
Hippoplotamus

Users Guide
(Release 1.1)

Mike F. Gravina,
Paul F. Kunz
Paul Rensing

Stanford Linear Accelerator Center

Stanford University

Stanford CA 94309

Hippoplotamus

i

Disclaimer Notice
The items furnished herewith were developed under the sponsorship of the U.S. Government.

Neither the U.S., nor the U.S. D.O.E., nor the Leland Stanford Junior University, nor their employ-
ees, makes any warranty, express or implied, or assumes any liability or responsibility for accuracy,
completeness or usefulness of any information, apparatus, product or process disclosed, or repre-
sents that its use will not infringe privately-owned rights. Mention of any product, its manufacturer,
or suppliers shall not, nor is it intended to, imply approval, disapproval, or fitness for any particular
use. The U.S. and the University at all times retain the right to use and disseminate the furnished
items for any purpose whatsoever. Notice 91 02 01

Copyright 1992

by
The Board of Trustees of the

Leland Stanford Junior University.
All rights reserved.

Changes in this document from the previous release (1.0) are marked with a
vertical bar in the left hand column such as this paragraph is marked.

This document was produced on a NeXTstation computer using FrameMaker
3.0.1 workstation publishing software. Only Adobe typefaces Courier, Helvetica,
and Times were used to allow printing on most PostScript printers.

 Work supported by the U.S. Department of
Energy under contract DE-AC03-76SF00515.

Hippoplotamus

1

1. Introduction

The Hippoplotamus package, or hippo for short, is a library of data display and
histogram functions based on n-tuples. A n-tuple is basically a table of floating
point numbers with a fixed number of columns and some indeterminate, perhaps
large, number of rows. The entries in the n-tuple, e.g. the rows, could be as simple as
a set of x-y points. Such a n-tuple would have only two columns or be said to have a
dimension of 2. Or it might be four dimensions containing x, y, error on x, and error
on y. Hippo can also select one or two columns and produce a histogram of 1 or 2 di-
mensions. In addition, hippo can use additional columns to apply cuts on which
rows will be used for 1 or 2 dimensional histograms. Finally, hippo can over plot ar-
bitrary functions on its displays.

Hippo is logically divided into two parts: the n-tuple package and the display
package. The philosophy of the hippo design that users will create n-tuples from
their own programs, and use an interactive application to view them. Thus the n-tu-
ple part of the hippo package is designed to make the creation of the n-tuple as easy
as possible. The functions in this part of hippo were designed for use by an end-user.
On the other hand, the display part of the hippo package was designed for someone
who implements an interactive application to view and manipulate the displays. It is
the basic premise of hippo that although the user may have a good idea what data to
collect into an n-tuple, he has a much poorer idea of the attributes of their display.
Thus, users will use an interactive application to change these attributes. Thus hippo
is designed to postpone fixing the attributes of displays and histograms until they
need to be presented on the users terminal or workstation.

In comparison to other display and histograms packages, hippo has the fol-
lowing interesting properties…

• It is written in ANSI C and intended to be used in C programs. As such it will
make use of features in C such as casting parameters in function calls, use of
pointers and structures, dynamic memory allocation, enumerated data types,
etc. However, a FORTRAN binding for the n-tuple part of the package is sup-
ported.

• Network support is built into hippo by storing files to disk in a form compat-
ible with the industrial standard XDR format[1]. Thus n-tuple files can be gen-
erated on one computer and transparently used on another. In a future release,
one will be able to have a server on one machine providing n-tuple data to n-tu-
ple viewing application on another.

Hippoplotamus

2

• Hippo can be used with one program generating a n-tuple file and another pro-
gram or application to view them. In this mode, it is kind of a client/server re-
lationship. However, hippo can be easily incorporated into any program that
generates the n-tuple data where the client and server are within the same pro-
gram.

This document is organized first as a users guide and then as a reference man-
ual. The first sections deal with creation of n-tuple data and files. It should be all that
a typical user needs to know. The next sections describe the display package for the
display programs and applications.

Hippoplotamus

3

2. N-tuple Creation

A hippo n-tuple can be created in one of two basic methods. The first is to in-
corporate the hippo n-tuple package in a program. Basic functions are provided to
initialize, accumulate, and save the n-tuple into a file. Other functions allow one to
give the n-tuple a title and to label the columns. Program binding for the C, C++,
Objective-C, and FORTRAN languages are supported. The second method is to cre-
ate a plain text file representing the n-tuple data, title, and column labels and to use
the hippo text-to-binary conversion utility.

2.1 N-tuple creation with C, C++, or Objective-C programs

The basic steps in creation of an n-tuple file are initialization, accumulation
and saving the file. Before making the first call to a hippo function one should in-
clude the hippo header file

and declare a variable to be of type ntuple.

This variable is actually a pointer to a structure where the n-tuple data and other in-
formation needed by hippo will be stored. The variable must be initialized with the
function call

before it is used. The function h_new takes one integer parameter: ndim which is the
number of variables, i.e. the number of columns, per entry in the n-tuple. There is no
need for the user to know about the internals of the n-tuple structure. Hippo func-
tions are provided to access any of the information in the structure an advanced user
may need to have.

 To collect data for a simple x-y plot, the dimension of at least 2 could be used,
while for an x-y plot with errors on both x and y, a dimension of at least 4 could be
used. For eventual generations of a 1D histogram, ndim could be as small as 1, while
for weighted 1D histogram ndim is 2, one variable for the value (x) and the other for
the weight (w). For a typical 2D histogram generation ndim is 2, while for a weight-

#include hippo.h

ntuple my_tuple;

my_tuple = h_new(ndim);

Hippoplotamus

4

ed 2D histogram ndim is 3 (x, y, and w). However, any collection of n variables may
be collected into the n-tuple.

 Attributes normally associated with histograms, such as number of bins, low
edge of first bin, bin width, etc. are not defined when the n-tuple is initialized. In
hippo package, they are considered display attributes and thus defining them is de-
ferred until a projection of the n-tuple is displayed.

 Note the hippo package does not maintain state. h_new allocates memory
space for the new n-tuple structure and returns it to the caller. It will not remember
that it did that. The user or a higher level package will be responsible for main-
taining the list of n-tuples in memory.

 To accumulate data into an n-tuple, the user can invoke the hippo function
h_fill as shown below. The first parameter is the n-tuple data variable that was

previously declared and initialized. The subsequent parameters to the function call
are the data to be accumulated into the n-tuple entry. Their number must be equal to
the dimension of the n-tuple defined by the h_new function call and be of type float.

The function h_fill returns the integer return code 0 on success or -1 on fail-
ure. The only known failure mode is exhaustion of virtual memory space. Thus, the
limit of the number of entries of an n-tuple is determined only by virtual memory
space available.

Sometimes it is more convenient organize the data to be accumulated as a float-
ing point array. An alternate hippo function accepts such an array as its second pa-
rameter. The fragment of code show below illustrates its use. The size of the array

must be at least the dimension of the n-tuple.

Once the n-tuple is collected in memory, it can be written to disk with the
h_write function. It allows for one or more n-tuples to be written to a file in a single
call. It also can write any displays attached to the n-tuple that the user may have de-
fined. The prototype for the h_write function is shown below. The first argument is

irc = h_fill(my_tuple, x, y, ...);

float x[10];
...
irc = h_arrayFill(mytuple, x);

int h_write(const char *filename,
display dlist[],
ntuple ntlist[]);

Hippoplotamus

5

a string with the name of the file. The remaining two arguments are NULL terminated
arrays of displays and n-tuples respectively. Passing a NULL is the same as an empty
list thus a simple example of generating an n-tuple without displays might look as
shown in Figure 1. In this example, an n-tuple with 1000 entries containing floating
point number from 0. to 999. is created and saved to a file named test.

Before writing an n-tuple to a disk file, however, the user may wish to give the
n-tuple a title and to label the individual columns. The prototypes for the three hippo
provided for this purpose are shown below. Each takes as its first parameter the n-tu-

ple data variable. The title of the n-tuple is set by the h_setNtTitle function. The
h_setNtLabel sets the label of the column given in the second parameter, while the
h_setAllNtLabels function sets the labels of all the columns in one call. These
functions can be called any time after the n-tuple has been initialized with the h_new

function call.

If the user has a n-tuple display program based on hippo, then this is all that the
user really needs to know about hippo function package. The rest of this document
is hippo reference manual for users that want to handle their own displays, for peo-
ple who want to write a hippo display program, or for users need more sophisticated
use of the hippo package.

#include "hippo.h"
main()
{

ntuple ntlist[2];
 float x; int rc;

ntlist[0] = h_new(1);
for (x = 0; x < 1000.; x++) {

rc = h_fill(ntlist[0], x);
}
ntlist[1] = NULL;
h_write("test", NULL, ntlist);

}

Figure 1. Basic n-tuple creation steps.

int h_setNtTitle(ntuple nt, const char *title);
int h_setNtLabel(ntuple nt, int dim, const char *label);
int h_setAllNtLabels(ntuple nt, ...);

Hippoplotamus

6

2.2 N-tuple creation with FORTRAN program

A limited set of FORTRAN callable routines exist so that n-tuple creation can
be done within FORTRAN programs. An example of FORTRAN code using hippo is
given in Figure 2. For each hippo C function that has a FORTRAN binding, the cor-
responding FORTRAN function has the same name with “h_” replaced with “ip ”.

The arguments used by the FORTRAN function are also the same, or have the
same meaning as the corresponding C function. However, where the C function ar-
gument calls for data of type ntuple , an integer data type is used for FORTRAN.
Thus, nt = ipnew(ndim) returns a new n-tuple with ndim columns and irc = ip-

setNtTitle(nt, 'A Title') sets its title. Also, since by default FORTRAN in-
dices start at 1 instead of 0 as in C, the n-tuple column variable, ndim , should be
equal to 1 for the first column. Since standard FORTRAN doesn’t support variable
length arguments lists, only the iparrayFill() is supported but not ipfill() . Fi-
nally, trailing blank characters will be removed from any character variables. In the

 Real*4 x(10)
 Integer ntlist(4)
 Integer nt
 Integer irc
C
 nt = ipnew(4)! generate the tuple
C
 irc = ipsetNtTitle(nt, 'First Tuple Title')
C
 irc = ipsetNtLabel(nt, 1, 'First Column')
 irc = ipsetNtLabel(nt, 2, 'Second Column')
 irc = ipsetNtLabel(nt, 3, 'Third Column')
 irc = ipsetNtLabel(nt, 4, 'Fourth Column')
C
 Do 10 i = 1, 4
 x(i) = i
 10 Continue
C
 Do 20 i = 1,4
 irc = iparrayFill(nt, x)
 20 Continue
C
 ntlist(1) = nt
 ntlist(2) = 0
 irc = ipwrite('test.histo', 0, ntlist)
 end

Figure 2. Example of Hippo with FORTRAN.

Hippoplotamus

7

current release, creation of displays with FORTRAN is not supported, so the cor-
responding argument in the call to ipwrite() must be 0. Note also that the n-tuple
argument in ipwrite() is an array of integers which dimensioned at least one large
then the number of n-tuples to be written. The value 0 is used to terminate this array
in place of the NULL used in the C function.

2.3 Plain text to binary conversion

By default, hippo generates machine independent binary files when the hippo
package is incorporated in the user’s C or FORTRAN program. An alternate method
of generating such files is to first generate a n-tuple in plain text (ASCII) format and
use a conversion utility to convert that format to binary. This utility is provided as a
line mode command on all platforms supported by hippo.

The full details of the conversion program, text2nt , is shown below in UNIX
syntax. The input and output file names can be specified by switches (-i or -f , and

-o , respectively) or by positional arguments. Thus, the following two commands
have the same result…

If the input or output file is not specified, then text2nt reads from stdin or writes
to stdout respectively. Optionally, conversion can append its output to an existing
file. The -a switch is used for this purpose and it is followed by the existing file-
name. When this switch is used, the -n may be used to direct the output to a par-
ticular n-tuple of the existing file. The number following this switch is used as an
index (starting at 0) of the n-tuple to be appended. Finally, the -v switch is the ver-
bose flag that causes ntuple to print various messages of progress to stderr .

The format of the plain text file is very simple. They consist of “lines” of no
more than 256 characters that are delimited by the new line character ('\n ' in C) or
a by “; ”. Within a line there can be either numeric fields or string fields. A numeric
field starts with a number (“0-9 ”, “ - ”, or “+”) are delimited by one or more of “, ”,
<space> , or <tab>. Any letters contained in a numeric fields are ignored except for
“ e” and the remaining digits are read as numbers. Numeric fields in the form
“6.626e-34” are allowed. String fields are used for the n-tuple title and column la-

text2nt [-a hippo_file] [-v] [-n number]
[-f text_file] [-i text_file]
[-o hippo_file] [text_file [hippo_file]]

text2nt -i mydata.dat -o mydata.hippo
text2nt mydata.dat mydata.hippo

Hippoplotamus

8

bels. They are delimited by single quote (') or double quote (") characters. An open
quote must be matched by an identical close quote (e.g. "matches" , 'matches'),
but either of the two types can be used in a file.

The title and label fields can be specified anywhere in the file, but the title must
be before the labels. The first “line” which does not start with a numeric field and
which contains string field (typically, the first line of the file) is used as the title; ev-
erything else on that “line” is ignored. The labels come from the second “line” that
contains starts with a string field and all labels must be on one “line”.

The dimension of the n-tuple is determined from the first line which starts from
a numeric field. This line will be scanned until the first field that does not read as a
number. The number of valid numeric fields sets the number of columns of the n-tu-
ple. All subsequent lines must have that many (or more) numeric fields; each line
corresponding to one row of the n-tuple. Lines which don't contain enough numeric
fields, or which don't contain string fields (once the title and labels have been de-
termined) are ignored.

 An example of a plain text file readable by the text2nt program that contains two
rows of three columns is shown below. Note that one can freely mix either style of

quoted strings and that letters that are not quoted are ignored.

2.4 HBOOK4 to Hippo conversion.

The utility program hb2hippo will extract n-tuples from file created by the
HBOOK4 package[2] and save the n-tuples in hippo file format. The program is run
as a command with 1 or two arguments as follows…

The first argument is the name of the HBOOK4 file. The second argument is optional
and is used as the name of the hippo file. If not given, then the hippo file will be
named out.hippo . In the current release, any histograms in the HBOOK4 file are ig-
nored.

"This is the title line"
"column0" 'column1' "column2" extra junk ignorned
4.5 32.5 68.3
4.7,29.8, 58.7 extra junk ignored
this line is ignored
-2.18, 66. another line ignroed
4.9, 27.4 55.7 this line used

hb2hippo hbook_file [hippo_file]

Hippoplotamus

45

6. History

The prototype for hippo was a package called HandyC written by Benoit
Mours while he was at SLAC. It was intended to support the Reason project.
HandyC was written in C, and it demonstrated the power of the C programming lan-
guage for such packages. It followed the calling sequence of SLAC’s HandyPak[3]
but added a few new features. Features from the DESY package GEP[4], and the
CERN package HBOOK[2], which have been incorporated into hippo. The authors
of hippo are indebted to work done Benoit Mours and the authors of these other
packages.

 HandyC was not only a good test bed to try out new ideas, but also to measure
the performance and/or response time the user would feel for these features. In the
summer of 1990, Jonas Karlsson, then working as a summer student, suggested that
one should really start over again with a better base in order to implement yet further
new ideas. William Shipley (another summer student) and Gary Word contributed
to the foundation of hippo soon thereafter. Jonas Karlsson did the original imple-
mentation. The current authors started working on hippo in earnest early in 1991.
Tom Pavel did the InterViews plot driver and Tony Johnson of Boston University
did the X11R4 driver.

7. References

[1] XDR External Data Representation Standard, RFC1014, Sun Microsystems, Inc., USC-ISI
(see also man pages on UNIX systems).

[2] R. Brun, D. Lienart, HBOOK USER GUIDE: CERN COMPUTER CENTER PROGRAM
LIBRARY LONG WRITEUP:VERSION 4, CERN-Y250, Oct 1987. 108pp.

[3] A. Boyarski, HANDYPAK: A HISTOGRAM AND DISPLAY PACKAGE (RELEASE 6.5), SLAC-
0234-Rev-2, Sep 1988. 132pp. Revised version.

[4] E. Bassler, THE GRAPHICAL EDITOR PROGRAM: GEP, COMPUT. PHYS. COMMUN. 45
(1987) 201-205.

Hippoplotamus

46

