
Hippoplotamus

Users Guide and Reference Manual
(Release 1.1)

Mike F. Gravina,
Paul F. Kunz
Paul Rensing

Stanford Linear Accelerator Center

Stanford University

Stanford CA 94309

Hippoplotamus

i

Disclaimer Notice
The items furnished herewith were developed under the sponsorship of the U.S. Government.

Neither the U.S., nor the U.S. D.O.E., nor the Leland Stanford Junior University, nor their employ-
ees, makes any warranty, express or implied, or assumes any liability or responsibility for accuracy,
completeness or usefulness of any information, apparatus, product or process disclosed, or repre-
sents that its use will not infringe privately-owned rights. Mention of any product, its manufacturer,
or suppliers shall not, nor is it intended to, imply approval, disapproval, or fitness for any particular
use. The U.S. and the University at all times retain the right to use and disseminate the furnished
items for any purpose whatsoever. Notice 91 02 01

Copyright 1992

by
The Board of Trustees of the

Leland Stanford Junior University.
All rights reserved.

Changes in this document from the previous release (1.0) are marked with a
vertical bar in the left hand column such as this paragraph is marked.

This document was produced on a NeXTstation computer using FrameMaker
3.0.1 workstation publishing software. Only Adobe typefaces Courier, Helvetica,
and Times were used to allow printing on most PostScript printers.

 Work supported by the U.S. Department of
Energy under contract DE-AC03-76SF00515.

Hippoplotamus

ii

Table of Contents

1. Introduction 1

2. N-tuple Creation 3
2.1 N-tuple creation with C, C++, or Objective-C programs 3
2.2 N-tuple creation with FORTRAN program 6
2.3 Plain text to binary conversion 7
2.4 HBOOK4 to Hippo conversion. 8

3. Displays 9
3.1 Code example 9
3.2 Display creation 10
3.3 Bindings to the n-tuple 12
3.4 Axis and bin attributes 12
3.5 Input and Output 13
3.6 Titles and Labels 14
3.7 Plot Drivers 14
3.8 Cuts and Plot Functions 15

4. Reference Manual 17
4.1 N-tuple functions 17
4.2 Display functions 20
4.3 Display axis. 25
4.4 Display Actions 28
4.5 Auxiliary functions 31
4.6 Input and Output functions 33
4.7 Cut and Plot Functions 34
4.8 FORTRAN Binding. 37

5. Installation 39
5.1 Requirements 39
5.2 UNIX Makefile 40
5.3 VMS Installation. 43
5.4 Miscellaneous Files 43
5.5 Problems, Changes and Bug Reports 44

6. History 45

7. References 45

Index

Hippoplotamus

iii

Hippoplotamus

1

1. Introduction

The Hippoplotamus package, or hippo for short, is a library of data display and
histogram functions based on n-tuples. A n-tuple is basically a table of floating
point numbers with a fixed number of columns and some indeterminate, perhaps
large, number of rows. The entries in the n-tuple, e.g. the rows, could be as simple as
a set of x-y points. Such a n-tuple would have only two columns or be said to have a
dimension of 2. Or it might be four dimensions containing x, y, error on x, and error
on y. Hippo can also select one or two columns and produce a histogram of 1 or 2 di-
mensions. In addition, hippo can use additional columns to apply cuts on which
rows will be used for 1 or 2 dimensional histograms. Finally, hippo can over plot ar-
bitrary functions on its displays.

Hippo is logically divided into two parts: the n-tuple package and the display
package. The philosophy of the hippo design that users will create n-tuples from
their own programs, and use an interactive application to view them. Thus the n-tu-
ple part of the hippo package is designed to make the creation of the n-tuple as easy
as possible. The functions in this part of hippo were designed for use by an end-user.
On the other hand, the display part of the hippo package was designed for someone
who implements an interactive application to view and manipulate the displays. It is
the basic premise of hippo that although the user may have a good idea what data to
collect into an n-tuple, he has a much poorer idea of the attributes of their display.
Thus, users will use an interactive application to change these attributes. Thus hippo
is designed to postpone fixing the attributes of displays and histograms until they
need to be presented on the users terminal or workstation.

In comparison to other display and histograms packages, hippo has the fol-
lowing interesting properties…

• It is written in ANSI C and intended to be used in C programs. As such it will
make use of features in C such as casting parameters in function calls, use of
pointers and structures, dynamic memory allocation, enumerated data types,
etc. However, a FORTRAN binding for the n-tuple part of the package is sup-
ported.

• Network support is built into hippo by storing files to disk in a form compat-
ible with the industrial standard XDR format[1]. Thus n-tuple files can be gen-
erated on one computer and transparently used on another. In a future release,
one will be able to have a server on one machine providing n-tuple data to n-tu-
ple viewing application on another.

Hippoplotamus

2

• Hippo can be used with one program generating a n-tuple file and another pro-
gram or application to view them. In this mode, it is kind of a client/server re-
lationship. However, hippo can be easily incorporated into any program that
generates the n-tuple data where the client and server are within the same pro-
gram.

This document is organized first as a users guide and then as a reference man-
ual. The first sections deal with creation of n-tuple data and files. It should be all that
a typical user needs to know. The next sections describe the display package for the
display programs and applications.

Hippoplotamus

3

2. N-tuple Creation

A hippo n-tuple can be created in one of two basic methods. The first is to in-
corporate the hippo n-tuple package in a program. Basic functions are provided to
initialize, accumulate, and save the n-tuple into a file. Other functions allow one to
give the n-tuple a title and to label the columns. Program binding for the C, C++,
Objective-C, and FORTRAN languages are supported. The second method is to cre-
ate a plain text file representing the n-tuple data, title, and column labels and to use
the hippo text-to-binary conversion utility.

2.1 N-tuple creation with C, C++, or Objective-C programs

The basic steps in creation of an n-tuple file are initialization, accumulation
and saving the file. Before making the first call to a hippo function one should in-
clude the hippo header file

and declare a variable to be of type ntuple.

This variable is actually a pointer to a structure where the n-tuple data and other in-
formation needed by hippo will be stored. The variable must be initialized with the
function call

before it is used. The function h_new takes one integer parameter: ndim which is the
number of variables, i.e. the number of columns, per entry in the n-tuple. There is no
need for the user to know about the internals of the n-tuple structure. Hippo func-
tions are provided to access any of the information in the structure an advanced user
may need to have.

 To collect data for a simple x-y plot, the dimension of at least 2 could be used,
while for an x-y plot with errors on both x and y, a dimension of at least 4 could be
used. For eventual generations of a 1D histogram, ndim could be as small as 1, while
for weighted 1D histogram ndim is 2, one variable for the value (x) and the other for
the weight (w). For a typical 2D histogram generation ndim is 2, while for a weight-

#include hippo.h

ntuple my_tuple;

my_tuple = h_new(ndim);

Hippoplotamus

4

ed 2D histogram ndim is 3 (x, y, and w). However, any collection of n variables may
be collected into the n-tuple.

 Attributes normally associated with histograms, such as number of bins, low
edge of first bin, bin width, etc. are not defined when the n-tuple is initialized. In
hippo package, they are considered display attributes and thus defining them is de-
ferred until a projection of the n-tuple is displayed.

 Note the hippo package does not maintain state. h_new allocates memory
space for the new n-tuple structure and returns it to the caller. It will not remember
that it did that. The user or a higher level package will be responsible for main-
taining the list of n-tuples in memory.

 To accumulate data into an n-tuple, the user can invoke the hippo function
h_fill as shown below. The first parameter is the n-tuple data variable that was

previously declared and initialized. The subsequent parameters to the function call
are the data to be accumulated into the n-tuple entry. Their number must be equal to
the dimension of the n-tuple defined by the h_new function call and be of type float.

The function h_fill returns the integer return code 0 on success or -1 on fail-
ure. The only known failure mode is exhaustion of virtual memory space. Thus, the
limit of the number of entries of an n-tuple is determined only by virtual memory
space available.

Sometimes it is more convenient organize the data to be accumulated as a float-
ing point array. An alternate hippo function accepts such an array as its second pa-
rameter. The fragment of code show below illustrates its use. The size of the array

must be at least the dimension of the n-tuple.

Once the n-tuple is collected in memory, it can be written to disk with the
h_write function. It allows for one or more n-tuples to be written to a file in a single
call. It also can write any displays attached to the n-tuple that the user may have de-
fined. The prototype for the h_write function is shown below. The first argument is

irc = h_fill(my_tuple, x, y, ...);

float x[10];
...
irc = h_arrayFill(mytuple, x);

int h_write(const char *filename,
display dlist[],
ntuple ntlist[]);

Hippoplotamus

5

a string with the name of the file. The remaining two arguments are NULL terminated
arrays of displays and n-tuples respectively. Passing a NULL is the same as an empty
list thus a simple example of generating an n-tuple without displays might look as
shown in Figure 1. In this example, an n-tuple with 1000 entries containing floating
point number from 0. to 999. is created and saved to a file named test.

Before writing an n-tuple to a disk file, however, the user may wish to give the
n-tuple a title and to label the individual columns. The prototypes for the three hippo
provided for this purpose are shown below. Each takes as its first parameter the n-tu-

ple data variable. The title of the n-tuple is set by the h_setNtTitle function. The
h_setNtLabel sets the label of the column given in the second parameter, while the
h_setAllNtLabels function sets the labels of all the columns in one call. These
functions can be called any time after the n-tuple has been initialized with the h_new

function call.

If the user has a n-tuple display program based on hippo, then this is all that the
user really needs to know about hippo function package. The rest of this document
is hippo reference manual for users that want to handle their own displays, for peo-
ple who want to write a hippo display program, or for users need more sophisticated
use of the hippo package.

#include "hippo.h"
main()
{

ntuple ntlist[2];
 float x; int rc;

ntlist[0] = h_new(1);
for (x = 0; x < 1000.; x++) {

rc = h_fill(ntlist[0], x);
}
ntlist[1] = NULL;
h_write("test", NULL, ntlist);

}

Figure 1. Basic n-tuple creation steps.

int h_setNtTitle(ntuple nt, const char *title);
int h_setNtLabel(ntuple nt, int dim, const char *label);
int h_setAllNtLabels(ntuple nt, ...);

Hippoplotamus

6

2.2 N-tuple creation with FORTRAN program

A limited set of FORTRAN callable routines exist so that n-tuple creation can
be done within FORTRAN programs. An example of FORTRAN code using hippo is
given in Figure 2. For each hippo C function that has a FORTRAN binding, the cor-
responding FORTRAN function has the same name with “h_” replaced with “ip ”.

The arguments used by the FORTRAN function are also the same, or have the
same meaning as the corresponding C function. However, where the C function ar-
gument calls for data of type ntuple , an integer data type is used for FORTRAN.
Thus, nt = ipnew(ndim) returns a new n-tuple with ndim columns and irc = ip-

setNtTitle(nt, 'A Title') sets its title. Also, since by default FORTRAN in-
dices start at 1 instead of 0 as in C, the n-tuple column variable, ndim , should be
equal to 1 for the first column. Since standard FORTRAN doesn’t support variable
length arguments lists, only the iparrayFill() is supported but not ipfill() . Fi-
nally, trailing blank characters will be removed from any character variables. In the

 Real*4 x(10)
 Integer ntlist(4)
 Integer nt
 Integer irc
C
 nt = ipnew(4)! generate the tuple
C
 irc = ipsetNtTitle(nt, 'First Tuple Title')
C
 irc = ipsetNtLabel(nt, 1, 'First Column')
 irc = ipsetNtLabel(nt, 2, 'Second Column')
 irc = ipsetNtLabel(nt, 3, 'Third Column')
 irc = ipsetNtLabel(nt, 4, 'Fourth Column')
C
 Do 10 i = 1, 4
 x(i) = i
 10 Continue
C
 Do 20 i = 1,4
 irc = iparrayFill(nt, x)
 20 Continue
C
 ntlist(1) = nt
 ntlist(2) = 0
 irc = ipwrite('test.histo', 0, ntlist)
 end

Figure 2. Example of Hippo with FORTRAN.

Hippoplotamus

7

current release, creation of displays with FORTRAN is not supported, so the cor-
responding argument in the call to ipwrite() must be 0. Note also that the n-tuple
argument in ipwrite() is an array of integers which dimensioned at least one large
then the number of n-tuples to be written. The value 0 is used to terminate this array
in place of the NULL used in the C function.

2.3 Plain text to binary conversion

By default, hippo generates machine independent binary files when the hippo
package is incorporated in the user’s C or FORTRAN program. An alternate method
of generating such files is to first generate a n-tuple in plain text (ASCII) format and
use a conversion utility to convert that format to binary. This utility is provided as a
line mode command on all platforms supported by hippo.

The full details of the conversion program, text2nt , is shown below in UNIX
syntax. The input and output file names can be specified by switches (-i or -f , and

-o , respectively) or by positional arguments. Thus, the following two commands
have the same result…

If the input or output file is not specified, then text2nt reads from stdin or writes
to stdout respectively. Optionally, conversion can append its output to an existing
file. The -a switch is used for this purpose and it is followed by the existing file-
name. When this switch is used, the -n may be used to direct the output to a par-
ticular n-tuple of the existing file. The number following this switch is used as an
index (starting at 0) of the n-tuple to be appended. Finally, the -v switch is the ver-
bose flag that causes ntuple to print various messages of progress to stderr .

The format of the plain text file is very simple. They consist of “lines” of no
more than 256 characters that are delimited by the new line character ('\n ' in C) or
a by “; ”. Within a line there can be either numeric fields or string fields. A numeric
field starts with a number (“0-9 ”, “ - ”, or “+”) are delimited by one or more of “, ”,
<space> , or <tab>. Any letters contained in a numeric fields are ignored except for
“ e” and the remaining digits are read as numbers. Numeric fields in the form
“6.626e-34” are allowed. String fields are used for the n-tuple title and column la-

text2nt [-a hippo_file] [-v] [-n number]
[-f text_file] [-i text_file]
[-o hippo_file] [text_file [hippo_file]]

text2nt -i mydata.dat -o mydata.hippo
text2nt mydata.dat mydata.hippo

Hippoplotamus

8

bels. They are delimited by single quote (') or double quote (") characters. An open
quote must be matched by an identical close quote (e.g. "matches" , 'matches'),
but either of the two types can be used in a file.

The title and label fields can be specified anywhere in the file, but the title must
be before the labels. The first “line” which does not start with a numeric field and
which contains string field (typically, the first line of the file) is used as the title; ev-
erything else on that “line” is ignored. The labels come from the second “line” that
contains starts with a string field and all labels must be on one “line”.

The dimension of the n-tuple is determined from the first line which starts from
a numeric field. This line will be scanned until the first field that does not read as a
number. The number of valid numeric fields sets the number of columns of the n-tu-
ple. All subsequent lines must have that many (or more) numeric fields; each line
corresponding to one row of the n-tuple. Lines which don't contain enough numeric
fields, or which don't contain string fields (once the title and labels have been de-
termined) are ignored.

 An example of a plain text file readable by the text2nt program that contains two
rows of three columns is shown below. Note that one can freely mix either style of

quoted strings and that letters that are not quoted are ignored.

2.4 HBOOK4 to Hippo conversion.

The utility program hb2hippo will extract n-tuples from file created by the
HBOOK4 package[2] and save the n-tuples in hippo file format. The program is run
as a command with 1 or two arguments as follows…

The first argument is the name of the HBOOK4 file. The second argument is optional
and is used as the name of the hippo file. If not given, then the hippo file will be
named out.hippo . In the current release, any histograms in the HBOOK4 file are ig-
nored.

"This is the title line"
"column0" 'column1' "column2" extra junk ignorned
4.5 32.5 68.3
4.7,29.8, 58.7 extra junk ignored
this line is ignored
-2.18, 66. another line ignroed
4.9, 27.4 55.7 this line used

hb2hippo hbook_file [hippo_file]

Hippoplotamus

9

3. Displays

Traditionally, a histogram package is called in three fundamental phases of
user code. The first is at initialization when the histogram is defined in terms of its
bins, titles and mode of accumulation. The second phase is the data accumulation,
where the bin contents are determined and statistics are found. The last phase is dis-
play in which the histogram is plotted on some device. At any time after the his-
togram is defined, the display attributes, but not the bin definition, can be changed.

In this age of interactive computing, there is one drawback to this approach,
namely, that one wants the ability to change everything about a histogram, including
the bin definition, at any time. This can be looked at in the following way. A one di-
mensional histogram is a density distribution of one variable. It is not visible until it
is projected, somehow, onto two dimensional space, e.g. a piece of paper. Defining
a set of bins of finite width and accumulating the number of entries within each bin
is the most common way of doing such a projection. Any choice of bins is one dis-
play of the histogram. Another choice is another display of the same histogram.
There are an infinite number of such possible displays. The traditional 1D histogram
is really just one representation of a density distribution in one dimension.

As has already been mentioned in the introduction, hippo has been designed
with the premise that a user will have access to an interactive application to view his
n-tuples. The display component of hippo was written with this in mind. The end-
user will almost never write code that incorporates this component and the display
portion is not designed to be used by an end-user. Rather, the display component is
designed for the person who implements an interactive n-tuple viewer. The display
functions are mostly low-level functions to change single attributes of a display so
that a button or slider in a application can be connected easily to the display at-
tribute.

The rest of this chapter discusses various aspects of the displays. Much of the
detail is left for the reference section following this, where all function prototypes
are presented.

3.1 Code example

Figure 3 is a short example of some display code, which will be helpful to un-
derstand the process of creating a display. It is not a complete program. Some steps
which may appear to be missing, however, are actually not necessary because of de-
faults. No error detection is performed.

Hippoplotamus

10

3.2 Display creation

The first step of making a display is to create a copy of the structure. The
h_newDisp function, whose prototype is shown below, performs this function along
with initialize many of the fields. The prototype for this function is shown below.

The argument specifies what type of a display it will be (this can be changed later if
desired). The possible types are listed below; Figure 3 shows an example of each.

• HISTOGRAM - a one dimensional histogram,

• XYPLOT - a plot of one column of the ntuple against another, i.e. y versus x,

• STRIPCHART - a special form of XYPLOT in which the ntuple is considered as a
circular buffer,

#include "hippo.h"

 display mydisp;
 ntuple mynt;
 float low,high;

 mydisp = h_newDisp(COLORPLOT); /* create display */
 h_bindNtuple(mydisp, mynt); /* bind display to ntuple */
 h_plot(mydisp); /* plot */

h_bind(mydisp, YAXIS, 3); /* set y-axis to 4-th column of nt */
 h_setTitle(mydisp, "Color Plot");
 h_setLabel(mydisp, XAXIS, "New Label");

 h_plot(mydisp);

 h_getRange(mydisp,XAXIS, &low,&high); /* x-axis range */
 h_setRange(mydisp,low,high/2.0); /* set new range */
 h_plot(mydisp);

h_freeDisp(mydisp);

Figure 3. Example Hippo display code.

display h_newDisp(graphtype_t type);

Hippoplotamus

11

0

40

80

120

160

20 30 40 50 60 70

CERN Personal

Age

E
nt

rie
s

pe
r

bi
n

A HISTOGRAM display

A LEGOPLOT display

0

5000

10000

15000

20000

20 30 40 50 60 70

CERN Personal

Age

C
os

t

A COLORPLOT display

0

5000

10000

15000

20000

20 30 40 50 60 70

CERN Personal

Age

C
os

t

A SCATTERPLOT display

0

10

20

30

40

88 89 90 91 92 93 94

Mark II Z0 scan

Energy

S
ig

m
a

A XYPLOT display

Figure 4. Examples of Hippo displays.

0

20

40

60

80

20
30

40

50

60

70

Age
0

10

20

30

40

Se
rv

ic
e

CERN Personnel

0

5000

10000

15000

20000

C
ost

+

+

+

+
+

+

+

+

+

++

+

+

+

+ +

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+ +

+

+

+

+
+

+

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

++
+

+

+

+

+

+ ++

+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+
++

+

+
+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+++

+

++

+

+
+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

++

+

++
+

+

+

+

+ ++

+

+

+

+
+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+ +

+

+ +

+ +

+

+

++

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

++

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+
+

+

+

+

+

+

+ +

+

+
+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+
+

+

+

++

+

+
+

+

+
+

+

+

++
+

+

+

+

+

++

+

+

+

+

+

+ +

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++ ++

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+ +

+

+ +
++

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+

+

+
+

++

+
+ +

+

+

+

+ ++
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+ +

+

+
+ +

++

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+ + +

+

+

+

++ +
+

+
+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+ +
+

+
+

+

+

+

+

+ +

+

+

+

+

+

++

+

+

+

+

+

+

+

++ +

+
+

+
+

++

+

++

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+ +

+

+
++

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+
+

+

+

+

+

+
+

+

+

+
+

+

+

+
+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+
++

+
+

++
+

++

+

+

+

+
+

+

++ +

+ +

+

+

+

+

+

++

+

+ +

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+ +

+

++
+

+

+

+
+

+

+

+
+

+

+

+

+ +

+

+

+

+

+

++

+

+
+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+
+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+ ++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+
+

+

+

+
+

+

+

+

+

+

+
+

+

+

+ +

+

+

+

+

+
+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

+ +

+
+

+
+

+

+

+

+ +

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+ +

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+ +

+

++

+

+

+

+

+
+

+

+

+

+
+

+

+
+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

++
+

+ +

+

+

+

+

+

+

+ +

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+ +

+
+

+

+

+

+

+

+
+ +

+

+

+

+

+

+

+

+

++ +

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+ +

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+ +

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+
+

+

+

+

+

+

+ +

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+ +

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+

+

+
+

++

+

+
+ +

+

+

+

+

+

+
+

+

+

+

+

+

++ +

+

+

+

+

+

+

+

++

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+ +

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

++

+ +

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+ +

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+ ++
++ +

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+ +

+

+

++

+
+

+

+ +

+

+

+

+

+

+

+

+ +

+

+ +
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+

+ ++

+

+ +

+

+

+

+
++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+ ++

+

+

+
+

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+ +
+

+

+

+
+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+ +

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
++

+
+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

++ +
+

+

+
+

+

+

+

++

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+
+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+
+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+
+

+ +

+

+

+

+

+

+

+

+
+

+

+

+

++ +
+

+

+

+

+

+

+

+

+

+ +

+
+

+

+
+ +

+

+

+

+

+

+
+

+

+

+ +
+

+

+

+
+

+
+

+

+
+ +

+

+

+
++

++

+

+

++ ++

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+ +

+

+

+

++

+

+

+

+

+

+

+

+

+

+
+

+

+ ++

+

+

+

+

+ +

+
+

+

+

+
+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+ +

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++ +

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

++
+

++

+

+

+

+

+

+

+
+

+

+
+

+

+
+

+++

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

++
+

+

+

+
+

+

+
+

+

++
+

+

+

+

+

+

+

+
+

+

+ ++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+
+

+

+

+
+

+

+

++

+

++

+

+
+

+

+

++ +
+

+

+

+

+ +

+

+

+

+

+

++

+
+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+ +

+

++

+ ++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

++

++ +

+
+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+ ++

+

+

++

+

+
+ +

+

+ +
+

+

+
+

+

+
++

+

+ +

+

+

+

+

+

+

+

+

+

+

20

30

40

50

60

70

Age

0

10

20

30

40

Ser
vic

e

CERN Personnel

A THREEDSCATTER display

Hippoplotamus

12

• COLORPLOT - a two dimensional binned plot where the bin values are repre-
sented as a color or gray level,

• SCATTERPLOT - a two dimensional scatter plot,

• LEGOPLOT - a two dimensional binned plot drawn in three-D perspective,

• THREEDSCATTER - a three dimensional scatter plot.

h_newDisp returns a display, which is actually a pointer to the display structure. The
returned display is needed in all subsequent calls dealing with this particular dis-
play.

3.3 Bindings to the n-tuple

The display needs to know where to get the data that it will display, i.e. what
ntuple to use. The function h_bindNtuple makes this connection. Its prototype is
shown below. The n-tuple used by a display can be changed at any time by calling

this function. The display must also know which column of the ntuple to use for a
given quantity. The function h_bind is used to specify which column of the ntuple
(starting from 0) to use. Its prototype is show below. binding_t is an enumerated

type which can have the values XAXIS, YAXIS, ZAXIS , WEIGHT, XERROR, or YERROR.
The names are hopefully self-explanatory. Not all of the quantities are relevant for
all types of plots. For HISTOGRAMs, only XAXIS and WEIGHT are relevant, while for an
XYPLOT, XAXIS and YAXIS must be bound (though there always are defaults) while
XERROR and YERROR may be bound if desired. To unbind a quantity, set its nt_col to
-1.

3.4 Axis and bin attributes

By default, hippo auto-scales an axis to cover the complete range of whatever
ntuple column it is attached to. It tries to pick “nice” values for the upper and lower
axis limits. Where bins are appropriate, hippo creates 50 bins along an axis. Pres-

int h_bindNtuple(display disp, ntuple nt);

int h_bind(display disp, binding_t bt, int nt_col);

Hippoplotamus

13

ently, the range of bins is fixed to be the same as the axis range. To change these val-
ues, there are three functions as show below.

h_setBinWidth will adjust the upper axis limit to be consistent with the number of
bins, the width and the lower limit. One can get logarithmic axes using the function
h_setLogAxis whose prototype is show below, where axis is the desired axis and

flag is either TRUE (1) or FALSE (0). A log axis has no meaning for a binned axis.

3.5 Input and Output

Some of the input/output routines were mentioned in the section on n-tuples.
There are four sets of input/output routines, which differ in the specification of the
device. There are routines to write to or read from a named file, a C FILE structure,
an XDR stream or memory. The memory routines have an extra parameter speci-
fying the size of the buffer.

All the routine use the same code to handle the actual I/O. From the NULL-ter-
minated lists of displays and n-tuples provided, hippo constructs a list of n-tuples
which are needed; any ntuple referenced by a display is included, except those
flagged as “by reference” using the routine h_ntByReference . What is written out
is a “magic number” (the string “h_”), a string which gives the version of the struc-
tures, and all the n-tuples followed by all the displays. Everything is written out us-
ing XDR (external data representation) and is therefore machine portable.

When reading a file, the user passes the read routine display pointer and an ntuple
pointer, both by reference. The routine will allocate the display and ntuple struc-
tures as it reads them, and will also allocate the lists of displays and n-tuples. Thus,
on return, the display pointer points to a NULL-terminated list of displays (which, of
course, can be access exactly like a C array), and the ntuple pointer to a list of n-tu-
ples. In order to use data in text format, h_fileParse is provided to read an ntuple
from a text file, while h_nt2text will write an n-tuple to a file in plain text format.

int h_setRange(display disp, binding_t axis,
 float low, float high);

int h_setBinNum(display disp, binding_t axis, int nbins);
int h_setBinWidth(display disp, binding_t axis, float width);

int h_setLogAxis(display disp, binding_t axis, int flag);

Hippoplotamus

14

3.6 Titles and Labels

The display title and labels are set with the routines below In order to access

ntuple labels, the following printf format-like strings are supported. For example,
if “ %t” appears in a string, then the n-tuple title is substituted in its place. The com-
plete list of these substitution strings is given in section 4.2. Because of these sub-
stitutions, if you want a '%' in your label, use “%%”.

3.7 Plot Drivers

There are currently six plot drivers supported in hippo.

• NEXT - using Display PostScript and some NeXT library routines.

• UNIXPLOT - using device independent calls. The type of output produced de-
pends on the library linked against. The usual way of operating is to link
against the library which send device-independent text to stdout, which is
piped to a file. Programs are then used to, for example, display it as Tektronix
graphics or send PostScript to a printer. The UNIX Plot libraries can be ob-
tained by get the GNU Graphics package. It is available by anonymous FTP
from qed.rice.edu .

• XIVPLOT - using InterViews X-Windows graphics. InterViews is a X-windows
package written in C++ and is available by anonymous FTP from interviews.-
stanford.edu.

• MAC - using Macintosh graphics routines.

• X11PLOT - using X11R4 graphic routines.

• PSPLOT - using PostScript to a file routines.

One can compile the graphics drivers or not by setting C macros in the Makefile.
One can choose between the compiled drivers using the routine

int h_setTitle(display disp, const char *title);
int h_setAxisLabel(display disp, binding_t axis,

 const char *label);

int h_setPlotDrvr(plotdrvr_t drvr, ...);

Hippoplotamus

15

The UNIXPLOT driver expects one extra parameter, a FILE pointer. This is in-
tended as an alternate output file to stdout , but does not work at this moment. In ad-
dition, the XIVPLOT driver adds two parameters to h_plot , the plotting routine. The
parameters are the “painter ” and the “canvas ”, while the X11PLOT driver takes
four additional parameters which are explained in the reference manual section of
this document.

New plot drivers are fairly easy to implement. If you wish to write a new driver,
it is easiest to work from example. Look at the UNIXPlot driver for the easiest im-
plementation (also, the least pretty).

3.8 Cuts and Plot Functions

Hippo provides support for making cuts to the ntuple data before displaying
and for plotting functions. The cuts are implemented to select or reject a each row of
the ntuple data, not by examining the complete ntuple at once. The cuts and plot
functions are maintained as linked-lists of a function pointer and an associated pa-
rameter block. Thus the user can write any arbitrary function which fits the function
prototype in order to implement what she wants.

One problem with using pointers to arbitrary functions is the task of re-establishing
the pointer after it has been written to a file and read back in. Hippo solves this by
maintaining a “function registry” which allows hippo to find a function pointer from
the name of the function. The user must “register” any function he writes using the
function

This must be done before using a function as a cut or plot function, and before a dis-
play which uses the function is read from a file.

The prototype for a cut function is

while that of a plot function is

Hippo provides eight cut functions which implement all possible simple cuts on one
tuple dimension, for example, greater than a value or inside a region. These func-

int h_funcReg(void *func);

int cutfunc(float *nt_row, double *param_blk);

double plotfunc(double x, double *param_blk);

Hippoplotamus

16

tions are automatically registered. To add one of these cuts to a display, use the func-
tion

The possible values of cutfunc are “h_cut_ge ”, “ h_cut_gt ”, “ h_cut_le ”,
“ h_cut_lt ”, “ h_cut_inside ”, “ h_cut_in_incl ”, “ h_cut_outside ”, and
“h_cut_out_incl ”. Hopefully, the names are explanatory. cut_dim is the column
number of the ntuple used in the cut. The first four cuts require one parameter
(val1) while the final four need two parameters (val1 and the next parameter).
When there are two parameters, the first is the lesser.

h_addCut returns a pointer to the function structure used by hippo. To change
the cut, use the function

This will change the parameter(s) of the cut, but not the ntuple column used.
Also provided is the function h_addUserCut to use an arbitrary function for cuts.

When a cut is added this way, the parameter block is maintained by the user; hippo
simply maintains a pointer to it. The parameters should all be doubles so that they
will be written correctly in a machine independent manner.

In addition, h_deleteCut is provided to delete a cut and h_nextCut is pro-
vided to traverse the list of cuts.

For plot functions, the routines h_addPlotFunc , h_deletePlotFunc , h_nex-

tPlotFunc provide similar functionality to h_addUserCut , h_deleteCut and
h_nextCut , respectively.

func_id h_addCut(display disp, const char *cutfunc,
 int cut_dim, double val1, ...);

int h_changeCut(display disp, func_id cut_id,
 double val1, ...);

func_id h_addUserCut(display disp, const char *cutfunc,
 double *paramblk, int nparam);

Hippoplotamus

17

4. Reference Manual

In the tradition of C, all the details a programmer would every need to know
about the package can be found in the header file. There, the prototypes of all the
function calls may be found, as well as all the data types used by hippo. Comments
in the header file summarize to use of the functions and structures. This reference
manual section of this document is little more a a formatted version of the header
files.

4.1 N-tuple functions

This subsection describes those hippo functions and structures that deal with
the n-tuple data sets. They are listed in order of complexity and/or of frequency of
use.

typedef struct {…} ntuple_t, *ntuple;

Contains information on an n-tuple and all the data. One should never access
this data directly, but use hippo functions calls instead.

ntuple h_new(int ndim);

Returns a new n-tuple with dimension ndim (e.g. number of columns) if suc-
cessful, otherwise returns NULL.

int h_freeNt(ntuple nt);

Frees all memory associated with the n-tuple and returns 0.

int h_clrNt(ntuple nt);

Clear all data points from the n-tuple, and reallocates memory for data to de-
fault size. Returns -1 on error, 0 on success.

Hippoplotamus

18

int h_fill(ntuple nt, ...);
int h_arrayFill(ntuple nt, float *data);

Adds one entry (e.g. row) to the end of the n-tuple data list. The first parameter
for both functions is the n-tuple. The second parameter and subsequent parameters
for h_fill are the data to be entered and the number of them must be equal to the
dimension (e.g. number of columns) of the n-tuple. The second parameter for h_ar-

rayFill is an array of data whose size should be at least equal to the dimension of
the n-tuple. Returns -1 on error, 0 otherwise.

int h_setNtTitle(ntuple nt, const char *title);

Sets the title of the n-tuple data set. Returns 0 if successful, -1 otherwise.

int h_setNtLabel(ntuple nt, int dim, const char *label);

Sets the label of n-tuple dimension (column) specified by dim . The first column
is specified with dim = 0 . Returns 0 if successful, -1 otherwise.

int h_setAllNtLabels(ntuple nt, ...);

Sets the labels of all columns of the n-tuple from the listed strings. There must
be n strings following the ntuple, where n is the dimension (number of columns) of
the n-tuple. Returns 0 if successful, -1 otherwise.

int h_getNtDim(ntuple nt);

Returns the dimension (number of columns) of the specified n-tuple.

const char *h_getNtTitle(ntuple nt);

Returns the title of the specified n-tuple.

const char *h_getNtLabel(ntuple nt, int dim);

Returns the label of the n-tuple dimension specified by dim , or NULL on error.

Hippoplotamus

19

int h_getNtNdata(ntuple nt);

Returns the number of entries (rows) of the specified n-tuple.

const float *h_getNtAllData(ntuple nt);

Returns a pointer to all the data in the specified n-tuple. The data is stored con-
secutively in the array, first all the columns for the first row, then the subsequent
rows. Given this pointer, the user should not attempt to modify the data, but use
h_replData() or h_arrayReplData() instead.

const float *h_getNtData(ntuple nt, int i_nt);

Returns a pointer to a particular row of the n-tuple data set specified by the sec-
ond parameter, or returns NULL on error. Row numbering starts with the value 0.
Given this pointer, the user should not attempt to modify the data, but use h_re-

plData() or h_arrayReplData() instead.

float *h_getNtColumn(ntuple nt, int dim);

Returns a pointer to an array of data corresponding to a particular column spec-
ified by the second parameter of the specified n-tuple or NULL on error. The function
h_getNtNdata() will return the size of this array. This array is a copy of the data in
the n-tuple, therefore the user should free the memory when the array is no longer
used. The first column is specified with the value of dim equal to 0.

const float *h_getNtHigh(ntuple nt);

Returns an array of the upper limits of each column of the specified n-tuple.
For example, after the statement f = h_getNtHigh(nt); , f[1] is the largest value
in the second column of the n-tuple. The user should not attempt to modify the con-
tents of this array.

const float *h_getNtLow(ntuple nt);

Returns an array of the lower limits of each column of the specified n-tuple.
For example, after the statement f = h_getNtLow(nt); , f[1] is the smallest value

Hippoplotamus

20

in the second column of the n-tuple. The user should not attempt to modify the con-
tents of this array

int h_arrayReplData(ntuple nt, int i_nt, float *data);

int h_replData(ntuple nt, int i_nt, ...);

Replaces the row specified by the second parameter in the n-tuple with the data
in the third (or subsequent) parameters. The first row is specified with a parameter
equal to 0. The specified row must already exist or an error condition will be re-
turned. In the first form, h_arrayReplData, the parameter data must be an array
whose size is at least equal to the dimension of the n-tuple. In the second form, h_re-
plData, the number of third and subsequent parameters must be at least equal to the
dimension of the n-tuple. After these functions calls, the upper and lower limit ar-
rays may be in error and the flag extremeBad will be set to indicate that. Each func-
tion returns 0 if successful and -1 otherwise.

int h_getExtremeBad(ntuple nt);

Returns the extremeBad flag from the specified n-tuple. The value of this flag
is 0 if the upper or lower limits returned by the functions h_getNtLow() and h_get-

NtHigh() are correct, or non-zero otherwise.

int h_ntSize(ntuple nt);

Returns the approximate number of bytes needed to store the specified n-tuple
on disk. The exact size is not known until the data is actually encoded for storage,
but the value returned by this function will not be smaller than the actual size need-
ed.

4.2 Display functions

This subsection describes those hippo functions and structures that deal with
displays. They are list in order of complexity and/or frequency of use.

Hippoplotamus

21

typedef struct {…} display_t, *display;

Contains information of a display, histogram bins if any, and binding infor-
mation to the n-tuple. One should never access this data directly, but use hippo func-
tions calls instead.

typedef enum { SCATTERPLOT, LEGOPLOT, COLORPLOT,
XYPLOT, STRIPCHART, HISTOGRAM, THREEDSCATTER }

graphtype_t;

This enumerated type lists the type of displays available in hippo. A short de-
scription of this graph types is given below…

• SCATTERPLOT graph is normally called a scatter plot. An entry of the bound n-
tuple is taken as x and y point pairs and a point is drawn. It is normally used
with a large number of entries in the n-tuple.

• LEGOPLOT graph is normally called a lego plot for histograms of two dimen-
sion. Lego plots for histograms of two dimensions is not yet implemented.

• COLORPLOT graph is a form histogram of two dimensions in which color is used
to show the number of entries in a bin. Color can be either full color spectrum
or a grey scale depending on drawtype_t (see below).

• XYPLOT graph is similar to SCATTERPLOT graph except that error bars can also
be drawn. It is normally used when there is relatively few entries in the n-tuple.

• STRIPCHART graph is similar to XYPLOT except the x-axis is taken as ordered
list of points. When displaying a graph of this type, the minimum point on the
x-axis is first found and displayed, then subsequent points are drawn to the last
entry of the n-tuple. After the last entry, display continues from the first entry
until the first point is found again. Thus, the n-tuple is used as a circular buffer
for an application creating a strip chart.

• HISTOGRAM graph is a one dimensional binned histogram.

• THREEDSCATTER graph is a three dimensional scatterplot.

Hippoplotamus

22

display h_newDisp(graphtype_t type);

Creates and returns a new display of specified type or NULL if error. Also sets
most of the display attributes to reasonable default values.

display h_copyDisp(display olddisp);

Creates and returns a new display which is a copy of the display given as a pa-
rameter. Returns NULL on error.

int h_freeDisp(display disp);

Frees all memory associated with the specified display and returns 0.

int h_dispSize(display disp);

Returns the approximate number of bytes needed to store the specified display
on disk. The exact size is not known until the data is actually encoded for storage,
but the value returned by this function will not be smaller than the actual size need-
ed.

int h_setDispType(display disp, graphtype_t type);
graphtype_t h_getDispType(display disp);

The first function sets the type of graph for the display. The second function re-
turns the type of graph type of the display. The graph type must be a member of the
enumerated list, graphtype_t , described above.

int h_bindNtuple(display disp, ntuple nt);
ntuple h_getNtuple(display disp);

The first function binds the specified display to the specified n-tuple and re-
turns 0 if successful and -1 otherwise. The process of binding gives the display its
source of data. The display attributes of the display are unaffected by this function
call. A display already bound to an n-tuple can be unbound from one and bound to
another with this function call. If the display is a histogram, then the data bins of the

Hippoplotamus

23

histogram will be regenerated when the display is plotted. The second function re-
turns the n-tuple to which a display is currently bound to or NULL if none.

int h_setNtByRef(display disp, int flag,
const char *filename);

int h_getNtByRef(display disp);
char *h_getNtFile(display disp);

The first function sets a flag to indicate if the n-tuple bound to the display is ac-
cessed by reference or not. The flag only has effect when the display is written to
disk. If the flag is set (non-zero value), then only the filename, given by the third ar-
gument, of the n-tuple is written out with the display structure. If the flag is not set
(0 value), then the n-tuple data set is written out with the display structure. The sec-
ond function returns the by reference flag, while the third function returns the file-
name if the display is bound by reference. If a display was written out with its n-
tuple bound by reference, then the application reading in the display is responsible
for re-establishing the binding of the display to the n-tuple.

int h_setDrawType(display disp, drawtype_t type);
int h_orDrawType(display disp, drawtype_t type);
drawtype_t h_getDrawType(display disp);

The first function sets the drawing type of a display. Several drawing types can
be done simultaneously according to which bits of the drawtype_t parameter are
turned on. The second function does a logical OR of the bits of its drawtype_t pa-
rameter with the bits already stored. The last function returns the current drawty-

pe_t bits of the display. The first two functions return 0 if successful or -1
otherwise. The allowed values of the drawtype_t parameter is given in the following
enumerated list.
typedef enum { NONE = 0, BOX = 1, POINT = 2, LINE = 4,

ERRBAR = 8, COLOR =16
} drawtype_t;

• NONE indicates no drawing.

• BOX indicates that bars will be drawn for HISTOGRAM type of graph.

• POINT indicates that a point will be drawn

• LINE indicates that a line connecting neighboring x-y points will be drawn.

Hippoplotamus

24

• ERRBAR indicates for that for HISTOGRAM, XYPLOT, or STRIPCHART type of
graph, error bars will be drawn. The error bars are calculated as the square root
of the number of entries.

• COLOR indicates to use full color spectrum for COLORPLOT type of graph. If not
set, then gray scale is used instead.

int h_setTitle(display disp, const char *title);
const char *h_getTitle(display disp);

The first function sets the title of the display and returns 0 if successful or -1
otherwise. The second function returns the current title of the display. In the char-
acter string, title , one may use printf() style substitutions to pickup attributes
from the n-tuple bound to the display. The following substitutions are permitted…

• %t - title of the n-tuple bound to the display.

• %x - label of the n-tuple column bound to the x-axis of the display.

• %y - label of the n-tuple column bound to the y-axis of the display.

• %z - label of the n-tuple column bound to the z-axis of the display.

• %w - label of the n-tuple column bound to the weight-axis of the display.

• %ex - label of the n-tuple column bound to the x error-axis of the display.

• %ey - label of the n-tuple column bound to the y error-axis of the display.

• %dx - width along the x-axis of a histogram bin.

• %dy - width along the y-axis of a histogram bin.

void h_setPlotSym(display disp, plotsymbol_t p);
plotsymbol_t h_getPlotSym(display disp);

The first function sets the plot symbol for points. The attribute is always set but
will only have effect if the drawtype_t POINTS attribute of the display is set. The

Hippoplotamus

25

second function returns the current plot symbol attribute. The plotsymbol_t argu-
ment must be defined in the following enumerated type…
typedef enum { SQUARE, SOLIDSQUARE, PLUS, TIMES }
plotsymbol_t;

void h_setSymSize(display disp, float s);
float h_getSymSize(display disp);

The first function sets the size of the plot symbol. The second returns the size
of the plot symbol. The units are points, e.g. 1/72 of an inch.

void h_setLineStyle(display disp, linestyle_t t);
linestyle_t h_getLineStyle(display disp);

The first function sets the style of line to be used by the display. The attribute is
always set but will only have effect if the drawtype_t LINE attribute is set. The sec-
ond function returns the current line style attribute. The linestyle_t argument must
be defined in the following enumerated type…
typedef enum { SOLID, DASH, DOT, DOTDASH } linestyle_t;

4.3 Display axis.

This subsection describes hippo functions that deal with displays and their
binding to axis.

typedef enum { XAXIS, YAXIS, ZAXIS, WEIGHT, XERROR, YERROR }
binding_t;

The binding_t enumerated type will be used in arguments to hippo that require
an axis to be specified.

int h_bind(display disp, binding_t axis, int dataDim);
int h_getBinding(display disp, binding_t axis);

The first function binds an axis of the display to a column of its n-tuple spec-
ified by the third argument and returns 0 if successful or -1 otherwise. If the display
axis is already bound, its binding will be replaced with the binding specified by the

Hippoplotamus

26

function call. The first column of the n-tuple has the index value 0. The second pa-
rameter must be a member of the enumerated type described above. The second
function returns the current binding. To unbind a quantity, set its dataDim to -1.

int h_bindMany(display disp, int n, ...);

 Binds the specified number (n) of axes to the n-tuple columns. The third and
subsequent parameters must be in pairs of binding_t and n-tuple column number.
Returns 0 if successful or -1 if error.

int h_setAutoScale(display disp, binding_t axis,
int onOff);

int h_getAutoScale(display disp, binding_t axis);
h_autoScale(display disp);

The first function sets a flag for the specified axis that controls auto-scaling of
that axis. If auto-scaling is set on (onOff = 1), then the range of the display will be
adjusted so that all the data of its n-tuple’s column is visible. The second function
returns the current status of auto-scale flag for the specified axis. The third function
will force auto-scaling to occur immediately (instead of waiting for plot drawing)
for axes with the flag set.

int h_setRange(display disp, binding_t axis,
float low, float high);

int h_getRange(display disp, binding_t axis,
float *low, float *high);

The first function sets the low and high values of the displayed range along the
specified axis and return 0 if successful or -1 otherwise. The second function returns
the currently displayed range in the 3rd and 4th arguments. If the axis is auto-scaled
(see below), then the returned values are valid only after the display has been drawn
or the binning has been done (for binned axis).

int h_setBinNum(display disp, binding_t axis, int n);
int h_getBinNum(display disp, binding_t axis);

The first function sets the number of bins for the specified axis of the display
and returns 0 if successful or -1 otherwise. The second function returns the current

Hippoplotamus

27

number of bins for the axis of the display. This attribute is always set, although if the
display is not a histogram it has no effect.

int h_setBinWidth(display disp, binding_t axis,
float width);

float h_getBinWidth(display disp, binding_t axis);

The first function sets the width of bins along the specified axis for the display
and returns 0 if successful or -1 otherwise. The upper limit of the axis range is ad-
justed to be consistent with the lower limit, the bin width and the number of bins.
The second function returns the bin width of the specified axis of the display. This
display attribute is set by this function call, although it has no effect if the display is
not a histogram.

int h_setLogAxis(display disp, binding_t axis,
int onOff);

int h_getLogAxis(display disp, binding_t axis);

The first function sets whether the specified axis of the display is to have log
base 10 scale (onOff = 1) or linear scale (onOff = 0). This display attribute is always
set, but has no meaning to an axis that is binned. The second function returns 1 if the
axis is set to log scale or 0 otherwise.

int h_setAxisLabel(display disp,
binding_t axis,
const char *label);

const char *h_getAxisLabel(display disp,
binding_t axis);

The first function sets the label of the specified axis of the display and return 0
if successful or -1 otherwise. The second function returns the label of the specified
axis. String substitution as described for h_setTitle() on page 24 are valid.

Hippoplotamus

28

char *h_expandLabel(char *dest, const char *src,
 int max, display disp);

This function expands a label src which may contain hippo format specifiers
described on page 24 for the display disp . The resulting expansion is copied to
string dest which is an array of length max, and returned by the function.

4.4 Display Actions

int h_setPlotDrvr(plotdrvr_t drvr, ...);

Selects the device used for plotting. The optional arguments are used by some
plot drivers. The first parameter must be one of the following enumerated types…
typedef enum { NEXT, UNIXPLOT, LPR, XIVPLOT, MAC, X11PLOT

PSPLOT, EPSPLOT }plotdrvr_t;

• NEXT type uses Display PostScript and NeXT library graphic routines.

• UNIXPLOT type uses UNIXPlot software.

• LPR type is intended for line printer output making use only of the standard 96
character ASCII set. If LPR type is set, then h_plot() is same as calling the
h_print() function.

• XIVPLOT type uses the InterViews X-Windows graphic routines

• MAC type uses Apple Macintosh QuickDraw graphic routines.

• X11PLOT use X11R4 graphic routines.

• PSPLOT use routines to send PostScript to a file. The file stream pointer is given
as the second argument in the function call.

• EPSPLOT same as PSPLOT for now.

int h_plot(display disp, ...);

Plots the display using the current plot driver. Optional arguments are used by some
plot drivers. For example, XIVPLOT passes the painter and canvas as optional ar-

Hippoplotamus

29

guments. The effective prototype for XIVPLOT is…

int h_plot(display disp, Painter* output, Canvas* canvas);

The effective prototype for the X11PLOT driver is

int h_plot(display disp, Display *dpy, Screen *scrn,
Drawable wind, GC gc);

where

disp is the hippo plot to be drawn.

dsy is the X display pointer.

scrn is the X screen pointer for the screen on which the window resides.

wind is the window or Pixmap into which the plot is to be drawn.

gc is a graphics context suitable for use with wind . The graphics context is
used to specify the background color for the plot and can also be used to spec-
ify a clip mask (may be useful when handling exposure events).

int h_endPage(void);
int h_endDrvr(void);

The first function informs the plot driver that it should do an end page oper-
ation. The second function informs the plot driver that all PostScript processing is
complete. These function is useful, for example, with the plot driver that sends Post-
Script to a file.

void h_fprint(display disp, FILE *file);
void h_print(display disp);

Prints an ASCII plain text representation of a display to a file or stdout.

int h_bin(display disp);

Regenerates the contents of bins if the display is a histogram and returns 0 if
successful or -1 otherwise. This function does not re-plot the display.

Hippoplotamus

30

const float *h_getBins(display disp);

Returns a pointer to an array with the contents of the bins if a display is a his-
togram. See the function h_getBinNum() for determining the number of bins. The
user should not use this pointer to modify the contents of the bins.

const float *h_getTotal(display disp, int i, int j);

Returns the (weighted) sums of events inside/outside the plot. The index i is
for x-axis and j for y-axis. A value of 0 for these indices means below lower limit,
1 means inside plot's range, and 2 is above range. The user should not use this point-
er to modify the contents of the array.

const float *h_getVariance(display disp);

Returns a pointer to an array of the variances of the bins (the square of the er-
ror). See the function h_getBinNum () for determining the number of bins. The user
should not use this pointer to modify the contents of the array.

int h_getBinExtreme(display disp, float *min, float *max);

Returns the value of the bins with the minimum and maximum values in its ar-
guments. Returns 0 if successful or -1 otherwise.

void h_setDrawTitles(display disp, int flag);
int h_getDrawTitles(display disp);

The first function sets a flag to determine if the title and labels are to be drawn
when the display is plotted. The second function returns the value of this flag.

void h_setDrawAxes(display disp, int flag);
int h_getDrawAxes(display disp);

The first function sets a flag to determine if the axes of the display are to be
drawn (flag = 1) or not (flag = 0) when the display is plotted. The second function re-
turns the current value of this flag.

Hippoplotamus

31

void h_setFixedBins(display disp, int flag);
int h_getFixedBins(display disp);

The first function sets a flag which determines if the bins of a histogram dis-
play are to be fixed (flag=1) or not. If the flag is set, then h_bin() and h_plot() will
no longer do any re-binning and when the display is written out to disk, the contents
of the bins will be written as well. The second function returns the value of this flag.

4.5 Auxiliary functions

float h_binVal(display disp, ...);

Returns the value of a bin specified by arguments taken as integer index. The
number of the second and subsequent arguments must be equal to the dimension of
the display, i.e. 1, 2, or 3. The index of the first bin has the value 0.

int h_ptToBin(display disp, float f, binding_t axis);

Returns the index to the bin which would contain the value f along the spec-
ified axis, or -1 on error. The index of the first bin has the value 0.

int h_setDrawRect(display disp, rectangle *rect);
int h_setMarginRect(display disp, rectangle *rect);
int h_getDrawRect(display disp, rectangle *rect);
int h_getMarginRect(display disp, rectangle *rect);

The first function sets the size and position of the rectangle in which drawing
of the display is done. The second function sets the size and position of the rectangle
on which the axes are drawn. The third and fourth functions returns a copy of the
rectangle used by their respective “set” functions. For each function, the units used
are points, e.g. 1/72 of an inch. The rectangle for the margin is in the same coor-
dinate system as the draw rectangle. Each function returns 0 if successful, -1 oth-
erwise. The rectangle structure is compatible with NeXT’s NXRect and defined as
follows…

Hippoplotamus

32

typedef struct {
struct {

float x, y;
} origin;
struct {

float width, height;
} size;

} rectangle;

float h_wPtTogPt(display disp, float wPt, binding_t axis);
float h_gPtTowPt(display disp, float gPt, binding_t axis);

The first function converts the value wPt from window coordinates (i.e. the
same as the draw rectangle) to graph coordinates (i.e. the same as the axis scale).
The second function does the opposite.

void h_setDirty(display disp);

Sets the dirty flag of a display. A display becomes dirty if some display at-
tribute has changed or if a display is a histogram when the bins need to be regen-
erated. This function should usually never need to be called as the dirty flag is set
automatically by the hippo package. However, in the case when a user cut has
changed (see section 4.7), it should be called so that re-binning and/or re-plotting
will be correctly done.

int h_shade(display disp, float low, float high);

Shades a region of the plot along the x-axis. The shaded region runs from the
low to the high value along the x-axis but does not go past the x-axis range. The
shaded region covers the entire range of the y-axis.

Hippoplotamus

33

4.6 Input and Output functions

int h_writeStream(FILE *outfile,
display dlist[], ntuple ntlist[]);

int h_readStream(FILE *infile,
display **dlist, ntuple **ntlist);

These routines write or read, respectively, a NULL terminated list of displays
and a NULL terminated list of n-tuples to or from a file stream specified by the file
pointer. When writing to a file, all the n-tuples that are bound to any of the displays
are also written to the file unless they are bound by reference. Thus one can use a
NULL argument for the ntuple list and the list will be generated automatically. To
write only the n-tuples to a file, use a NULL argument in place of the display list. The
following code fragment illustrates how to read a file. Both functions return 0 if suc-

cessful or -1 otherwise.

int h_write(const char *filename,
display dlist[], ntuple ntlist[]);

int h_read(const char *filename,
display **dlist, ntuple **ntlist);

These routines write or read, respectively, a NULL terminated list of displays
and a NULL terminated list of n-tuples to or from a file specified by filename of the
first argument. See h_writeStream() for more information as these functions are
just layers on top of it.

int h_writeMem(char *buf, int len,
display dlist[], ntuple ntlist[]);

int h_readMem(char *buf, int len,
display **dlist, ntuple **ntlist);

These routines write or read, respectively, a NULL terminated list of displays
and a NULL terminated list of n-tuples to or from a memory buffer. See h_writ-

eStream() for more information. The second argument is the length of the buffer.

FILE *myfile;
display *d_list;
ntuple *nt_list;
h_readStream(myfile, &d_list, &nt_list)

Hippoplotamus

34

int h_writeXDR(XDR *xdrs,
display dlist[], ntuple ntlist[]);

int h_readXDR(XDR *xdrs,
display **dlist, ntuple **ntlist);

These routines write or read, respectively, a NULL terminated list of displays
and a NULL terminated list of n-tuples to or from the specified XDR stream. See
h_writeStream() for more information. The XDR stream should be opened with
the appropriate ENCODE or DECODE code.

ntuple h_fileParse(FILE* ifile,
ntuple oldnt, int verbose);

Reads an n-tuple represented as a plain text files and creates a new binary n-tu-
ple if oldnt is NULL or append to the n-tuple specified. If the argument verbose is
non-zero, the function will print messages to stdout. Returns the n-tuple created or
modified.

int h_nt2text(FILE *outfile, ntuple nt);

Writes a n-tuple as a plain text file (suitable for h_fileParse()) to the file
specified.

4.7 Cut and Plot Functions

The cut functions of the hippo package allows the use of the values of one or
more columns of the n-tuple to be used as a selection criteria on whether an entry of
the n-tuple (e.g. a row) is to be used for plotting or inclusion into a histogram. Plot
functions are use to over-plot the display with a user supplied function.

typedef struct {…} func_id_t, *func_id;

This is a structure that hippo uses to maintain a linked list of functions that are
applied as a cut or used as plot functions.

Hippoplotamus

35

int h_func_reg(const char *name, void *func);
void h_funcReg(void *func);

The first function assigns the name name to the function func and registers this
name in a function registry. The second function can be used when the function
name and the function are the same. Character string names for functions are used
for input and output. Built-in hippo supported cut functions are automatically reg-
istered. User supplied functions must be registered before their first reference.

func_id h_addCut(display disp, const char *cutfunc,
int cut_dim, double val1, ...);

Adds a hippo-supported cut to a display. Returns a pointer to the cut structure
or NULL on error. The standard cuts are available as a character string argument as
follows…

“h_cut_le”

“h_cut_lt”

“h_cut_ge”

“h_cut_gt”

“h_cut_inside”

“h_cut_in_incl”

“h_cut_outside”

“h_cut_out_incl”

The first four require one parameter (vall) and the remaining four require two
parameters. When there are 2 parameters, the first is the lesser of the two.

func_id h_addUserCut(display disp, const char *cutfunc,
double *param_blk, int nParam);

Adds a user-supported cut to a display. The user passes a function name, a
pointer to a parameter block (containing all doubles), and the size of the parameter
block (number of doubles). It is the responsibility of the user to maintain the pa-
rameters; if they are changed, one should call h_setDirty() (not necessary if dis-
play is not binned) on the display. Hippo maintains a pointer to the parameter block,
so it should not be moved.

Hippoplotamus

36

int h_changeCut(display disp, func_id cut,
double val1, ...);

Changes the cutting parameters of the display to the cut defined by the fun-

c_id cut which was returned by the h_addCut() function. It takes a variable num-
ber of addition arguments according to what kind of cut is being performed. Returns
0 if successful or -1 otherwise.

int h_deleteCut(display disp, func_id cut);

Removes a cut from a display. Returns 0 if successful or -1 otherwise. The ar-
gument, cut, is one returned from h_addCut() .

func_id h_nextCut(display disp, func_id thiscut);

Returns the next cut function used by a display given the current cut. If the val-
ue of the current cut is NULL, returns the first cut function. Returns NULL if the cur-
rent cut is the last one.

func_id h_addPlotFunc(display disp, const char *plotfunc,
double *paramBlk, int nParam
linestyle_t ls);

Adds a function to the linked list of plot functions that will be drawn over a dis-
play when plotted. The name of the function, plotfunc , must be registered with
h_func_reg() before this function is called. The line style for the function is also
set (see page 25).

func_id h_nextPlotFunc(display disp, func_id thisfunc);

Returns the next plot function in the linked list of plot functions applied to a
display. Use of this function is similar to h_nextCut() .

int h_deletePlotFunc(display disp, func_id pfunc);

Removes a plot function from the linked list of plot functions applied to a dis-
play. Use of this function is the same as h_deleteCut()

Hippoplotamus

37

4.8 FORTRAN Binding.

In the current release, the FORTRAN binding support in hippo is limited to the
handling of n-tuples. This subsection describes the FORTRAN functions that are
supported. In general, the FORTRAN function corresponds to the C function with
the leading “ip ” replaced with “h_”. However, there may be minor differences in
the use of the arguments due to differences in the C and FORTRAN languages and
their common usage.

Integer function ipnew(ndim)
Integer ndim

Returns a new n-tuple with dimension ndim (e.g. number of columns) if suc-
cessful, otherwise returns 0. The integer value returned is actually the address of the
C structure that manages the n-tuple. Thus its value must never be modified. From
the calling FORTRAN subprogram, the value should be considered as a unique
identifier of the n-tuple created with the call to ipnew() that will be used as an ar-
gument in subsequence calls to the hippo package.

Integer Function ipfreeNt(nt)
Integer nt

Frees all memory associated with the n-tuple and returns 0.

Integer Function ipclrNt(nt)
Integer nt

Clear all data points from the n-tuple, and reallocates memory for data to de-
fault size. Returns -1 on error, 0 on success.

Integer Function iparrayFill(nt, x)
Integer nt
Real x(*)

Adds one entry (e.g. row) to the end of the n-tuple data list. The first argument
is the n-tuple. The second argument is an array of data whose size should be at least
equal to the dimension of the n-tuple. Returns -1 on error, 0 otherwise.

Hippoplotamus

38

Integer Function ipsetNtTitle(nt, title)
Integer nt
Character*(*) title

Sets the title of the n-tuple data set. Trailing blank characters in the character
array are removed. Returns 0 if successful, -1 otherwise.

Integer Function ipsetNtLabel(nt, ndim, label)
Integer nt
Integer ndim
Character*(*) label

Sets the label of n-tuple dimension (column) specified by ndim . The first col-
umn is specified with dim = 1. Trailing blank characters in the character array are
removed. Returns 0 if successful, -1 otherwise.

Integer Function ipwrite(file, dlist, ntlist)
Character*(*) file
Integer dlist(*)
Integer ntlist(*)

Writes 0 terminated list of displays and a 0 terminated list of n-tuples to a file.
However, since the FORTRAN binding to displays are not supported in this release,
the second argument should have the value 0. Figure 2 on page 6 illustrates the use
of this function. Returns 0 if successful or -1 otherwise.

Hippoplotamus

39

5. Installation

The Hippoplotamus package was designed to be portable across many differ-
ent operating systems and different vendor implementations of the UNIX operating
system. Also, it also separates out the code to handle a display device (called a plot
driver) into separate files. It is only with the installation of hippo that one sees the
operating system and vendor differences. This section contains instruction for in-
stalling hippo on systems where it has already been tested and a guide for porting
hippo to other systems.

5.1 Requirements

The minimum requirements for installing hippo are an ANSI C compliant com-
piler with the standard C library and the Sun XDR library. The latter is usually avail-
able on UNIX systems and is part of the package for TCP/IP support on other
operating systems. Optionally the FORTRAN binding can be built, which obviously
requires a FORTRAN ‘77 or FORTRAN ‘90 compiler. By the way, the bindings have
been tested with a FORTRAN ‘90 compiler.

In some cases, it may be desirable to install only the n-tuple management part
of the hippo package such as when one generates the n-tuple files on one platform
but has a display application on another. In such cases, only the following files need
to be complied into the library…

In addition, the following C header files need to be made available to the program-
mer…

The remaining C source code and header files are only needed for the display part of
the hippo package.

The hippo package comes with three utility programs which can be optionally
build and installed. They all main programs that must be linked to the hippo library.

hntuple.c
hio.c
hxdrio.c
hutil.c
htextio.c

hippo.h
hstruct.h
hxdrio.h
hutil.h

Hippoplotamus

40

The first two are contained in the files nt2text.c and text2nt.c which perform
the conversion to and from plain text file format and the binary XDR format. They
only require the C compiler. The third is contained in the file hb2hippo.f which ex-
tracts an n-tuple from a HBOOK4 formatted file and produces a hippo binary XDR
format file. It requires a FORTRAN compiler and the parts of the CERN program li-
brary required by HBOOK4 (packlib).

5.2 UNIX Makefile

This package includes a makefile for UNIX machines. The file is built with
machine independent parts (Makefile and make.common) and a machine depen-
dent part i.e. make.next , make.sun4 , etc. The machine architecture is deter-
mined by the script “architecture ” and is set when make.common is called
from Makefile . Architectures on which have tested hippo are Sun, NeXT, Ultrix,
SGI, and AIX (on RS/6000). If you are adding a new machine, check that the script
architecture gives a sensible answer.

Because there are a number of plot drivers available, and one may want more
than one driver available on a given architecture, we have designed the makefile to
build different libraries for the different (major) drivers. For example, on a NeXT,
you would need to build only libhippoNext.a , while on a Sun, you might want
to build libhippoX11.a and libhippoXIV.a . If you don't have any of these
packages to link to, you could build a library (make target “hippo ”) which only
contains the PostScript and line printer drivers, no screen drivers.

There are a number of makefile macros which may need to be tailored to your
system. The machine dependency file is included late so that it can override any
macro defined in Makefile.

In make.common the following makefile macros are defined…

• SRC_DIR - this is the directory containing the source code.

• LIB_INSTALLDIR - directory in which to install the libraries.

• INC_INSTALLDIR - directory in which to install the header files.

• LIB_DIR - directory in which the libraries are built. It is included as a -L op-
tion when linking the utility programs, so it should be defined.

In the system dependent files, e.g. make.aix6000 , the following makefile
macros are defined…

Hippoplotamus

41

• CC, CPLUSPLUS - your compiler commands

• FC - your FORTRAN compiler if needed.

• MACH_DEP_MEMS - the library members which should be included for this ma-
chine. These are essentially only a selection of plot drivers (see below).

• DRVR_INCS - the list of include files for the selected drivers.

• PLOTCFLAGS - C compile flags for defining plot drivers.

• LIB_LIST - list of libraries to build.

• DEBUGLIB_LIST - list of debug libraries to build.

• FBINDINGS - the FORTRAN binding files. If you don’t have a FORTRAN com-
piler or don’t wish to use the FORTRAN bindings, then set this macro to a
blank.

The hippo package provides a number of plot drivers, which can be selected
for inclusion in the library in any combinations. The make.next and make.sun4 give
examples of their use. Table 1 summaries the available drivers, their source code
files, and required header files. A driver must be selected at compile time in order to

be able to use it in a program. By default, one of the screen drivers is included in
each library. For example, libhippoX11.a is build using X11PLOT driver.

To select a driver to put in a library, take the following steps…

Table 1: hippo plot drivers

Name Device Source Header Macro

LPR Line printer hprint.c (none) (none)

PS PostScript
 to file.

hplotPS.c hplotPS.h (none)

NEXT NeXT DPS hplotNxt.c
hpsWraps.c

hplotNeXT.h
hpsWraps.h

_NEXT_PLOT_

UNIXPLOT UNIXPlot hplotUP.c hplotUP.h _UNIXPLOT_

XIVPLOT InterViews hplotXIV.cc hplotXIV.h _XIVPLOT_

X11PLOT X11R4 hplotX11.c hplotX11.h _X11PLOT_

Hippoplotamus

42

• Add the source code file to MACH_DEP_MEMS in the form,

where source_file.o is the compiled object file of the files listed in Table
1.

• Add the corresponding header file to DRVR_INCS.

• Add the corresponding C macro definition to PLOTCFLAGS, for example,
-D_NEXT_PLOT_

You can select multiple drivers. Finally, you should choose one default plot
driver by defining the C macro DEF_PLOT_DRVR in PLOTCFLAGS; for example

-DDEF_PLOT_DRVR=NEXT
One must use one the names listed in Table 1. The driver names, LPR and PS, are al-
ways defined and should be used as a default if you don't want any other driver de-
fined.

Once the makefile and its included file(s) have been customized (if necessary),
then one can proceed to build various components of the hippo package. The make-
file contains the following targets to help with the installation…

• all - build the regular and debug libraries and utilities.

• lib s - build the (default) standard library: “libhippo.a ”.

• debuglibs - build the debug library, “libhippo.debug.a ”, e.g. -g option
used with compiler.

• <name> - build library lib<name>.a , e.g. libhippoX11.a .

• profile - build the profile library, e.g. -pg option used with compiler.

• util - build the nt2text and text2nt converter programs.

• clean - delete backup files.

• install - copy libraries and certain include files to specified place.

• hb2hippo - build the hb2hippo program.

• $(LIBRARY)(source_file.o)

Hippoplotamus

43

• test - run a few tests to see that hippo is working correctly.

The default libraries that are built with libs target varies with the machine ar-
chitecture and is control by the individual make.* files. For example, on a NeXT,
the default is to build libhippoNext.a , while on a SUN it is to build both the
libhippoXIV.a and libhippoX11.a libraries.

5.3 VMS Installation.

Included in the hippo package is an MMS file for VMS under the name
make.vms (this does not need the file Makefile or make.common). This file is
written to compile with the X11PLOT driver. You may need to change the logicals
defined under .First to point to the correct directories (this is for RPC include
files). Otherwise, many of the macro are the same as for the UNIX makefile. We do
not change the name of the FORTRAN file hippof.f .

When linking a program with hippo on VMS, you will need the RPC and Multi-
net libraries. On the system where hippo was tested, they are located at

 multinet_root:[multinet.library]rpc.olb
 multinet_root:[multinet]multinet_socket_library.exe

(The socket library is really only needed to resolve bcopy and bset , something
that Multinet should have put in the RPC library). The hippo package has not been
tested with other vendor’s TCP/IP packages. The file hippo.opt , which is part of
the distributed hippo package can be used to specify these libraries.

The C macro GLOB_QUAL is defined to be “noshare ” on VMS. This should al-
low one to build a sharable library.

5.4 Miscellaneous Files

As part of the hippo distribution, there are a few other files described below…

• architecture - a shell script used by the Makefile to determine which fla-
vor of UNIX is being used.

• example.hippo - an example hippo n-tuple in binary format and is used by
make test procedure.

• example.hiptxt - an example hippo n-tuple file in plain text format and is
used by the make test procedure.

Hippoplotamus

44

• fhippo.c, hippo.f - the optional FORTRAN binding source files.

• getarg.c - a FORTRAN callable function to get the command line arguments.
This function is in the FORTRAN run-time library for many systems and sup-
plied as part of the hippo package for when it is missing, e.g. NeXT.

• hippo.opt - options file for VAX/VMS linker.

• hshrtnm.h - header file with short names for most of the hippo functions that
is used for compiling on IBM mainframes.

• h_test.c - a program to test basic hippo functions.

• h_test.out - reference output of h_test .

• h_testX11.c - program to exercise the X11 driver.

5.5 Problems, Changes and Bug Reports

We are very interested in hearing about bugs and improvements. If you find a
bug, please send mail to

hippo_bug@ebnextk.slac.stanford.edu

Please try to be as specific as possible. Mail to this mailing aliases will be carefully
kept and eventually dealt with.

If you have any suggestions or wish to make some contribution (e.g. a new plot
driver), please contact the authors. Send mail to

hippo_comment@ebnextk.slac.stanford.edu .

Mail to this mailing aliases will be kept as a wish list. It is also recommended that if
you are using hippo that you send mail to this address to register your copy. In that
way, you’ll be informed of major updates and bug fixes.

Hippoplotamus

45

6. History

The prototype for hippo was a package called HandyC written by Benoit
Mours while he was at SLAC. It was intended to support the Reason project.
HandyC was written in C, and it demonstrated the power of the C programming lan-
guage for such packages. It followed the calling sequence of SLAC’s HandyPak[3]
but added a few new features. Features from the DESY package GEP[4], and the
CERN package HBOOK[2], which have been incorporated into hippo. The authors
of hippo are indebted to work done Benoit Mours and the authors of these other
packages.

 HandyC was not only a good test bed to try out new ideas, but also to measure
the performance and/or response time the user would feel for these features. In the
summer of 1990, Jonas Karlsson, then working as a summer student, suggested that
one should really start over again with a better base in order to implement yet further
new ideas. William Shipley (another summer student) and Gary Word contributed
to the foundation of hippo soon thereafter. Jonas Karlsson did the original imple-
mentation. The current authors started working on hippo in earnest early in 1991.
Tom Pavel did the InterViews plot driver and Tony Johnson of Boston University
did the X11R4 driver.

7. References

[1] XDR External Data Representation Standard, RFC1014, Sun Microsystems, Inc., USC-ISI
(see also man pages on UNIX systems).

[2] R. Brun, D. Lienart, HBOOK USER GUIDE: CERN COMPUTER CENTER PROGRAM
LIBRARY LONG WRITEUP:VERSION 4, CERN-Y250, Oct 1987. 108pp.

[3] A. Boyarski, HANDYPAK: A HISTOGRAM AND DISPLAY PACKAGE (RELEASE 6.5), SLAC-
0234-Rev-2, Sep 1988. 132pp. Revised version.

[4] E. Bassler, THE GRAPHICAL EDITOR PROGRAM: GEP, COMPUT. PHYS. COMMUN. 45
(1987) 201-205.

Hippoplotamus

46

Hippoplotamus

iii

Index

% subsitutions 14, 24

A
accumulate, see fill
Apple 28
architecture 40, 43
auto-scaling 26
axes

auto-scaling 26
binding 25, 26
drawing 30
linear scale 27
log scale 13, 27

B
binding

axes 25, 26
by reference 23
display to n-tuple 12, 22

binding_t 25
bins 13, 29, 30

fixed 31
index of 31
maximum 30
minimum 30
number of 26
value of 31
width of 27

BOX 23
buffer 33
bugs 44
by reference flag 13

C
canvas 15
clear n-tuple

with C 17
with FORTRAN 37

COLOR 23
color 24
color plot 21
COLORPLOT 21
conversion

from HBOOK 8
from plain text 7

copy display 22
creation of n-tuple 3
cuts

add 16, 35
change 16, 36
delete 16, 36
function 15

next 36
user 35

D
DASH 25
delete

cut 16, 36
plot function 16, 36

dirty flag 32
display 21
Display Postscript 14
displayed range 26
displays with FORTRAN 7
DOT 25
DOTDASH 25
drawtype_t 23

E
e-mail addresses 44
Encapsulated PostScript 28
enumerated types

binding_t 25
drawtype_t 23
graphtype_t 21
linestyle_t 25
plotdrvr_t 28
plotsymbol_t 25

EPSPLOT 28
ERRBAR 23
error bars 24
example files 43
expand 28

F
fill n-tuple

C 4, 18
FORTRAN 6, 37

flags
auto-scale 26
by reference 13, 23
dirty 32
draw axes 30
draw labels 30
draw titles 30
extremeBad 20
fixed bins 31
log axis scale 13

FORTRAN 6, 37, 39, 41
free

display 22
n-tuple

C 17
FORTRAN 37

full color 24
func_id_t 34
function

cut 15

delete 36
next plot 36
plot 15, 36

function registry 15, 35
functions 15

G
GEP 45
getarg.c 44
GLOB_QUAL 43
GNU 14
graph coordinates 32
graphtype_t 21
gray scale 24

H
h_addCut 16, 35
h_addPlotFunc 16, 36
h_addUserCut 16, 35
h_arrayFill 4, 18
h_arrayReplData 20
h_autoScale 26
h_bin 29
h_bind 12, 25
h_bindMany 26
h_bindNtuple 12, 22
h_changeCut 16, 36
h_clrNt 17
h_copyDisp 22
h_cut_ge 35
h_cut_gt 35
h_cut_in_incl 35
h_cut_inside 35
h_cut_le 35
h_cut_lt 35
h_cut_out_incl 35
h_cut_outside 35
h_deleteCut 16, 36
h_deletePlotFunc 16, 36
h_dispSize 22
h_endDrvr 29
h_endPage 29
h_expandLabel 28
h_fileParse 13, 34
h_fill 4, 18
h_fprint 29
h_freeDisp 22
h_freeNt 17
h_func_reg 35
h_funcReg 15, 35
h_getAutoScale 26
h_getAxisLabel 27
h_getBinding 25
h_getBinExtreme 30
h_getBinNum 26
h_getBins 30

Hippoplotamus

iv

h_getBinWidth 27
h_getDispType 22
h_getDrawAxes 30
h_getDrawRect 31
h_getDrawTitles 30
h_getDrawType 23
h_getExtremeBad 20
h_getFixedBins 31
h_getLineStyle 25
h_getLogAxis 27
h_getMarginRect 31
h_getNtAllData 19
h_getNtByRef 23
h_getNtColumn 19
h_getNtData 19
h_getNtDim 18
h_getNtFile 23
h_getNtHigh 19
h_getNtLabel 18
h_getNtLow 19
h_getNtNdata 19
h_getNtTitle 18
h_getNtuple 22
h_getPlotSym 24
h_getRange 26
h_getSymSize 25
h_getTitle 24
h_getTotal 30
h_getVariance 30
h_gPtTowPt 32
h_new 3, 17
h_newDisp 10, 22
h_nextCut 16, 36
h_nextPlotFunc 16, 36
h_nt2text 13, 34
h_ntByReference 13
h_ntSize 20
h_orDrawType 23
h_plot 15, 28
h_print 29
h_ptToBin 31
h_read 33
h_readMem 33
h_readStream 33
h_readXDR 34
h_replData 20
h_setAllNtLabels 5, 18
h_setAutoScale 26
h_setAxisLabel 14, 27
h_setBinNum 13, 26
h_setBinWidth 13, 27
h_setDirty 32
h_setDispType 22
h_setDrawAxes 30
h_setDrawRect 31
h_setDrawTitles 30
h_setDrawType 23

h_setFixedBins 31
h_setLineStyle 25
h_setLogAxis 13, 27
h_setMarginRect 31
h_setNtByRef 23
h_setNtLabel 5, 18
h_setNtTitle 5, 18
h_setPlotDrvr 14, 28
h_setPlotSym 24
h_setRange 13, 26
h_setSymSize 25
h_setTitle 14, 24
h_shade 32
h_test.c 44
h_testX11.c 44
h_wPtTogPt 32
h_write 4, 33
h_writeMem 33
h_writeStream 33
h_writeXDR 34
HandyC 45
HandyPak 45
hb2hippo 40
hb2hippo utility 8
HBOOK 8, 40, 45
hippo.opt 44
histogram 21
hshrtnm.h 44

I
IBM 44
index to a bin 31
InterViews 14, 28
iparrayFill 6, 37
ipclrNt 37
ipfill 6
ipfreeNt 37
ipnew 6, 37
ipsetNtLabel 6, 38
ipsetNtTitle 6, 38
ipwrite 7, 38

L
labels

axes 27
C 14, 18
display 30
FORTRAN 6, 38
plain text 7

labels of columns 5
lego plot 21
LEGOPLOT 21
libraries 40
limits of n-tuple data 19, 20
LINE 23
line style 25, 36
linear scale 27
linestyle_t 25

list of functions 34
list of n-tuples 4
log scale 27
LPR 28

M
MAC 14, 28
Macintosh 14, 28
Makefile 14
makefile 40, 42
maximum bin 30
memory buffer 33
minimum bin 30
Multinet 43

N
network support 1
new

display 22
n-tuple

C 17
FORTRAN 6, 37

NEXT 14, 28
NeXT 14
next cut 36
noshare 43
nt2text 40
ntuple 3, 17
n-tuple, definition of 1
ntuple_t 17
number of bins 26
number of columns 18
number of entries 19

P
painter 15
plain text 7, 13
plot

3D scatter plot 21
color scatter 21
delete function 36
drivers 14, 28
function 15, 36
lego plot 21
next function 36
plain text 29
scatter plot 21
symbol 24

plot libraries 14
plotdrvr_t 28
plotfunc 15
plotsymbol_t 25
PLUS 25
POINT 23
PostScript 14, 28
printer 28
PSPLOT 14, 28

Hippoplotamus

v

Q
QuickDraw 28

R
range of display 13, 26
read

buffer 33
file 33
plain text 34
stream 33
XDR 34

reading a file 13
re-binning 31
rectangle 31
rectangle 32
register functions 15, 35

S
scatter plot 21
SCATTERPLOT 21
shading 32
size of display 22
size of n-tuple 20
size of plot symbol 25
SOLID 25
SOLIDSQUARE 25
SQUARE 25
structures

display 21
functions 34
n-tuple 17
rectangle 31

style of line 25
substitution strings 14
substitutions in labels 14, 24
sums 30
symbol for plot 24

T
text2nt 40
text2nt utility 7
TIMES 25
title

display 24, 30
n-tuple

C 14, 18
FORTRAN 6, 38

plain text 7
title of n-tuple 5
totals 30
type of display 22
type of drawing 23
typedef

binding_t 25
display 21
display_t 21
drawtype_t 23

func_id 34
func_id_t 34
graphtype_t 21
linestyle_t 25
ntuple 17
ntuple_t 17
plotdrvr_t 28
plotsymbol_t 25
rectangle 32

U
unbind 12, 26
UNIXPLOT 14, 28
user cut 35
utilities 39

hb2hippo 8
text2nt 7

V
value of a bin 31
variance 30
VAX/VMS linker 44
VMS 43

W
WEIGHT 25
width of bins 13, 27
window coordinates 32
write

buffer 13, 33
file 33
FORTRAN 7, 38
plain text 34
stream 33
XDR 34

writing n-tuple 13

X
X11PLOT 14, 28
X11R4 28
XAXIS 25
XDR 1, 13, 34, 39, 45
XERROR 25
XIVPLOT 14, 28
X-Windows 14, 28
x-y plot 21
XYPLOT 21

Y
YAXIS 25
YERROR 25

Z
ZAXIS 25

Hippoplotamus

vi

