
[4] Nathaniel S. Borenstein. Multimedia Applications De-
velopment with the Andrew Toolkit. Prentice-Hall, 1990.

[5] Nathaniel S. Borenstein. Mime: A portable and ro-
bust multimedia format for internet mail. Multimedia
Systems, 1(1):29–36, 1993.

[6] K. Mani Chandy, Rajit Manohar, Berna Massingill, and
Dan Meiron. Integrating task and data parallelism with
the collective communication archetype. submitted to
Supercomputing 94, 1994.

[7] Bob Cotton and Richard Oliver. Understanding Hyper-
media. Phaidon Press, 1993.

[8] Simson Garfinkel and Mike Mahoney. NeXTSTEP Pro-
grammin: Step One. TELOS, a division of Springer-
Verlag, 1993.

[9] Frank Halasz and Mayer Schwartz. The Dexter hyper-
text reference model. Communications of the ACM,
February 1994.

[10] Wendy Hall, Gary Hill, and Hugh Davis. The Mi-
crocosm link service. In Hypertext ’93 Proceedings,
November 1993.

[11] Rohit Khare and the eText Group. The eText engine: An
extensible object-oriented hypermedia publishing sys-
tem. In Submitted to Proceedings of the 1994 European
Conference on Hypermedia Technology, 1994.

[12] Vinay Kumar, Jay Glicksman, and Glenn A. Kramer.
A shared web to support design teams. In IEEE Third
Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises. Enterprise Integration Tech-
nologies Corp, April 1994.

[13] Norman K. Meyrowitz. Intermedia: The architecture
and construction of an object-oriented hypermedia sys-
tem and applications framework. In OOPSLA ’86 Pro-
ceedings, 1986.

[14] Microsoft, One Microsoft Way, Redmond, WA. Multi-
media Viewer Technical Reference, 2.0 edition, 1993.

[15] Jakob Nielsen. Hypertext and Hypermedia. Academic
Press, 1990.

[16] John Ousterhout. TCL and the Tk Toolkit. Addison-
Wesley, 1994.

[17] Richard L. Phillips. MediaView: a general multime-
dia digital publication system. Communications of the
ACM, July 1991.

[18] Roy Rada. From Text to Expertext. McGraw-Hill, 1991.

[19] Adam Rifkin. Teaching archetypical design with an
electronic textbook. Proceedings of the 25th ACM SIG
CSE Conference, March 1994.

[20] Adam Rifkin. Teaching archetypical design with an
electronic textbook. Technical Report Caltech-CS-TR-
94-02, Center for Research on Parallel Computing, Cal-
ifornia Institut e of Technology, 1994.

5.3 Standard Representations

There are several successful efforts underway in the com-
munity to standardize the representation and interchange of
hypermedia data. We certainly do not purport to be one of
them. We also don’t know which standard to bet on, either,
so we are watching with the assurance that we can bridge be-
tween our Enhanced Text Format (ETF) compound-stream
representation and forthcoming standards.

Currently, we have a crop of standards based on Standard
Generalized Markup Language (SGML), which work by
adding structural encoding to documents. Direct descen-
dants include HTML and the Dexter interchange format. A
related type is MIME, the Multipurpose Internet Mail Exten-
sions [5]. These systems all share the concept of a document
unit and of objects embedded in text. The main difficulty in
mapping ETF to this class is the implementation of the eText
Engine using RTF streams, which store formatting informa-
tion rather than structural encoding. The mapping of the text
is automatic, but fragile; the component media types that are
in common will probably be rosbust, since there is growing
consensus on multimedia data formats.

The “other” category includes proprietary markup schemes,
as used in Multimedia Viewer, and future standards associated
with commercial development, tossed under the rubric of
“object-oriented file systems.” Interoperability with these
schemes will be possible, but the efficiency of conversion is
unclear as yet. Once these systems arrive, though, we will
have a platform for publishing not merely hypermedia data,
but through distributed object technology, simulations and
processes.

6 CONCLUSIONS

The lessons learned from the eText Project to date fall into
three categories. In the search for a system appropriate for
producing interactive textbooks, we designed the eText hy-
permedia model and built the eText Engine. In designing the
educational content of a hypermedia textbook, we see how
all the parts of the model must be present to enable learning
and reference. Finally, the model must be robust enough to
produce documents that will survive the model’s inevitable
passing. Building new hypermedia systems is rewarding, but
rebuilidng content is a mistake.

� Hypermedia Systems. We believe that a document-
centric model for hypermedia is a compelling solution to
a wide variety of applications. Within the eText hyper-
media model it has the potential to match the expressive
power of any other model that does not intorduce tem-
poral contraints. It provides a granularity appropriate
for many different kinds of applications, especially in
engineering. Finally, the document/publishing model it
is based on is being validated by the success of systems

such as WWW and the commercial push for compound
documents.

� Hypermedia Education. A sucessful electonic textbook
should be able to reach as many students as possible.
The material should not be broadened to the point of
meaninglessness (as is the fate of some paper texts),
but should be able to address each student at their own
levels. It means only simple things like selectively pre-
senting material according to a user model or having
alternate versions of a demonstration, but it is use-
ful. Navigation, even with an overall structure for the
document-space, remains as important as ever. To get
the information out to as many students as possible,
we also need tools that can re publish data into other
formats.

� Hypermedia Publishing. To close, we reiterate our be-
lief that compound document architectures – leveraging
real objects, not “objects” – is the future of application
development in many fields, and constitutes an integrat-
ing paradigm for publishing documents of any format.
While such structures may be inefficient and wasteful of
resources for display, indexing, and storage, they con-
serve the most precious resource – the time and talent
of those who create the knowledge.

7 ACKNOWLEDGEMENTS

Special thanks go to Adam Rifkin, for many productive dis-
cussions, and to other members of the eText project group:
Paul Ainsworth, Svetlana Kryukova, and Rajit Manohar.
Last, but not least, thanks to K. Mani Chandy for estab-
lishing, leading, and supporting the eText Project.

This research is sponsored in part by the Air Force Office of
Scientific Research grant AFOSR-91-0070 and CRPC sup-
port for education and parallel scientific applications under
cooperative agreement CCR-9120008.

References

[1] T-J. Berners-Lee, R. Cailliau, and J.-F. Groff. The
world-wide web, computer networks and ISDN sys-
tems. In Proceedings of the 1992 Joint European
Networking Conference, number 25, pages 454–459.
North-Holland, 1992.

[2] T.J. et.al Berners-Lee. The world wide web initiative.
In Proceedings of INET’93. CERN, 1993.

[3] Mark Bernstein. The navigation problem reconsid-
ered. In Emily Berk and Joseph Devlin, editors, Hyper-
text/Hypermedia Handbook, pages 285–298. Mc-Graw
Hill, 1991.

to choose an appropriate archetype and refine it further. Con-
sider a chemical engineer performing a smog modeling of
the Los Angeles Basin [6]. She inherits thousands of lines
of legacy Fortran code. Her goal is to perform regressions
on several axes, and this will require lots of program runs.
Fortunately, her management has just purchased a parallel
machine. Although scientists are aware that they can solve
bigger problems, faster, using parallel and distributed ma-
chines, we must overcome their prejudices of how difficult
they perceive parallel programming to be.

Presently she has sequential code, and she understands her
application domain, so a few index searches or browsing a list
of applications in the eBook should guide her to the proper
archetype. Suppose that a low-level climate model is already
in the system, as an Application of the Mesh Computation
archetype. The navigational process is simplified by the
hierarchical organization of the space. When she reads the
actual documents though, she doesn’t need to see the slide-
shows or hear the narration. In fact, since she has told the
user model that she has a Fortran code, she is not distracted
by any information specific to C++.

This scenario highlights the importance of navigation. In the
next phase of her development of code, when using PEN to
develop a prototype instantiation of the her archetype, she
can use agents to manage her project.

4.4 Knowledge Capture

In fact, if we extend these scenarios just a little further,
the eText Engine enables an engineering design knowledge
capture system. Most engineering design processes, like
archetypes, have a recursive structure and problems that can
be solved through successive refinement. One can just as eas-
ily posit archetypes for electrical circuit design or for satellite
design. In each of these cases, a hypermedia engineer’s note-
book for capturing the design process and reusing it can yield
a significant productivity boost, as discussed by the CSCW
community [12].

5 HYPERMEDIA PUBLISHING

As mentioned earlier, the challenge of actually getting hy-
permedia materials out to our user community is a bottleneck
for increased application of hypermedia techniques from the
classroom to the boardroom. Developing content for the
eText model is a risky proposition unless it is possible to
migrate existing information from other systems.

5.1 Expressive Power

Developers can grow within the eText model. By opening the
architecture up for loadable Annotations and Agents, we can

Conventional Media
Bibliography

Static PicturesStandard Text Footnotes

DiagramsIndex Charts Table of ContentsSections

Guided ToursMultimedia
Dynamic Pictures

Animations Video Audio

Slide Shows Graphics Enhanced text

Hypermedia
Multidimensional navigation

Cross-referencing

Hypertext
Inspectors

Hypernotes
Hyperlinks

Interactive Media
Interactive Slide Shows

Interactive Figures
Enhanced Animations

Feedback

the eText electronic book engine

Figure 10: The eText Media Pyramid. We assert that all of
these media types can be enabled by Annotations in the eText
Model.

present almost any kind of hypermedia data or process. An-
notations can model any of the media types shown in Figure
10, which covers the known spectrum of hypermedia appli-
cations. Agents, in the model’s definition if not in the current
implementation of eText Engine, can model any process me-
diating between users and document creation. Between these
two and the prospect of replacable, upgradeable navigation
support, the Engine plays the role of a working testbed for
trying out new hypermedia techniques. The only “limitation”
is that the document-centric metaphor, and the eText model
in particular, is orthogonal to timeline-based and real-time
schemes.

5.2 Standard Platforms

Currently, the most popular hypermedia platform in the world
is the World-Wide-Web [2]. Accesible to a wide variety of
clients, it is bound by a lowest-common-denominator phe-
nomenon. With the addition of forms, Web servers can get
feedback from users, but the heterogenous, distributed na-
ture of the web still impedes progress towards publishing
interactive media on it.

Also a volume leader, Microsoft Multimedia Viewer [14]
has been used to develop a wide variety of hypermedia ti-
tles. While its files can be automatically resued to a degree
on Windows, Macintosh, and X/Unix setups, its expressive
power is limited by its modest capacity, limitations of DOS,
and arcane development methods. Adding interactivity in
particular seems to be a problem area.

The eText Engine, currently, is tied to NeXT’s NeXTSTEP
and forthcoming SUN Solaris-based versions of OpenStep,
which is a narrow slice of our audience; we believe in pro-
ducing courseware versions with the native engine and a
distributable subset over the Web.

Divide &
Conquer

eText

Mergesort

Parallel C
Solution

Split Function

Source Code Reliability Documentation

Self-similar structure
at every level of the
electronic textbook

Methodologies
for general
patterns of
solution design

Canonical design
solutions for
given specific
problems

Implementations vary by
language, granularity,
and machine architecture

Bundles of content at the
lowest modular design level

Archetypes

Applications

CaseBooks

Function Points

Hierarchical
Levels:

Content
Information
packets

Figure 8: The eText Archetype textbook structure.

4.1 Archetypes

The most fundamental quality of our entire programming-
education effort is the the recursive self-similarity accompa-
nying the archetype model of programming. At every level,
from archetype to application to casebook, the symmetry dic-
tates the existence and structure of the algorithm, reliability
argument, perfomance analysis, testing, and design docu-
mentation. This structure is shown, somewhat simplified, in
figure 8.

Consider how the Divide-and-Conquer archetype is pre-
sented in figure 9. At the highest level, we present the
metalgorithm, proof outlines, and design documentation for
split, merge, isBaseCase, etc. At the Application level, we
present pseudocode, generic proofs, and documentation of
creative steps necessary to flesh out the archetype to yield al-
gorithms to solve specific problems (e.g., Mergesort, Skyline,
and Fast Fourier Transform). Finally, each Application is im-
plemented within several CaseBooks, with concrete proofs,
project documentation, and actual code tailored for a par-
ticular programming language, data and process granularity,
and machine architecture. Note that the Archetype approach
unifies sequential, parallel, and distributed versions of the
solutions; it only diverges at the CaseBook level.

The lesson of this analysis is that the nature of the information
space can help greatly reduce the navigational load. A well-

Divide-and-Conquer

C Maisie
Mosaic
Pascal

C++ FORTRANFORTRAN-M

Mergesort
Pattern

Matching
Fast Fourier
Transform

Nearest
Neighbors

Skyline

Figure 9: A sample decomposition of the Divide-and-
Conquer archetype.

designed editorial architecture can keep readers more focused
than any permutation of graphical navigation widgets.

4.2 Teaching

Teaching undergraduates and motivated users learning inde-
pendently, we want to present the material as effectively as
possible, since the eBook is intended for self-directed use.
Not only does this mean that the material should be writ-
ten and edited for that purpose, but that the eBook should
offer multiple paths of entry. The multimedia and interac-
tive media portions must be able to present different versions
based on the user’s proficiency and interest. Students should
be able to take tours through the book (e.g., looking just at
sorting algorithms), rather than repeatedly drilling the hierar-
chical structure. All of this indicates the need for intelligent
curriculum design, but more subtly highlights the need for
strong system support.

In this scenario, the system needs a strong user model. For
example, the bookmark annotation delimits a section of a doc-
ument to which other documents can link. A bookmark can
also be collapsed behind an icon, and conditioned to display
only depending on user preferences; that behavior should be
tied to a persistent user model. One cannot have a lab full of
students fill out a profile questionnaire starting class each day,
and yet that is precisely how mulitmodal presentation support
is achieved on current hypermedia authoring systems.

This scenario also exercises the need for a flexible annotation
development system. Considering all of the effort that goes
into designing a custom-coded simulation, the hypermedia
model iself should not impose any further overhead. Also,
to reach a wider base of students, all of whom have access to
personal computers, we need to publish compatible subsets
of our information to other, more accessible systems.

4.3 Reference

We envision the eBook as a cooperative repository for com-
putational scientists. They would like help to skim the space

The eText Engine is an implementation designed specifically
to meet the architectural specifications of our model.

3.2.1 Justification

In particular, eText fills the need for a document-centric hy-
permedia system. Previous work about compound docu-
ments uses an “object” as a user interface abstraction rather
than as a context for software engineering. Hypermedia
systems are too often bound to a time-centric “mulitmedia”
past; hypertext systems are mature enough to handle text-
books with ease, but aren’t extensible. The Dexter model
of hypermedia systems [9] describes a system with sufficient
expressivity, but no successful Dexter-inspired system has
been developed yet. With the exception of the document-
atomicity assumption within eText, the publication support
of our model is reminiscent of Dexter, including identification
and linking schemes.

eText also reflects commercial research and development
trends. The eText architecture model is appropriate for ex-
pressing many different kinds of applications, once the object
infrastructure is in place. Soon, the same models of naviga-
tion the hypermedia community creates for textbooks will
resurface in financial analyses and interactive shopping.

3.2.2 Implementation

The eText Engine is being developed under NeXTSTEP [8],
an advanced object-oriented development enviroment, and is
shown in Figure 7. For creating, viewing, and converting
documents, it is comparable to a word processor, with mul-
tiple documents, multiple undo/redo, rulers, WYSIWYG,
printing, faxing, spell-checking, drag-and-drop, and so forth.
New annotations can be created in a variety of ways. For
example, an audio annotation can be created by importing an
audio file, pasting audio data from another application, drag-
ging in a sound icon, or choosing a menu command. Click
on the sound-icon, and the Inspector displays the waveform,
editing, and playback tools. Similar ease-of-use applies for
other media types, even running custom simulations. Linking
is achieved through a drag-and-drop operation; simply create
a bookmarked region, and drag it out to another document.

4 EDUCATION & REFERENCE

The nature and purposes of a textbook define many aspects
of our model. A reference book might only exercise the
publishing aspects, a picture book just the interaction, and
a literary criticism only the navigation, but a full textbook
will employ all three. In this section, we present the lessons
learned from analyzing potential uses of the book.

Figure 7: An early eText Engine version of the Divide-and-
Conquer chapter seen in Figure 4. The first button is a
miniature speaker icon; the diamond is a link. The graphic is
an inline slide show. The inspector is currently displaying the
basic navigational information about this document: author,
date, etc, and has diamond-shaped link-wells for dropping
links to associated documents.

Figure 4: The CraftMan version of the Divide-and-Conquer
chapter. The chapter interface has quick reference-buttons,
computed glossary links, and links to other chapters.

Figure 5: The Skyline interactive figure. Students can in-
vestigate the behavior of the algorithm by drawing a set of
buildings on the left side and watching the eBook construct
the upper envelope on the right. The figure includes a nar-
rated walkthrough.

Figure 6: The Mosaic version of the Divide-and-Conquer
chapter seen in Figure 4. Note that the glossary links are
explicit question marks.

3.1.3 Publishing: World-Wide-Web

As our user community heard about our work with eText,
the call for a World-Wide-Web version of our textbook grew.
This was our third lesson: the importance of open publishing
standards cannot be underemphasized.

While most of the component data ports to HTML/Mosaic
formats easily, some formatted text (notably, equations)
caused problems. Our solution was to provide bitmap images
of the equations and tables. We were also able to transform
the slide shows by creating a separate HTML file for each
frame and adding “forward” and “back” links. Unfortunately,
other interactive media experiments could not be replicated
for a distributed audience, although our group has had re-
cent success with TCL/Tk [16] in porting the skyline figure
to X-Windows. We concluded from this experience that we
could automate the conversion of a subset of our compound
documents to HTML – and possibly other formats.

3.2 The eText Engine

As the eText hypermedia model took shape, we found that no
one system would be able to satisfy all of our different goals.

part of the hypermedia deployment puzzle for years to come.
Our solution has relied on the inherent power of compound-
documents. In this model, the Kernel creates a corpus of
all the data in the document. Individual component data is
the responsibility of the annotations, and thus the issue of
portability is moved out of the Kernel and into the mutable,
user-level layers. To write out an HTML file rather than
our Enhanced Text Format (ETF), the Kernel reencodes the
text stream in HTML, and the Image annotations simply re-
spond to writeHTML: instead of writeRTF:. The key
is that some subset of this fully-interactive native ETF doc-
ument can be automatically reparsed into another document-
oriented system. A more dramatic example has come from
our investigation into planning Microsoft Multimedia Viewer
document conversion, which also has an ETF-like model.

Publishing hypermedia documents is not just about publish-
ing data, though. Publishing should also address custom,
interactive annotations. The “Authoring” cluster in Figure
2 mentions those aspects involved in supporting a flexible,
extensible user interface; for further details, see [11].

3 SYSTEMS DEVELOPMENT

The evolution of our model can be traced through our imple-
mentation efforts. In each phase we learned about the proper
emphasis on each of the three subsystems of our model.

3.1 Prototypes

For the first several months, we experimented with differ-
ent platforms and approaches to hypermedia. Our concrete
short-term goal was to produce a system for teaching an un-
dergraduate course. The three systems below taught us about
interactivity and extensibility, interface and navigation, and
publishing, respectively.

3.1.1 Inspiration: MediaView

In the beginning, we were inspired to investigate the inter-
active textbook example set by MediaView [17]. It had been
used to produce an interactive computer graphics paper that
featured a running simulation of the reflectance model be-
ing discussed, right inside the paper. The model, shown in
Figure 3, featured several such embedded interactive figures.
In addition to direct manipulation of the parameters through
controls on the Inspector panel, the paper also had “journals”
which could replay the mousing, typing, and voiceover of the
author as he guided readers through the figure.

MediaView has a compound-document architecture and in-
teractivity support, but no real navigation or publication fa-
cilities. The extensibility, though, was quite powerful. Ob-
jects included with the system supported audio, video, draw-

Figure 3: The MediaView interactive paper, A Fast and Ac-
curate Light Reflection Model. MediaView features extensi-
bility through custom objects, as with the reflection simula-
tion above, but did not support hyperlinks.

ings, and formatted notes. Extensions included 3D wireframe
viewers, multithreaded animations, and algorithm visualiza-
tions. MediaView allowed each such extension to create a
control panel for itself, leading to a haphazard look-and-
feel; our later efforts would standardize this into an Inspector
paradigm, which we incorporated directly into our imple-
mentation.

3.1.2 Development: CraftMan

Since MediaView is no longer supported, we decided to pro-
totype a NeXTSTEP-based system of similar functionality
to build the first few chapters of the eBook. With Xanthus
CraftMan, we adopted an interpreted prototyping environ-
ment somewhat similar to a SmallTalk environment. Here
our group developed some of its most advanced concepts on
interactive media, and added a navigational layer.

Figure 4 shows the main chapter interface; there are explicit
link-buttons to other chapters and links within the chapter
are all hard-coded. In line with the criticisms leveled ear-
lier against prototyping enviroments, it has no hypermedia
model foundation, no storage system, no history mechanism,
and every chapter ends up as a separately compiled appli-
cation. Figure 5 shows one of the system’s successes: the
ease of constructing interactive figures, in this case a skyline
simulation, which also supported a journaled walk-through.
Other successful aspects include narrated animations, inter-
active sorting exercises, user-tracked quizzes, source code
browsers, and multimodal presentations (Basic and Expert
modes).

images, audio, simulation state. The Kernel also leverages
an object-oriented environment by publishing an Application
Programming Interface (API) for the object to be loaded into
the system at runtime. As a result, the Kernel guarantees
the provision of a standard document format for Publishing
purposes, a standard architecture for plugging in user ser-
vices for Navigation, and an API for loading in new kinds of
objects to be instantiated within documents.

Alternative formulations might replace the text stream with a
frame-based layout metaphor, or a structured text encoding.
Document storage may be in a shared OO database rather
than as atomic directories in a filesystem. [11] discusses
these and other implementation details in the context of the
eText Engine.

2.3 Interaction

The key to making this model a hypermedia model rather than
just a text editor, is the Interaction support, represented by
the cluster labeled “Annotations” and “Agents”. By defining
standard protocols, the document can load in objects that give
it the expressive power of other hypermedia systems.

An annotation is defined as an object that the user can instanti-
ate within the text stream. The protocol we use contains only
a bare handful of methods for allocating a region of the doc-
ument for the annotation, drawing it, encoding and decoding
alternate representations, and for publishing a user interface
(e.g., menu commands, inspectors, and toolbars). Multime-
dia annotations can present time-based media; hypermedia
annotations provide link buttons, anchors, and margin notes;
and interactive media annotations can exercise the full power
of the host system (See Figure 10).

This application technology has been embraced by the com-
mercial market as well. Microsoft has Object Linking and
Embedding 2; Component Integration Laboratories (backed
by IBM, Apple, WordPerfect, Novell, and others) offers Sys-
tem Object Model and OpenDoc; and Go’s PenPoint pen-
based operating system predicated its entire user interface
and API on it. Although all of these efforts have APIs that
are conceptually identical to the one described here, they
are more complex to program, by an order of magnitude;
we maintain simplicity and ease of development as project
goals. On the academic side, systems such as Andrew [4]
paved the way for current commercial interests. We would
have used one of these systems, if they actually existed or
were developer-friendly enough to build a hypermedia sys-
tem.

An agent is a variant that defines an object that binds to the
entire document, not just a location within the text stream.
The agent helps model processes rather than data, since it
has the authority to help the user edit the entire document,
and even manage it in relation to other documents. The
PEN mentioned in Figure 1 is one such application, guiding
the user through the creation of a hypermedia source file, in

conjunction with other files in the project. The use of agents
is a rapidly-moving field, and it is unclear what other features
this facility might enable. Nevertheless, while few systems
have any similar hooks today, we feel this is an important part
of a generic hypermedia authoring system. We are currently
investigating the potentials of this within the eText Engine
development project.

2.4 Navigation

The most slippery part of any information system to charac-
terize is its user interface (i.e., its look-and-feel). Neverthe-
less, we endeavor to specify the functional power that any
such interface must provide.

First, any such system should track user preferences and help
personalize the information space. In a training system, this
may be as sophisticated as cognitive modeling and perfor-
mance tracking; for a news feed, it may simply be denoting
which sections most interest the reader. Another purpose is
multimodal presentation, to represent an concept formally, or
with graphics, or with a voice-over, or tailoring the content
to different languages and physical abilities.

Second, the system must include tools for dealing with the
“Navigation Problem” [3]. This involves: a history mecha-
nism, so the Kernel should notify the navigation subsystems
when documents are opened and closed; associative retrieval,
so the navigation subsystem maintains its own databases and
indices of documents; and some macroscopic, document-
to-document links, which cannot be handled by annotations
alone. Beyond this simple model, one can envision sys-
tems that combine user-tracking and associativity to provide
the user with guided tours of the information space, such as
“suggested reading” buttons, but these systems can still be
classified within this model.

2.5 Publishing

Finally, the most contentious part of embarking upon a project
such as eText is the chicken-and-egg problem of creating a
hypermedia infrastructure. During the past year, the explo-
sion of growth on the World-Wide-Web, fueled by Mosaic,
has made HyperText Markup Language (HTML) [1] a de
facto standard for presenting hypermedia documents. Nev-
ertheless, it is neither a panacea nor a permanent solution;
interactivity, in particular, goes unsupported in this medium.

The publishing model of a hypermedia system should be
able to cope with this uncertainty, and it is our conviction
that open, portable publishing will remain the most crucial

2The National Center for Supercomputing Applications at Urbana-
Champaign estimated that Mosaic use was growing at a weekly rate of
11% at the end of 1993. (from Dr. Bob Lucky, Bellcore, lecture at UCLA
4/5/94.)

eText Kern
el

A
rc

h
it

ec
tu

reE
n

h
a

n
ced

Text Forma t

Navigator
• Associative

• Macroscopic
(Document-level)

• Backtracking

Agents
• Document-

 Specific Tools
• “Intelligent
Assistance”

• Personalized

User Model
• Topic Filters
• Multimodal
Presentation

• Personalized

 Annnotation
• Multimedia
• Customized,

Interactive Media
• Hypermedia

Publishing
• Native ETFD

• Mosaic/HTML
• Windows Multimedia

Viewer (Planned)

Authoring
• Shared Inspector

• Multiple Documents
• Full-text searching

• WYSIWYG,
Printable

eText Kernel
• Extends RTF

• Portable, Standard
Component Formats

• Dynamic
Binding

Objective-C Protocols

Flex
ibility

to represent any kind of data or process

Capabilit
y to

m

an
ag

e
a

co
m

pl
ex

in
fo

rm
at

io
n

sp
ac

e

Intuitive,adap
tive, portable

platform
s to

encapsulate knowledge

Figure 2: The eText Publishing System Architectural Overview. Clusters denote related subsystems for Interactivity, Navigation,
and Publishing support.; within each circle is a set of relevant features from the eText Engine. Light curved type denotes system
affordances. Bold curved type is the “mission statement” for each subsystem.

� Data Portability. Our compound-document architec-
ture, built with open, portable component data formats,
is explicitly designed to migrate to future standards and
support “distillation” of native documents into other for-
mats, all maintained from a single source tree.

The remainder of this paper presents the eText hypermedia
model and uses it to discuss the evolution of our prototypes
and the eText Engine, the requirements analysis of several
educational scenarios, and implications for publishing and
compatibility with other hypermedia systems.

2 THE eText HYPERMEDIA MODEL

While developing our textbook, we tried to map our visions
onto several different hypermedia models (e.g., databases,
timelines, or cards), which ultimately proved inadequate.
Synthesizing the features we needed, we designed a hyper-
media model for our applications, illustrated in Figure 2. The
eText Engine [11] implements this model as an actual system.

2.1 Related Work

In our initial survey of commercial and academic hypermedia
systems [15, 7, 18], we discovered that although each has
its strengths, none is appropriate for building a complete
programmers’ learning and reference enviroment. Instead,
we encountered prescriptions for:

� Aircraft-Repair Manuals, exemplifying large-scale,
rigidly structured text applications. Usually posi-
tioned as SGML-based enterprise information reposi-
tories, they support some combination of document-to-
document links, indexing, querying, and simple, static
graphics. The most advanced of this genre, derived
from high-end publishing systems, add multimedia ca-
pabilities to render audio and video.

� Walking, Talking, Sales Pitches In A Box. Several over-
grown PC and Macintosh presentation software pack-
ages, such as Macromind Director and Asymmetrix As-
tound, as well as workstation-based Computer-Based
Training (CBT) setups such as Imagine Callisto are built
around a metaphor of a timeline and a screen. These
systems cannot be adapted to present large volumes of
information, nor to allow real freedom in navigation.
While they can competently integrate multimedia, and
some even had hooks to call external function libraries,
these systems have minimal support to incorporate in-
teractive simulations or navigation/linking. Hence, the
timeline metaphor and screen-size scaling of these sys-
tems sets them at odds with the true goal of hypermedia.

� MacFrameHyperWebCard, encompassing the tools that
have succeeded in the hyperliterature community.

While they excel at producing scholarly webs, commen-
taries, and occasional multimedia presentations,they are
inappropriate for handling large-scale and potentially
distributed projects. None appeared to be extensible,
and fewer were compatible with other systems (except
the subset of Claris HyperCard clones). One system of
this kind, Brown’s Intermedia, did seem suited for our
use, but is no longer available [13].

� Do-It-Yourself, a category of systems that are not re-
ally hypermedia systems per se. Generally touted
as prototyping tools, such as GAIN Momentum or
Xanthus CraftMan, or as multimedia extensions to
databases (ORACLE Cooperative Development Envi-
ronment), they allow developers to build systems from
scratch that can call system libraries to handle hyperme-
dia functions, and are inherently extensible by compiling
in more code. These tools did not offer any foundation
for a hypermedia project, such as a data model, naviga-
tion tools, or the ability to publish the product widely.

� The Ultimate Word Processor. Recently we have seen
the rise of multimedia word processors that can han-
dle audio and video; some, notably Microsoft Word 6,
even incorporate full-strength programming languages.
University of Southampton’s Microcosm [10] is an ex-
ample of leveraging these commercial applications in
concert to provide a hypermedia system. An alternate
formulation, and the one that proved closest to our own
model, is that of the compound document, in which the
processor is no longer of words alone, but of arbitrary
“objects” as well.

During this process, we experimented with several proto-
types, which will be discussed in x3.1. From that experi-
ence and our informal survey, we adopted the compound-
document model and used it as an integrating platform to
bring together elements from all of these systems. The bal-
ance of this section will present the resulting architecture in
greater detail, referring to Figure 2.

2.2 Compound Documents

At the core of our model, both graphically and conceptually,
is the notion that a document is a quantum of one to ten pages.
The document is a formatted text stream with any combina-
tion of executing objects encoded within. We assert that such
a document is at least as powerful as any other hypermedia
model that does not incorporate temporal synchronization;
this is further discussed in x5.1.

In the circle labeled “eText Kernel”, we have a concrete re-
alization of that idea. This system currently encodes the
formatted text stream as an extension of Microsoft Rich Text
Format (RTF), and offers an atomic document-storage mech-
anism that binds that text store together with component stor-
age for any external data used by objects in the document (e.g.

The eText Project: Publishing Hypermedia Textbooks

Rohit Khare and the eText Group
The eText Project at Caltech

MSC 256-80, Computer Science
Pasadena, CA, 91125
fax : (818) 792-4257

e-mail: khare@cs.caltech.edu

April 11, 1994

ABSTRACT

The eText Project at Caltech seeks to construct a hypermedia
textbook for teaching sequential and parallel programming.
We present a document-centric hypermedia model that sup-
ports 1) portable, atomic compound-documents, 2) customiz-
able hypermedia annotation objects, and 3) navigation and
personalization. The model is used to characterize the devel-
opment of the Project’s prototype implementations; facilities
for teaching and reference; and hypermedia publishing ef-
forts. The Project is also directly implementing its model in
a new hypermedia environment, the eText Engine.

Keywords: Hypermedia, Education, Publishing, Object-
Oriented Design, User Interface Design.

1 INTRODUCTION

The eText Project at Caltech was initiated to help teach
parallel and distributed processing techniques. This re-
search encompasses many areas, including the development
of the Archetypes eBook, an interactive hypermedia text-
and reference-book. This paper communicates some of the
lessons learned from our experience building our “electronic
book.”

1.1 The eText Project

Today, most software designers and scientists write sequen-
tial code, in applications ranging from database queries to
physical simulations such as crash testing. Moore’s Law
dictates that hardware speeds double every eighteen months,

0Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copyright is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

c

1994 ACM 0-89791-xxx-x/xx/xxxx...

Archetypes
• Methodology

• Self-similar structure

eText
• Hypermedia, Interactivity
• “Intelligent Documents”

PEN
• Familiar development tools

• Archetypical Paradigm
Integration

Navigational structure

Presentation Medium

Instantiation,
modification,

experimentation

Document
Infrastructure

Figure 1: The eText Project Triad.

but soon sequential technology will have realized its peak,
and to garner more peformance these developers will need
to embrace parallel computing. They will want extend their
knowledge of sequential software design to accommodate
new theories, tools, and technologies.

The eText Project is developing a three-fold approach to en-
able such learning, as depicted in Figure 1. The teaching
methods are based on archetypes [19, 20], which systematize
patterns of computation in both the sequential and parallel
domains. Archetypes naturally lend themselves to a special-
ized Programming ENvironment that enables students use
and extend Parallel Archetype Libraries (PEN PAL). The
theory of Archetypes and the PEN tool are enabled by the
eBook, which in turn is built atop the eText Engine. The
eBook incorporates three key design lessons:

� Document-Centricity. A large-scale, authoritative
teaching and reference tool is not compatible the fine-
grained focus (e.g., cards, screens, and frames) of most
current hypertext and hypermedia systems.

� Genuine Interactivity. The eBook requires an environ-
ment where “live”, interactive, custom-coded simula-
tions reside within the hypertext. Such “true” interac-
tivity is as important for eBook as standard hypermedia
features like navigational links and multimedia annota-
tions.

