
behaviors. Both derive their power from the NeXTSTEP
Bundle class, which defines a protocol for loading binary
object code and localized interface resources. The various
protocols for both have been described elsewhere.

While an Annotation can only be instantiated within a text
stream and only deals with events when the mouse is tracking
its visible rectangle, an Agent is bound to the entire docu-
ment and can potentially observe all events. An Agent is
displayed in a pane within the document window and has
the special power to edit the entire document on the user’s
behalf. Some sample applications include: autoformatting,
glossary lookup (computed links), and project management.

4 CONCLUSIONS

The eText Engine brings together several different threads
from contemporary hypermedia system interfaces. It inte-
grates the four kinds of media we identified into an extensible
compound-document architecture. The design of the system
is also flexible with respect to document formats, allowing
interoperablity between different document-based systems.

Experience. Early experience with the engine has indicated
that it has met the test of matching state-of-the art in UI
design. Experience with creating components, from simple
(lines bouncing in a box in a separate processor thread and
a slide-show) to complex (bookmarks, links) has validated
our decomposition of tasks into Kernel and Annotations.
Development has also accelerated as experience and reuse
increased. The Annotation protocol has succeeded in mini-
mizing the amount of glue code required compared with the
order-of magnitude larger APIs of OpenDoc, Object Linking
and Embedding 2.0, or NeXT Object Links.

Future Work. We look forward to exploiting the Agent fa-
cility to construct a programming environment to support
Archetypal development, PEN. The potential synergy of hy-
permedia and agent technology seems very promising. In
addition, we are working on improving the “plumbing” by
building additional document representations (HTML, Mi-
crosoft Multimedia Viewer) and making Annotation devel-
opment simpler still, by providing default event-handling and
storage mechanisms.

5 ACKNOWLEDGEMENTS

Special thanks go to Adam Rifkin, for many productive dis-
cussions, and to other members of the eText project group:
Paul Ainsworth, Svetlana Kryukova, and Rajit Manohar.
Last, but not least, thanks to K. Mani Chandy for estab-
lishing, leading, and supporting the eText Project.

This research is sponsored in part by the Air Force Office of
Scientific Research grant AFOSR-91-0070 and CRPC sup-
port for education and parallel scientific applications under
cooperative agreement CCR-9120008.

References

[1] Robert M. et al. Acksyn. Kms: A distributed hyperme-
dia system for managing knowledge in organizations.
Communications of the ACM, July 1988.

[2] Marc Andreesen and Eric Bina. Mosaic User’s Guide
and Technical Documentation. Availible on WWW at
www.ncsa.uiuc.edu, 1994.

[3] R. Cailliau Berners-Lee, T.J and J.-F. Groff. The world-
wide web, computer networks and isdn systems. In Pro-
ceedings of the 1992 Joint European Networking Con-
ference, number 25, pages 454–459. North-Holland,
1992.

[4] Nathaniel S. Borenstein. Multimedia Applications De-
velopment with the Andrew Toolkit. Prentice-Hall, 1990.

[5] Claris Software. HyperCard User’s Guide, 1993.

[6] Paul M. Eng. Xerox draws a map to find lost files.
Business Week, page 104A, April 11 1994.

[7] Frank Halasz and Mayer Schwartz. The Dexter hyper-
text reference model. Communications of the ACM,
February 1994.

[8] Frank G. Halasz. NoteCards: A Multimedia Idea Pro-
cessing Environment. Microsoft Press, 1988.

[9] Rohit Khare and the eText Group. The eText project:
Creating electronic textbooks. In Submitted to Proceed-
ings of the 1994 European Conference on Hypermedia
Technology, 1994.

[10] Gary Marchionini and Gregory Crane. Evaluating hy-
permedia and learning: Methods and results from the
Perseus project. ACM Transactions on Information Sys-
tems, January 1994.

[11] Norman K. Meyrowitz. Intermedia: The architecture
and construction of an object-oriented hypermedia sys-
tem and applications framework. In OOPSLA ’86 Pro-
ceedings, 1986.

[12] Microsoft, One Microsoft Way, Redmond, WA. Multi-
media Viewer Technical Reference, 2.0 edition, 1993.

[13] Richard L. Phillips. MediaView: a general multime-
dia digital publication system. Communications of the
ACM, July 1991.

[14] Larry Press. Emerging dynabase tools. Communica-
tions of the ACM, March 1994.

[15] Adam Rifkin. Teaching archetypical design with an
electronic textbook. Proceedings of the 25th ACM SIG
CSE Conference, March 1994.



eTApp
Abstract

Controller

eTAppUI
System

Support

eTDoc
Document

Model

eTDocUI
View &

Controller

UserModel Inspector Navigator

eText
Text Stream

Interface

Agent

Annotation

Figure 3: The eText Kernel Wiring Diagram

3 IMPLEMENTATION

The actual implementation of the architecture set forth in
Section 2, shown in Figure 3, was influenced by three factors:

Microkernel Architecture. One lesson learned from the last
decade of operating system development is the trend toward
microkernels, of building a reliable, efficient, compact set of
core services and cleanly separating user and system facilities
layered on top. Similarly, eText was designed as a document-
processing kernel that provides a Document metaphor and
certain services (e.g., registerAnnotation:). All of
the multimedia, indexing and searching, and hypermedia
linking was implemented separately.

NeXTSTEP Application Kit. The structure of the application
and division of responsibilities between the Application and
the Document was heavily influenced by the NeXTSTEP
API. The concept of First Responder, for example, deter-
mines that the command to open a document is routed to the
eTAppUI but to save is routed to the eTDocumentUI in
the foremost window.

Objective-C and “Protocols”. Objective-C affords dynamic
binding, delegation, and protocols, all of which are reflected
in the design. Loadable classes, and the code newly-loaded
Annotations use to register their presence are critically de-
pendent on all three. A protocol is a list of methods alone,
not a specific implementation or position in the class hi-
erarchy; thus the Engine can check if a supplied object
conformsTo: the <Annotation> protocol before load-
ing it.

3.1 eText Kernel

In Figure 3, the Kernel consists of the square classes. The
dotted arrows indicate private interfaces; communication be-
tween objects is not an N � N proposition, but is carefully
delimited within logical modules. Application-wide services
are depicted in the ovals. Finally, external loadable classes
like Annotations and Agents negotiate with the Application

and Document to interact indirectly with the rest of the ap-
plication.

Application. The application is responsible for opening,
printing, and managing several Documents. It also main-
tains the interface with the OS, the windowing system, and
the menus. The application can also load new classes and
publishes several registration hooks for such classes to add
menu items and declare which data formats each can process.
In turn, the Application works with the document to create
and manage Annotations so that, for example, a message to
paste audio waveform data is converted into a new eTAudio
annotation initialized against that waveform.

Document. The Document is responsible for maintaining the
storage model, as well as lower-level user-interface issues
like scrolling. The Document initiates and manages the read-
ing and writing processes. Before writing out a document, it
notifies all of its component object, prepares a text stream,
then asks each component to write out any component data.
Upon completion, the Document garbage collects the corpus
directory to remove undeclared component files. This pro-
cess works with the model of ETFD, HTML, and Microsoft
Multimedia Viewer.

3.2 eText Services

Navigation. This service object provides mappings between
Document objects being read and on disk and 32-bit unique
IDs. In addition to that, it maintains its own user interface
and panels for navigating a user’s collection of eText docu-
ments. Since the Link button Annotation chooses to notify
the Navigator when links are followed, the Navigator can also
maintain a user history, and backtrack by sending openID:
requests to the application and highlight: requests to
individual bookmark Annotations.

The Navigator presents a multi-column browser to the user.
Generally, a query is executed against the indexed fields of
the documents (authors, titles, keywords, comments). Out
of the general network formed by the Parent - and Peer-
links, the selected documents are collected under a root node,
and the graph is projected onto a tree; the tree is shown in
the browser. This method appears to be quite compact and
efficient; a similar system was developed at Xerox [6].

User Model. The user model service is currently quite simple.
It maintains a per-user hash table of associations between
queries and responses. An Bookmark discussing Fortran
code in a document can ask the user model to return the
user’s preference for FORTRAN and if the return is NO, it will
collapse the entry. When the model encounters a new query,
it asks the user for an appropriate response.

3.3 eText Annotations & Agents

As implied earlier, Annotations and Agents are bound at run-
time and can implement arbitrarily complex interfaces and



� Representation and Storage. Each Object must be able
to write a reference to itself out to the text stream (which
may be RTF, HTML, ...), and is offered the opportunity
to store component data (images, video, etc) within the
corpus.

2.5 Open Publishing

Embarking on the creation of an ambitious, large-scale hy-
permedia content base necessarily incorporates the risk of
being tied to a fixed software platform. While Standard Gen-
eralized Markup Language (SGML) and emerging standards
for multimedia data have reduced the risk for the actual data,
few formats yet exist for preserving the encoding of links
and formatting. (see [10] and [7] for a discussion of these
issues). For our work, we are again tied to a niche platform,
but we have designed it to be capable of emitting documents
in many different formats.

A consequence of the first and second goals of our Document
design, Atomicity and maintenance of discrete Component
Data files, suggested a Compound Document Architecture
(CDA) of a formatted text stream with objects embedded
within (as opposed to, say, a frame-oriented CDA, where ob-
jects are bound to areas of a 2D “page”) ETFD, the native
Enhanced Text Format Directory creates a corpus within a
Unix directory with files within for navigational information,
the formatted text stream (derived from RTF), and any data
maintained by objects within the document. An HTML emit-
ter is designed similarly, where the formatted text stream is
converted to analogous HTML codes and component objects
are responsible for providing conversion routines for their
own data. The latter is yet another benefit of the encapsula-
tion of media behavior into external objects.

2.6 User Interface

To make the object system work seamlessly, the system will
have to offer some way for an object to optionally express its
own unique interface and controls. In other GUIs, an embed-
ded object might reflect control by replacing the menu bar
with its own menu, but can offer little else. The key insight
here is the NeXTSTEP paradigm of inspectors. An Inspector
panel always reflects controls applicable to the user’s current
selected object. When the user selects an external Object, the
system should offer it the opportunity to provide a panel of
controls reflecting the current state of the Object. An exam-
ple is in Figure 2 Furthermore, the system needs to provide
the “glue” between these objects and the power of the under-
lying operating system and GUI facilities. Primary examples
include:

� Cut-and-Paste, Drag-and-Drop. The system should ar-
bitrate the encoding, decoding, and data format conver-
sion of objects onto the user’s pasteboard.

Figure 2: The user has selected an audio icon in the text, and
the inspector reflects the current audio selection. The pop-up
menu is a list of the different control panels the Audio object
has published to the Engine.

� Search and Replace. The system should offer compo-
nent objects the ability to respond to user queries about
search strings and indexing.

� Undo and Redo. The system should offer an architecture
for objects to provide change histories to the user, to
enable multiple-level undo and redo.

Other system support requirements follow from OS-level
considerations, such as the filesystem. For example, the En-
gine can read documents that are read-only without requiring
write permission for lock files, etc. Document saving, re-
trieval, and reversion also need to work correctly with the
filesystem; edits to the document must be kept in memory
until a “save” command.



2.1 Requirements Model

The specific “textbook” we are constructing teaches the
Archetype [15] method of sequential and parallel software
development. From a hypermedia perspective, the relevant
insights are that this domain is

� Coarse-Grained. The finest unit of reference in our
reference-cum-textbook was a document, from one to
ten pages long.

� Hierarchical. The Archetypal method is based on self-
similarity at all levels of design. At each level of the
hierarchy we have five similar aspects to consider, and
this simplifies the nature of the “navigation problem.”

� Multimodal. Documents contain several different kinds
of media, and media presentation should be personalized
according to use preferences. Our model of a media
hierarchy is presented in Figure 1.

These three observations helped us focus on systems that
1) were document-centric, 2) did not need extensive naviga-
tional visualization tools, and 3) allowed flexible extensibility
to drop code in for Interactive media.

2.2 Previous Work

Why does the world need Yet Another Hypermedia System?
When deciding to build the Engine, we compared our require-
ments to a wide variety of existing systems. We found that
the nascent hypermedia marketplace has so far only yielded
narrow, “multimedia” systems based on temporal metaphors
and sophisticated hypertext systems. None were extensible
enough to incorporate custom code (Interactive media)1 or
particularly adept at linking and navigation (Hypermedia)
. In the research literature, we found previous work with
compound-documents such as Andrew [4], document-centric
hypermedia such as IRIS [11], and object-oriented customiz-
ability such as MediaView [13], but none that combined these
threads together.

During the development of the eText Project, Mosaic [2] ex-
ploded onto the hypermedia scene, and we rapidly adopted
HTML as our lingua franca. However, the limited ability of
Mosaic to incorporate interactive simulations validates our
design philosophy of creating an maintaining a fully inter-
active document tree with eText that can automatically be
distilled to a “static” format for use in a completely different
context (see Section 2.5).

1Some commercial systems, notable Macromind Director, Claris Hy-
perCard, and Microsoft Multimedia Viewer can call functions in external
dynamically linked libraries, but provide marginal support for developing
complete objects with complex user interfaces

2.3 Documents

Most hypertext/hypermedia systems and models have pred-
icated the use of databases as the fundamental expression
of storage and manipulation. This paradigm encourages the
creation of small-scale “nodes,” as evinced by the field’s
experience with “cards” [8], “stacks” [5], and “frames” [1].

As we pursued the design of our textbook, we saw that these
small-scale metaphors were inappropriate for our applica-
tions. The natural quanta of a reference book or a personal
hypermedia reference system [14] appears to be document
of one to ten pages. Furthermore, documents, as far as pos-
sible, should be independent. A document should exist as
its own corpus of data files, not in a shared database, and
links, anchors, and indexing should be adapted to the scope
of individual documents. We derived the following design
requirements for our model of a Document:

� Atomic. Each document is complete. It can be moved
whole. It has a fixed set of keys that describe it for
indexing purposes (author, title, comments).

� Associative. Each document can be associated with oth-
ers at a macro-level. Hierarchy is created by defining a
parent link for each document; additionally, any number
of documents can be associated as Peers.

� Component Data Model. Each document must be de-
composed into component data for each kind of anno-
tation or media supplement; more generally, the storage
model must allow storage on a per-component basis.

2.4 Objects

One of our group’s inspirations was the interactive graphics
paper presented in [13] and the system in which it was created,
MediaView. The example of placing an interactive, “live”
simulation of a lighting model into a paper on lighting models
directly motivated our design requirement of extensibility.
Dynamically binding custom objects into the system affords
the creation of truly interactive media, as mentioned in Figure
1.

In fact, we can and did implement not just the top layer,
but the top three layers as custom objects within the Engine.
Displaying pictures and providing hyperlink buttons, for in-
stance, are not compiled into the Engine, but are loadable
classes that exploit several well-defined interfaces. The En-
gine can incorporate any kind of object into its model, so
long as that object fulfills the following responsibilities:

� Drawing. Objects must respond to queries about their
size in the text layout and provide a method that the
system can call to have it render itself

� Event-Handling. The Object must handle any human-
interface events in its specified rectangle.



The eText Engine: An Extensible, Object-Oriented
Hypermedia Publishing System

Rohit Khare and the eText Group
The eText Project at Caltech

MSC 256-80, Computer Science
Pasadena, CA, 91125
fax : (818) 792-4257

e-mail: khare@cs.caltech.edu

April 11, 1994

ABSTRACT

The eText Engine is a user-friendly, object-oriented, com-
pound document editor for creating interactive hypermedia
documents, specifically interactive textbooks. The Engine
supports documents that: can contain arbitrary objects in-
stantiated from dynamically bound classes at run-time; are
stored using open-standards component data formats, such as
Microsoft RTF; and can be automatically converted to HTML
for deployment on the World-Wide-Web. This openness and
extensibility is integral to the design of eText, afforded by the
introduction of Objective-C “protocols” and a flexible appli-
cation kernel. The paper presents the design architecture and
implementation of the system.

KEYWORDS: Hypermedia, Publishing, Object-Oriented
Design, User Interface Design

1 INTRODUCTION

In our efforts towards publishing electronic textbooks, de-
scribed in [9], we designed and implemented the eText En-
gine, a new system for authoring, editing, and publishing
hypermedia documents. Reflecting on the content require-
ments of our textbooks, we identified three central design
concerns:

� Documents. Our ideas about a textbook do not fit into
the model of “cards,” “screens,” or “timelines” dictated
by the vast majority of current hypermedia systems.

0Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copyright is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

c
1994 ACM 0-89791-xxx-x/xx/xxxx...

Conventional Media
Bibliography

Static PicturesStandard Text Footnotes

DiagramsIndex Charts Table of ContentsSections

Guided ToursMultimedia
Dynamic Pictures

Animations Video Audio

Slide Shows Graphics Enhanced text

Hypermedia
Multidimensional navigation

Cross-referencing

Hypertext
Inspectors

Hypernotes

Hyperlinks

Interactive Media
Interactive Slide Shows

Interactive Figures
Enhanced Animations

Feedback

the eText electronic book engine

Figure 1: The Media Pyramid

� Objects. Our goal of creating interactive figures requires
the ability to “plug in” custom coded simulations, visu-
alizations, and other interactive demonstrations, also not
afforded by most systems.

� Open Publishing. Even while pursuing a custom solu-
tion to the other two goals, we must be able to publish
a subset of our documents to widely used, open stan-
dards such as Hypertext Markup Language (HTML) [3]
or Microsoft Windows [12] .

In addition, the system was designed with ease-of-use in
mind: it is user-friendly and powerful. Our goal was to make
the authoring of complex, interactive hypermedia documents
as easy and natural as modern WYSIWIG word processing.
In the following section we will present the architectural
design and implementation of the eText Engine.

2 ARCHITECTURAL DESIGN


