This is m_netbsd08.c in view mode; [Download] [Up]
/* * top - a top users display for Unix * * SYNOPSIS: For a NetBSD system * * DESCRIPTION: * This is the machine-dependent module for NetBSD * READ THE NOTE AT THE END OF "INSTALL" BEFORE COMPILING. * Tested only with a: * i386 * * LIBS: -lkvm * * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> * [originally from m_386bsd.c] */ #include <sys/types.h> #include <sys/signal.h> #include <sys/param.h> #include <stdio.h> #include <nlist.h> #include <math.h> #include <kvm.h> #include <sys/errno.h> #include <sys/kinfo.h> #include <sys/kinfo_proc.h> #ifdef notyet #define time __time #define hz __hz #include <sys/kernel.h> #undef time #undef hz #endif #include <sys/dir.h> #include <sys/dkstat.h> #include <sys/file.h> #include <sys/time.h> #include <sys/vmmeter.h> #include <sys/resource.h> /* #define PATCHED_KVM /* READ THE FOLLOWING NOTE: */ /* define this ONLY if your version of 386bsd has patchkit 2.4 installed. */ /* #define TOTAL_WORKING */ /* Uncomment when the total structure in */ /* the kernel actually works */ #define DOSWAP #define GETLOADAVG #include "top.h" #include "machine.h" #include "utils.h" #define VMUNIX "/netbsd" #define KMEM "/dev/kmem" #define MEM "/dev/mem" #ifdef DOSWAP #define SWAP "/dev/drum" #endif typedef struct _kinfo { struct proc ki_p; /* proc structure */ struct eproc ki_e; /* extra stuff */ } KINFO; /* get_process_info passes back a handle. This is what it looks like: */ struct handle { KINFO **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* declarations for load_avg */ #include "loadavg.h" #define PP(pp, field) ((pp)->ki_p . field) #define EP(pp, field) ((pp)->ki_e . field) #define VP(pp, field) ((pp)->ki_e.e_vm . field) /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) (PP((pp), p_time) == 0 ? 0.0 : \ ((pct) / (1.0 - exp(PP((pp), p_time) * logcpu)))) /* what we consider to be process size: */ #define PROCSIZE(pp) (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize)) /* definitions for indices in the nlist array */ #define X_CCPU 0 #define X_CP_TIME 1 #define X_HZ 2 #define X_TOTAL 3 #if !defined(KINFO_LOADAVG) && !defined(GETLOADAVG) # define X_AVENRUN 4 # define XX_LAST 4 #else # define XX_LAST 3 #endif #ifndef TOTAL_WORKING # define X_PG_FREE (XX_LAST + 1) # define X_PG_ACTIVE (XX_LAST + 2) # define X_PG_INACTIVE (XX_LAST + 3) # define X_PG_WIRED (XX_LAST + 4) #endif static struct nlist nlst[] = { { "_ccpu" }, /* 0 */ { "_cp_time" }, /* 1 */ { "_hz" }, /* 2 */ { "_total"}, /* 3 */ #if !defined(KINFO_LOADAVG) && !defined(GETLOADAVG) { "_averunnable" }, #endif #ifndef TOTAL_WORKING { "_vm_page_free_count" }, { "_vm_page_active_count" }, { "_vm_page_inactive_count" }, { "_vm_page_wire_count" }, #endif { 0 } }; /* * These definitions control the format of the per-process area */ static char header[] = " PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; /* 0123456 -- field to fill in starts at header+6 */ #define UNAME_START 6 #define Proc_format \ "%5d %-8.8s %3d %4d %5s %5s %-5s %6s %5.2f%% %5.2f%% %.14s" /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ char *state_abbrev[] = { "", "sleep", "WAIT", "run\0\0\0", "start", "zomb", "stop" }; /* values that we stash away in _init and use in later routines */ static double logcpu; /* these are retrieved from the kernel in _init */ static long hz; static load_avg ccpu; static int ncpu = 0; /* these are offsets obtained via nlist and used in the get_ functions */ static unsigned long cp_time_offset; #if !defined(KINFO_LOADAVG) && !defined(GETLOADAVG) static unsigned long avenrun_offset; #endif /* these are for calculating cpu state percentages */ static long cp_time[CPUSTATES]; static long cp_old[CPUSTATES]; static long cp_diff[CPUSTATES]; /* these are for detailing the process states */ int process_states[7]; char *procstatenames[] = { "", " sleeping, ", " ABANDONED, ", " running, ", " starting, ", " zombie, ", " stopped, ", NULL }; /* these are for detailing the cpu states */ int cpu_states[4]; char *cpustatenames[] = { "user", "nice", "system", "idle", NULL }; /* these are for detailing the memory statistics */ int memory_stats[8]; char *memorynames[] = { #ifdef TOTAL_WORKING "Real: ", "K/", "K ", "Virt: ", "K/", "K ", "Free: ", "K", NULL #else " Free: ", "K ", " Active: ", "K ", " Inactive: ", "K ", " Wired: ", "K ", NULL #endif }; /* these are for keeping track of the proc array */ static int bytes; static int nproc; static int onproc = -1; static int pref_len; static KINFO *pbase; static KINFO **pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) machine_init(statics) struct statics *statics; { register int i = 0; register int pagesize; char buf[1024]; #if 0 /* some funny stuff going on here */ if (kvm_openfiles(NULL, NULL, NULL) == -1); return -1; #else kvm_openfiles(VMUNIX, NULL, NULL); #endif /* get the list of symbols we want to access in the kernel */ (void) kvm_nlist(nlst); if (nlst[0].n_type == 0) { fprintf(stderr, "top: nlist failed\n"); return(-1); } /* make sure they were all found */ if (i > 0 && check_nlist(nlst) > 0) { return(-1); } /* get the symbol values out of kmem */ (void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz), nlst[X_HZ].n_name); (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu), nlst[X_CCPU].n_name); /* stash away certain offsets for later use */ cp_time_offset = nlst[X_CP_TIME].n_value; #ifndef KINFO_LOADAVG avenrun_offset = nlst[X_AVENRUN].n_value; #endif /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; nproc = 0; onproc = -1; /* get the page size with "getpagesize" and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; /* all done! */ return(0); } char *format_header(uname_field) register char *uname_field; { register char *ptr; ptr = header + UNAME_START; while (*uname_field != '\0') { *ptr++ = *uname_field++; } return(header); } get_system_info(si) struct system_info *si; { long total; #if !defined(KINFO_LOADAVG) && !defined(GETLOADAVG) load_avg avenrun[3]; #endif /* get the cp_time array */ (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), "_cp_time"); #ifndef GETLOADAVG # ifndef KINFO_LOADAVG (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun), "_avenrun"); # endif /* convert load averages to doubles */ { register int i; register double *infoloadp; # ifdef KINFO_LOADAVG struct loadavg sysload; int size; getkerninfo(KINFO_LOADAVG, &sysload, &size, 0); # else load_avg *avenrunp; avenrunp = avenrun; # endif infoloadp = si->load_avg; for (i = 0; i < 3; i++) { # ifdef KINFO_LOADAVG *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; # else *infoloadp++ = loaddouble(*avenrunp++); # endif } } #else getloadavg(si->load_avg, 3); #endif /* convert cp_time counts to percentages */ total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); /* sum memory statistics */ { #ifdef TOTAL_WORKING static struct vmtotal total; int size; /* get total -- systemwide main memory usage structure */ #ifdef KINFO_METER getkerninfo(KINFO_METER, &total, &size, 0); #else (void) getkval(nlst[X_TOTAL].n_value, (int *)(&total), sizeof(total), nlst[X_TOTAL].n_name); #endif /* convert memory stats to Kbytes */ memory_stats[0] = -1; memory_stats[1] = pagetok(total.t_arm); memory_stats[2] = pagetok(total.t_rm); memory_stats[3] = -1; memory_stats[4] = pagetok(total.t_avm); memory_stats[5] = pagetok(total.t_vm); memory_stats[6] = -1; memory_stats[7] = pagetok(total.t_free); #else static int free, active, inactive, wired; (void) getkval(nlst[X_PG_FREE].n_value, (int *)(&free), sizeof(free), nlst[X_PG_FREE].n_name); (void) getkval(nlst[X_PG_ACTIVE].n_value, (int *)(&active), sizeof(active), nlst[X_PG_ACTIVE].n_name); (void) getkval(nlst[X_PG_INACTIVE].n_value, (int *)(&inactive), sizeof(inactive), nlst[X_PG_INACTIVE].n_name); (void) getkval(nlst[X_PG_WIRED].n_value, (int *)(&wired), sizeof(wired), nlst[X_PG_WIRED].n_name); memory_stats[0] = -1; memory_stats[1] = pagetok(free); memory_stats[2] = -1; memory_stats[3] = pagetok(active); memory_stats[4] = -1; memory_stats[5] = pagetok(inactive); memory_stats[6] = -1; memory_stats[7] = pagetok(wired); #endif } /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; si->last_pid = -1; } static struct handle handle; caddr_t get_process_info(si, sel, compare) struct system_info *si; struct process_select *sel; int (*compare)(); { register int i; register int total_procs; register int active_procs; register KINFO **prefp; KINFO *pp; struct proc *pr; struct eproc *epr; /* these are copied out of sel for speed */ int show_idle; int show_system; int show_uid; int show_command; nproc = kvm_getprocs(KINFO_PROC_ALL, 0); if (nproc > onproc) { pref = (KINFO **) realloc(pref, sizeof(KINFO *) * nproc); pbase = (KINFO *) realloc(pbase, sizeof(KINFO) * (nproc + 2)); onproc = nproc; } if (pref == NULL || pbase == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_uid = sel->uid != -1; show_command = sel->command != NULL; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *)process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; pr = kvm_nextproc(); pp++, i++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with SSYS set are system * processes---these get ignored unless show_sysprocs is set. */ epr = kvm_geteproc(pr); pp->ki_p = *pr; pp->ki_e = *epr; if (PP(pp, p_stat) != 0 && (show_system || ((PP(pp, p_flag) & SSYS) == 0))) { total_procs++; process_states[PP(pp, p_stat)]++; if ((PP(pp, p_stat) != SZOMB) && (show_idle || (PP(pp, p_pctcpu) != 0) || (PP(pp, p_stat) == SRUN)) && (!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid)) { *prefp++ = pp; active_procs++; } } } /* if requested, sort the "interesting" processes */ if (compare != NULL) { qsort((char *)pref, active_procs, sizeof(KINFO *), compare); } /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; #ifndef PATCHED_KVM kvm_freeprocs(); #endif return((caddr_t)&handle); } char fmt[MAX_COLS]; /* static area where result is built */ char *format_next_process(handle, get_userid) caddr_t handle; char *(*get_userid)(); { register KINFO *pp; register long cputime; register double pct; int where; struct handle *hp; /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's user struct and set cputime */ cputime = PP(pp, p_utime.tv_sec) + PP(pp, p_stime.tv_sec); /* calculate the base for cpu percentages */ pct = pctdouble(PP(pp, p_pctcpu)); /* format this entry */ sprintf(fmt, Proc_format, PP(pp, p_pid), (*get_userid)(EP(pp, e_pcred.p_ruid)), PP(pp, p_pri) - PZERO, PP(pp, p_nice) - NZERO, format_k(pagetok(PROCSIZE(pp))), #ifdef notyet format_k(pagetok(VP(pp, vm_rssize))), #else format_k(pagetok(pp->ki_e.e_vm.vm_pmap.pm_stats.resident_count)), #endif state_abbrev[PP(pp, p_stat)], format_time(cputime), 100.0 * weighted_cpu(pct, pp), 100.0 * pct, printable(PP(pp, p_comm))); /* return the result */ return(fmt); } /* * check_nlist(nlst) - checks the nlist to see if any symbols were not * found. For every symbol that was not found, a one-line * message is printed to stderr. The routine returns the * number of symbols NOT found. */ int check_nlist(nlst) register struct nlist *nlst; { register int i; /* check to see if we got ALL the symbols we requested */ /* this will write one line to stderr for every symbol not found */ i = 0; while (nlst->n_name != NULL) { if (nlst->n_type == 0) { /* this one wasn't found */ fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name); i = 1; } nlst++; } return(i); } /* * getkval(offset, ptr, size, refstr) - get a value out of the kernel. * "offset" is the byte offset into the kernel for the desired value, * "ptr" points to a buffer into which the value is retrieved, * "size" is the size of the buffer (and the object to retrieve), * "refstr" is a reference string used when printing error meessages, * if "refstr" starts with a '!', then a failure on read will not * be fatal (this may seem like a silly way to do things, but I * really didn't want the overhead of another argument). * */ getkval(offset, ptr, size, refstr) unsigned long offset; int *ptr; int size; char *refstr; { if (kvm_read((void *) offset, (void *) ptr, size) != size) { if (*refstr == '!') { return(0); } else { fprintf(stderr, "top: kvm_read for %s: %s\n", refstr, strerror(errno)); quit(23); } } return(1); } /* comparison routine for qsort */ /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static unsigned char sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; proc_compare(pp1, pp2) KINFO **pp1; KINFO **pp2; { register KINFO *p1; register KINFO *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *pp1; p2 = *pp2; /* compare percent cpu (pctcpu) */ if ((lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu)) == 0) { /* use cpticks to break the tie */ if ((result = PP(p2, p_cpticks) - PP(p1, p_cpticks)) == 0) { /* use process state to break the tie */ if ((result = sorted_state[PP(p2, p_stat)] - sorted_state[PP(p1, p_stat)]) == 0) { /* use priority to break the tie */ if ((result = PP(p2, p_pri) - PP(p1, p_pri)) == 0) { /* use resident set size (rssize) to break the tie */ if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0) { /* use total memory to break the tie */ result = PROCSIZE(p2) - PROCSIZE(p1); } } } } } else { result = lresult < 0 ? -1 : 1; } return(result); } /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(pid) int pid; { register int cnt; register KINFO **prefp; register KINFO *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (PP(pp, p_pid) == (pid_t)pid) { return((int)EP(pp, e_pcred.p_ruid)); } } return(-1); }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.