptr, int size, char *refstr) { if (lseek(kmem, (long)offset, L_SET) == -1) { if (*refstr == '!') refstr++; (void) fprintf(stderr, "%s: lseek to %s: %s\n", KMEM, refstr, strerror(errno)); quit(23); } if (read(kmem, (char *) ptr, size) == -1) { if (*refstr == '!') return(0); else { (void) fprintf(stderr, "%s: reading %s: %s\n", KMEM, refstr, strerror(errno)); quit(23); } } return(1); } /* comparison routine for qsort */ /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static unsigned char sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; proc_compare(struct proc_unix *pp1, struct proc_unix *pp2) { register struct proc *p1 = pp1->p_self; register struct proc *p2 = pp2->p_self; register int result; register pctcpu lresult; /* compare percent cpu (pctcpu) */ if ((lresult = pp2->p_pctcpu - pp1->p_pctcpu) == 0) { /* use cpticks to break the tie */ if ((result = P_CPTICKS(p2) - P_CPTICKS(p1)) == 0) { /* use process state to break the tie */ if ((result = sorted_state[p2->p_stat] - sorted_state[p1->p_stat]) == 0) { /* use priority to break the tie */ if ((result = p2->p_pri - p1->p_pri) == 0) { /* use resident set size (rssize) to break the tie */ if ((result = pp2->p_rsize - pp1->p_rsize) == 0) { /* use total memory to break the tie */ result = pp2->p_vsize - pp1->p_vsize; } } } } } else { result = lresult < 0 ? -1 : 1; } return(result); } /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(int pid) { register int cnt; register struct proc *pp; cnt = pref_count; while (--cnt >= 0) { pp = pref[cnt].p_self; if( pp->p_pid == pid ) /* Modified (pid_t)pid to pid, compiler error. */ { return((int)pp->p_uid); } } return(-1); } int thread_stats(int pid, struct thread_basic_info *info, int *thread_count) { int i; kern_return_t status; kern_return_t status_dealloc; task_t p_task; thread_array_t thread_list, list; struct thread_basic_info threadInfo; unsigned int info_count = THREAD_BASIC_INFO_COUNT; /* Get the task pointer for the process. */ status = task_by_unix_pid( task_self(), pid, &p_task); if (status!=KERN_SUCCESS) { #ifdef DEBUG printf("pid = %i\n", pid); mach_error("Error calling task_by_unix_pid()", status); #endif return status; } /* Get the list of threads for the task. */ status = task_threads(p_task, &thread_list, thread_count); if (status!=KERN_SUCCESS) { #ifdef DEBUG mach_error("Error calling task_threads()", status); #endif return status; } /* Get the pctcpu value for each thread and sum the values */ info->user_time.seconds = 0; info->user_time.microseconds = 0; info->system_time.seconds = 0; info->system_time.microseconds = 0; info->cpu_usage = 0; info->sleep_time = 0; for(i=0; i<*thread_count; i++) { status = thread_info(thread_list[i], THREAD_BASIC_INFO, (thread_info_t)&threadInfo, &info_count); if (status!=KERN_SUCCESS) { #ifdef DEBUG mach_error("Error calling thread_info()", status); #endif break; } else { if(i==0) { info->base_priority = threadInfo.base_priority; info->cur_priority = threadInfo.cur_priority; info->run_state = threadInfo.run_state; info->flags = threadInfo.flags; info->suspend_count = threadInfo.suspend_count; info->sleep_time += threadInfo.sleep_time; } info->user_time.seconds += threadInfo.user_time.seconds; info->user_time.microseconds += threadInfo.user_time.microseconds; info->system_time.seconds += threadInfo.system_time.seconds; info->system_time.microseconds += threadInfo.system_time.microseconds; info->cpu_usage += threadInfo.cpu_usage; } } /* Deallocate the list of threads. */ status_dealloc = vm_deallocate(task_self(), (vm_address_t)thread_list, sizeof(thread_list)*(*thread_count)); if (status_dealloc != KERN_SUCCESS) { #ifdef DEBUG mach_error("Trouble freeing thread_list", status_dealloc); #endif status = status_dealloc; } return status; } int mach_load_avg(void) { kern_return_t status; host_t host; unsigned int info_count; struct processor_set_basic_info info; processor_set_t default_set; status=processor_set_default(host_self(), &default_set); if (status!=KERN_SUCCESS){ mach_error("Error calling processor_set_default", status); exit(1); } info_count=PROCESSOR_SET_BASIC_INFO_COUNT; status=processor_set_info(default_set, PROCESSOR_SET_BASIC_INFO, &host, (processor_set_info_t)&info, &info_count); #ifdef DEBUG if (status != KERN_SUCCESS) mach_error("Error calling processor_set_info", status); #endif return info.load_average; } kern_return_t task_stats(int pid, struct task_basic_info *info) { kern_return_t status; task_t p_task; unsigned int info_count=TASK_BASIC_INFO_COUNT; /* Get the task pointer for the process. */ status = task_by_unix_pid( task_self(), pid, &p_task); if (status!=KERN_SUCCESS) { #ifdef DEBUG printf("pid = %i\n", pid); mach_error("Error calling task_by_unix_pid()", status); #endif return(status); } status=task_info(p_task, TASK_BASIC_INFO, (task_info_t)info, &info_count); if (status!=KERN_SUCCESS) { #ifdef DEBUG mach_error("Error calling task_info()", status); #endif return(status); } return(KERN_SUCCESS); }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.