This is m_utek.c in view mode; [Download] [Up]
/* * top - a top users display for Unix * * SYNOPSIS: Tektronics 43xx running UTek 4.1 * * DESCRIPTION: * This is the machine-dependent module for UTek 4.1 * This makes top work on the following systems: * Tek4319 running UTek 4.1 * Tek4325 running UTek 4.1 * Tek4337 running UTek 4.1 * * AUTHOR: Daniel Trinkle <trinkle@cs.purdue.edu> */ #include <sys/types.h> #include <sys/param.h> #include <stdio.h> #include <nlist.h> #include <math.h> #include <sys/dir.h> #include <sys/user.h> /* ** I don't know if this is always correct or not, but it was necessary to ** get the correct proc structure size on the Tek 4319 running UTek 4.1. */ #define TEKVM #include <sys/proc.h> #undef TEKVM #include <sys/dk.h> #include <sys/vm.h> #include <sys/file.h> #include <machine/pte.h> #include "top.h" #include "machine.h" #include "utils.h" #define uid_t int #define FSCALE 100 /* declarations for load_avg */ #include "loadavg.h" /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* what we consider to be process size: */ #define PROCSIZE(pp) ((pp)->p_tsize + (pp)->p_dsize + (pp)->p_ssize) /* definitions for indices in the nlist array */ #define X_AVENRUN 0 #define X_MPID 1 #define X_NPROC 2 #define X_PROC 3 #define X_TOTAL 4 #define X_CP_TIME 5 static struct nlist nlst[] = { { "_avenrun" }, /* 0 */ { "_mpid" }, /* 1 */ { "_nproc" }, /* 2 */ { "_proc" }, /* 3 */ { "_total" }, /* 4 */ { "_cp_time" }, /* 5 */ { 0 } }; /* * These definitions control the format of the per-process area */ static char header[] = " PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; /* 0123456 -- field to fill in starts at header+6 */ #define UNAME_START 6 #define Proc_format \ "%5d %-8.8s %3d %4d %5s %5s %-5s %6s %5.2f%% %5.2f%% %.16s" /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ char *state_abbrev[] = { "", "sleep", "WAIT", "run", "start", "zomb", "stop" }; /* values that we stash away in _init and use in later routines */ static double logcpu; #define VMUNIX "/vmunix" #define KMEM "/dev/kmem" #define MEM "/dev/mem" static int kmem = -1; static int mem = -1; struct vmtotal total; /* these are retrieved from the kernel in _init */ static unsigned long proc; static int nproc; /* these are offsets obtained via nlist and used in the get_ functions */ static unsigned long mpid_offset; static unsigned long avenrun_offset; static unsigned long total_offset; static unsigned long cp_time_offset; /* these are for calculating cpu state percentages */ static long cp_time[CPUSTATES]; static long cp_old[CPUSTATES]; static long cp_diff[CPUSTATES]; /* these are for detailing the process states */ int process_states[7]; char *procstatenames[] = { "", " sleeping, ", " ABANDONED, ", " running, ", " starting, ", " zombie, ", " stopped, ", NULL }; /* these are for detailing the cpu states */ int cpu_states[CPUSTATES]; char *cpustatenames[] = { "user", "nice", "system", "idle", NULL }; /* these are for detailing the memory statistics */ int memory_stats[5]; char *memorynames[] = { "K (", "K) real, ", "K (", "K) virtual, ", "K free", NULL }; /* these are for keeping track of the proc array */ static int bytes; static int pref_len; static struct proc *pbase; static struct proc **pref; #define pagetok(size) ((size) << (PGSHIFT - LOG1024)) /* useful externals */ extern int errno; extern char *sys_errlist[]; long lseek(); machine_init(statics) struct statics *statics; { register int i; /* open kernel memory */ if ((kmem = open(KMEM, 0)) < 0) { perror(KMEM); exit(20); } if ((mem = open(MEM, 0)) < 0) { perror(MEM); exit(21); } /* get the list of symbols we want to access in the kernel */ if ((i = nlist(VMUNIX, nlst)) < 0) { fprintf(stderr, "top: nlist failed\n"); return(-1); } /* make sure they were all found */ if (i > 0 && check_nlist(nlst) > 0) { return(-1); } /* get the symbol values out of kmem */ (void) getkval(nlst[X_PROC].n_value, (int *)(&proc), sizeof(proc), nlst[X_PROC].n_name); (void) getkval(nlst[X_NPROC].n_value, &nproc, sizeof(nproc), nlst[X_NPROC].n_name); /* stash away certain offsets for later use */ mpid_offset = nlst[X_MPID].n_value; avenrun_offset = nlst[X_AVENRUN].n_value; total_offset = nlst[X_TOTAL].n_value; cp_time_offset = nlst[X_CP_TIME].n_value; /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(0.95); /* allocate space for proc structure array and array of pointers */ bytes = nproc * sizeof(struct proc); pbase = (struct proc *)malloc(bytes); pref = (struct proc **)malloc(nproc * sizeof(struct proc *)); /* Just in case ... */ if (pbase == (struct proc *)NULL || pref == (struct proc **)NULL) { fprintf(stderr, "top: can't allocate sufficient memory\n"); return(-1); } /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; /* all done! */ return(0); } char *format_header(uname_field) register char *uname_field; { register char *ptr; ptr = header + UNAME_START; while (*uname_field != '\0') { *ptr++ = *uname_field++; } return(header); } get_system_info(si) struct system_info *si; { load_avg avenrun[3]; /* get the cp_time array */ (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), "_cp_time"); /* get load average array */ (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun), "_avenrun"); /* get mpid -- process id of last process */ (void) getkval(mpid_offset, &(si->last_pid), sizeof(si->last_pid), "_mpid"); /* convert load averages to doubles */ { register int i; register double *infoloadp; register load_avg *sysloadp; infoloadp = si->load_avg; sysloadp = avenrun; for (i = 0; i < 3; i++) { *infoloadp++ = loaddouble(*sysloadp++); } } /* convert cp_time counts to percentages */ (void) percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); /* get total -- systemwide main memory usage structure */ (void) getkval(total_offset, (int *)(&total), sizeof(total), "_total"); /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(total.t_rm); memory_stats[1] = pagetok(total.t_arm); memory_stats[2] = pagetok(total.t_vm); memory_stats[3] = pagetok(total.t_avm); memory_stats[4] = pagetok(total.t_free); /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; } static struct handle handle; caddr_t get_process_info(si, sel, compare) struct system_info *si; struct process_select *sel; int (*compare)(); { register int i; register int total_procs; register int active_procs; register struct proc **prefp; register struct proc *pp; /* these are copied out of sel for speed */ int show_idle; int show_system; int show_uid; /* read all the proc structures in one fell swoop */ (void) getkval(proc, (int *)pbase, bytes, "proc array"); /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_uid = sel->uid != -1; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; bzero((char *)process_states, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with SSYS set are system * processes---these get ignored unless show_sysprocs is set. */ if (pp->p_stat != 0 && pp->p_pid != 0 && (show_system || ((pp->p_flag & SSYS) == 0))) { total_procs++; process_states[pp->p_stat]++; if ((pp->p_stat != SZOMB) && (show_idle || (pp->p_pctcpu != 0) || (pp->p_stat == SRUN)) && (!show_uid || pp->p_uid == (uid_t)sel->uid)) { *prefp++ = pp; active_procs++; } } } /* if requested, sort the "interesting" processes */ if (compare != NULL) { qsort((char *)pref, active_procs, sizeof(struct proc *), compare); } /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return((caddr_t)&handle); } char fmt[MAX_COLS] = ""; /* static area where result is built */ /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) ((pp)->p_time == 0 ? 0.0 : \ ((pct) / (1.0 - exp((pp)->p_time * logcpu)))) char *format_next_process(handle, get_userid) caddr_t handle; char *(*get_userid)(); { register struct proc *pp; register long cputime; register double pct; struct user u; struct handle *hp; /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's user struct and set cputime */ if (getu(pp, &u) == -1) { (void) strcpy(u.u_comm, "<swapped>"); cputime = 0; } else { /* set u_comm for system processes */ if (u.u_comm[0] == '\0') { if (pp->p_pid == 0) { (void) strcpy(u.u_comm, "Swapper"); } else if (pp->p_pid == 2) { (void) strcpy(u.u_comm, "Pager"); } } cputime = u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec; } /* calculate the base for cpu percentages */ pct = pctdouble(pp->p_pctcpu); /* format this entry */ sprintf(fmt, Proc_format, pp->p_pid, (*get_userid)(pp->p_uid), pp->p_pri - PZERO, pp->p_nice - NZERO, format_k(pagetok(PROCSIZE(pp))), format_k(pagetok(pp->p_rssize)), state_abbrev[pp->p_stat], format_time(cputime), 100.0 * weighted_cpu(pct, pp), 100.0 * pct, printable(u.u_comm)); /* return the result */ return(fmt); } /* * getu(p, u) - get the user structure for the process whose proc structure * is pointed to by p. The user structure is put in the buffer pointed * to by u. Return 0 if successful, -1 on failure (such as the process * being swapped out). */ getu(p, u) register struct proc *p; struct user *u; { struct pte uptes[UPAGES]; register caddr_t upage; register struct pte *pte; register nbytes, n; /* * Check if the process is currently loaded or swapped out. The way we * get the u area is totally different for the two cases. For this * application, we just don't bother if the process is swapped out. */ if ((p->p_flag & SLOAD) == 0) { return(-1); } /* * Process is currently in memory, we hope! */ if (!getkval((unsigned long)p->p_addr, (int *)uptes, sizeof(uptes), "!p->p_addr")) { /* we can't seem to get to it, so pretend it's swapped out */ return(-1); } upage = (caddr_t)u; pte = uptes; for (nbytes = sizeof(struct user); nbytes > 0; nbytes -= NBPG) { (void) lseek(mem, (long)(pte++->pg_pfnum * NBPG), 0); n = MIN(nbytes, NBPG); if (read(mem, upage, n) != n) { /* we can't seem to get to it, so pretend it's swapped out */ return(-1); } upage += n; } return(0); } /* * check_nlist(nlst) - checks the nlist to see if any symbols were not * found. For every symbol that was not found, a one-line * message is printed to stderr. The routine returns the * number of symbols NOT found. */ int check_nlist(nlst) register struct nlist *nlst; { register int i; /* check to see if we got ALL the symbols we requested */ /* this will write one line to stderr for every symbol not found */ i = 0; while (nlst->n_name != NULL) { if (nlst->n_type == 0) { /* this one wasn't found */ fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name); i = 1; } nlst++; } return(i); } /* * getkval(offset, ptr, size, refstr) - get a value out of the kernel. * "offset" is the byte offset into the kernel for the desired value, * "ptr" points to a buffer into which the value is retrieved, * "size" is the size of the buffer (and the object to retrieve), * "refstr" is a reference string used when printing error meessages, * if "refstr" starts with a '!', then a failure on read will not * be fatal (this may seem like a silly way to do things, but I * really didn't want the overhead of another argument). * */ getkval(offset, ptr, size, refstr) unsigned long offset; int *ptr; int size; char *refstr; { if (lseek(kmem, (long)offset, 0) == -1) { if (*refstr == '!') { refstr++; } fprintf(stderr, "%s: lseek to %s: %s\n", KMEM, refstr, sys_errlist[errno]); quit(22); } if (read(kmem, (char *)ptr, size) == -1) { if (*refstr == '!') { /* we lost the race with the kernel, process isn't in memory */ return(0); } else { fprintf(stderr, "%s: reading %s: %s\n", KMEM, refstr, sys_errlist[errno]); quit(23); } } return(1); } /* comparison routine for qsort */ /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static unsigned char sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; proc_compare(pp1, pp2) struct proc **pp1; struct proc **pp2; { register struct proc *p1; register struct proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *pp1; p2 = *pp2; /* compare percent cpu (pctcpu) */ if ((lresult = p2->p_pctcpu - p1->p_pctcpu) == 0) { /* use cpticks to break the tie */ if ((result = p2->p_cpticks - p1->p_cpticks) == 0) { /* use process state to break the tie */ if ((result = sorted_state[p2->p_stat] - sorted_state[p1->p_stat]) == 0) { /* use priority to break the tie */ if ((result = p2->p_pri - p1->p_pri) == 0) { /* use resident set size (rssize) to break the tie */ if ((result = p2->p_rssize - p1->p_rssize) == 0) { /* use total memory to break the tie */ result = PROCSIZE(p2) - PROCSIZE(p1); } } } } } else { result = lresult < 0 ? -1 : 1; } return(result); } /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(pid) int pid; { register int cnt; register struct proc **prefp; register struct proc *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { if ((pp = *prefp++)->p_pid == pid) { return((int)pp->p_uid); } } return(-1); }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.