
1

OREGON STATE UNIVERSITY December 1992

NOTES ON THE SCHREIER TOOL SET

Disclaimer

I originally wrote this software for my own private consumption, so you will find that the docu-
mentation is generally sparse, that the commands are often unforgiving, and that there are a few
bugs. Nonetheless, I find the programs indispensible and I hope you will too. Insert standard legal
disclaimers here absolving me of liability regarding the true utility of these programs.

First of all

To be able to use my software, you need to do the following:

ftp the file delta-sigma.tar.Z from ftp from next242.ece.orst.edu (128.193.48.65).
Please send me (schreier@ece.orst.edu) e-mail if you obtain a copy. That way, I can keep you
posted regarding any updates and improvements that are made.

Compile the programs by typing make in the src.delta-sigma directory. Either move the executa-
bles to a directory which is in your search path or add the bin subdirectory to your search path.

Copy the files in the examples subdirectory into one of your own directories.

After doing this, the following commands should work (from within the directory into which you
just copied the example files).

Some examples

% sine N=256 f=3 A=-20dB Output a cosine wave, 256 samples long with 3 cycles and
an amplitude of -20 dB (0.1).

% noise N=8 rms=-20dB Output 8 samples of uniformly distributed white noise with
an average power of -20 dB.

% modulator 1stOrder Simulate a delta-sigma modulator whose noise transfer
function is given in the file 1stOrder. You type numbers to
it (the input samples), and it responds with the output of the
modulator. Type anything that is not a number and the pro-
gram will stop.
Likewise with modulator 2ndOrder etc.

And now the fun begins. Try
% sine N=1024 f=3 | fft

This outputs the magnitude of the bins in a 1024-point FFT of a cosine wave. All bins are (nearly)
zero, except for bins 3 and -3. (The fft starts with bin 0, counts up to bin N/2, which is equivalent
to bin -N/2, and then continues counting up to bin -1.)

Next, try
% sine N=1024 f=3 A=-20dB | modulator 1stOrder | fft

You get a stream of data: the (magnitude of the) FFT of the output of the first-order modulator
with a sine wave input. (Graph this with gnuplot, if you like.) Notice the low numbers in the low-
frequency bins, except of course for bin 3 (and -3), and the larger numbers (shaped quantization
noise) in the higher bins.

If we take the oversampling ratio to be 32, we can get an idea of the signal-to-noise ratio for this
modulator by comparing the signal power to the in-band noise (the non-signal components in bins
0 to 16). I have a program which does this. To try it, type

2

OREGON STATE UNIVERSITY December 1992

% sine N=1024 f=3 rms=-20dB | modulator 1stOrder | spectralAnalysis f0=3 f1=0
f2=16 N=1024

It should respond with the signal-to-noise ratio (in dB). From the linear model, we would expect a
noise power of about -45 dB; a signal power of -20 dB thus implies an SNR of 25 dB. I get
31.5 dB SNR by simulation, 6 dB better than expected.

A rectangularly-windowed FFT has problems with spectrum smearing, and these can cause severe
errors when estimating the magnitude of small components surrounded by strong ones. I have
implemented a Hann window for the spectralAnalysis program and it is invoked with the -w
option, as follows:
% sine N=1024 f=3 rms=-20dB | modulator 1stOrder | spectralAnalysis -w f0=3
f1=0 f2=16 N=1024

These commands are a nuisance to type, especially if one wants to sweep the amplitude or fre-
quency. Use the shell script snrCheck to automate this process. You can supply arguments to
change its defaults, or you can make a copy of it (it is in ~schreier/bin) and edit it to your
heart's content. Try
% snrCheck 2ndOrder

This produces three files:
1) A 2ndOrder.p file which contains SNR vs. input power data.
2) A 2ndOrder.f file which contains SNR vs. frequency data.
3) A 2ndOrder.r file which lists the parameters (frequency, amplitude, oversampling ratio…)
that were used to create the above files.

To suppress the generation of the 2ndOrder.f file, use the -f option. You can override the default
values used in the simulation on the command line by making parameter assignments. Both
options and parameter assignments must be after the modulator name. For example,
% snrCheck 1stOrder f=5 p=-10
uses the modulator whose NTF is given in the file 1stOrder, changes the default frequency to 5
cycles and the default input power to -10 dB.

To generate a NTF, use the synthesizeNTF command:
% synthesizeNTF n=6 Hinf=1.6 R=32 w0=0.5 -opt > myModulator
This command generates a NTF file readable by the modulator program. The NTF is sixth-order,
has an out-of-band gain of 1.6, uses an oversampling ratio of 32, has a center frequency of 0.5π,
and uses optimized zeros. The default values for these parameters are 3, 1.5, 64, and 0 with non-
optimized zeros.

To map the NTF onto the cascade-of-resonators topology, use
% realize myModulator
The program responds with the required coefficient values. (At the moment, this program only
works for even-order modulators.) We will learn how to interpret these numbers later in the term.

To check the sensitivity of the SNR to the coefficients in the cascade-of-resonators topology, use
% sensitivity myModulator trials=1000 tol=.01
This command varies the coefficients randomly by 1% for 1000 trials and evaluates the in-band
noise power for each perturbed modulator. It prints the 95th percentile and the largest values of

 that resulted.N0
2

