This is arclzw.c in view mode; [Download] [Up]
/* * $Header: arclzw.c,v 1.6 88/07/31 18:49:49 hyc Exp $ */ /* * ARC - Archive utility - ARCLZW * * Version 2.03, created on 10/24/86 at 11:46:22 * * (C) COPYRIGHT 1985,86 by System Enhancement Associates; ALL RIGHTS RESERVED * * By: Thom Henderson * * Description: This file contains the routines used to implement Lempel-Zev * data compression, which calls for building a coding table on the fly. * This form of compression is especially good for encoding files which * contain repeated strings, and can often give dramatic improvements over * traditional Huffman SQueezing. * * Language: Computer Innovations Optimizing C86 * * Programming notes: In this section I am drawing heavily on the COMPRESS * program from UNIX. The basic method is taken from "A Technique for High * Performance Data Compression", Terry A. Welch, IEEE Computer Vol 17, No 6 * (June 1984), pp 8-19. Also see "Knuth's Fundamental Algorithms", Donald * Knuth, Vol 3, Section 6.4. * * As best as I can tell, this method works by tracing down a hash table of code * strings where each entry has the property: * * if <string> <char> is in the table then <string> is in the table. */ #include <stdio.h> #include "arc.h" void putc_pak(), abort(), putc_ncr(); int getc_unp(); #if MSDOS char *setmem(); #else char *memset(); #endif static void putcode(); /* definitions for older style crunching */ #define FALSE 0 #define TRUE !FALSE #define TABSIZE 4096 #define NO_PRED 0xFFFF #define EMPTY 0xFFFF #define NOT_FND 0xFFFF static unsigned short inbuf; /* partial input code storage */ static int sp; /* current stack pointer */ struct entry { /* string table entry format */ char used; /* true when this entry is in use */ unsigned char follower; /* char following string */ unsigned short next; /* ptr to next in collision list */ unsigned short predecessor; /* code for preceeding string */ }; /* string_tab[TABSIZE]; the code string table */ /* definitions for the new dynamic Lempel-Zev crunching */ #define BITS 12 /* maximum bits per code */ #define HSIZE 5003 /* 80% occupancy */ #define INIT_BITS 9 /* initial number of bits/code */ static int n_bits; /* number of bits/code */ static int maxcode; /* maximum code, given n_bits */ #define MAXCODE(n) ((1<<(n)) - 1) /* maximum code calculation */ static int maxcodemax = 1 << BITS; /* largest possible code (+1) */ static char buf[BITS]; /* input/output buffer */ static unsigned char lmask[9] = /* left side masks */ { 0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00 }; static unsigned char rmask[9] = /* right side masks */ { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff }; static int offset; /* byte offset for code output */ static long in_count; /* length of input */ static long bytes_out; /* length of compressed output */ static long bytes_ref; /* output quality reference */ static long bytes_last; /* output size at last checkpoint */ static unsigned short ent; /* * To save much memory (which we badly need at this point), we overlay the * table used by the previous version of Lempel-Zev with those used by the * new version. Since no two of these routines will be used together, we can * safely do this. */ extern long htab[HSIZE]; /* hash code table (crunch) */ extern unsigned short codetab[HSIZE]; /* string code table (crunch) */ static struct entry *string_tab=(struct entry *)htab; /* old crunch string table */ static unsigned short *prefix=codetab; /* prefix code table (uncrunch) */ static unsigned char *suffix=(unsigned char *)htab; /* suffix table (uncrunch) */ static int free_ent; /* first unused entry */ static int firstcmp; /* true at start of compression */ extern unsigned char stack[HSIZE]; /* local push/pop stack */ /* * block compression parameters -- after all codes are used up, and * compression rate changes, start over. */ static int clear_flg; #define CHECK_GAP 2048 /* ratio check interval */ static long checkpoint; void upd_tab(); /* * the next two codes should not be changed lightly, as they must not lie * within the contiguous general code space. */ #define FIRST 257 /* first free entry */ #define CLEAR 256 /* table clear output code */ /* * The cl_block() routine is called at each checkpoint to determine if * compression would likely improve by resetting the code table. The method * chosen to determine this is based on empirical observation that, in * general, every 2k of input data should compress at least as well as the * first 2k of input. */ static void cl_block(t) /* table clear for block compress */ FILE *t; /* our output file */ { checkpoint = in_count + CHECK_GAP; if (bytes_ref) { if (bytes_out - bytes_last > bytes_ref) { setmem(htab, HSIZE * sizeof(long), 0xff); free_ent = FIRST; clear_flg = 1; putcode(CLEAR, t); bytes_ref = 0; } } else bytes_ref = bytes_out - bytes_last; bytes_last = bytes_out; /* remember where we were */ } /***************************************************************** * * Output a given code. * Inputs: * code: A n_bits-bit integer. If == -1, then EOF. This assumes * that n_bits =< (LONG)wordsize - 1. * Outputs: * Outputs code to the file. * Assumptions: * Chars are 8 bits long. * Algorithm: * Maintain a BITS character long buffer (so that 8 codes will * fit in it exactly). When the buffer fills up empty it and start over. */ static void putcode(code, t) /* output a code */ int code; /* code to output */ FILE *t; /* where to put it */ { int r_off = offset; /* right offset */ int bits = n_bits; /* bits to go */ char *bp = buf; /* buffer pointer */ int n; /* index */ register int ztmp; if (code >= 0) { /* if a real code *//* Get to the first byte. */ bp += (r_off >> 3); r_off &= 7; /* * Since code is always >= 8 bits, only need to mask the * first hunk on the left. */ ztmp = (code << r_off) & lmask[r_off]; *bp = (*bp & rmask[r_off]) | ztmp; bp++; bits -= (8 - r_off); code >>= (8 - r_off); /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if (bits >= 8) { *bp++ = code; code >>= 8; bits -= 8; } /* Last bits. */ if (bits) *bp = code; offset += n_bits; if (offset == (n_bits << 3)) { bp = buf; bits = n_bits; bytes_out += bits; do putc_pak(*bp++, t); while (--bits); offset = 0; } /* * If the next entry is going to be too big for the code * size, then increase it, if possible. */ if (free_ent > maxcode || clear_flg > 0) { /* * Write the whole buffer, because the input side * won't discover the size increase until after * it has read it. */ if (offset > 0) { bp = buf; /* reset pointer for writing */ bytes_out += n = n_bits; while (n--) putc_pak(*bp++, t); } offset = 0; if (clear_flg) { /* reset if clearing */ maxcode = MAXCODE(n_bits = INIT_BITS); clear_flg = 0; } else {/* else use more bits */ n_bits++; if (n_bits == BITS) maxcode = maxcodemax; else maxcode = MAXCODE(n_bits); } } } else { /* dump the buffer on EOF */ bytes_out += n = (offset + 7) / 8; if (offset > 0) while (n--) putc_pak(*bp++, t); offset = 0; } } /***************************************************************** * * Read one code from the standard input. If EOF, return -1. * Inputs: * cmpin * Outputs: * code or -1 is returned. */ static int getcode(f) /* get a code */ FILE *f; /* file to get from */ { int code; static int offset = 0, size = 0; int r_off, bits; unsigned char *bp = (unsigned char *) buf; if (clear_flg > 0 || offset >= size || free_ent > maxcode) { /* * If the next entry will be too big for the current code * size, then we must increase the size. This implies * reading a new buffer full, too. */ if (free_ent > maxcode) { n_bits++; if (n_bits == BITS) maxcode = maxcodemax; /* won't get any bigger * now */ else maxcode = MAXCODE(n_bits); } if (clear_flg > 0) { maxcode = MAXCODE(n_bits = INIT_BITS); clear_flg = 0; } for (size = 0; size < n_bits; size++) { if ((code = getc_unp(f)) == EOF) break; else buf[size] = (char) code; } if (size <= 0) return -1; /* end of file */ offset = 0; /* Round size down to integral number of codes */ size = (size << 3) - (n_bits - 1); } r_off = offset; bits = n_bits; /* * Get to the first byte. */ bp += (r_off >> 3); r_off &= 7; /* Get first part (low order bits) */ code = (*bp++ >> r_off); bits -= 8 - r_off; r_off = 8 - r_off; /* now, offset into code word */ /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if (bits >= 8) { code |= *bp++ << r_off; r_off += 8; bits -= 8; } /* high order bits. */ code |= (*bp & rmask[bits]) << r_off; offset += n_bits; return code & MAXCODE(BITS); } /* * compress a file * * Algorithm: use open addressing double hashing (no chaining) on the prefix * code / next character combination. We do a variant of Knuth's algorithm D * (vol. 3, sec. 6.4) along with G. Knott's relatively-prime secondary probe. * Here, the modular division first probe is gives way to a faster * exclusive-or manipulation. Also do block compression with an adaptive * reset, where the code table is cleared when the compression ratio * decreases, but after the table fills. The variable-length output codes * are re-sized at this point, and a special CLEAR code is generated for the * decompressor. */ void init_cm(t) /* initialize for compression */ FILE *t; /* where compressed file goes */ { offset = 0; bytes_out = bytes_last = 1; bytes_ref = 0; clear_flg = 0; in_count = 1; checkpoint = CHECK_GAP; maxcode = MAXCODE(n_bits = INIT_BITS); free_ent = FIRST; setmem(htab, HSIZE * sizeof(long), 0xff); n_bits = INIT_BITS; /* set starting code size */ putc_pak(BITS, t); /* note our max code length */ firstcmp = 1; /* next byte will be first */ } void putc_cm(c, t) /* compress a character */ unsigned char c; /* character to compress */ FILE *t; /* where to put it */ { static long fcode; static int hshift; int i; int disp; if (firstcmp) { /* special case for first byte */ ent = c; /* remember first byte */ hshift = 0; for (fcode = (long) HSIZE; fcode < 65536L; fcode *= 2L) hshift++; hshift = 8 - hshift; /* set hash code range bound */ firstcmp = 0; /* no longer first */ return; } in_count++; fcode = (long) (((long) c << BITS) + ent); i = (c << hshift) ^ ent;/* xor hashing */ if (htab[i] == fcode) { ent = codetab[i]; return; } else if (htab[i] < 0) /* empty slot */ goto nomatch; disp = HSIZE - i; /* secondary hash (after G.Knott) */ if (i == 0) disp = 1; probe: if ((i -= disp) < 0) i += HSIZE; if (htab[i] == fcode) { ent = codetab[i]; return; } if (htab[i] > 0) goto probe; nomatch: putcode(ent, t); ent = c; if (free_ent < maxcodemax) { codetab[i] = free_ent++; /* code -> hashtable */ htab[i] = fcode; } if (in_count >= checkpoint) cl_block(t); /* check for adaptive reset */ } long pred_cm(t) /* finish compressing a file */ FILE *t; /* where to put it */ { putcode(ent, t); /* put out the final code */ putcode(-1, t); /* tell output we are done */ return bytes_out; /* say how big it got */ } /* * Decompress a file. This routine adapts to the codes in the file building * the string table on-the-fly; requiring no table to be stored in the * compressed file. The tables used herein are shared with those of the * compress() routine. See the definitions above. */ void decomp(f, t) /* decompress a file */ FILE *f; /* file to read codes from */ FILE *t; /* file to write text to */ { unsigned char *stackp; int finchar; int code, oldcode, incode; if ((code = getc_unp(f)) != BITS) abort("File packed with %d bits, I can only handle %d", code, BITS); n_bits = INIT_BITS; /* set starting code size */ clear_flg = 0; /* * As above, initialize the first 256 entries in the table. */ maxcode = MAXCODE(n_bits = INIT_BITS); setmem(prefix, 256 * sizeof(short), 0); /* reset decode string table */ for (code = 255; code >= 0; code--) suffix[code] = (unsigned char) code; free_ent = FIRST; finchar = oldcode = getcode(f); if (oldcode == -1) /* EOF already? */ return; /* Get out of here */ putc_ncr((unsigned char) finchar, t); /* first code must be 8 bits=char */ stackp = stack; while ((code = getcode(f)) > -1) { if (code == CLEAR) { /* reset string table */ setmem(prefix, 256 * sizeof(short), 0); clear_flg = 1; free_ent = FIRST - 1; if ((code = getcode(f)) == -1) /* O, untimely death! */ break; } incode = code; /* * Special case for KwKwK string. */ if (code >= free_ent) { if (code > free_ent) { if (warn) { printf("Corrupted compressed file.\n"); printf("Invalid code %d when max is %d.\n", code, free_ent); } nerrs++; return; } *stackp++ = finchar; code = oldcode; } /* * Generate output characters in reverse order */ while (code >= 256) { *stackp++ = suffix[code]; code = prefix[code]; } *stackp++ = finchar = suffix[code]; /* * And put them out in forward order */ do putc_ncr(*--stackp, t); while (stackp > stack); /* * Generate the new entry. */ if ((code = free_ent) < maxcodemax) { prefix[code] = (unsigned short) oldcode; suffix[code] = finchar; free_ent = code + 1; } /* * Remember previous code. */ oldcode = incode; } } /************************************************************************* * Please note how much trouble it can be to maintain upwards * * compatibility. All that follows is for the sole purpose of unpacking * * files which were packed using an older method. * *************************************************************************/ /* * The h() pointer points to the routine to use for calculating a hash value. * It is set in the init routines to point to either of oldh() or newh(). * * oldh() calculates a hash value by taking the middle twelve bits of the square * of the key. * * newh() works somewhat differently, and was tried because it makes ARC about * 23% faster. This approach was abandoned because dynamic Lempel-Zev * (above) works as well, and packs smaller also. However, inadvertent * release of a developmental copy forces us to leave this in. */ static unsigned short(*h) (); /* pointer to hash function */ static unsigned short oldh(pred, foll) /* old hash function */ unsigned short pred; /* code for preceeding string */ unsigned char foll; /* value of following char */ { long local; /* local hash value */ local = ((pred + foll) | 0x0800) & 0xFFFF; /* create the hash key */ local *= local; /* square it */ return (local >> 6) & 0x0FFF; /* return the middle 12 bits */ } static unsigned short newh(pred, foll) /* new hash function */ unsigned short pred; /* code for preceeding string */ unsigned char foll; /* value of following char */ { return (((pred + foll) & 0xFFFF) * 15073) & 0xFFF; /* faster hash */ } /* * The eolist() function is used to trace down a list of entries with * duplicate keys until the last duplicate is found. */ static unsigned short eolist(index) /* find last duplicate */ unsigned short index; { int temp; while (temp = string_tab[index].next) /* while more duplicates */ index = temp; return index; } /* * The hash() routine is used to find a spot in the hash table for a new * entry. It performs a "hash and linear probe" lookup, using h() to * calculate the starting hash value and eolist() to perform the linear * probe. This routine DOES NOT detect a table full condition. That MUST be * checked for elsewhere. */ static unsigned short hash(pred, foll) /* find spot in the string table */ unsigned short pred; /* code for preceeding string */ unsigned char foll; /* char following string */ { unsigned short local, tempnext; /* scratch storage */ struct entry *ep; /* allows faster table handling */ local = (*h) (pred, foll); /* get initial hash value */ if (!string_tab[local].used) /* if that spot is free */ return local; /* then that's all we need */ else { /* else a collision has occured */ local = eolist(local); /* move to last duplicate */ /* * We must find an empty spot. We start looking 101 places * down the table from the last duplicate. */ tempnext = (local + 101) & 0x0FFF; ep = &string_tab[tempnext]; /* initialize pointer */ while (ep->used) { /* while empty spot not found */ if (++tempnext == TABSIZE) { /* if we are at the end */ tempnext = 0; /* wrap to beginning of table */ ep = string_tab; } else ++ep; /* point to next element in table */ } /* * local still has the pointer to the last duplicate, while * tempnext has the pointer to the spot we found. We use * this to maintain the chain of pointers to duplicates. */ string_tab[local].next = tempnext; return tempnext; } } /* * The init_tab() routine is used to initialize our hash table. You realize, * of course, that "initialize" is a complete misnomer. */ static void init_tab() { /* set ground state in hash table */ unsigned int i; /* table index */ setmem((char *) string_tab, sizeof(string_tab), 0); for (i = 0; i < 256; i++) /* list all single byte strings */ upd_tab(NO_PRED, i); inbuf = EMPTY; /* nothing is in our buffer */ } /* * The upd_tab routine is used to add a new entry to the string table. As * previously stated, no checks are made to ensure that the table has any * room. This must be done elsewhere. */ void upd_tab(pred, foll) /* add an entry to the table */ unsigned short pred; /* code for preceeding string */ unsigned short foll; /* character which follows string */ { struct entry *ep; /* pointer to current entry */ /* calculate offset just once */ ep = &string_tab[hash(pred, foll)]; ep->used = TRUE; /* this spot is now in use */ ep->next = 0; /* no duplicates after this yet */ ep->predecessor = pred; /* note code of preceeding string */ ep->follower = foll; /* note char after string */ } /* * This algorithm encoded a file into twelve bit strings (three nybbles). The * gocode() routine is used to read these strings a byte (or two) at a time. */ static int gocode(fd) /* read in a twelve bit code */ FILE *fd; /* file to get code from */ { unsigned short localbuf, returnval; int temp; if (inbuf == EMPTY) { /* if on a code boundary */ if ((temp = getc_unp(fd)) == EOF) /* get start of next * code */ return EOF; /* pass back end of file status */ localbuf = temp & 0xFF; /* mask down to true byte value */ if ((temp = getc_unp(fd)) == EOF) /* get end of code, * start of next */ return EOF; /* this should never happen */ inbuf = temp & 0xFF; /* mask down to true byte value */ returnval = ((localbuf << 4) & 0xFF0) + ((inbuf >> 4) & 0x00F); inbuf &= 0x000F;/* leave partial code pending */ } else { /* buffer contains first nybble */ if ((temp = getc_unp(fd)) == EOF) return EOF; localbuf = temp & 0xFF; returnval = localbuf + ((inbuf << 8) & 0xF00); inbuf = EMPTY; /* note no hanging nybbles */ } return returnval; /* pass back assembled code */ } static void push(c) /* push char onto stack */ int c; /* character to push */ { stack[sp] = ((char) c); /* coerce integer into a char */ if (++sp >= TABSIZE) abort("Stack overflow\n"); } static int pop() { /* pop character from stack */ if (sp > 0) return ((int) stack[--sp]); /* leave ptr at next empty * slot */ else return EMPTY; } /***** LEMPEL-ZEV DECOMPRESSION *****/ static int code_count; /* needed to detect table full */ static int firstc; /* true only on first character */ void init_ucr(new) /* get set for uncrunching */ int new; /* true to use new hash function */ { if (new) /* set proper hash function */ h = newh; else h = oldh; sp = 0; /* clear out the stack */ init_tab(); /* set up atomic code definitions */ code_count = TABSIZE - 256; /* note space left in table */ firstc = 1; /* true only on first code */ } int getc_ucr(f) /* get next uncrunched byte */ FILE *f; /* file containing crunched data */ { int code, newcode; static int oldcode, finchar; struct entry *ep; /* allows faster table handling */ if (firstc) { /* first code is always known */ firstc = FALSE; /* but next will not be first */ oldcode = gocode(f); return finchar = string_tab[oldcode].follower; } if (!sp) { /* if stack is empty */ if ((code = newcode = gocode(f)) == EOF) return EOF; ep = &string_tab[code]; /* initialize pointer */ if (!ep->used) {/* if code isn't known */ code = oldcode; ep = &string_tab[code]; /* re-initialize pointer */ push(finchar); } while (ep->predecessor != NO_PRED) { push(ep->follower); /* decode string backwards */ code = ep->predecessor; ep = &string_tab[code]; } push(finchar = ep->follower); /* save first character also */ /* * The above loop will terminate, one way or another, with * string_tab[code].follower equal to the first character in * the string. */ if (code_count) { /* if room left in string table */ upd_tab(oldcode, finchar); --code_count; } oldcode = newcode; } return pop(); /* return saved character */ }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.