This is m_sunos4mp.c in view mode; [Download] [Up]
/*
* top - a top users display for Unix
*
* SYNOPSIS: any multi-processor Sun running SunOS versions 4.1.2 or 4.1.3
*
* DESCRIPTION:
* This is the machine-dependent module for SunOS 4.x with multi-processor
* support. This module always compiles code for multiprocessors and
* assumes that it is being compiled on a multiprocessor architecture
* such as sun4m). This makes top work on the following systems:
* SunOS 4.1.2 (MP architectures only)
* SunOS 4.1.3 (MP architectures only)
* Solbourne running os/mp 4.1b or later only
*
* LIBS: -lkvm
*
* CFLAGS: -DHAVE_GETOPT
*
* AUTHOR: William LeFebvre <phil@eecs.nwu.edu>
* Solbourne support by David MacKenzie <djm@eng.umd.edu>
*/
/*
* #ifdef MULTIPROCESSOR means Sun MP or newer Solbourne
*/
#include <sys/types.h>
#include <sys/signal.h>
/*
* When including files, we need to have MULTIPROCESSOR on so that a version
* compiled on a non-MP system will work on an MP system. We must take
* great care, then in pur interpretation of certain preprocessor constants,
* such as NCPU, XPSTATES, XP_*.
*/
#ifndef MULTIPROCESSOR
#define MULTIPROCESSOR
#endif
/* make sure param.h gets loaded with KERNEL defined to get PZERO & NZERO */
#define KERNEL
#include <sys/param.h>
#undef KERNEL
#include <stdio.h>
#include <kvm.h>
#include <nlist.h>
#include <math.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/dk.h>
#include <sys/vm.h>
#include <sys/file.h>
#include <sys/time.h>
#include <vm/page.h>
#include "top.h"
#include "machine.h"
/* declarations for load_avg */
#include "loadavg.h"
/* get_process_info passes back a handle. This is what it looks like: */
struct handle
{
struct proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* define what weighted cpu is. */
#define weighted_cpu(pct, pp) ((pp)->p_time == 0 ? 0.0 : \
((pct) / (1.0 - exp((pp)->p_time * logcpu))))
/* what we consider to be process size: */
#define PROCSIZE(pp) ((pp)->p_tsize + (pp)->p_dsize + (pp)->p_ssize)
/* definitions for indices in the nlist array */
#define X_AVENRUN 0
#define X_CCPU 1
#define X_MPID 2
#define X_NPROC 3
#define X_PROC 4
#define X_TOTAL 5
#define X_CP_TIME 6
#define X_PAGES 7
#define X_EPAGES 8
static struct nlist nlst[] = {
#ifdef i386
{ "avenrun" }, /* 0 */
{ "ccpu" }, /* 1 */
{ "mpid" }, /* 2 */
{ "nproc" }, /* 3 */
{ "proc" }, /* 4 */
{ "total" }, /* 5 */
{ "cp_time" }, /* 6 */
{ "pages" }, /* 7 */
{ "epages" }, /* 8 */
#else
{ "_avenrun" }, /* 0 */
{ "_ccpu" }, /* 1 */
{ "_mpid" }, /* 2 */
{ "_nproc" }, /* 3 */
{ "_proc" }, /* 4 */
{ "_total" }, /* 5 */
{ "_cp_time" }, /* 6 */
{ "_pages" }, /* 7 */
{ "_epages" }, /* 8 */
#define NLST_REQUIRED 9
{ "_ncpu" },
#define X_NCPU 9
{ "_xp_time" },
#define X_XP_TIME 10
#endif
{ 0 }
};
/*
* These definitions control the format of the per-process area
*/
static char header[] =
" PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
/* 0123456 -- field to fill in starts at header+6 */
#define UNAME_START 6
#define Proc_format \
"%5d %-8.8s %3d %4d %5s %5s %-5s %6s %5.2f%% %5.2f%% %s"
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
char *state_abbrev[] =
{
"", "sleep", "WAIT", "run\0\0\0", "start", "zomb", "stop"
};
/* values that we stash away in _init and use in later routines */
static double logcpu;
kvm_t *kd;
/* these are retrieved from the kernel in _init */
static unsigned long proc;
static int nproc;
static load_avg ccpu;
static unsigned long pages;
static unsigned long epages;
static int ncpu = 0;
#define IS_MP (ncpu > 1)
/* these are offsets obtained via nlist and used in the get_ functions */
static unsigned long mpid_offset;
static unsigned long avenrun_offset;
static unsigned long total_offset;
static unsigned long cp_time_offset;
static unsigned long xp_time_offset;
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
static long xp_time[NCPU][XPSTATES];
/* for now we only accumulate spin time, but extending this to pick up
other stuff in xp_time is trivial. */
static long xp_old[NCPU];
/* these are for detailing the process states */
int process_states[7];
char *procstatenames[] = {
"", " sleeping, ", " ABANDONED, ", " running, ", " starting, ",
" zombie, ", " stopped, ",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[5];
char *cpustatenames[] = {
"user", "nice", "system", "idle",
NULL, /* set to "spin" on MP machines */
NULL
};
#define XCP_SPIN 4
/* these are for detailing the memory statistics */
int memory_stats[4];
char *memorynames[] = {
"K available, ", "K in use, ", "K free, ", "K locked", NULL
};
/* these are for keeping track of the proc array */
static int bytes;
static int pref_len;
static struct proc *pbase;
static struct proc **pref;
/* these are for getting the memory statistics */
static struct page *physpage;
static int bytesize;
static int count;
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/* useful externals */
extern int errno;
extern char *sys_errlist[];
long lseek();
long time();
long percentages();
machine_init(statics)
struct statics *statics;
{
register int i;
register int pagesize;
/* initialize the kernel interface */
if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "top")) == NULL)
{
perror("kvm_open");
return(-1);
}
/* get the list of symbols we want to access in the kernel */
if ((i = kvm_nlist(kd, nlst)) < 0)
{
fprintf(stderr, "top: nlist failed\n");
return(-1);
}
/* were ncpu and xp_time not found in the nlist? */
if (i > 0 && nlst[X_NCPU].n_type == 0 && nlst[X_XP_TIME].n_type == 0)
{
/* we are only running with one cpu */
/* so we will pretend this didn't happen and set ncpu = 1 */
i -= 2;
ncpu = 1;
}
/* make sure they were all found */
if (i > 0 && check_nlist(nlst) > 0)
{
return(-1);
}
/* get the symbol values out of kmem */
(void) getkval(nlst[X_PROC].n_value, (int *)(&proc), sizeof(proc),
nlst[X_PROC].n_name);
(void) getkval(nlst[X_NPROC].n_value, &nproc, sizeof(nproc),
nlst[X_NPROC].n_name);
(void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu),
nlst[X_CCPU].n_name);
(void) getkval(nlst[X_PAGES].n_value, (int *)(&pages), sizeof(pages),
nlst[X_PAGES].n_name);
(void) getkval(nlst[X_EPAGES].n_value, (int *)(&epages), sizeof(epages),
nlst[X_EPAGES].n_name);
if (ncpu == 0)
{
/* we have not yet determined the number of processors, so
do that now */
/* assert: nlst[X_NCPU].n_type != 0 => nlst[X_NCPU].n_value != 0 */
(void) getkval(nlst[X_NCPU].n_value, (int *)(&ncpu), sizeof(ncpu),
nlst[X_NCPU].n_name);
}
/* stash away certain offsets for later use */
mpid_offset = nlst[X_MPID].n_value;
avenrun_offset = nlst[X_AVENRUN].n_value;
total_offset = nlst[X_TOTAL].n_value;
cp_time_offset = nlst[X_CP_TIME].n_value;
xp_time_offset = nlst[X_XP_TIME].n_value;
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
/* allocate space for proc structure array and array of pointers */
bytes = nproc * sizeof(struct proc);
pbase = (struct proc *)malloc(bytes);
pref = (struct proc **)malloc(nproc * sizeof(struct proc *));
/* Just in case ... */
if (pbase == (struct proc *)NULL || pref == (struct proc **)NULL)
{
fprintf(stderr, "top: can't allocate sufficient memory\n");
return(-1);
}
/* allocate a table to hold all the page structs */
bytesize = epages - pages;
count = bytesize / sizeof(struct page);
physpage = (struct page *)malloc(epages - pages);
if (physpage == NULL)
{
fprintf(stderr, "top: can't allocate sufficient memory\n");
return(-1);
}
/* get the page size with "getpagesize" and calculate pageshift from it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1)
{
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* add a slash to the "run" state abbreviation */
if (IS_MP)
{
state_abbrev[SRUN][3] = '/';
cpustatenames[XCP_SPIN] = "spin";
}
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
/* all done! */
return(0);
}
char *format_header(uname_field)
register char *uname_field;
{
register char *ptr;
ptr = header + UNAME_START;
while (*uname_field != '\0')
{
*ptr++ = *uname_field++;
}
return(header);
}
get_system_info(si)
struct system_info *si;
{
load_avg avenrun[3];
long total;
long half_total;
/* get the cp_time array */
(void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
"_cp_time");
if (IS_MP)
{
/* get the xp_time array as well */
(void) getkval(xp_time_offset, (int *)xp_time, sizeof(xp_time),
"_xp_time");
}
/* get load average array */
(void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
"_avenrun");
/* get mpid -- process id of last process */
(void) getkval(mpid_offset, &(si->last_pid), sizeof(si->last_pid),
"_mpid");
/* get the array of physpage descriptors */
(void) getkval(pages, (int *)physpage, bytesize, "array _page");
/* convert load averages to doubles */
{
register int i;
register double *infoloadp;
register load_avg *sysloadp;
infoloadp = si->load_avg;
sysloadp = avenrun;
for (i = 0; i < 3; i++)
{
*infoloadp++ = loaddouble(*sysloadp++);
}
}
/* convert cp_time counts to percentages */
total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
/* calculate spin time from all processors */
if (IS_MP)
{
register int c;
register int i;
register long sum;
register long change;
/* collect differences for each processor and add them */
sum = 0;
for (i = 0; i < ncpu; i++)
{
c = xp_time[i][XP_SPIN];
change = c - xp_old[i];
if (change < 0)
{
/* counter wrapped */
change = (long)((unsigned long)c -
(unsigned long)xp_old[i]);
}
sum += change;
xp_old[i] = c;
}
/*
* NOTE: I am assuming that the ticks found in xp_time are
* already included in the ticks accumulated in cp_time. To
* get an accurate reflection, therefore, we have to subtract
* the spin time from the system time and recompute those two
* percentages.
*/
half_total = total / 2l;
cp_diff[CP_SYS] -= sum;
cpu_states[CP_SYS] = (int)((cp_diff[CP_SYS] * 1000 + half_total) /
total);
cpu_states[XCP_SPIN] = (int)((sum * 1000 + half_total) / total);
}
/* sum memory statistics */
{
register struct page *pp;
register int cnt;
register int inuse;
register int free;
register int locked;
/* bop thru the array counting page types */
pp = physpage;
inuse = free = locked = 0;
for (cnt = count; --cnt >= 0; pp++)
{
if (pp->p_free)
free++;
else if (pp->p_lock || pp->p_keepcnt > 0)
locked++;
else
inuse++;
}
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(inuse + free);
memory_stats[1] = pagetok(inuse);
memory_stats[2] = pagetok(free);
memory_stats[3] = pagetok(locked);
}
/* set arrays and strings */
si->cpustates = cpu_states;
si->memory = memory_stats;
}
static struct handle handle;
caddr_t get_process_info(si, sel, compare)
struct system_info *si;
struct process_select *sel;
int (*compare)();
{
register int i;
register int total_procs;
register int active_procs;
register struct proc **prefp;
register struct proc *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
int show_command;
/* read all the proc structures in one fell swoop */
(void) getkval(proc, (int *)pbase, bytes, "proc array");
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
show_command = sel->command != NULL;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
bzero((char *)process_states, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++)
{
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with SSYS set are system
* processes---these get ignored unless show_sysprocs is set.
*/
if (pp->p_stat != 0 &&
(show_system || ((pp->p_flag & SSYS) == 0)))
{
total_procs++;
process_states[pp->p_stat]++;
if ((pp->p_stat != SZOMB) &&
(show_idle || (pp->p_pctcpu != 0) || (pp->p_stat == SRUN)) &&
(!show_uid || pp->p_uid == (uid_t)sel->uid))
{
*prefp++ = pp;
active_procs++;
}
}
}
/* if requested, sort the "interesting" processes */
if (compare != NULL)
{
qsort((char *)pref, active_procs, sizeof(struct proc *), compare);
}
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return((caddr_t)&handle);
}
char fmt[MAX_COLS]; /* static area where result is built */
char *format_next_process(handle, get_userid)
caddr_t handle;
char *(*get_userid)();
{
register struct proc *pp;
register long cputime;
register double pct;
struct user u;
struct handle *hp;
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process's user struct and set cputime */
if (getu(pp, &u) == -1)
{
(void) strcpy(u.u_comm, "<swapped>");
cputime = 0;
}
else
{
/* set u_comm for system processes */
if (u.u_comm[0] == '\0')
{
if (pp->p_pid == 0)
{
(void) strcpy(u.u_comm, "Swapper");
}
else if (pp->p_pid == 2)
{
(void) strcpy(u.u_comm, "Pager");
}
}
cputime = u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec;
}
/* calculate the base for cpu percentages */
pct = pctdouble(pp->p_pctcpu);
/*
* If there is more than one cpu then add the processor number to
* the "run/" string. Note that this will only show up if the
* process is in the run state. Also note: when they
* start making Suns with more than 9 processors this will break
* since the string will then be more than 5 characters.
*/
if (IS_MP)
{
state_abbrev[SRUN][4] = (pp->p_cpuid & 0xf) + '0';
}
/* format this entry */
sprintf(fmt,
Proc_format,
pp->p_pid,
(*get_userid)(pp->p_uid),
pp->p_pri - PZERO,
pp->p_nice - NZERO,
format_k(pagetok(PROCSIZE(pp))),
format_k(pagetok(pp->p_rssize)),
state_abbrev[pp->p_stat],
format_time(cputime),
100.0 * weighted_cpu(pct, pp),
100.0 * pct,
printable(u.u_comm));
/* return the result */
return(fmt);
}
/*
* getu(p, u) - get the user structure for the process whose proc structure
* is pointed to by p. The user structure is put in the buffer pointed
* to by u. Return 0 if successful, -1 on failure (such as the process
* being swapped out).
*/
getu(p, u)
register struct proc *p;
struct user *u;
{
register struct user *lu;
lu = kvm_getu(kd, p);
if (lu == NULL)
{
return(-1);
}
else
{
*u = *lu;
return(0);
}
}
/*
* check_nlist(nlst) - checks the nlist to see if any symbols were not
* found. For every symbol that was not found, a one-line
* message is printed to stderr. The routine returns the
* number of symbols NOT found.
*/
int check_nlist(nlst)
register struct nlist *nlst;
{
register int i;
/* check to see if we got ALL the symbols we requested */
/* this will write one line to stderr for every symbol not found */
i = 0;
while (nlst->n_name != NULL)
{
#ifdef i386
if (nlst->n_value == 0)
#else
if (nlst->n_type == 0)
#endif
{
/* this one wasn't found */
fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name);
i = 1;
}
nlst++;
}
return(i);
}
/*
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve),
* "refstr" is a reference string used when printing error meessages,
* if "refstr" starts with a '!', then a failure on read will not
* be fatal (this may seem like a silly way to do things, but I
* really didn't want the overhead of another argument).
*
*/
getkval(offset, ptr, size, refstr)
unsigned long offset;
int *ptr;
int size;
char *refstr;
{
if (kvm_read(kd, offset, ptr, size) != size)
{
if (*refstr == '!')
{
return(0);
}
else
{
fprintf(stderr, "top: kvm_read for %s: %s\n",
refstr, sys_errlist[errno]);
quit(23);
/*NOTREACHED*/
}
}
return(1);
}
/* comparison routine for qsort */
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, start, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
*/
static unsigned char sorted_state[] =
{
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4 /* stop */
};
proc_compare(pp1, pp2)
struct proc **pp1;
struct proc **pp2;
{
register struct proc *p1;
register struct proc *p2;
register int result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
/* compare percent cpu (pctcpu) */
if ((lresult = p2->p_pctcpu - p1->p_pctcpu) == 0)
{
/* use cpticks to break the tie */
if ((result = p2->p_cpticks - p1->p_cpticks) == 0)
{
/* use process state to break the tie */
if ((result = sorted_state[p2->p_stat] -
sorted_state[p1->p_stat]) == 0)
{
/* use priority to break the tie */
if ((result = p2->p_pri - p1->p_pri) == 0)
{
/* use resident set size (rssize) to break the tie */
if ((result = p2->p_rssize - p1->p_rssize) == 0)
{
/* use total memory to break the tie */
result = PROCSIZE(p2) - PROCSIZE(p1);
}
}
}
}
}
else
{
result = lresult < 0 ? -1 : 1;
}
return(result);
}
int proc_owner(pid)
int pid;
{
register int ac;
register struct proc **prefp;
register struct proc *pp;
prefp = pref;
ac = pref_len;
while (--ac >= 0)
{
if ((pp = *prefp++)->p_pid == (pid_t)pid)
{
return((int)pp->p_uid);
}
}
return(-1);
}
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.