This is m_dynix32.c in view mode; [Download] [Up]
/*
* top - a top users display for Unix
*
* SYNOPSIS: any Sequent Running Dynix 3.2.x
*
* DESCRIPTION:
* This is the machine-dependent module for Sequent Dynix 3.2.0
* This makes top work on the following systems:
* Dynix 3.2.0 and perhaps later versions
*
* CFLAGS: -DBSD
*
* AUTHOR: Daniel Trinkle <trinkle@cs.purdue.edu>
*/
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/param.h>
#include <stdio.h>
#include <nlist.h>
#include <math.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/dk.h>
#include <sys/vm.h>
#include <machine/pte.h>
#include <machine/plocal.h>
#include <machine/engine.h>
#include <sys/file.h>
#include "top.h"
#include "machine.h"
#include "utils.h"
#ifndef uid_t
/* some early versions of DYNIX don't have uid_t */
#define uid_t int
#endif
#ifndef pid_t
/* ditto pid_t */
#define pid_t short
#endif
struct engine *engine;
struct engine *pengine;
struct plocal **pplocal;
int Nengine;
/* get_process_info passes back a handle. This is what it looks like: */
struct handle
{
struct proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* declarations for load_avg */
typedef long load_avg;
typedef long pctcpu;
#define loaddouble(la) ((double)(la) / FSCALE)
#define intload(i) ((int)((i) * FSCALE))
#define pctdouble(p) ((double)(p) / FSCALE)
/* define what weighted cpu is. */
#define weighted_cpu(pct, pp) ((pp)->p_time == 0 ? 0.0 : \
((pct) / (1.0 - exp((pp)->p_time * logcpu))))
/* what we consider to be process size: */
#define PROCSIZE(pp) ((pp)->p_dsize + (pp)->p_ssize)
/* definitions for indices in the nlist array */
#define X_AVENRUN 0
#define X_CCPU 1
#define X_MPID 2
#define X_NPROC 3
#define X_PROC 4
#define X_TOTAL 5
#define X_ENGINE 6
#define X_NENGINE 7
static struct nlist nlst[] = {
{ "_avenrun" }, /* 0 */
{ "_ccpu" }, /* 1 */
{ "_mpid" }, /* 2 */
{ "_nproc" }, /* 3 */
{ "_proc" }, /* 4 */
{ "_total" }, /* 5 */
{ "_engine" }, /* 6 */
{ "_Nengine" }, /* 7 */
{ 0 }
};
/*
* These definitions control the format of the per-process area
*/
static char header[] =
" PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
/* 0123456 -- field to fill in starts at header+6 */
#define UNAME_START 6
#define Proc_format \
"%5d %-8.8s %3d %4d %5s %5s %-5s %6s %5.2f%% %5.2f%% %.14s"
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
char *state_abbrev[] =
{
"", "sleep", "WAIT", "run", "start", "zomb", "stop", "RUN"
};
/* values that we stash away in _init and use in later routines */
static double logcpu;
#define VMUNIX "/dynix"
#define KMEM "/dev/kmem"
#define MEM "/dev/mem"
static int kmem = -1;
static int mem = -1;
struct vmtotal total;
/* these are retrieved from the kernel in _init */
static unsigned long proc;
static int nproc;
static load_avg ccpu;
/* these are offsets obtained via nlist and used in the get_ functions */
static unsigned long mpid_offset;
static unsigned long avenrun_offset;
static unsigned long total_offset;
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
/* these are for detailing the process states */
int process_states[8];
char *procstatenames[] = {
"", " sleeping, ", " ABANDONED, ", " runable, ", " starting, ",
" zombie, ", " stopped, ", " running, ",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[CPUSTATES];
char *cpustatenames[] = {
"user", "nice", "system", "idle",
NULL
};
/* these are for detailing the memory statistics */
int memory_stats[5];
char *memorynames[] = {
"K (", "K) real, ", "K (", "K) virtual, ", "K free", NULL
};
/* these are for keeping track of the proc array */
static int bytes;
static int pref_len;
static struct proc *pbase;
static struct proc **pref;
#define pagetok(size) ((size) << (PGSHIFT - LOG1024))
/* useful externals */
extern int errno;
extern char *sys_errlist[];
long lseek();
machine_init(statics)
struct statics *statics;
{
register int i;
/* open kernel memory */
if ((kmem = open(KMEM, 0)) < 0)
{
perror(KMEM);
exit(20);
}
if ((mem = open(MEM, 0)) < 0)
{
perror(MEM);
exit(21);
}
/* get the list of symbols we want to access in the kernel */
if ((i = nlist(VMUNIX, nlst)) < 0)
{
fprintf(stderr, "top: nlist failed\n");
return(-1);
}
/* make sure they were all found */
if (i > 0 && check_nlist(nlst) > 0)
{
return(-1);
}
/* get the symbol values out of kmem */
(void) getkval(nlst[X_PROC].n_value, (int *)(&proc), sizeof(proc),
nlst[X_PROC].n_name);
(void) getkval(nlst[X_NPROC].n_value, &nproc, sizeof(nproc),
nlst[X_NPROC].n_name);
(void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu),
nlst[X_CCPU].n_name);
(void) getkval(nlst[X_NENGINE].n_value, &Nengine, sizeof(int),
nlst[X_NENGINE].n_name);
(void) getkval(nlst[X_ENGINE].n_value, &pengine, sizeof(struct engine *),
nlst[X_ENGINE].n_name);
engine = (struct engine *)calloc(Nengine, sizeof(struct engine));
if (engine == NULL)
{
fprintf(stderr, "Cannot allocate memory for engine structure\n");
exit(2);
}
(void) getkval(pengine, &engine[0], Nengine * sizeof(struct engine),
"engine array");
pplocal = (struct plocal **)calloc(Nengine, sizeof(struct plocal *));
if (pplocal == NULL)
{
fprintf(stderr, "Cannot allocate memory for plocal structures\n");
exit(2);
}
for (i = 0; i < Nengine; i++) {
pplocal[i] = (struct plocal *)&engine[i].e_local->pp_local[0][0];
}
/* stash away certain offsets for later use */
mpid_offset = nlst[X_MPID].n_value;
avenrun_offset = nlst[X_AVENRUN].n_value;
total_offset = nlst[X_TOTAL].n_value;
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
/* allocate space for proc structure array and array of pointers */
bytes = nproc * sizeof(struct proc);
pbase = (struct proc *)malloc(bytes);
pref = (struct proc **)malloc(nproc * sizeof(struct proc *));
/* Just in case ... */
if (pbase == (struct proc *)NULL || pref == (struct proc **)NULL)
{
fprintf(stderr, "top: can't allocate sufficient memory\n");
return(-1);
}
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
/* all done! */
return(0);
}
char *format_header(uname_field)
register char *uname_field;
{
register char *ptr;
ptr = header + UNAME_START;
while (*uname_field != '\0')
{
*ptr++ = *uname_field++;
}
return(header);
}
get_system_info(si)
struct system_info *si;
{
load_avg avenrun[3];
struct plocal plocal;
register int i, j;
/* get the cp_time array */
for (j = 0; j < CPUSTATES; j++)
cp_time[j] = 0L;
for (i = 0; i < Nengine; i++) {
(void) getkval(pplocal[i], &plocal, sizeof(struct plocal), "plocal array");
for (j = 0; j < CPUSTATES; j++)
cp_time[j] += (long)plocal.cnt.v_time[j];
}
/* get load average array */
(void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
"_avenrun");
/* get mpid -- process id of last process */
(void) getkval(mpid_offset, &(si->last_pid), sizeof(si->last_pid),
"_mpid");
/* convert load averages to doubles */
{
register int i;
register double *infoloadp;
register load_avg *sysloadp;
infoloadp = si->load_avg;
sysloadp = avenrun;
for (i = 0; i < 3; i++)
{
*infoloadp++ = loaddouble(*sysloadp++);
}
}
/* convert cp_time counts to percentages */
(void) percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
/* get total -- systemwide main memory usage structure */
(void) getkval(total_offset, (int *)(&total), sizeof(total),
"_total");
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(total.t_rm);
memory_stats[1] = pagetok(total.t_arm);
memory_stats[2] = pagetok(total.t_vm);
memory_stats[3] = pagetok(total.t_avm);
memory_stats[4] = pagetok(total.t_free);
/* set arrays and strings */
si->cpustates = cpu_states;
si->memory = memory_stats;
}
static struct handle handle;
caddr_t get_process_info(si, sel, compare)
struct system_info *si;
struct process_select *sel;
int (*compare)();
{
register int i;
register int total_procs;
register int active_procs;
register struct proc **prefp;
register struct proc *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
/* read all the proc structures in one fell swoop */
(void) getkval(proc, (int *)pbase, bytes, "proc array");
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
bzero((char *)process_states, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++)
{
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with SSYS set are system
* processes---these get ignored unless show_sysprocs is set.
*/
if (pp->p_stat != 0 &&
(show_system || ((pp->p_flag & SSYS) == 0)))
{
total_procs++;
process_states[pp->p_stat]++;
if ((pp->p_stat != SZOMB) &&
(show_idle || (pp->p_pctcpu != 0) || (pp->p_stat == SRUN)) &&
(!show_uid || pp->p_uid == (uid_t)sel->uid))
{
*prefp++ = pp;
active_procs++;
}
}
}
/* if requested, sort the "interesting" processes */
if (compare != NULL)
{
qsort((char *)pref, active_procs, sizeof(struct proc *), compare);
}
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return((caddr_t)&handle);
}
char fmt[MAX_COLS]; /* static area where result is built */
char *format_next_process(handle, get_userid)
caddr_t handle;
char *(*get_userid)();
{
register struct proc *pp;
register long cputime;
register double pct;
struct user u;
struct handle *hp;
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process's user struct and set cputime */
if (getu(pp, &u) == -1)
{
(void) strcpy(u.u_comm, "<swapped>");
cputime = 0;
}
else
{
/* set u_comm for system processes */
if (u.u_comm[0] == '\0')
{
if (pp->p_pid == 0)
{
(void) strcpy(u.u_comm, "Swapper");
}
else if (pp->p_pid == 2)
{
(void) strcpy(u.u_comm, "Pager");
}
}
cputime = u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec;
}
/* calculate the base for cpu percentages */
pct = pctdouble(pp->p_pctcpu);
/* format this entry */
sprintf(fmt,
Proc_format,
pp->p_pid,
(*get_userid)(pp->p_uid),
pp->p_pri - PZERO,
pp->p_nice - NZERO,
format_k(pagetok(PROCSIZE(pp))),
format_k(pagetok(pp->p_rssize)),
state_abbrev[pp->p_stat],
format_time(cputime),
100.0 * weighted_cpu(pct, pp),
100.0 * pct,
printable(u.u_comm));
/* return the result */
return(fmt);
}
/*
* getu(p, u) - get the user structure for the process whose proc structure
* is pointed to by p. The user structure is put in the buffer pointed
* to by u. Return 0 if successful, -1 on failure (such as the process
* being swapped out).
*/
getu(p, u)
register struct proc *p;
struct user *u;
{
struct pte uptes[UPAGES];
register caddr_t upage;
register struct pte *pte;
register nbytes, n;
/*
* Check if the process is currently loaded or swapped out. The way we
* get the u area is totally different for the two cases. For this
* application, we just don't bother if the process is swapped out.
*/
if ((p->p_flag & SLOAD) == 0)
{
return(-1);
}
/*
* Process is currently in memory, we hope!
*/
#ifdef ns32000
if (!getkval(p->p_upte, uptes, sizeof(uptes), "!p->p_upte"))
#else
if (!getkval(p->p_pttop, uptes, sizeof(uptes), "!p->p_upte"))
#endif
{
/* we can't seem to get to it, so pretend it's swapped out */
return(-1);
}
upage = (caddr_t)u;
pte = uptes;
for (nbytes = sizeof(struct user); nbytes > 0; nbytes -= NBPG)
{
(void) lseek(mem, (long)(pte++->pg_pfnum * NBPG), 0);
n = MIN(nbytes, NBPG);
if (read(mem, upage, n) != n)
{
/* we can't seem to get to it, so pretend it's swapped out */
return(-1);
}
upage += n;
}
return(0);
}
/*
* check_nlist(nlst) - checks the nlist to see if any symbols were not
* found. For every symbol that was not found, a one-line
* message is printed to stderr. The routine returns the
* number of symbols NOT found.
*/
int check_nlist(nlst)
register struct nlist *nlst;
{
register int i;
/* check to see if we got ALL the symbols we requested */
/* this will write one line to stderr for every symbol not found */
i = 0;
while (nlst->n_name != NULL)
{
if (nlst->n_type == 0)
{
/* this one wasn't found */
fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name);
i = 1;
}
nlst++;
}
return(i);
}
/*
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve),
* "refstr" is a reference string used when printing error meessages,
* if "refstr" starts with a '!', then a failure on read will not
* be fatal (this may seem like a silly way to do things, but I
* really didn't want the overhead of another argument).
*
*/
getkval(offset, ptr, size, refstr)
unsigned long offset;
int *ptr;
int size;
char *refstr;
{
if (lseek(kmem, (long)offset, 0) == -1)
{
if (*refstr == '!')
{
refstr++;
}
fprintf(stderr, "%s: lseek to %s: %s\n",
KMEM, refstr, sys_errlist[errno]);
quit(22);
}
if (read(kmem, (char *)ptr, size) == -1)
{
if (*refstr == '!')
{
/* we lost the race with the kernel, process isn't in memory */
return(0);
}
else
{
fprintf(stderr, "%s: reading %s: %s\n",
KMEM, refstr, sys_errlist[errno]);
quit(23);
}
}
return(1);
}
/* comparison routine for qsort */
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, start, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
*/
static unsigned char sorted_state[] =
{
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4, /* stop */
7 /* RUN */
};
proc_compare(pp1, pp2)
struct proc **pp1;
struct proc **pp2;
{
register struct proc *p1;
register struct proc *p2;
register int result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
/* compare percent cpu (pctcpu) */
if ((lresult = p2->p_pctcpu - p1->p_pctcpu) == 0)
{
/* use cpticks to break the tie */
if ((result = p2->p_cpticks - p1->p_cpticks) == 0)
{
/* use process state to break the tie */
if ((result = sorted_state[p2->p_stat] -
sorted_state[p1->p_stat]) == 0)
{
/* use priority to break the tie */
if ((result = p2->p_pri - p1->p_pri) == 0)
{
/* use resident set size (rssize) to break the tie */
if ((result = p2->p_rssize - p1->p_rssize) == 0)
{
/* use total memory to break the tie */
result = PROCSIZE(p2) - PROCSIZE(p1);
}
}
}
}
}
else
{
result = lresult < 0 ? -1 : 1;
}
return(result);
}
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int proc_owner(pid)
int pid;
{
register int cnt;
register struct proc **prefp;
register struct proc *pp;
prefp = pref;
cnt = pref_len;
while (--cnt >= 0)
{
if ((pp = *prefp++)->p_pid == (pid_t)pid)
{
return((int)pp->p_uid);
}
}
return(-1);
}
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.