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Introduction 

All transfer functions used in COSY_PAK are scalar unless specified. Some
COSY_PAK functions return graphic or boolean output. Most other
functions return alpha-numeric output in the form of a list. The desired
output should be extracted from the returned value if more than one variable
is returned.  An example is given below.

Example :
In[ 11] : pout ={{k,l},{m,n,j}};

In[12] : pout[[2]]
Out[12]  : {m,n,j}

In[13] : pout[[2,1]]
Out[13]  : m

Presently we support only single input single output systems (SISO). Future
versions of COSY_PAK would incorporate multi-input multi-output
systems (MIMO). The general algorithms for these functions can be found in
any standard control engineering textbook such as Ogata [1991] (see
README file). Some of the functions we have used from the very fine
Signal Processing Packages :Copyright: Copyright 1989-1991 by Brian L.
Evans, Georgia Tech Research Corporation.

See README file for more information on COSY_PAK. The functions in
this manual are listed according to the COSY_Notes notebook chapter.



 Symbol Definition

gopts: Mathematica graphics options.
s: Laplace variable.
t: time variable
Transf(s): Transfer function.
y(x): Function of time.

Chapter 1. Introduction to Control Systems Analysis

ChekAnal[Transf, s, r, w,showder]:  Checks the analyticity of the transfer
function Transf(s) at the point s=r+jw using Cauchy-Reimann conditions.
If ‘showder=1’ (optional) then the derivatives in the computation are shown. 

CPulse[l,t]: Defines a pulse which begins at t=0 and ends at t = l. The
CPulse has value 1 within the range (0,l), 0 outside this range, and 1/2 at the
points t=0 and t=l. A continuous-pulse center at the origin is written as
CPulse[l, t + l/2] or Shift[-l/2,t][CPulse[l, t]] (from  Brian Evans’ Signal
Processing package).

CStep[t], a.k.a. Unit[-1][t]:  The unit step function, which is 1 for t > 0, 0
for t < 0, and 1/2 at t = 0. It is commonly used for continuous expressions t.
See also Step and Unit  (from  Brian Evans’ Signal Processing package).

Delta[expr]: The Dirac delta function. The area under this functions is 1 but
it only has value at the origin. That is, Integrate[ Delta[t] g[t], {t, t1, t2} ] is
g[0] if t1 <= 0 <= t2, 0 otherwise. It differs from the Kronecker delta
function Impulse[t] (from  Brian Evans’ Signal Processing package).

InvLaPlace[f, s] and InvLaPlace[f, s, t]: Gives the multidimensional
bilateral inverse Laplace transform of f. A region of convergence can be
specified by using InvLaPlace[{f, rm, rp}, s, t], where rm is R- and rp is
R+ in the region (strip) of convergence: R- < Re(s) < R+. Note that
InvLaPlaceTransform is an alias for InvLaPlace (from  Brian Evans’ Signal
Processing package).

LaPlace[e, t] or LaPlace[e, t, s]: Gives the two-sided Laplace transform of
the expression e, which is a function of t, by  returning an object of four slots
tagged by LTransData: <transform>, <rminus>, <rplus>,



<laplace_variables>. The Region of Convergence (ROC) is defined as
<rminus> < Re{s} < <rplus>. Note that the returned ROC is either the
actual ROC  or a subset of the actual ROC. In two dimensions, LaPlace[e,
{t1, t2}, {s1, s2}] is the same as LaPlace [ LaPlace[e, t1, s1], t2, s2 ]. This
notation extends naturally to higher dimensions. Note that the right-sided
transform is specified by multiplying the expression by CStep[t]. Also,
LaPlaceTransform is an alias for LaPlace (from  Brian Evans’ Signal
Processing package).

LSolve[ diffequ == drivingfun, y[t] ]: Solves the differential equation
diffequ = drivingfun, where diffequ is a linear constant coefficient
differential equation and drivingfun is the driving function (a function of t).
Thus, diffequ has the form a0 y[t] + a1 y’[t] + .... One can specify initial
values; e.g., LSolve[ y’’[t] + 3/2 y’[t] + 1/2 y[t] == Exp[a t], y[t], y[0] -> 4,
y’[0] -> 10 ]. A differential equation of N terms needs N-1 initial conditions.
All unspecified conditions are considered to be zero. LSolve can justify its
answers (from  Brian Evans’ Signal Processing package).

PoleZeros[Transf, s]: Computes finite  poles and zeros of the transfer
function Transf . Returns {list of poles, list of zeros}.

SignalPlot[f, {t, start, end}]: Plots f(t) as an one-dimensional, continuous-
time function. It will show the real part as solid lines, and the imaginary part
as dashed  lines. Delta functions are plotted as upward pointing arrows. 

SignalPlot[f, {t1, start1, end1}, {t2, start2, end2}] treats f as a function of
two variables t1 and t2. SignalPlot supports the same options as Plot for 1-D
signals (functions) and Plot3D for 2-D signals (functions) (from  Brian
Evans’ Signal Processing package).

Chapter 2. Mathematical Modeling of Dynamic Systems

Linearize[ f , zvars , zpoint , vvars , vpoint]: Gives the linearization of
vector function f[zvars, vvars] = {f1[zvars, vvars], ... ,fn[zvars, vvars]}
around the operating point  zpoint and vpoint. The length of the state
variables zvars = [x1,...,xn] must be equal to the length of the operating point
zpoint = [x10,...,xn0] and the length of the control variables vvars =



[v1,...,vr] must be equal to the length of the operating point vpoint =
[v10,...,vr0]. Returns the linearized system matrices A and B  as {A,B}.

Ode2SS[lhscoeff, rhscoeff]: Converts linear ordinary differential equation
(ODE) to state space eqn. The ODE is in the format: 

y(n) + a1 y
(n-1) + ... + an-1 y(1) + an y = b0 u(n) + b1 u(n-1) + ... bn-1 u(1) + bn u

where lhscoeff = [1, a1,...,an],  rhscoeff = [b0,b1,...,bn]. If ai or bi don’t exist,
use ai=0 or bi=0. The output are Matrix A and Vector B in the state equation:
dx/dt = A x + B u. Returns the state space matrices A and B  as {A,B}. 
 
SS2Transf[A,B,C,s]:  This function transforms the state space
representation of system (A, B, C) to its transfer function representation.
Returns the transfer function transf as a function of the Laplace variable ‘s’.

Chapter 3. Transient Response Analysis

Response[ transf, Input, s, {TimeVar, StartTime, EndTime}, gopts]: Plots
the output of transfer function ‘transf’ with Laplace input signal ‘Input’.  The
Laplace variable is ‘s’.  The output graph uses the variable ‘TimeVar’ and
starts at ‘StartTime’ and ends at ‘EndTime’.  Returns the output variable as a
function of time ‘t’.

SecOrder[zeta, wn, t]: Gives the unit step response value at time instant t
for a standard second order system ωn

2/(s2 + 2ζ ωn s + ωn
2) with the

damping ratio ζ=zeta and natural frequency �ωn =wn. Returns instantaneous
value of the step response output variable at time instant ‘t’.

Chapter 4. Steady-State Response Analysis

Routh[Charpoly, s, z]: Gives the Routh’s table for application of Routh’s
stability criterion. The parameter Charpoly is the characteristic polynomial
with variable s. The parameter z define the symbol to replace the zero value
of first column terms if any. The characteristic polynomial is the
denominator of the transfer function. Returns Routh’s table as an array.



 
Chapter 5. Root-Locus Analysis 

RootLocus[Transf, s, {k,kmin,kmax}, gopts]: Plots the root-locus plot of
the transfer function Transf(s) with the Parameter k varying from k=kmin
to k=kmax. Returns graphics.

Chapter 6. Frequency-Response  Analysis

MagPlot[Transf, s, {w,wmin,wmax}, gopts]: Plots the magnitude part of
Bode plot of transfer function Transf(s) in decibel(dB), from frequency
w=wmin to w=wmax, both > 0 and in radians per second. Returns graphics.

MagvsPhase[Transf, s, {w,wmin,wmax}, gopts]: Plots the magnitude vs.
phase plot of transfer function Transf(s) with s=jw. The frequency w varies
from w=wmin to w=wmax both > 0 and in radians per second. Returns
graphics. 

NyquistPlot[Transf, s, {w,wmin,wmax}, gopts]: Plots the Nyquist plot of
the transfer function Transf(s). The plot is composed of three parts. The first
part corresponds to s=jw with w=-wmin to w=-wmax. The second part
corresponds to s=jw,  w varying from w=+wmin to w=+wmax.
Encirclement information of (-1+j0) is provided by the third part which
corresponds to s with theta=-pi/2 to pi/2. wmin and wmax should be > 0 and
radians per second. Returns graphics.
 
PhasePlot[Transf, s, {w,wmin,wmax}, gopts]: Plots the phase part of Bode
plot of transfer function Transf(s) in degree, from frequency w=wmin to
w=wmax; w is in radian per second.Returns graphics.

Polar[Transf, s, {w,wmin,wmax}, gopts]: Plots the polar plot of the
transfer function Transf(s) with  s=jw , w varying from w=wmin to
w=wmax, both > 0 and in radians per second. Returns graphics.
 
 
 



Chapter 7. State Space Analysis Methods

Controllable[A, B]: Returns a logic (boolean) value representing the
complete state controllability of system A, B.

ExpAt[A]: Returns exponential matrix of square matrix A.

Observable[A, C]:  Returns a logic (boolean) value representing the
complete state observability of system A, C.

OutControllable[A, B, C, D]: Returns a logic (boolean) value representing
the output controllability of system A, B, C, D.

ObsPolePlace[A, C, newpoles]: Determines state observer gain matrix
using Ackermann’s formula.

PolePlaceGain[A, B, newpoles]: Returns gain matirix K to place poles of
system A - BK at  locations specified by newpoles. Uses Ackermann’s
formula.

SysResponse[A, B, C, x0, input, s, {t, tmin, tmax}, gopts]: Graphs  system
output y as a function of time for the system with matrices A, B, C, at initial
state x0 from time tmin to tmax. Returns the time domain solutions for state
x and output y.

Miscellaneous Linear Algebra Functions

Note : Some of the functions that we give here  have equivalents in
Mathematica 2.0 and higher. 

matrixpower[A, n]:  Returns the matrix An, where n is a  positive integer.
This function is used by the COSY_PAK functions controllable, observable,
placepolegain,  and obspoleplace functions.



rank[A]: Returns the rank of  matrix A. The function rank returns the
integer value corresponding to the number of  linearly independent rows in
the matrix A.  The rank function is used by the  functions observable,
controllable, and outcont.

sspace[a,b]:  This function is equivalent to the other COSY_PAK function
ODE2SS. The function sspace returns the single input, single output state
space form of the ordinary differential equation such as y’’’ + a2 y’’ + a3 y’
+ a4 y = b1 u’ + b2 u with the coefficients of y and its derivatives given by
the list a and the coefficients of u and its derivatives given by the list b.  The
list a must start with a 1 and the list b should be padded with leading zeroes
to make it the same length as a. The A, B, C,and D matrices of the equations

x’= Ax + Bu
     y = Cy + Du

are returned as the global variables AOUT, BOUT, COUT, and DOUT,
representing a system with scalar input u and output y.

tpose[A]:  Returns the transpose of matrix A.


