
Bibliography

[1] M Gardner. (1971) Wheels, Life, and other mathematical amusements.

Scienti�c American.

[2] B. Hasslacher, U. Frisch, Y. Pomeau. (1986) Lattice gas automata for

the Navier-Stokes equation. Physics Review Letters, 56.

[3] P. Hogeweg. (1984) Heterarchical Modeling Encyclopedia of Systems

and Control. Oxford: Pergamon Press

[4] I.Stephenson (1991)Creature Processing: A simulation environment for

Arti�cial Life Technical Report ASEG92.02, Department of Electronics,

University of York

[5] I.Stephenson (1992) Creature Processing: An Alternative Cellular Ar-

chitecture Technical Report ASEG92.04, Department of Electronics,

University of York

APPENDIX A. JAM GRAMMER 21

hvartype i :

int

j
oat

User Guide

APPENDIX A. JAM GRAMMER 20

j hexpression i / hexpression i

j hexpression i % hexpression i

j hexpression i + hexpression i

j hexpression i - hexpression i

j hexpression i & hexpression i

j hexpression i | hexpression i

j hexpression i == hexpression i

j hexpression i > hexpression i

j hexpression i < hexpression i

j hvariable i = hexpression i

hfnumber i :

hnumber i . hnumber i

hnumber i :

hdigit i

j hnumber i hdigit i

hdigit i :

0 . . .9

hconstant i :

random

j type

j true

hfunction i :

cansee

j alert

j birth

j become

j iam

hmovement] :

A . . .Z hmovement i

j hmovement i

hvariable i :

a . . .z hvariable i

j hvariable i

User Guide

APPENDIX A. JAM GRAMMER 19

huselist i :

huselist i , hvariable i

j hvariable i

hinitdeclaration i :

INIT: hstatement i

j

hruledeclaration i :

RULE: action

htplist i :

hexpression i : haction i htplist i

j hexpression i : haction i !: haction i htplist i

haction i :

f htplist i g

j hstatement i

hstatement i :

hexpression i ;

j f hstatementlist i g

j ;

hstatementlist i :

hstatement i hstatementlist i

j hstatement i

hexpression i :

hvariable i

j hconstant i

j hfunction i (hexpression i)

j hfunction i (hvariable i ... hvariable i)

j hfunction i (hexpression i) (hnumber i)

j hmovement i

j hfnumber i

j hnumber i

j (hexpression i)

j hexpression i * hexpression i

User Guide

Appendix A

Jam Grammer

hinput i :

hneighbordeclaration i htypedeclaration i hvardeclaration

i husedeclaration i hinitdeclaration i hruledeclaration i

neighbordeclaration :

NEIGHBORHOOD: hvariable i ;

typedeclaration :

TYPES: htypelist i ;

htypelist i :

htypelist i , hvariable i

j hvariable i

hvardeclaration i :

VARS: hvarlist i ;

j

hvarlist i :

hvarlist i , hvartype i hvariable i

j hvartype i hvariable i

husedeclaration i :

USE: huselist i ;

j

4.4 Creating USE �les 17

#import <appkit/graphics.h>

#import <dpsclient/psops.h>

#import <appkit/color.h>

-display

{ /* over write display method to use colour */

NXSetColor(NXConvertHSBToColor(((float)type)/10.0, 1, 1));

PSrectfill(x,y,1,1);

return self;

}

Figure 4.5: The USE �le \color"

User Guide

4.4 Creating USE �les 16

#import "Creature.h"

@implementation Gas:Creature

{

}

- step:nextgeneration n:(int *)neighbours g:graveyard

{

#include "macro.h"

#include "vn.h"

#define NP 0

#define SP 1

#define EP 2

#define WP 3

#define BOX 4

#define ICE 5

switch (type)

{

case BOX:

case ICE:

CENTER;

case NP:{

if(CANSEE(SP)!=0) {BECOME(EP);EAST;}

if(CANSEE(BOX)!=0) {BECOME(SP);SOUTH;}

if(CANSEE(ICE)!=0) {BECOME(ICE);SOUTH;}

NORTH;

}

case EP:{

if(CANSEE(WP)!=0) {BECOME(NP);NORTH;}

if(CANSEE(BOX)!=0) {BECOME(WP);WEST;}

if(CANSEE(ICE)!=0) {BECOME(ICE);WEST;}

EAST;

}

case SP:{

if(CANSEE(NP)!=0) {BECOME(WP);WEST;}

if(CANSEE(BOX)!=0) {BECOME(NP);NORTH;}

if(CANSEE(ICE)!=0) {BECOME(ICE);NORTH; }

SOUTH;

}

case WP:{

if(CANSEE(EP)!=0) {BECOME(SP);SOUTH;}

if(CANSEE(BOX)!=0) {BECOME(EP);EAST;}

if(CANSEE(ICE)!=0) {BECOME(ICE);EAST;}

WEST;

}

default:

{ALERT("Unknown Creature");DIE; }

}

}

@end

Figure 4.4: The Gas model, in Obj C

User Guide

4.4 Creating USE �les 15

operates. This low level understanding is essential for writing USE �les.

Rules �les are Objective C object modules which de�ne a sub Class of the

generic Creature class. However an understanding of Objective C is not re-

quired, though knowledge of standard C would be useful. It is quite possible

to build complex rules from only a very limited subset of the C language.

Most of the work is done transparently in the Creature class, and the sup-

porting macro package.

The ideal gas rule previously examined, is presented again in �gure 4.4. The

model is now coded in Objective C. It should be noted that while this similar

to the output of pancake, the code shown here is hand written.

The code overwrites the default step: n: g: method.The exact details

of this operation are not essential to the writing of rules, as macros are

de�ned to hide many of the details. These are included in macro.h. The

neighborhood de�nitions are in vn.h. We assign an index to each of the

creature type. What follows is almost identical to the Jam de�nition.

A further understanding may be obtained by examining the included header

�les, which de�ne the macro set.

4.4 Creating USE �les

Figure 4.5 shows the USE �le which draw creatures in colour. The code

overwrites the monochrome display method of the creature class, with a

new colour drawing routine. The routine uses two instance variables (which

we have otherwise chosen not to mention, as they are not part of the pro-

gramming model). x and y which hold the position of the creature. It is con-

vention that each creature be drawn in the square (x,y) (x+1,y) (x+1,y+1)

(x,y+1) (x,y). This is not essential to the operation of the simulator, but

any other mapping will produce undesirable behavior if the inspector is used.

It is also possible to overwrite other methods of the creature class, such as

the near methods. This would (for example) allow higher dimension models

to be build.

User Guide

4.3 Writing creatures in Objective C 14

Pancake

CC

ObjectiveC

Jam file

Cinc

Position FileRule File

Simulation

Figure 4.3: The Compile Cycle

be used, as a number of special include directories are required. Typing

make creates a .m �le from the .jam �le, and compiles this into an object

(.o) �le which may be loaded into Cinc. This compile cycle is shown in

�gure 4.3.

4.3 Writing creatures in Objective C

Writing rules in Objective C is strongly discouraged, as it will prevent the

code being run on simulators other than Cinc. However it is useful to exam-

ine how such a rule may be written, as it gives some insight into how Cinc

User Guide

4.2 Using the pancake compiler 13

The �rst part of the RULE de�nition is activated if the creature has an

age of zero. There are nine creature types which each move in a di�erent

direction, spreading the spores of a living cell. The second half of the rule

will be e�ective on the second step the creature makes. A master for each

potentially live location is elected. This decides whether the cell should be

alive or not. It so, then a number of creatures are produced which will

proceed to spread in the following phase.

This implements the game of live at half the clock speed of the creatures

model.

This rule makes use of the range operator, which allows ranges of creatures to

be easily examined, as one. It may be applied to the cansee, iam, and birth

functions. Cansee will return the number of creatures within the range. Iam

will return true for if the type of the current creature is within the range.

Birth will produce one of each type of creature within the range.

There are two additional constructs which have not been used within either

of these models. The �rst is a form of replicator which may only be used

with the birth function. The operation birth(type)(400) would produce

400 creatures of type type. Both this and the range operator are statically

bound at compile time. Variables may not be used to speci�cally ranges or

replication numbers.

The �nal structure supported by the language is the USE: file,file; di-

rective, which may be inserted immediately after the VARS declaration. This

is used to include system speci�c modi�cations to creature behavior, such as

drawing the creature in a di�erent fashion. Typically, a selection of prewrit-

ten USE �les will be supplied with a simulator. Cinc provides \color" which

draws creatures in colour, and \hex" which approximates the drawing of

creatures onto a hex lattice for use with the hex neighborhood). Creating

new USE �les requires a deeper understanding of how the Cinc simulator

operates.

4.2 Using the pancake compiler

The pancake compiler will compile �les in the jam language into objective

C, for use with Cinc. Other compilers have been written to support other

simulators. Pancake operates as a �lter, reading from standard input, and

writing to standard out. To create a rule �le, the make�le provided should

User Guide

4.1 Writing Rules in Jam 12

NEIGHBORHOOD:moore;

TYPES:cp,ep,nep,np,nwp,wp,swp,sp,sep;

VARS:int age;

INIT:{

age=0;

}

RULE: {

age==0: {

true : age=1;

iam(cp) : CENTER;

iam(ep) : EAST;

iam(nep) : NORTHEAST;

iam(np) : NORTH;

iam(nwp) : NORTHWEST;

iam(wp) : WEST;

iam(swp) : SOUTHWEST;

iam(sp) : SOUTH;

iam(sep) : SOUTHEAST;

}

!: {

iam(ep) & cansee(cp) : DIE;

iam(nep) & cansee(cp...ep) : DIE;

iam(np) & cansee(cp...nep) : DIE;

iam(nwp) & cansee(cp...np) : DIE;

iam(wp) & cansee(cp...nwp) : DIE;

iam(swp) & cansee(cp...wp) : DIE;

iam(sp) & cansee(cp...swp) : DIE;

iam(sep) & cansee(cp...sp) : DIE;

(cansee(ep...sep)==2 & iam(cp))|cansee(ep...sep)==3 : birth(cp...sep);

true : DIE;

}

}

Figure 4.2: The Game of Life

User Guide

4.1 Writing Rules in Jam 11

NEIGHBORHOOD:vn;

TYPES: np,sp,ep,wp,box,ice;

RULE:{

iam(box) | iam(ice): CENTER;

iam(np): {

cansee(sp) : {become(ep);EAST;}

cansee(box) : {become(sp);SOUTH;}

cansee(ice) : {become(ice);SOUTH;}

true : {NORTH;}

}

iam(sp): {

cansee(np) : {become(wp);WEST;}

cansee(box) : {become(np);NORTH;}

cansee(ice) : {become(ice);NORTH;}

true : {SOUTH;}

}

iam(ep): {

cansee(sp) : {become(np);NORTH;}

cansee(box) : {become(wp);WEST;}

cansee(ice) : {become(ice);WEST;}

true : {EAST;}

}

iam(wp): {

cansee(ep) : {become(sp);SOUTH;}

cansee(box) : {become(ep);EAST;}

cansee(ice) : {become(ice);EAST;}

true : {WEST;}

}

}

Figure 4.1: An Ideal Gas

User Guide

4.1 Writing Rules in Jam 10

4.1.1 An ideal Gas

Figure 4.1 shows a simple model of an ideal gas, written in Jam. The

de�nition begins with a speci�cation of the neighborhood. This model uses

the Von Neumann neighborhood | North, South, East and West (moore,

and hex neighborhoods are also supported). These de�ne the locations into

which a creature may move, relative to its current position. We next de�ne

the creature types which exist in our model. This simple model does not hold

any internal states for the creatures. These would be de�ned and initialized

at this point (as we shall see in a later, more complex example).

The next stage of the de�nition is the speci�cation of the rule itself. This

is written as a number of tests and actions (which in turn may contain

a list of tests). The Gas rule �rst tests if the creature is a box particle

or an ice particle. If so, the creature will perform the CENTER action.

This is a movement operation de�ned in the neighborhood declaration, and

is therefore a terminal operation. The rest of the rule is ignored once a

creature performs a terminal action. Only creatures which are not of the

box or ice type will consider the next test. The rest of the rule consists of

four similar sections, one for each of the remaining types. Upon the selection

of one of these actions, a further set of tests is performed. Considering the

creature type np, if it encounters a sp it will become an ep and start moving

east. Similarly on encountering a box it will \bounce" o�, becoming a sp,

and start moving south. When an ice creature is encountered, the np is

turned to ice, and moves back into its previous location, where it will be

frozen, increasing the size of the ice crystal which grows across the screen.

4.1.2 The Game of Life

The code to produce the game of Life (�gure 4.2) is somewhat more complex

than the previous example, and introduces a number of new concepts. The

Life rule uses the Moore neighborhood, as this allows access to the diagonal

neighbors, which are not part of the Von Neummann neighborhood. To

build the game of life within the creatures paradigm it is necessary to think

of the system in terms of spores which spread from active cells into adjacent

locations. To implement this we require each creature to be aware of its

age. This is introduced by the VARS construct. The INIT statement is

executed by every creature when it is created, and allows any variables to

be initialized.

User Guide

Chapter 4

Rules Files

Rule �les will generally be written in the custom creature de�nition language

\Jam". This allows rules to be laid out in a straighforward fashion. These

jam �les may then be compiled into Objective C, and then into object �les

which may be loaded into Cinc.

Rules may also be written directly in objective C. This allows the program-

mer more control over how a creature interacts with the simulator. However

this should be unnecessary for most rules. A mechanism is provided by

which these modi�cations (in particular adjustments to the way creatures

are displayed) may be included in Jam rules, abstracting the programmer

from low level implementation details.

It is not the intention of this document to give full speci�cations of the

programming language, rather an overview of the techniques is presented

using a number of examples. We will �rst look at the Jam language, and

how these may be compiled. We will then consider the use of raw Objective

C.

4.1 Writing Rules in Jam

The Jam language may has been designed for writing creature rules. While

lacking certain features that would be required in a conventional program-

ming language (such as loops), it is particularly suited to the type of ex-

pressions required in the de�nition of rules. Two examples are presented :

an ideal gas, and the game of life.

Chapter 3

Position Files

Files with a \.pos" extension are position �les. These contain an initial set

of creatures which may be loaded into the simulator. They specify each

creature in the format

t:0 x:0 y:0

with one creature per line. The number following the t speci�es the type

of creature. The x and y values specify the location at which it should be

placed. 0,0 is the center of the creature view.

2.1 A typical Cinc session 7

Clicking on the Rule button will reload the rule from the current rule �le.

This is used during development | the user will typically be developing a

rule, and constantly be reloading a modi�ed version into the simulator for

testing. Loading a rule will also reset the position.

The position may be explicitly reloaded by clicking on the rule button.

The user will typically start the system, load a position and rule set, run the

simulation for a number of steps, examining the result using the inspector.

The rule will then be modi�ed, and recompiled (outside the simulator), and

reloaded for further examination.

In addition the user may print the contents of the creature view, using the

standard print panel. The current position may also be saved to a �le,

though it should be noted that this does not necessarily allow a simulation

to be restarted, as the internal state of the creatures is not stored.

User Guide

2.1 A typical Cinc session 6

2. Displays the selected location when in local mode.

3. Creature type number.

4. The number of creatures.

Finally there is the standard NeXT menu which allows �les to be loaded

and saved, the display to be printed, and other miscellaneous operations.

2.1 A typical Cinc session

A session may be started by double clicking the application icon , or opening

a position �le, which should appear in the workspace as:

Once Cinc is running the user must load a rule �le (and a position �le,

if one has not been opened). This is done by selecting The appropriate

option from the document sub-menu, and specifying the �le name within

the a standard open panel. When both a rule, and a position �le have been

loaded, then the simulation may started. This is done by pressing the \Go"

button. The simulation may be slowed down, for more detailed inspection

with the \delay" slider. Further control may be obtained by stopping the

run, and single stepping with the \Step" button.

The inspector may be instigated by selecting it from the menu

1

. This allows

the creatures to examined by type, either locally or globally. In global mode

all creatures are displayed in the panel. In local mode, a box will appear on

the creature view indicating which location is currently under inspection.

This may be moved by clicking in the creature view. Only those creatures

in the selected location will be counted.

The top line of the main window provides a count of the number of creatures,

and the number of generations since the system was last reset. It also

includes the scale slider which allows the creatures view to be zoomed in

and out over the creature space.

1

Use of the inspector will slow the simulator down, and hence it should only be brought

up when required

User Guide

CHAPTER 2. CINC 5

1

2

3

4

Figure 2.2: The Cinc Inspector Panel

User Guide

CHAPTER 2. CINC 4

1 2 3 4

5 6 7 8 9

Figure 2.1: The Main Cinc display

User Guide

Chapter 2

Cinc

Creature programs may be run under NeXTStep using the Cinc simulator.

The main window in Cinc is shown in �gure 2.1. This contains most of the

features of Cinc that are required to develop and examine simulations using

the creatures model. The key elements are:

1. The number of creatures in the current generation.

2. The creature view which displays the active creatures.

3. The number of generations since the system was last reset.

4. The Scale slider, which allows the user to zoom in/out on the creature

view.

5. The Step button, advances the simulation one time step.

6. The rule button reloads the current rule.

7. The Delay controls set the speed at which the simulation runs

8. The Position button resets the current position.

9. The Go/Stop button which sets the simulation running.

In addition an inspector panel allows the number of creatures to be examined

by type, on a local and global basis. This is shown in �gure 2.2.

1. Selects between local and Global selection.

Chapter 1

Introduction

This document provides an introduction to the Creatures model of process-

ing, and to the use to the Cinc simulator. The theory and rational of the

processing model are not discussed, as this may be found else where. It is the

aim here to provided the practical details which are required to e�ectively

use the Cinc toolset.

We will �rst discuss the operation of the simulator, before considering how

position and rule �les may be produced.

Cinc

User Guide

Draft

I Stephenson

Adaptive Systems Engineering Group email : ian@ohm.york.ac.uk

Department of Electronics Tel : (+44) 904 432381

University of York Fax : (+44) 904 432335

York Y01 5DD

March 1992

This work is supported by the Royal Signals and Radar Establishment, Malvern,

Worcs and the Science and Engineering Research Council.

