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Preface

These notes on R are derived from an original set of notes describing the S and S-PLUS environ-

ments written by Bill Venables and Dave Smith. We have made a number of small changes to

relect di�erences between the R and S programs.

R is an ongoing project and its capabilities do not presently match those of S. IN these notes we

have adopted the convention that any feature that we intend to implement is noted as such at

the beginning of the section where the feature is described. Users can contribute to the project

by implementing any of these that remain.

We would like to extend warm thanks to Bill Venables for granting permission to distributed this

modi�ed version of the notes in this way, and for being a supporter of R from way back.

Comments and corrections are always welcome. Please address email correspondence to

R@stat.auckland.ac.nz.

Suggestions to the reader

Most R novices will start with the introductory session in Appendix A. This should give some

familiarity with the style of R sessions and more importantly some instant feedback on what

actually happens.

Many users will come to Rmainly for its graphical facilities. In this case section 11 on the graphics

facilities can be read at almost any time and need not wait until all the preceding sections have

been digested.

Robert Gentleman and Ross Ihaka,

University of Auckland,

April, 1997.
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1 Introduction and Preliminaries

1.1 The R environment

R is an integrated suite of software facilities for data manipulation, calculation and graphical

display. Among other things it has

� an e�ective data handling and storage facility,

� a suite of operators for calculations on arrays, in particular matrices,

� a large, coherent, integrated collection of intermediate tools for data analysis,

� graphical facilities for data analysis and display either at a workstation or on hardcopy,

and

� a well developed, simple and e�ective programming language which includes conditionals,

loops, user de�ned recursive functions and input and output facilities. (Indeed most of the

system supplied functions are themselves written in the S language.)

The term \environment" is intended to characterize it as a fully planned and coherent system,

rather than an incremental accretion of very speci�c and inexible tools, as is frequently the case

with other data analysis software.

R is very much a vehicle for newly developing methods of interactive data analysis. As such it is

very dynamic, and new releases have not always been fully upwardly compatible with previous

releases. Some users welcome the changes because of the bonus of new technology and new

methods that come with new releases; others seem to be more worried by the fact that old code

no longer works. Although R is intended as a programming language, one should regard programs

written in R as essentially ephemeral.

1.2 Related Software and Documentation

R can be regarded as a re-implementation of the S language developed at AT&T by Rick Becker,

John Chambers and Allan Wilks. A number of the books and manuals about S bear some

relevance to R.

The basic reference is The New S Language: A Programming Environment for Data Analysis

and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks. The new features of

the August 1991 release of S are covered in Statistical Models in S Edited by John M. Chambers

and Trevor J. Hastie. In addition, the manuals for S-PLUS, the commercially supported version

of S may be useful.

1.3 R and the Window System

The most convenient way to use R is at a graphics workstation running a windowing system.

These notes are aimed at users who have this facility. In particular we will occasionally refer to

the use of R on an X{window system although the vast bulk of what is said applies generally to

any implementation of the R environment.

Most users will �nd it necessary to interact directly with the operating system on their computer

from time to time. In these notes we mainly discuss interaction with the operating system on

Unix machines. If you are running R under either Macintosh or Windows you will need to make

the appropriate adjustment. For both the Macintosh and Windows implementations we have

attempted to adhere to the relevant user interface guidelines.
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Setting up a workstation to take full advantage of the customizable features of R is a straightfor-

ward if somewhat tedious procedure, and will not be considered further here. Users in di�culty

should seek local expert help.

1.4 Using R interactively

When you use the R program it issues a prompt when it expects input commands. The default

prompt is \>", which on Unix could be the same as the shell prompt, and so it may appear that

nothing is happening. However, as we shall see, it is easy to change to a di�erent R prompt if

you wish. In these notes we will assume that the Unix shell prompt is \$ ".

In using R under Unix the suggested procedure for the �rst occasion is as follows:

1. Create a separate sub-directory, say work, to hold data �les on which you will use R for

this problem. This will be the working directory whenever you use R for this particular

problem.

$ mkdir work

$ cd work

2. Place any data �les you wish to use with R in work.

3. Start the R program with the command

$ R

4. At this point R commands may be issued (see later).

5. To quit the R program the command is

> q()

$

At this point you will be asked whether you want to save the data from your R session.

You can respond yes, no or cancel (a single letter abbreviation will do) to save the data

before quiting, quit without saving, or return to the R session. Data which is saved will be

available in future R sessions.

Further R sessions are simple.

1. Make work the working directory and start the program as before:

$ cd work

$ R

2. Use the R program, terminating with the q() command at the end of the session.

When using R under either the Macintosh or Windows the procedure to follow is basically the

same. Create a folder or working directory. Copy �les that you want to use to that directory.

Then launch R by double clicking on the appropriate icon. Select New from the File menu to

indicate that you want to start a new analysis (this will remove any previously de�ned objects

from the workspace) and then select Save from the File menu to save the pristine image into

the folder you have created. You may now commence your analysis and when you exit from R

you will be prompted to save the image in your working directory.

To work on the same analysis at a later time simply double{click on the icon for the saved image.

Alternatively you can start R elsewhere and then use Open from the File menu to select and

subsequently open the saved image.
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1.5 An Introductory Session

Readers wishing to get a feel for R at a workstation (or terminal) before proceeding are strongly

advised to work through the model introductory session given in Appendix A, starting on page 62.

1.6 Getting help with functions and features

R has an inbuilt help facility similar to the man facility of UNIX. To get more information on any

speci�c named function, for example solve the command is

> help(solve)

An alternative is

> ?solve

For a feature speci�ed by special characters, the argument must be enclosed in double or single

quotes, making it a `character string':

> help("[[")

Either form of quote mark may be used to escape the other, as in the string "It's important".

Our convention in these notes is to use double quote marks for preference.

This facility has not yet been established on either the Macintosh or Windows versions of R. Users

on these platforms must use either the HTML version of the help �les or hardcopy versions.

1.7 R Commands. Case Sensitivity.

Technically R is an expression language with a very simple syntax. It is case sensitive as are most

UNIX based packages, so A and a are di�erent symbols and would refer to di�erent variables.

Elementary commands consist of either expressions or assignments. If an expression is given

as a command, it is evaluated, printed, and the value is lost. An assignment also evaluates an

expression and passes the value to a variable but the result is not automatically printed.

Commands are separated either by a semi-colon, ;, or by a newline. If a command is not complete

at the end of a line, R will give a di�erent prompt, for example

+

on second and subsequent lines and continue to read input until the command is syntactically

complete. This prompt may be changed by the user. In these notes we will generally omit the

continuation prompt and indicate continuation by simple indenting.

1.8 Recall and Correction of Previous Commands

Under many versions of UNIX, R provides a mechanism for recalling and re-executing previous

commands. The vertical arrow keys on the keyboard can be used to scroll forward and backward

through a command history. Once a command is located in this way, the cursor can be moved

within the command using the horizontal arrow keys, and characters can be removed with the

Delete key or added with the other keys.

The recall and editing capabilities are highly customizable. You can �nd out how to do this by

reading the UNIX manual entry for the readline library.

Alternatively, the emacs text editor provides rather more general support mechanisms for working

interactively with R.
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The Macintosh and Windows versions of R do not currently have this level of exibility for

recalling previous commands. For these users we recommend storing your commands in a separate

�le and using your favourite word processor in conjunction with cut and paste to execute the

commands in R.

1.9 Executing Commands from, or Diverting Output to, a File

If commands are stored on an external �le, say commands.R in the working directory work, they

may be executed at any time in an R session with the command

> source("commands.R")

For Macintosh and Windows Source is also available on the File menu. The function sink,

> sink("record.lis")

will divert all subsequent output from the terminal to an external �le, record.lis. The command

> sink()

restores it to the terminal once again.

1.10 Data Permanency. Removing Objects.

The entities that R creates and manipulates are known as objects. These may be variables, arrays

of numbers, character strings, functions, or more general structures built from such components.

During an R session, objects are created and stored by name (we discuss this process in the next

session). The R command

> objects()

can be used to display the names of the objects which are currently stored within R.

To remove objects the function rm is available:

> rm(x, y, z, ink, junk, temp, foo, bar)

All objects created during an R sessions can be stored permanently in a �le for use in future R

sessions. At the end of each R session you are given the opportunity to save all the currently

available objects. If you indicate that you want to do this, the objects are written to a �le called

.RData

1

. in the current directory.

When R is started at later time it reloads the objects from this �le (at the same time the associated

command history is also reloaded under Unix).

It is recommended that you should use separate working directories for analyses conducted with

R. It is quite common for objects with names x and y to be created during an analysis. Names

like this are often meaningful in the context of a single analysis, but it can be quite hard to

decide what they might be when the several analyses have been conducted in the same directory.

1

The leading \dot" in this �le name makes it invisible in UNIX.
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2 Simple Manipulations; Numbers and Vectors

2.1 Vectors and Assignment

R operates on named data structures. The simplest such structure is the vector, which is a single

entity consisting of an ordered collection of numbers. To set up a vector named x, say, consisting

of �ve numbers, namely 10:4, 5:6, 3:1, 6:4 and 21:7, use the R command

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

This is an assignment statement using the function c()which in this context can take an arbitrary

number of vector arguments and whose value is a vector got by concatenating its arguments end

to end.

2

A number occurring by itself in an expression is taken as a vector of length one.

Notice that the assignment operator is not the usual = operator, which is reserved for another

purpose. It consists of the two characters < (`less than') and - (`minus') occurring strictly side-

by-side and it `points' to the object receiving the value of the expression.

3

Assignment can also be made using the function assign(). An equivalent way of making the

same assignment as above is with:

> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))

The usual operator, <-, can be thought of as a syntactic short{cut to this.

Assignments can also be made in the other direction, using the obvious change in the assignment

operator. So the same assignment could be made using

> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x

If an expression is used as a complete command, the value is printed and lost. So now if we were

to use the command

> 1/x

the reciprocals of the �ve values would be printed at the terminal (and the value of x, of course,

unchanged).

The further assignment

> y <- c(x, 0, x)

would create a vector y with 11 entries consisting of two copies of x with a zero in the middle

place.

2.2 Vector Arithmetic

Vectors can be used in arithmetic expressions, in which case the operations are performed element

by element. Vectors occurring in the same expression need not all be of the same length. If they

are not, the value of the expression is a vector with the same length as the longest vector which

occurs in the expression. Shorter vectors in the expression are recycled as often as need be

(perhaps fractionally) until they match the length of the longest vector. In particular a constant

is simply repeated. So with the above assignments the command

> v <- 2*x + y + 1

2

With other than vector types of argument, such as listmode arguments, the action of c() is rather di�erent.

See x6.2.1.

3

The underscore character, \ " is an allowable synonym for the left pointing assignment operator \<-", however

we discourage this option, as it can easily lead to much less readible code.
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generates a new vector v of length 11 constructed by adding together, element by element, 2*x

repeated 2:2 times, y repeated just once, and 1 repeated 11 times.

The elementary arithmetic operators are the usual +, -, *, / and ^ for raising to a power. In

addition all of the common arithmetic functions are available. log, exp, sin, cos, tan, sqrt, and

so on, all have their usual meaning. max and min select the largest and smallest elements of an

vector respectively. range is a function whose value is a vector of length two, namely c(min(x),

max(x)). length(x) is the number of elements in x, sum(x) gives the total of the elements in x

and prod(x) their product.

Two statistical functions are mean(x) which calculates the sample mean, which is the same as

sum(x)/length(x), and var(x) which gives

sum((x-mean(x))^2)/(length(x)-1)

or sample variance. If the argument to var() is an n � p matrix the value is a p � p sample

covariance matrix got by regarding the rows as independent p�variate sample vectors.

sort(x) returns a vector of the same size as x with the elements arranged in increasing order;

however there are other more exible sorting facilities available (see order() or sort.list()

which produce a permutation to do the sorting).

rnorm(x) is a function which generates a vector (or more generally an array) of pseudo-random

standard normal deviates, of the same size as x.

2.3 Generating Regular Sequences

R has a number of facilities for generating commonly used sequences of numbers. For example

1:30 is the vector c(1,2, ...,29,30). The colon operator has highest priority within an ex-

pression, so, for example 2*1:15 is the vector c(2,4,6, ...,28,30). Put n <- 10 and compare

the sequences 1:n-1 and 1:(n-1).

The construction 30:1 may be used to generate a sequence backwards.

The function seq() is a more general facility for generating sequences. It has �ve arguments,

only some of which may be speci�ed in any one call. The �rst two arguments, if given, specify

the beginning and end of the sequence, and if these are the only two arguments given the result

is the same as the colon operator. That is seq(2,10) is the same vector as 2:10.

Parameters to seq(), and to many other R functions, can also be given in named form, in which

case the order in which they appear is irrelevant. The �rst two parameters may be named

from=value and to=value; thus seq(1,30), seq(from=1, to=30) and seq(to=30, from=1)

are all the same as 1:30. The next two parameters to seq() may be named by=value and

length=value, which specify a step size and a length for the sequence respectively. If neither of

these is given, the default by=1 is assumed.

For example

> seq(-5, 5, by=.2) -> s3

generates in s3 the vector c(-5.0, -4.8, -4.6, ..., 4.6, 4.8, 5.0). Similarly

> s4 <- seq(length=51, from=-5, by=.2)

generates the same vector in s4.

The �fth parameter may be named along=vector, which if used must be the only parameter, and

creates a sequence 1, 2, ..., length(vector), or the empty sequence if the vector is empty

(as it can be).

A related function is rep() which can be used for replicating an object in various complicated

ways. The simplest form is
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> s5 <- rep(x, times=5)

which will put �ve copies of x end-to-end in s5.

2.4 Logical Vectors

As well as numerical vectors, R allows manipulation of logical quantities. The elements of a

logical vectors have just two possible values, represented formally as FALSE and TRUE. These are

usually abbreviated as F and T, respectively.

Logical vectors are generated by conditions. For example

> temp <- x>13

sets temp as a vector of the same length as x with values F corresponding to elements of x where

the condition is not met and T where it is.

The logical operators are <, <=, >, >=, == for exact equality and != for inequality. In addition

if c1 and c2 are logical expressions, then c1 & c2 is their intersection, c1 | c2 is their union and

! c1 is the negation of c1.

Logical vectors may be used in ordinary arithmetic, in which case they are coerced into numeric

vectors, F becoming 0 and T becoming 1. However there are situations where logical vectors and

their coerced numeric counterparts are not equivalent, for example see the next subsection.

2.5 Missing Values

In some cases the components of a vector may not be completely known. When an element

or value is \not available" or a \missing value" in the statistical sense, a place within a vector

may be reserved for it by assigning it the special value NA. In general any operation on an NA

becomes an NA. The motivation for this rule is simply that if the speci�cation of an operation is

incomplete, the result cannot be known and hence is not available.

The function is.na(x) gives a logical vector of the same size as x with value T if and only if the

corresponding element in x is NA.

> ind <- is.na(z)

Notice that the logical expression x == NA is quite di�erent from is.na(x) since NA is not really

a value but a marker for a quantity that is not available. Thus x == NA is a vector of the same

length as x all of whose values are NA as the logical expression itself is incomplete and hence

undecidable.

2.6 Character Vectors

Character quantities and character vectors are used frequently in R, for example as plot labels.

Where needed they are denoted by a sequence of characters delimited by the double quote

character. E. g. "x-values", "New iteration results".

Character vectors may be concatenated into a vector by the c() function; examples of their use

will emerge frequently.

The paste() function takes an arbitrary number of arguments and concatenates them into a

single character string. Any numbers given among the arguments are coerced into character

strings in the evident way, that is, in the same way they would be if they were printed. The

arguments are by default separated in the result by a single blank character, but this can be

changed by the named parameter, sep=string , which changes it to string , possibly empty.

For example
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> labs <- paste(c("X","Y"), 1:10, sep="")

makes labs into the character vector

("X1", "Y2", "X3", "Y4", "X5", "Y6", "X7", "Y8", "X9", "Y10")

Note particularly that recycling of short lists takes place here too; thus c("X", "Y") is repeated

5 times to match the sequence 1:10.

2.7 Index Vectors. Selecting and Modifying Subsets of a Data Set

Subsets of the elements of a vector may be selected by appending to the name of the vector an

index vector in square brackets. More generally any expression that evaluates to a vector may

have subsets of its elements similarly selected by appending an index vector in square brackets

immediately after the expression.

Such index vectors can be any of four distinct types.

1. A logical vector. In this case the index vector must be of the same length as the vector

from which elements are to be selected. Values corresponding to T in the index vector are

selected and those corresponding to F omitted. For example

> y <- x[!is.na(x)]

creates (or re-creates) an object y which will contain the non-missing values of x, in the

same order. Note that if x has missing values, y will be shorter than x. Also

> (x+1)[(!is.na(x)) & x>0] -> z

creates an object z and places in it the values of the vector x+1 for which the corresponding

value in x was both non-missing and positive.

2. A vector of positive integral quantities. In this case the values in the index vector must

lie in the the set {1, 2, ..., length(x)}. The corresponding elements of the vector are

selected and concatenated, in that order, in the result. The index vector can be of any

length and the result is of the same length as the index vector. For example x[6] is the

sixth component of x and

> x[1:10]

selects the �rst 10 elements of x, (assuming length(x) � 10). Also

> c("x","y")[rep(c(1,2,2,1), times=4)]

(an admittedly unlikely thing to do) produces a character vector of length 16 consisting of

"x", "y", "y", "x" repeated four times.

3. A vector of negative integral quantities. Such an index vector speci�es the values to be

excluded rather than included. Thus

> y <- x[-(1:5)]

gives y all but the �rst �ve elements of x.

4. A vector of character strings. This possibility only applies where an object has a names

attribute to identify its components. In this case a subvector of the names vector may be

used in the same way as the positive integral labels in 2. above.

> fruit <- c(5, 10, 1, 20)

> names(fruit) <- c("orange", "banana", "apple", "peach")

> lunch <- fruit[c("apple","orange")]
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The advantage is that alphanumeric names are often easier to remember than numeric

indices. This option is particularly useful in connection with data frames, as we shall see

later.

An indexed expression can also appear on the receiving end of an assignment, in which case the

assignment operation is performed only on those elements of the vector. The expression must be

of the form vector[index vector] as having an arbitrary expression in place of the vector name

does not make much sense here.

The vector assigned must match the length of the index vector, and in the case of a logical index

vector it must again be the same length as the vector it is indexing.

For example

> x[is.na(x)] <- 0

replaces any missing values in x by zeros and

> y[y<0] <- -y[y<0]

has the same e�ect as

> y <- abs(y)

4

4

Note that abs()does not work as expectedwith complex arguments. The appropriate function for the complex

modulus is Mod().
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3 Objects, their Modes and Attributes

3.1 Intrinsic Attributes: mode and length

The entities R operates on are technically known as objects. Examples are vectors of numeric

(real) or complex values, vectors of logical values and vectors of character strings. These are

known as `atomic' structures since their components are all of the same type, or mode, namely

numeric

5

, complex, logical and character respectively.

Vectors must have their values all of the same mode. Thus any given vector must be unambigu-

ously either logical, numeric, complex or character. The only mild exception to this rule is the

special \value" listed as NA for quantities not available. Note that a vector can be empty and

still have a mode. For example the empty character string vector is listed as character(0) and

the empty numeric vector as numeric(0).

R also operates on objects called lists, which are of mode list. These are ordered sequences of

objects which individually can be of any mode. lists are known as `recursive' rather than atomic

structures since their components can themselves be lists in their own right.

The other recursive structures are those of mode function and expression. Functions are the

functions that form part of the R system along with similar user written functions, which we

discuss in some detail later in these notes. Expressions as objects form an advanced part of R

which will not be discussed in these notes, except indirectly when we discuss formul� used with

modelling in R.

By the mode of an object we mean the basic type of its fundamental constituents. This is a special

case of an attribute of an object. The attributes of an object provide speci�c information about

the object itself. Another attribute of every object is its length. The functions mode(object) and

length(object) can be used to �nd out the mode and length of any de�ned structure.

For example, if z is a complex vector of length 100, then in an expression mode(z) is the character

string "complex" and length(z) is 100.

R caters for changes of mode almost anywhere it could be considered sensible to do so, (and a

few where it might not be). For example with

> z <- 0:9

we could put

> digits <- as.character(z)

after which digits is the character vector ("0", "1", "2", ..., "9"). A further coercion, or

change of mode, reconstructs the numerical vector again:

> d <- as.numeric(digits)

Now d and z are the same.

6

There is a large collection of functions of the form as.something()

for either coercion from one mode to another, or for investing an object with some other attribute

it may not already possess. The reader should consult the help �le to become familiar with them.

3.2 Changing the Length of an Object

An \empty" object may still have a mode. For example

> e <- numeric()

5

numericmode is actually an amalgamof two distinctmodes, namely integer and double precision, as explained

in the manual.

6

In general coercion from numeric to character and back again will not be exactly reversible, because of roundo�

errors in the character representation.
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makes e an empty vector structure of mode numeric. Similarly character() is a empty character

vector, and so on. Once an object of any size has been created, new components may be added

to it simply by giving it an index value outside its previous range. Thus

> e[3] <- 17

now makes e a vector of length 3, (the �rst two components of which are at this point both NA).

This applies to any structure at all, provided the mode of the additional component(s) agrees

with the mode of the object in the �rst place.

This automatic adjustment of lengths of an object is used often, for example in the scan()

function for input. (See x7.2.)

Conversely to truncate the size of an object requires only an assignment to do so. Hence if alpha

is an object of length 10, then

> alpha <- alpha[2 * 1:5]

makes it an object of length 5 consisting of just the former components with even index. The

old indices are not retained, of course.

3.3 attributes() and attr()

The function attributes(object) gives a list of all the non-intrinsic attributes currently de�ned

for that object. The function attr(object,name) can be used to select a speci�c attribute.

These functions are rarely used, except in rather special circumstances when some new attribute

is being created for some particular purpose, for example to associate a creation date or an

operator with an R object. The concept, however, is very important.

Some care should be exercised when assigning or deleting attributes since they are an integral

part of the object system used in R.

When it is used on the left hand side of an assignment it can be used either to associate a new

attribute with object or to change an existing one. For example

> attr(z,"dim") <- c(10,10)

allows R to treat z as if it were a 10� 10 matrix.

3.4 The class of an object

A special attribute known as the class of the object is used to allow for an object oriented style

of programming in R.

For example if an object has class data.frame, it will be printed in a certain way, the plot()

function will display it graphically in a certain way, and other generic functions such as summary()

will react to it as an argument in a way sensitive to its class.

To remove temporarily the e�ects of class, use the function unclass(). For example if winter

has the class data.frame then

> winter

will print it in data frame form, which is rather like a matrix, whereas

> unclass(winter)

will print it as an ordinary list. Only in rather special situations do you need to use this facility,

but one is when you are learning to come to terms with the idea of class and generic functions.

Generic functions and classes will be discussed further in x9.8, but only briey.
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4 Ordered and Unordered Factors

A factor is a vector object used to specify a discrete classi�cation of the components of other

vectors of the same length. R provides both ordered and unordered factors.

4.1 A Speci�c Example

Suppose, for example, we have a sample of 30 tax accountants from the all states and territories

7

and their individual state of origin is speci�ed by a character vector of state mnemonics as

> state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "wa",

"qld", "vic", "nsw", "vic", "qld", "qld", "sa", "tas",

"sa", "nt", "wa", "vic", "qld", "nsw", "nsw", "wa",

"sa", "act", "nsw", "vic", "vic", "act")

Notice that in the case of a character vector, \sorted" means sorted in alphabetical order.

A factor is similarly created using the factor() function:

> statef <- factor(state)

The print() function handles factors slightly di�erently from other objects:

> statef

[1] tas sa qld nsw nsw nt wa wa qld vic nsw vic qld qld sa

[16] tas sa nt wa vic qld nsw nsw wa sa act nsw vic vic act

To �nd out the levels of a factor the function levels() can be used.

> levels(statef)

[1] "act" "nsw" "nt" "qld" "sa" "tas" "vic" "wa"

4.2 The function tapply() and ragged arrays

To continue the previous example, suppose we have the incomes of the same tax accountants in

another vector (in suitably large units of money)

> incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56,

61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46,

59, 46, 58, 43)

To calculate the sample mean income for each state we can now use the special function tapply():

> incmeans <- tapply(incomes, statef, mean)

giving a means vector with the components labelled by the levels

> incmeans

act nsw nt qld sa tas vic wa

44.5 57.333 55.5 53.6 55 60.5 56 52.25

The function tapply() is used to apply a function, here mean(), to each group of components of

the �rst argument, here incomes, de�ned by the levels of the second component, here statef, as

if they were separate vector structures. The result is a structure of the same length as the levels

attribute of the factor containing the results. The reader should consult the help document for

more details.

7

Foreign readers should note that there are eight states and territories in Australia, namely the Australian

Capital Territory, New South Wales, the Northern Territory, Queensland, South Australia, Tasmania, Victoria

and Western Australia.
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Suppose further we needed to calculate the standard errors of the state income means. To do this

we need to write an R function to calculate the standard error for any given vector. We discuss

functions more fully later in these notes, but since there is an in built function var() to calculate

the sample variance, such a function is a very simple one liner, speci�ed by the assignment:

> stderr <- function(x) sqrt(var(x)/length(x))

(Writing functions will be considered later in x9.) After this assignment, the standard errors are

calculated by

> incster <- tapply(incomes, statef, stderr)

and the values calculated are then

> incster

act nsw nt qld sa tas vic wa

1.5 4.3102 4.5 4.1061 2.7386 0.5 5.244 2.6575

As an exercise you may care to �nd the usual 95% con�dence limits for the state mean incomes.

To do this you could use tapply() once more with the length() function to �nd the sample

sizes, and the qt() function to �nd the percentage points of the appropriate t�distributions.

The function tapply() can be used to handle more complicated indexing of a vector by multiple

categories. For example, we might wish to split the tax accountants by both state and sex.

However in this simple instance what happens can be thought of as follows. The values in the

vector are collected into groups corresponding to the distinct entries in the category. The function

is then applied to each of these groups individually. The value is a vector of function results,

labelled by the levels attribute of the category.

The combination of a vector and a labelling factor or category is an example of what is called

a ragged array, since the subclass sizes are possibly irregular. When the subclass sizes are all

the same the indexing may be done implicitly and much more e�ciently, as we see in the next

section.
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5 Arrays and Matrices

5.1 Arrays

An array can be considered as a multiply subscripted collection of data entries, for example

numeric. R allows simple facilities for creating and handling arrays, and in particular the special

case of matrices.

A dimension vector is a vector of positive integers. If its length is k then the array is k{

dimensional. The values in the dimension vector give the upper limits for each of the k subscripts.

The lower limits are always 1.

A vector can be used by R as an array only if it has a dimension vector as its dim attribute.

Suppose, for example, z is a vector of 1500 elements. The assignment

> dim(z) <- c(3,5,100)

gives it the dim attribute that allows it to be treated as a 3� 5� 100 array.

Other functions such as matrix() and array() are available for simpler and more natural looking

assignments, as we shall see in x5.4.

The values in the data vector give the values in the array in the same order as they would occur

in Fortran, that is `column major order', with the �rst subscript moving fastest and the last

subscript slowest.

For example if the dimension vector for an array, say a is c(3,4,2) then there are 3�4�2 = 24

entries in a and the data vector holds them in the order a[1,1,1], a[2,1,1], ..., a[2,4,2],

a[3,4,2].

5.2 Array indexing. Subsections of an array

Individual elements of an array may be referenced, as above, by giving the name of the array

followed by the subscripts in square brackets, separated by commas.

More generally, subsections of an array may be speci�ed by giving a sequence of index vectors

in place of subscripts; however if any index position is given an empty index vector, then the full

range of that subscript is taken.

Continuing the previous example, a[2,,] is a 4 � 2 array with dimension vector c(4,2) and

data vector containing the values

a[2,1,1], a[2,2,1], a[2,3,1], a[2,4,1], a[2,1,2], a[2,2,2], a[2,3,2], a[2,4,2],

in that order. a[,,] stands for the entire array, which is the same as omitting the subscripts

entirely and using a alone.

For any array, say Z, the dimension vector may be referenced explicitly as dim(Z) (on either side

of an assignment).

Also, if an array name is given with just one subscript or index vector, then the corresponding

values of the data vector only are used; in this case the dimension vector is ignored. This is not

the case, however, if the single index is not a vector but itself an array, as we next discuss.

5.3 Index arrays

As well as an index vector in any subscript position, an array may be used with a single index

array in order either to assign a vector of quantities to an irregular collection of elements in the

array, or to extract an irregular collection as a vector.
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A matrix example makes the process clear. In the case of a doubly indexed array, an index

matrix may be given consisting of two columns and as many rows as desired. The entries in the

index matrix are the row and column indices for the doubly indexed array. Suppose for example

we have a 4� 5 array X and we wish to do the following:

� Extract elements X[1,3], X[2,2] and X[3,1] as a vector structure, and

� Replace these entries in the array X by 0s.

In this case we need a 3� 2 subscript array, as in the example given in Figure 1.

> x <- array(1:20,dim=c(4,5)) # Generate a 4 x 5 array.

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 5 9 13 17

[2,] 2 6 10 14 18

[3,] 3 7 11 15 19

[4,] 4 8 12 16 20

> i <- array(c(1:3,3:1),dim=c(3,2))

> i # i is a 3 x 2 index array.

[,1] [,2]

[1,] 1 3

[2,] 2 2

[3,] 3 1

> x[i] # Extract those elements

[1] 9 6 3

> x[i] <- 0 # Replace those elements by zeros.

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 5 0 13 17

[2,] 2 0 10 14 18

[3,] 0 7 11 15 19

[4,] 4 8 12 16 20

>

Figure 1: Using an index array

As a less trivial example, suppose we wish to generate an (unreduced) design matrix for a block

design de�ned by factors blocks (b levels) and varieties, (v levels). Further suppose there are

n plots in the experiment. We could proceed as follows:

> Xb <- matrix(0, n, b)

> Xv <- matrix(0, n, v)

> ib <- cbind(1:n, blocks)

> iv <- cbind(1:n, varieties)

> Xb[ib] <- 1

> Xv[iv] <- 1

> X <- cbind(Xb, Xv)

Further, to construct the incidence matrix, N say, we could use

> N <- crossprod(Xb, Xv)

However a simpler direct way of producing this matrix is to use table():

> N <- table(blocks, varieties)
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5.4 The array() function

As well as giving a vector structure a dim attribute, arrays can be constructed from vectors by

the array function, which has the form

> Z <- array(data vector,dim vector)

For example, if the vector h contains 24, or fewer, numbers then the command

> Z <- array(h, dim=c(3,4,2))

would use h to set up 3� 4� 2 array in Z. If the size of h is exactly 24 the result is the same as

> dim(Z) <- c(3,4,2)

However if h is shorter than 24, its values recycled from the beginning again to make it up to

size 24. See x5.4.1 below. As an extreme but common example

> Z <- array(0, c(3,4,2)

makes Z an array of all zeros.

At this point dim(Z) stands for the dimension vector c(3,4,2), and Z[1:24] stands for the data

vector as it was in h, and Z[] with an empty subscript or Z with no subscript stands for the

entire array as an array.

Arrays may be used in arithmetic expressions and the result is an array formed by element by

element operations on the data vector. The dim attributes of operands generally need to be the

same, and this becomes the dimension vector of the result. So if A, B and C are all similar arrays,

then

> D <- 2*A*B + C + 1

makes D a similar array with data vector the result of the evident element by element operations.

However the precise rule concerning mixed array and vector calculations has to be considered a

little more carefully.

5.4.1 Mixed vector and array arithmetic. The recycling rule

The precise rule a�ecting element by element mixed calculations with vectors and arrays is

somewhat quirky and hard to �nd in the references. From experience I have found the following

to be a reliable guide.

� The expression is scanned from left to right.

� Any short vector operands are extended by recycling their values until they match the size

of any previous (or subsequent) operands.

� As long as short vectors and arrays, only, are encountered, the arrays must all have the

same dim attribute or an error results.

� Any vector operand longer than some previous array immediately converts the calculation

to one in which all operands are coerced to vectors. A diagnostic message is issued if the

size of the long vector is not a multiple of the (common) size of all previous arrays.

� If array structures are present and no error or coercion to vector has been precipitated, the

result is an array structure with the common dim attribute of its array operands.

5.5 The outer product of two arrays

An important operation on arrays is the outer product. If a and b are two numeric arrays, their

outer product is an array whose dimension vector is got by concatenating their two dimension
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vectors, (order is important), and whose data vector is got by forming all possible products of

elements of the data vector of a with those of b. The outer product is formed by the special

operator %o%:

> ab <- a %o% b

An alternative is

> ab <- outer(a, b, '*')

The multiplication function can be replaced by an arbitrary function of two variables. For

example if we wished to evaluate the function

f(x; y) =

cos(y)

1 + x

2

over a regular grid of values with x� and y�coordinates de�ned by the R vectors x and y

respectively, we could proceed as follows:

> f <- function(x,y) cos(y)/(1 + x^2)

> z <- outer(x, y, f)

In particular the outer product of two ordinary vectors is a doubly subscripted array (that is a

matrix, of rank at most 1). Notice that the outer product operator is of course non-commutative.

De�ning your own R functions will be considered further in Chapter 9.

5.5.1 An example: Determinants of 2� 2 digit matrices

As an arti�cial but cute example, consider the determinants of 2 � 2 matrices

�

a b

c d

�

where

each entry is a non-negative integer in the range 0; 1; : : : ; 9, that is a digit.

The problem is to �nd the determinants, ad�bc, of all possible matrices of this form and represent

the frequency with which each value occurs as a high density plot. This amounts to �nding the

probability distribution of the determinant if each digit is chosen independently and uniformly

at random.

A neat way of doing this uses the outer() function twice:

> d <- outer(0:9, 0:9)

> fr <- table(outer(d, d, "-"))

> plot(as.numeric(names(fr)), fr, type="h",

xlab="Determinant", ylab="Frequency")

Notice the coercion of the names attribute of the frequency table to numeric in order to recover

the range of the determinant values. The \obvious" way of doing this problem with for{loops,

to be discussed in x8.2, is so ine�cient as to be impractical.

It is also perhaps surprising that about 1 in 20 such matrices is singular.

5.6 Generalized transpose of an array

The function aperm(a, perm) may be used to permute an array, a. The argument perm must

be a permutation of the integers {1, 2, ..., k}, where k is the number of subscripts in a. The

result of the function is an array of the same size as a but with old dimension given by perm[j]

becoming the new jth dimension. The easiest way to think of this operation is as a generalization

of transposition for matrices. Indeed if A is a matrix, (that is, a doubly subscripted array) then

B given by

> B <- aperm(A, c(2,1))
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is just the transpose of A. For this special case a simpler function t() is available, so we could

have used B <- t(A).

5.7 Matrix facilities. Multiplication, inversion and solving linear equa-

tions.

As noted above, a matrix is just an array with two subscripts. However it is such an important

special case it needs a separate discussion. R contains many operators and functions that are

available only for matrices. For example t(X) is the matrix transpose function, as noted above.

The functions nrow(A) and ncol(A) give the number of rows and columns in the matrix A

respectively.

The operator %*% is used for matrix multiplication. An n � 1 or 1� n matrix may of course be

used as an n�vector if in the context such is appropriate. Conversely vectors which occur in

matrix multiplication expressions are automatically promoted either to row or column vectors,

whichever is multiplicatively coherent, if possible, (although this is not always unambiguously

possible, as we see later).

If, for example, A and B are square matrices of the same size, then

> A * B

is the matrix of element by element products and

> A %*% B

is the matrix product. If x is a vector, then

> x %*% A %*% x

is a quadratic form.

8

The function crossprod() forms \crossproducts", meaning that

> crossprod(X, y) is the same as t(X) %*% y

but the operation is more e�cient. If the second argument to crossprod() is omitted it is taken

to be the same as the �rst.

Other important matrix functions include solve(A, b) for solving equations, solve(A) for the

matrix inverse, svd() for the singular value decomposition, qr() for QR decomposition and

eigen() for eigenvalues and eigenvectors of symmetric matrices.

The meaning of diag() depends on its argument. diag(vector) gives a diagonal matrix with

elements of the vector as the diagonal entries. On the other hand diag(matrix) gives the vector

of main diagonal entries of matrix. This is the same convention as that used for diag() in

MATLAB. Also, somewhat confusingly, if k is a single numeric value then diag(k) is the k � k

identity matrix!

A surprising omission from the suite of matrix facilities is a function for the determinant of a

square matrix, however the absolute value of the determinant is easy to calculate for example as

the product of the singular values. (See later.)

5.8 Forming partitioned matrices. cbind() and rbind().

As we have already seen informally, matrices can be built up from other vectors and matrices

by the functions cbind() and rbind(). Roughly cbind() forms matrices by binding together

8

Note that x %*% x is ambiguous, as it could mean either x

0

x or xx

0

, where x is the column form. In such cases

the smaller matrix seems implicitly to be the interpretation adopted, so the scalar x

0

x is in this case the result.

The matrix xx

0

may be calculated either by cbind(x) %*% x or x %*% rbind(x) since the result of rbind() or

cbind() is always a matrix.
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matrices horizontally, or column-wise, and rbind() vertically, or row-wise.

In the assignment

> X <- cbind(arg

1

, arg

2

, arg

3

, ...)

the arguments to cbind()must be either vectors of any length, or matrices with the same column

size, that is the same number of rows. The result is a matrix with the concatenated arguments

arg

1

, arg

2

, . . . forming the columns.

If some of the arguments to cbind() are vectors they may be shorter than the column size of

any matrices present, in which case they are cyclically extended to match the matrix column size

(or the length of the longest vector if no matrices are given).

The function rbind() does the corresponding operation for rows. In this case any vector argu-

ment, possibly cyclically extended, are of course taken as row vectors.

Suppose X1 and X2 have the same number of rows. To combine these by columns into a matrix

X, together with an initial column of 1s we can use

> X <- cbind(1, X1, X2)

The result of rbind() or cbind() always has matrix status. Hence cbind(x) and rbind(x)

are possibly the simplest ways explicitly to allow the vector x to be treated as a column or row

matrix respectively.

5.9 The concatenation function, c(), with arrays.

It should be noted that whereas cbind() and rbind() are concatenation functions that respect

dim attributes, the basic c() function does not, but rather clears numeric objects of all dim and

dimnames attributes. This is occasionally useful in its own right.

The o�cial way to coerce an array back to a simple vector object is to use as.vector()

> vec <- as.vector(X)

However a similar result can be achieved by using c() with just one argument, simply for this

side-e�ect:

> vec <- c(X)

There are slight di�erences between the two, but ultimately the choice between them is largely

a matter of style (with the former being preferable).

5.10 Frequency tables from factors. The table() function

Recall that a factor de�nes a partition into groups. Similarly a pair of factors de�nes a two way

cross classi�cation, and so on. The function table() allows frequency tables to be calculated

from equal length factors. If there are k category arguments, the result is a k�way array of

frequencies.

Suppose, for example, that statef is a factor giving the state code for each entry in a data

vector. The assignment

> statefr <- table(statef)

gives in statefr a table of frequencies of each state in the sample. The frequencies are ordered

and labelled by the levels attribute of the category. This simple case is equivalent to, but more

convenient than,

> statefr <- tapply(statef, statef, length)
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Further suppose that incomef is a category giving a suitably de�ned \income class" for each

entry in the data vector, for example with the cut() function:

> factor(cut(incomes,breaks=35+10*(0:7))) -> incomef

Then to calculate a two-way table of frequencies:

> table(incomef,statef)

act nsw nt qld sa tas vic wa

35+ thru 45 1 1 0 1 0 0 1 0

45+ thru 55 1 1 1 1 2 0 1 3

55+ thru 65 0 3 1 3 2 2 2 1

65+ thru 75 0 1 0 0 0 0 1 0

Extension to higher way frequency tables is immediate.
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6 Lists, data frames, and their uses

6.1 Lists

An R list is an object consisting of an ordered collection of objects known as its components.

There is no particular need for the components to be of the same mode or type, and, for example,

a list could consist of a numeric vector, a logical value, a matrix, a complex vector, a character

array, a function, and so on. Here is a simple example of how to make a list:

> Lst <- list(name="Fred", wife="Mary", no.children=3, child.ages=c(4,7,9))

Components are always numbered and may always be referred to as such. Thus if Lst is the name

of a list with four components, these may be individually referred to as Lst[[1]], Lst[[2]],

Lst[[3]] and Lst[[4]]. If, further, Lst[[4]] is a vector subscripted array then Lst[[4]][1]

is its �rst entry.

If Lst is a list, then the function length(Lst) gives the number of (top level) components it has.

Components of lists may also be named, and in this case the component may be referred to

either by giving the component name as a character string in place of the number in double

square brackets, or, more conveniently, by giving an expression of the form

> name$component name

for the same thing.

This is a very useful convention as it makes it easier to get the right component if you forget the

number.

So in the simple example given above:

Lst$name is the same as Lst[[1]] and is the string "Fred",

Lst$wife is the same as Lst[[2]] and is the string "Mary",

Lst$child.ages[1] is the same as Lst[[4]][1] and is the number 4.

It is very important to distinguish Lst[[1]] from Lst[1]. \[[...]]" is the operator used to

select a single element, whereas \[...]" is a general subscripting operator. Thus the former

is the �rst object in the list Lst, and if it is a named list the name is not included. The latter

is a sublist of the list Lst consisting of the �rst entry only. If it is a named list, the name is

transferred to the sublist.

The names of components may be abbreviated down to the minimum number of letters needed

to identify them uniquely. Thus Lst$coefficientsmay be minimally speci�ed as Lst$coe and

Lst$covariance as Lst$cov.

The vector of names is in fact simply an attribute of the list like any other and may be handled

as such. Other structures besides lists may, of course, similarly be given a names attribute also.

6.2 Constructing and modifying lists

New lists may be formed from existing objects by the function list(). An assignment of the

form

> Lst <- list(name

1

=object

1

, name

2

=object

2

, ...,name

m

=object

m

)

sets up a list Lst of m components using object

1

, . . . , object

m

for the components and giving

them names as speci�ed by the argument names, (which can be freely chosen). If these names are

omitted, the components are numbered only. The components used to form the list are copied

when forming the new list and the originals are not a�ected.
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Lists, like any subscripted object, can be extended by specifying additional components. For

example

> Lst[5] <- list(matrix=Mat)

6.2.1 Concatenating lists

When the concatenation function c() is given list arguments, the result is an object of mode list

also, whose components are those of the argument lists joined together in sequence.

> list.ABC <- c(list.A, list.B, list.C)

Recall that with vector objects as arguments the concatenation function similarly joined to-

gether all arguments into a single vector structure. In this case all other attributes, such as dim

attributes, are discarded.

6.3 Some functions returning a list result

Functions and expressions in R must return a single object as their result; in cases where the

result has several component parts, the usual form is that of a list with named components.

6.3.1 Eigenvalues and eigenvectors

The function eigen(Sm) calculates the eigenvalues and eigenvectors of a symmetric matrix Sm.

The result of this function is a list of two components named values and vectors. The assign-

ment

> ev <- eigen(Sm)

will assign this list to ev. Then ev$val is the vector of eigenvalues of Sm and ev$vec is the

matrix of corresponding eigenvectors. Had we only needed the eigenvalues we could have used

the assignment:

> evals <- eigen(Sm)$values

evals now holds the vector of eigenvalues and the second component is discarded. If the expres-

sion

> eigen(Sm)

is used by itself as a command the two components are printed, with their names, at the terminal.

6.3.2 Singular value decomposition and determinants

The function svd(M) takes an arbitrary matrix argument, M, and calculates the singular value

decomposition of M. This consists of a matrix of orthonormal columns U with the same column

space as M, a second matrix of orthonormal columns V whose column space is the row space of

M and a diagonal matrix of positive entries D such that M = U %*% D %*% t(V). D is actually

returned as a vector of the diagonal elements. The result of svd(M) is actually a list of three

components named d, u and v, with evident meanings.

If M is in fact square, then, it is not hard to see that

> absdetM <- prod(svd(M)$d)

calculates the absolute value of the determinant of M. If this calculation were needed often with

a variety of matrices it could be de�ned as an R function

> absdet <- function(M) prod(svd(M)$d)
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after which we could use absdet() as just another R function. As a further trivial but potentially

useful example, you might like to consider writing a function, say tr(), to calculate the trace

of a square matrix. [Hint: You will not need to use an explicit loop. Look again at the diag()

function.]

Functions will be discussed formally later in these notes.

6.3.3 Least squares �tting and the QR decomposition

The function lsfit() returns a list giving results of a least squares �tting procedure. An

assignment such as

> ans <- lsfit(X, y)

gives the results of a least squares �t where y is the vector of observations and X is the design

matrix. See the help facility for more details, and also for the follow-up function ls.diag()

for, among other things, regression diagnostics. Note that a grand mean term is automatically

included and need not be included explicitly as a column of X.

Another closely related function is qr() and its allies. Consider the following assignments

> Xplus <- qr(X)

> b <- qr.coef(Xplus, y)

> fit <- qr.fitted(Xplus, y)

> res <- qr.resid(Xplus, y)

These compute the orthogonal projection of y onto the range of X in fit, the projection onto

the orthogonal complement in res and the coe�cient vector for the projection in b, that is, b is

essentially the result of the MATLAB `backslash' operator.

It is not assumed that X has full column rank. Redundancies will be discovered and removed as

they are found.

This alternative is the older, low level way to perform least squares calculations. Although still

useful in some contexts, it would now generally be replaced by the statistical models features, as

will be discussed in x10.

6.4 Data frames

A data frame is a list with class data.frame. There are restrictions on lists that may be made

into data frames, namely

� The components must be vectors (numeric, character, or logical), factors, numeric matrices,

lists, or other data frames.

� Matrices, lists, and data frames provide as many variables to the new data frame as they

have columns, elements, or variables, respectively.

� Numeric vectors and factors are included as is, and non-numeric vectors are coerced to be

factors, whose levels are the unique values appearing in the vector.

� Vector structures appearing as variables of the data frame must all have the same length,

and matrix structures must all have the same row size.

Data frames may in many ways be regarded as a matrix with columns possibly of di�ering modes

and attributes. It may be displayed in matrix form, and its rows and columns extracted using

matrix indexing conventions.
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6.4.1 Making data frames

Objects satisfying the restrictions placed on the columns (components) of a data frame may be

used to form one using the function data.frame:

> accountants <- data.frame(home=statef,loot=income, shot=incomef)

A list whose components conform to the restrictions of a data frame may be coerced into a data

frame using the function as.data.frame()

The simplest way to construct a data frame from scratch is to use the read.table() function to

read an entire data frame from an external �le. This is discussed further in x7.

6.4.2 attach() and detach()

The $ notation, such as accountants$statef, for list components is not always very convenient.

A useful facility would be somehow to make the components of a list or data frame temporarily

visible as variables under their component name, without the need to quote the list name explicitly

each time.

The attach() function, as well as having a directory name as its argument, may also have a

data frame. Thus suppose lentils is a data frame with three variables lentils$u, lentils$v,

lentils$w. The attach

> attach(lentils)

places the data frame in the search list at position 2, and provided there are no variables u, v or

w in position 1, u, v and w are available as variables from the data frame in their own right. At

this point an assignment such as

> u <- v+w

does not replace the component u of the data frame, but rather masks it with another variable

u in the working directory at position 1 on the search list. To make a permanent change to the

data frame itself, the simplest way is to resort once again to the $ notation:

> lentils$u <- v+w

However the new value of component u is not visible until the data frame is detached and attached

again.

To detach a data frame, use the function

> detach()

More precisely, this statement detaches from the search list the entity currently at position 2.

Thus in the present context the variables u, v and w would be no longer visible, except under the

list notation as lentils$u and so on.

NOTE: With the current release of R the search list can contain at most 20 items. Avoid

attaching the same data frame more than once. Always detach the data frame as soon as you

have �nished using its variables.

NOTE: With the current release of R lists and dataframes can only be attached at position 2

or above. It is not possible to directly assign into an attached list or data frame (thus, to some

extent they are static). This is likely to change in the next year or so.

6.4.3 Working with data frames

A useful convention that allows you to work with many di�erent problems comfortably together

in the same working directory is
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� gather together all variables for any well de�ned and separate problem in a data frame

under a suitably informative name;

� when working with a problem attach the appropriate data frame at position 2, and use the

working directory at level 1 for operational quantities and temporary variables;

� before leaving a problem, add any variables you wish to keep for future reference to the

data frame using the $ form of assignment, and then detach();

� �nally remove all unwanted variables from the working directory and keep it as clean of

left-over temporary variables as possible.

In this way it is quite simple to work with many problems in the same directory, all of which

have variables named x, y and z, for example.

6.4.4 Attaching arbitrary lists

attach() is a generic function that allows not only directories and data frames to be attached

to the search list, but other classes of object as well. In particular any object of mode list may

be attached in the same way:

> attach(any.old.list)
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7 Reading data from �les

Large data objects will usually be read as values from external �les rather than entered during

an R session at the keyboard. R input facilities are simple and their requirements are fairly

strict and even rather inexible. There is a clear presumption by the designers of R that you

will be able to modify your input �les using other tools, such �le editors or perl

9

�t in with the

requirements of R. Generally this is very simple.

There is, however, a function make.fields() that can be used to convert a �le with �xed

width, non separated, input �elds into a �le with separated �elds. There is also a facility

count.fields() that will count the number of �elds on each line of such a �le. Occasion-

ally for very simple conversion and checking problems these may be adequate to the task, but in

most cases it is better to do the preliminary spade work before the R session begins.

If variables are to be held mainly in data frames, as we strongly suggest, they should be, an

entire data frame can be read directly with the read.table() function. There is also a more

primitive input function, scan(), that can be called directly.

7.1 The read.table() function

To read an entire data frame directly, the external �le will normally have a special form.

� The �rst line of the �le should have a name for each variable in the data frame.

� Each additional line of the �le has its �rst item a row label and the values for each variable.

If the �le has one fewer item in its �rst line than in its second, this arrangement is presumed to

be in force. So the �rst few lines of a �le to be read as a data frame might look as in Figure 2.

By default numeric items (except row labels) are read as numeric variables and non-numeric

Price Floor Area Rooms Age Cent.heat

01 52.00 111.0 830 5 6.2 no

02 54.75 128.0 710 5 7.5 no

03 57.50 101.0 1000 5 4.2 no

04 57.50 131.0 690 6 8.8 no

05 59.75 93.0 900 5 1.9 yes

...

Figure 2: Input �le form with names and row labels

variables, such as Cent.heat in the example, as factors. This can be changed if necessary.

The function read.table() can then be used to read the data frame directly

> HousePrice <- read.table("houses.data")

Often you will want to omit including the row labels directly and use the default labels. In this

case the �le may omit the row label column as in Figure 3. The data frame may then be read as

> HousePrice <- read.table("houses.data", header=T)

where the heading=T option speci�es that the �rst line is a line of headings, and hence, by

implication from the form of the �le, that no explicit row labels are given.

9

Under UNIX the utilities sed or awk can be used.
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Price Floor Area Rooms Age Cent.heat

52.00 111.0 830 5 6.2 no

54.75 128.0 710 5 7.5 no

57.50 101.0 1000 5 4.2 no

57.50 131.0 690 6 8.8 no

59.75 93.0 900 5 1.9 yes

...

Figure 3: Input �le form without row labels

7.2 The scan() function

Suppose the data vectors are of equal length and are to be read in in parallel. Further suppose

that there are three vectors, the �rst of mode character and the remaining two of mode numeric,

and the �le is input.dat. The �rst step is to use scan() to read in the three vectors as a list,

as follows

> in <- scan("input.dat", list("",0,0))

The second argument is a dummy list structure that establishes the mode of the three vectors

to be read. The result, held in in, is a list whose components are the three vectors read in. To

separate the data items into three separate vectors, use assignments like

> label <- in[[1]]; x <- in[[2]]; y <- in[[3]]

More conveniently, the dummy list can have named components, in which case the names can be

used to access the vectors read in. For example

> in <- scan("input.dat", list(id="", x=0, y=0))

If you wish to access the variables separately they may either be re-assigned to variables in the

working frame:

> label <- in$id; x <- in$x; y <- in$y

or the list may be attached at position 2 of the search list, (see x6.4.4).

If the second argument is a single value and not a list, a single vector is read in, all components

of which must be of the same mode as the dummy value.

> X <- matrix(scan("light.dat", 0), ncol=5, byrow=T)

There are more elaborate input facilities available and these are detailed in the manual.

7.3 Other facilities; editing data

Once a data set has been read, there is a window based facility in R for making small changes.

The command

> xnew <- data.entry(xold)

will allow you to edit your data set xold using a spreadsheet-like environment in a separate

editing window, and on completion the changed object is assigned to xnew. xold, and hence

xnew, can be any matrix, vector, data frame, or atomic data object.

Calling data.entry() with no arguments,

> xnew <- data.entry()

lets you enter new data via the spreadsheet interface.
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8 More language features. Loops and conditional execu-

tion

8.1 Grouped expressions

R is an expression language in the sense that its only command type is a function or expression

which returns a result. Even an assignment is an expression whose result is the value assigned,

and it may be used wherever any expression may be used; in particular multiple assignments are

possible.

Commands may be grouped together in braces, {expr

1

; expr

2

;...; expr

m

}, in which case the

value of the group is the result of the last expression in the group evaluated. Since such a group

is also an expression it may, for example, be itself included in parentheses and used a part of an

even larger expression, and so on.

8.2 Control statements

8.2.1 Conditional execution: if statements

The language has available a conditional construction of the form

> if (expr

1

) expr

2

else expr

3

where expr

1

must evaluate to a logical value and the result of the entire expression is then evident.

8.2.2 Repetitive execution: for loops, repeat and while

There is also a for{loop construction which has the form

> for (name in expr

1

) expr

2

where name is the loop variable. expr

1

is a vector expression, (often a sequence like 1:20),

and expr

2

is often a grouped expression with its sub-expressions written in terms of the dummy

name. expr

2

is repeatedly evaluated as name ranges through the values in the vector result of

expr

1

.

As an example, suppose ind is a vector of class indicators and we wish to produce separate plots

of y versus x within classes. One possibility here is to use coplot() to be discussed later, which

will produce an array of plots corresponding to each level of the factor. Another way to do this,

now putting all plots on the one display, is as follows:

> yc <- split(y, ind); xc <- split(x, ind)

> for (i in 1:length(yc)){plot(xc[[i]], yc[[i]]);

abline(lsfit(xc[[i]], yc[[i]]))}

(Note the function split() which produces a list of vectors got by splitting a larger vector ac-

cording to the classes speci�ed by a category. This is a useful function, mostly used in connection

with boxplots. See the help facility for further details.)

WARNING: The use of for() loops will result in relatively slow evaluation. While for()

loops in R tend to be faster than in S they should be avoided if possible. Many functions, such

as apply(), tapply(), sapply() and others, are written primarily to avoid using explicit for()

loops.

Other looping facilities include the

> repeat expr
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statement and the

> while (condition) expr

statement.

The break statement can be used to terminate any loop, possibly abnormally. This is the only

way to terminate repeat loops.

The next can be used to discontinue one particular cycle and skip to the \next".

Control statements are most often used in connection with functions which are discussed in x9,

and where more examples will emerge.
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9 Writing your own functions

As we have seen informally along the way, the R language allows the user to create objects of

mode function. These are true R functions that are stored in a special internal form and may be

used in further expressions and so on. In the process the language gains enormously in power,

convenience and elegance, and learning to write useful functions is one of the main ways to make

your use of R comfortable and productive.

It should be emphasized that most of the functions supplied as part of the R system, such as

mean(), var(), postscript() and so on, are themselves written in R and thus do not di�er

materially from user written functions.

A function is de�ned by an assignment of the form

> name <- function(arg

1

, arg

2

, ...) expression

The expression is an R expression, (usually a grouped expression), that uses the arguments, arg

i

,

to calculate a value. The value of the expression is the value returned for the function.

A call to the function then usually takes the form name(expr

1

, expr

2

, ...) and may occur

anywhere a function call is legitimate.

9.1 Simple examples

As a �rst example, consider a function to calculate the two sample t�statistic, showing \all the

steps". This is an arti�cial example, of course, since there are other, simpler ways of achieving

the same end.

The function is de�ned as follows:

> twosam <- function(y1, y2) {

n1 <- length(y1); n2 <- length(y2)

yb1 <- mean(y1); yb2 <- mean(y2)

s1 <- var(y1); s2 <- var(y2)

s <- ((n1-1)*s1 + (n2-1)*s2)/(n1+n2-2)

tst <- (yb1 - yb2)/sqrt(s2*(1/n1 + 1/n2))

tst

}

With this function de�ned, you could perform two sample t�tests using a call such as

> tstat <- twosam(data$male, data$female); tstat

As a second example, consider a function to emulate directly the MATLAB backslash command,

which returns the coe�cients of the orthogonal projection of the vector y onto the column space of

the matrix,X. (This is ordinarily called the least squares estimates of the regression coe�cients).

This would ordinarily be done with the qr() function; however this is sometimes a bit tricky to

use directly and it pays to have a simple function such as the following to use it safely.

Thus given a vector y

n�1

and a matrix X

n�p

then

Xny =

def:

(X

0

X)

�

X

0

y

where (X

0

X)

�

is a generalised inverse of X

0

X.

> bslash <- function(X, y) {

X <- qr(X)

qr.coef(X, y)

}



9.2 De�ning new binary operators. 31

After this object is created it is permanent, like all objects, and may be used in statements such

as

> regcoeff <- bslash(Xmat, yvar)

and so on.

The classical R function lsfit() does this job quite well, and more

10

. It in turn uses the

functions qr() and qr.coef() in the slightly counterintuitive way above to do this part of the

calculation. Hence there is probably some value in having just this part isolated in a simple to

use function if it is going to be in frequent use. If so, we may wish to make it a matrix binary

operator for even more convenient use.

9.2 De�ning new binary operators.

Had we given the bslash() function a di�erent name, namely one of the form

%anything%

it could have been used as a binary operator in expressions rather than in function form. Suppose,

for example, we choose ! for the internal character. The function de�nition would then start as

> "%!%" <- function(X, y) {... }

(Note the use of quote marks.) The function could then be used as X %!% y. (The backslash

symbol itself is not a convenient choice as it presents special problems in this context.)

The matrix multiplication operator, %*%, and the outer product matrix operator %o% are other

examples of binary operators de�ned in this way.

9.3 Named arguments and defaults. \. . . "

As �rst noted in x2.3 if arguments to called functions are given in the \name=object" form, they

may be given in any order. Furthermore the argument sequence may begin in the unnamed,

positional form, and specify named arguments after the positional arguments.

Thus if there is a function fun1 de�ned by

> fun1 <- function(data, data.frame, graph, limit) {[function body omitted] }

Then the function may be invoked in several ways, for example

> ans <- fun1(d, df, 20, T)

> ans <- fun1(d, df, graph=T, limit=20)

> ans <- fun1(data=d, limit=20, graph=T, data.frame=df)

are all equivalent.

In many cases arguments can be given commonly appropriate default values, in which case they

may be omitted altogether from the call when the defaults are appropriate. For example, if fun1

were de�ned as

> fun1 <- function(data, data.frame, graph=T, limit=20) {...

10

}

it could be called as

> ans <- fun1(d, df)

which is now equivalent to the three cases above, or as

> ans <- fun1(d, df, limit=10)

10

See also the methods described in x10
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which changes one of the defaults.

It is important to note that defaults may be arbitrary expressions, even involving other arguments

to the same function; they are not restricted to be constants as in our simple example here.

Another frequent requirement is to allow one function to pass on argument settings to another.

For example many graphics functions use the function par() and functions like plot() allow the

user to pass on graphical parameters to par() to control the graphical output. (See x11.4.1 for

more details on the par() function.) This can be done by including an extra argument, literally

\...", of the function, which may then be passed on. An outline example is given in Figure 4.

fun1 <- function(data, data.frame, graph=T, limit=20, ...) {

[omitted statements]

if (graph)

par(pch="*", ...)

[more omissions]

}

Figure 4: Use of the ellipsis argument, \. . . "

9.4 Assignments within functions are local. Frames.

Note that any ordinary assignments done within the function are local and temporary and are

lost after exit from the function. Thus the assignment X <- qr(X) does not a�ect the value of

the argument in the calling program.

To understand completely the rules governing the scope of R assignments the reader needs to be

familiar with the notion of an evaluation frame. This is a somewhat advanced, though hardly

di�cult, topic and is not covered further in these notes.

If global and permanent assignments are intended within a function, then either the `superassign-

ment' operator, `<<-' or the function assign() can be used. See the help document for details.

S-PLUS users should be aware that <<- has di�erent semantics in R. These are discussed further

in x9.6.

9.5 More advanced examples

9.5.1 E�ciency factors in block designs

As a more complete, if a little pedestrian, example of a function, consider �nding the e�ciency

factors for a block design. (Some aspects of this problem have already been discussed in x5.3.)

A block design is de�ned by two factors, say blocks (b levels) and varieties, (v levels). If R

v�v

and K

b�b

are the replications and block size matrices, and N

b�v

is the incidence matrix, then

the e�ciency factors are de�ned as the eigenvalues of the matrix

E = I

v

� R

�1=2

N

0

K

�1

NR

�1=2

= I

v

� A

0

A

where A = K

�1=2

NR

�1=2

. One way to write the function is as in Figure 5.

It is numerically slightly better to work with the singular value decomposition on this occasion

rather than the eigenvalue routines.
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> bdeff <- function(blocks, varieties) {

blocks <- as.factor(blocks) # minor safety move

b <- length(levels(blocks))

varieties <- as.factor(varieties) # minor safety move

v <- length(levels(varieties))

K <- as.vector(table(blocks)) # remove dim attr

R <- as.vector(table(varieties)) # remove dim attr

N <- table(blocks, varieties)

A <- 1/sqrt(K) * N * rep(1/sqrt(R), rep(b, v))

sv <- svd(A)

list(eff=1 - sv$d^2, blockcv=sv$u, varietycv=sv$v)

}

Figure 5: A function for block design e�ciencies

The result of the function is a list giving not only the e�ciency factors as the �rst component,

but also the block and variety canonical contrasts, since sometimes these give additional useful

qualitative information.

9.5.2 Dropping all names in a printed array

For printing purposes with large matrices or arrays, it is often useful to print them in close block

form without the array names or numbers. Removing the dimnames attribute will not achieve

this e�ect, but rather the array must be given a dimnames attribute consisting of empty strings.

For example to print a matrix, X

> temp <- X

> dimnames(temp) <- list(rep("", nrow(X)), rep("", ncol(X))

> temp; rm(temp)

This can be much more conveniently done using a function, no.dimnames(), shown in Figure 6,

as a \wrap around" to achieve the same result. It also illustrates how some e�ective and useful

user functions can be quite short. With this function de�ned, an array may be printed in close

no.dimnames <- function(a){

#

# Remove all dimension names from an array for compact printing.

#

d <- list()

l <- 0

for(i in dim(a)) {

d[[l <- l + 1]] <- rep("", i)

}

dimnames(a) <- d

a

}

Figure 6: A function for printing arrays in compact form

format using

> no.dimnames(X)
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This is particularly useful for large integer arrays, where patterns are the real interest rather

than the values.

9.5.3 Recursive numerical integration

Functions may be recursive, and may themselves de�ne functions within themselves. Note,

however, that such functions, or indeed variables, are not inherited by called functions in higher

evaluation frames as they would be if they were on the search list.

The example in Figure 7 shows a naive way of performing one dimensional numerical integration.

The integrand is evaluated at the end points of the range and in the middle. If the one-panel

trapezium rule answer is close enough to the two panel, then the latter is returned as the value.

Otherwise the same process is recursively applied to each panel. The result is an adaptive inte-

gration process that concentrates function evaluations in regions where the integrand is farthest

from linear. There is, however, a heavy overhead, and the function is only competitive with other

algorithms when the integrand is both smooth and very di�cult to evaluate.

The example is also given partly as a little puzzle in R programming.

area <- function(f, a, b, eps = 1.0e-06, lim = 10)

{

fun1 <- function(f, a, b, fa, fb, a0, eps, lim, fun)

{

d <- (a + b)/2

h <- (b - a)/4

fd <- f(d)

a1 <- h * (fa + fd)

a2 <- h * (fd + fb)

if(abs(a0 - a1 - a2) < eps || lim == 0)

return(a1 + a2)

else {

return(fun(f, a, d, fa, fd, a1, eps, lim - 1, fun) +

fun(f, d, b, fd, fb, a2, eps, lim - 1, fun))

}

}

fa <- f(a)

fb <- f(b)

a0 <- ((fa + fb) * (b - a))/2

fun1(f, a, b, fa, fb, a0, eps, lim, fun1)

}

Figure 7: A recursive function within a function

9.6 Scope

The discussion in this section is somewhat more technical than in other parts of this document.

However, it details one of the major di�erences between S-PLUS and R.

The symbols which occur in the body of a function can be divided into three classes; formal

parameters, local variables and free variables. The formal parameters of a function are those

occurring in the argument list of the function. Their values are determined by the process of

binding the actual function arguments to the formal parameters. Local variables are those whose

values are determined by the evaluation of expressions in the body of the functions. Variables
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which are not formal parameters or local variables are called free variables. Free variables become

local variables if they are assigned to. Consider the following function de�nition.

f<-function(x) {

y<-2*x

print(x)

print(y)

print(z)

}

In this function x is a formal parameter, y is a local variable and z is a free variable.

In R the free variable bindings are resolved by �rst looking in the environment in which the

function was created. First we de�ne a function called cube.

cube<-function(n){

sq<-function() n*n

n*sq()

}

The variable n in the function sq is not an argument to that function. Therefore it is a free

variable and the scoping rules must be used to ascertain the value that is to be associated with

it. Under static scope the value is that associated with a global variable named n. Under lexical

scope it is the parameter to the function cube since that is the active binding for the variable n

at the time the function sq was de�ned. The di�erence between evaluation in R and evaluation

in S-PLUS is that S-PLUS looks for a global variable called n while R �rst looks for a variable

called n in the environment created when cube was invoked.

#first evaluation in S

S> cube(2)

Error in sq(): Object "n" not found

Dumped

S> n<-3

S> cube(2)

[1] 18

#then the same function evaluated in R

R> cube(2)

[1] 8

Lexical scope can also be used to give functions mutable state. In the following example we show

how R can be used to mimic a bank account. A functioning bank account needs to have a balance

or total, a function for making withdrawals, a function for making deposits and a function for

stating the current balance. We achieve this by creating the three functions within account and

then returning a list containing them. When account is invoked it takes a numerical argument

total and returns a list containing the three functions. Because these functions are de�ned in

an environment which contains total, they will have access to its value.

The special assignment operator, <<-, is used to change the value associated with total. This

operator looks back in enclosing environments for an environment that contains the symbol total

and when it �nds such an environment it replaces the value, in that environment, with the value

of right hand side. If the global or top{level environment is reached without �nding the symbol

total then that variable is created and assigned to there. For most users <<- creates a global

variable and assigns the value of the right hand side to it

11

. Only when <<- has been used in a

function that was returned as the value of another function will the special behaviour described

here occur.

11

In some sense this mimics the behaviour in S-PLUS since in S-PLUS this operator always creates or assigns

to a global variable.
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open.account <- function(total) {

list(

deposit = function(amount) {

if(amount <= 0)

stop("Deposits must be positive!\n")

total <<- total + amount

cat(amount,"deposited. Your balance is", total, "\n\n")

},

withdraw = function(amount) {

if(amount > total)

stop("You don't have that much money!\n")

total <<- total - amount

cat(amount,"withdrawn. Your balance is", total, "\n\n")

},

balance = function() {

cat("Your balance is", total, "\n\n")

}

)

}

ross <- open.account(100)

robert <- open.account(200)

ross$withdraw(30)

ross$balance()

robert$balance()

ross$deposit(50)

ross$balance()

ross$withdraw(500)

Figure 8: A function that uses lexical scope.

9.7 Customising the environment.

Users can customize their environment in several di�erent ways. There is a system initialization

�le and every directory can have its own special initialization �le. Finally the special functions

.First and .Last can be used.

The system initialization �le is called Rprofile and it is found in the R home subdirectory

library. This �le should contain the commands that you want to execute every time R is

started under your system. A second, personal, pro�le �le named .Rprofile

12

can be placed

in any directory. If R is invoked in that directory then that �le will be sourced. This �le gives

individual users control over their workspace and allows for di�erent start{up procedures in

di�erent working directories.

Any function named .First() in either of the two pro�le �les or in the .RData image has a

special status. It is automatically performed at the beginning of an R session and may be used

to initialise the environment. For example, the de�nition in Figure 9 alters the prompt to $ and

sets up various other useful things that can then be taken for granted in the rest of the session.

Thus, the sequence in which �les are executed is, Rprofile, .Rprofile,

_

RData and then

.First(). A de�nitions in later �les will mask de�nitions in earlier �les. Similarly a func-

12

So it is hidden under Unix.
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> .First <- function() {

options(prompt="$ ", continue="+\t") # $ is the prompt

options(digits=5, length=999) # custom numbers and printout

options(gui="motif") # default graphics user interface

tek4014() # for terminal work

par(pch = "+") # plotting character

attach(paste(unix("echo $HOME"), "/.Data", sep = ""))

# Home of my personal library

library(examples) # attach also the system examples

}

Figure 9: An example of a .First() function

tion .Last(), if de�ned, is executed at the very end of the session. An example is given in

Figure 10.

> .Last <- function() {

graphics.off() # a small safety measure.

cat(paste(unix("date"),"\nAdios\n")) # Is it time for lunch?

}

Figure 10: An example of a .Last() function

9.8 Classes, generic functions and object orientation

The class of an object determines how it will be treated by what are known as generic functions.

Put the other way round, a generic function performs a task or action on its arguments speci�c

to the class of the argument itself. If the argument lacks any class attribute, or has a class

not catered for speci�cally by the generic function in question, there is always a default action

provided.

An examplemakes things clearer. The class mechanismo�ers the user the facility of designing and

writing generic functions for special purposes. Among the other generic functions are plot()

for displaying objects graphically, summary() for summarising analyses of various types, and

anova() for comparing statistical models.

The number of generic functions that can treat a class in a speci�c way can be quite large.

For example, the functions that can accommodate in some fashion objects of class data.frame

include

[, [[<-, any, as.matrix,

[<-, model, plot, summary,

A currently complete list can be got by using the methods() function:

> methods(class="data.frame")

Conversely the number of classes a generic function can handle can also be quite large. For

example the plot() function has variants for classes of object

data.frame, default, density, factor,

and perhaps more. A complete list can be got again by using the methods() function:

> methods(plot)

The reader is referred to the o�cial references for a complete discussion of this mechanism.
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10 Statistical models in R

This section presumes the reader has some familiarity with statistical methodology, in particular

with regression analysis and the analysis of variance. Later we make some rather more ambitious

presumptions, namely that something is known about generalized linear models and nonlinear

regression.

The requirements for �tting statistical models are su�ciently well de�ned to make it possible

to construct general tools that apply in a broad spectrum of problems. Since the August 1991

release R provides an interlocking suite of facilities that make �tting statistical models very

simple. However these are not at the same high level as those in, say, Genstat, especially in the

form of the output which in keeping with general R policy is rather minimal.

10.1 De�ning statistical models; formul�

The template for a statistical model is a linear regression model with independent, homoscedastic

errors

y

i

=

p

X

j=0

�

j

x

ij

+ e

i

; e

i

� NID(0; �

2

); i = 1; 2; : : :; n

In matrix terms this would be written

y = X� + e

where the y is the response vector, X is the model matrix or design matrix and has columns

x

0

, x

1

, : : :, x

p

, the determining variables. Very often x

0

will be a column of 1s de�ning an

intercept term.

Examples.

Before giving a formal speci�cation, a few examples may usefully set the picture.

Suppose y, x, x0, x1, x2, . . . are numeric variables, X is a matrix and A, B, C, . . . are factors. The

following formul� on the left side below specify statistical models as described on the right.

y ~ x

y ~ 1 + x

Both imply the same simple linear regression model of y on x. The �rst has an

implicit intercept term, and the second an explicit one.

y ~ -1 + x

y ~ x - 1

Simple linear regression of y on x through the origin, (that is, without an inter-

cept term).

log(y) ~ x1 + x2 Multiple regression of the transformed variable, log(y), on x

1

and x

2

(with an

implicit intercept term).

y ~ poly(x,2)

y ~ 1 + x + I(x^2)

Polynomial regression of y on x of degree 2. The �rst form uses orthogonal

polynomials, and the second uses explicit powers, as basis.

y ~ X + poly(x,2) Multiple regression y with model matrix consisting of the matrix X as well as

polynomial terms in x to degree 2.

y ~ A Single classi�cation analysis of variance model of y, with classes determined by

A.

y ~ A + x Single classi�cation analysis of covariance model of y, with classes determined

by A, and with covariate x.
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y ~ A*B

y ~ A + B + A:B

y ~ B %in% A

y ~ A/B

Two factor non-additive model of y on A and B. The �rst two specify the same

crossed classi�cation and the second two specify the same nested classi�cation.

In abstract terms all four specify the same model subspace.

y ~ (A + B + C)^2

y ~ A*B*C - A:B:C

Three factor experiment but with a model containing main e�ects and two factor

interactions only. Both formul� specify the same model.

y ~ A * x

y ~ A/x

y ~ A/(1 + x) - 1

Separate simple linear regression models of y on x within the levels of A, with

di�erent codings. The last form produces explicit estimates of as many di�erent

intercepts and slopes as there are levels in A.

y ~ A*B + Error(C) An experiment with two treatment factors, A and B, and error strata determined

by factor C. For example a split plot experiment, with whole plots, (and hence

also subplots), determined by factor C.

The operator ~ is used to de�ne a model formula in R. The form, for an ordinary linear model, is

response ~ [�] term

1

� term

2

� term

3

� � � �

response is a vector or matrix, (or expression evaluating to a vector or matrix) de�ning the

response variable(s).

� is an operator, either + or -, implying the inclusion or exclusion of a term in the model, (the

�rst is optional).

term is either

� a vector or matrix expression, or 1,

� a factor, or

� a formula expression consisting of factors, vectors or matrices connected by formula

operators.

In all cases each term de�nes a collection of columns either to be added to or removed from

the model matrix. A 1 stands for an intercept column and is by default included in the

model matrix unless explicitly removed.

The formula operators are similar in e�ect to the Wilkinson and Rogers notation used by such

programs a Glim and Genstat. One inevitable change is that the operator \." becomes \:" since

the period is a valid name character in R. The notation is summarised as in the Table 1 (based

on Chambers & Hastie, p. 29).

Note that inside the parentheses that usually enclose function arguments all operators have their

normal arithmetic meaning. The function I() is an identity function used only to allow terms

in model formul� to be de�ned using arithmetic operators.

Note particularly that the model formul� specify the columns of the model matrix, speci�cation of

the parameters is implicit. This is not the case in other contexts, for example in �tting nonlinear

models

10.2 Regression models; �tted model objects

The basic function for �tting ordinary multiple models is lm(), and a streamlined version of the

call is as follows:
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Form Meaning

Y ~ M Y is modelled as M

M

1

+ M

2

Include M

1

and M

2

M

1

- M

2

Include M

1

leaving out terms of M

2

M

1

:M

2

The tensor product of M

1

and M

2

. If both terms factors, then the

\subclasses" factor.

M

1

%in% M

2

Similar to M

1

:M

2

, but with a di�erent coding.

M

1

*M

2

M

1

+ M

2

+ M

1

:M

2

M

1

/M

2

M

1

+ M

2

%in% M

1

M^n All terms in M together with \interactions" up to order n

I(M) Insulate M . Inside M all operators have their normal arithmetic

meaning, and that term appears in the model matrix.

Table 1: Summary of model operator semantics

> �tted.model <- lm(formula, data=data.frame)

For example

> fm2 <- lm(y ~ x1 + x2, data=production)

would �t a multiple regression model of y on x

1

and x

2

(with implicit intercept term).

The important but technically optional parameter data=production speci�es that any variables

needed to construct the model should come �rst from the production data frame. This is the

case regardless of whether data frame production has been attached to the search list or not.

10.3 Generic functions for extracting information

The value of lm() is �tted model object; technically a list of results of class lm. Information

about the �tted model can then be displayed, extracted, plotted and so on by using generic

functions that orient themselves to objects of class lm. A full list of these at the present time is

add1 coef effects kappa predict residuals

alias deviance family labels print summary

anova drop1 formula plot proj

Of these the following a currently not implemented. We plan to add these in the near future.

add1 kappa alias labels drop1 proj

A brief description of the most commonly used ones is given in Table 2.

10.4 Analysis of variance; comparing models

Note that aov() has not been implemented.
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Function Value or E�ect

anova(object

1

,

object

2

)

Compare a submodel with an outer model and product

an analysis of variance table.

coefficients(object) Extract the regression coe�cient (matrix).

Short form: coef(object).

deviance(object) Residual sum of squares, weighted if appropriate.

formula(object) Extract the model formula.

plot(object) Product two plots, one of the observations against the

�tted values, the other of the absolute residuals against

the �tted values.

predict(object,

newdata=data.frame)

predict.gam(object,

newdata=data.frame)

The data frame supplied must have variables speci�ed

with the same labels as the original. The value is a vec-

tor or matrix of predicted values corresponding to the

determining variable values in data.frame.

predict.gam() is a safe alternative to predict() that

can be used for lm, glm and gam �tted objects. It must

be used, for example, in cases where orthogonal polyno-

mials are used as the original basis functions, and the

addition of new data implies di�erent basis functions to

the original.

print(object) Print a concise version of the object.

Most often used implicitly.

residuals(object) Extract the (matrix of) residuals, weighted as appropri-

ate. Short form: resid(object).

summary(object) Print a comprehensive summary of the results of the re-

gression analysis.

Table 2: Commonly used generic functions on class lm objects

The model �tting function aov(formula, data=data.frame) operates at the simplest level in a

very similar way to the function lm(), and most of the generic functions listed in Table 2 apply.

It should be noted that in addition aov() allows an analysis of models with multiple error strata

such as split plot experiments, or balanced incomplete block designs with recovery of inter-block

information. The model formula

response ~ mean.formula + Error(strata.formula)

speci�es a multi-stratum experiment with error strata de�ned by the strata.formula. In the

simplest case, strata.formula is simply a factor, when it de�nes a two strata experiment, namely

between and within the levels of the factor.

For example, with all determining variables factors, a model formula such as that in:

> fm <- aov(yield ~ v + n*p*k + Error(farms/blocks), data=farm.data)

would typically be used to describe an experiment with mean model v + n*p*k and three error

strata, namely \between farms", \within farms, between blocks" and \within blocks".
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10.4.1 ANOVA tables

Note also that the analysis of variance table (or tables) are for a sequence of �tted models. The

sums of squares shown are the decrease in the residual sums of squares resulting from an inclusion

of that term in the model at that place in the sequence. Hence only for orthogonal experiments

will the order of inclusion be inconsequential.

For multistratum experiments the procedure is �rst to project the response onto the error strata,

again in sequence, and to �t the meanmodel to each projection. For further details, see Chambers

and Hastie, x5.

A more exible alternative to the default full ANOVA table is to compare two or more models

directly using the anova() function.

> anova(�tted.model.1, �tted.model.2, ...)

The display is then an ANOVA table showing the di�erences between the �tted models when

�tted in sequence. The �tted models being compared would usually be an hierarchical sequence,

of course. This does not give di�erent information to the default, but rather makes it easier to

comprehend and control.

10.5 Updating �tted models. The ditto name \."

The update() function is largely a convenience function that allows a model to be �tted that

di�ers from one previously �tted usually by just a few additional or removed terms. Its form is

> new.model <- update(old.model, new.formula)

In the new.formula the special name consisting of a period, \.", only, can be used to stand for

\the corresponding part of the old model formula". For example

> fm05 <- lm(y ~ x1 + x2 + x3 + x4 + x5, data=production)

> fm6 <- update(fm05, . ~ . + x6)

> smf6 <- update(fm6, sqrt(.) ~ .)

would �t a �ve variate multiple regression with variables (presumably) from the data frame

production, �t an additional model including a sixth regressor variable, and �t a variant on the

model where the response had a square root transform applied.

Note especially that if the data= argument is speci�ed on the original call to the model �tting

function, this information is passed on through the �tted model object to update() and its allies.

The name \." can also be used in other contexts, but with slightly di�erent meaning. For

example

> fmfull <- lm(y ~ . , data=production)

would �t a model with response y and regressor variables all other variables in the data frame

production.

Other functions for exploring incremental sequences of models are add1(), drop1(), step() and

stepwise(). The names of these give a good clue to their purpose, but for full details see the

help document.

10.6 Generalized linear models; families

Generalized linear modelling is a development of linear models to accommodate both non-normal

response distributions and transformations to linearity in a clean and straightforward way. A

generalized linear model may be described in terms of the following sequence of assumptions:
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� There is a response, y, of interest and stimulus variables x

1

, x

2

, . . .whose values inuence

the distribution of the response.

� The stimulus variables inuence the distribution of y through a single linear function, only.

This linear function is called the linear predictor, and is usually written

� = �

1

x

1

+ �

2

x

2

+ � � �+ �

p

x

p

hence x

i

has no inuence on the distribution of y if and only if �

i

= 0.

� The distribution of y is of the form

f

Y

(y;�; ') = exp

�

A

'

fy�(�) �  (�(�))g+ � (y; ')

�

where ' is a scale parameter, (possibly known), and is constant for all observations, A

represents a prior weight, assumed known but possibly varying with the observations, and

� is the mean of y. So it is assumed that the distribution of y is determined by its mean

and possibly a scale parameter as well.

� The mean, �, is a smooth invertible function of the linear predictor:

� = m(�); � = m

�1

(�) = `(�)

and this inverse function, `(:) is called the link function.

These assumptions are loose enough to encompass a wide class of models useful in statistical

practice, but tight enough to allow the development of a uni�ed methodology of estimation and

inference, at least approximately. The reader is referred to any of the current reference works on

the subject for full details, such as

Generalized linear models by Peter McCullagh and John A Nelder, 2nd edition, Chapman

and Hall, 1989, or

An introduction to generalized linear models by Annette J Dobson, Chapman and Hall,

1990.

10.6.1 Families

The class of generalized linear models handled by facilities supplied in R includes gaussian,

binomial, poisson, inverse gaussian and gamma response distributions and also quasi-likelihood

models where the response distribution is not explicitly speci�ed. In the latter case the variance

function must be speci�ed as a function of the mean, but in other cases this function is implied

by the response distribution.

Each response distribution admits a variety of link functions to connect the mean with the linear

predictor. Those automatically available are as in Table 3.

The combination of a response distribution, a link function and various other pieces of information

that are needed to carry out the modelling exercise is called the family of the generalized linear

model.

10.6.2 The glm() function

Since the distribution of the response depends on the stimulus variables through a single linear

function only, the same mechanism as was used for linear models can still be used to specify the

linear part of a generalized model. The family has to be speci�ed in a di�erent way.

The R function to �t a generalized linear model is glm() which uses the form

> �tted.model <- glm(formula, family =family.generator, data=data.frame)
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Family Name

Link Function binomial gaussian Gamma inverse.gaussian poisson quasi

logit ? ?

probit ? ?

cloglog ? ?

identity ? ? ? ?

inverse ? ?

log ? ? ?

1/mu^2 ? ?

sqrt ? ?

Table 3: Families and the link functions available to them

The only new feature is the family.generator, which is the instrument by which the family is

described. It is the name of a function that generates a list of functions and expressions that

together de�ne and control the model and estimation process. Although this may seem a little

complicated at �rst sight, its use is quite simple.

The names of the standard, supplied family generators are given under \FamilyName" in Table 3.

Where there is a choice of links, the name of the link may also be supplied with the family name,

in parentheses as a parameter. In the case of the quasi family, the variance function may also

be speci�ed in this way.

Some examples make the process clear.

The gaussian family

A call such as

> fm <- glm(y ~ x1+x2, family=gaussian, data=sales)

achieves the same result as

> fm <- lm(y ~ x1+x2, data=sales)

but much less e�ciently. Note how the gaussian family is not automatically provided with a

choice of links, so no parameter is allowed. If a problem requires a gaussian family with a

nonstandard link, this can usually be achieved through the quasi family, as we shall see later.

The binomial family

Consider a small, arti�cial example.

On the Greek island of Kalythos the male inhabitants su�er from a congenital eye disease, the

e�ects of which become more marked with increasing age. Samples of islander males of various

ages were tested for blindness and the results recorded. The data is shown in Table 4.

The problem we consider is to �t both logistic and probit models to this data, and to estimate

for each model the LD50, that is the age at which the chance of blindness for a male inhabitant

is 50%.

If y is the number of blind at age x and n the number tested, both models have the form

y � B(n; F (�

0

+ �

1

x))
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Age: 20 35 45 55 70

No. tested: 50 50 50 50 50

No. blind: 6 17 26 37 44

Table 4: The Kalythos blindness data

where for the probit case, F (z) = �(z) is the standard normal distribution function, and in the

logit case, (the default), F (z) = e

z

=(1 + e

z

). In both cases the LD50 is

LD50 = ��

0

=�

1

that is, the point at which the argument of the distribution function is zero.

The �rst step is to set the data up as a data frame

> kalythos <- data.frame(x=c(20,35,45,55,70), n=rep(50,5),

y=c(6,17,26,37,44))

To �t a binomial model using glm() there are two possibilities for the response:

� If the response is a vector it is assumed to hold binary data, and so must be a 0; 1 vector.

� If the response is a two column matrix it is assumed that the �rst column holds the number

of successes for the trial and the second holds the number of failures.

Here we need the second of these conventions, so we add a matrix to our data frame:

> kalythos$Ymat <- cbind(kalythos$y, kalythos$n - kalythos$y)

To �t the models we use

> fmp <- glm( Ymat~x, family=binomial(link=probit), data=kalythos)

> fml <- glm( Ymat~x, family=binomial, data=kalythos)

Since the logit link is the default the parameter may be omitted on the second call. To see the

results of each �t we could use

> summary(fmp)

> summary(fml)

Both models �t (all too) well. To �nd the LD50 estimate we can use a simple function:

> ld50 <- function(b) -b[1]/b[2]

> ldp <- ld50(coef(fmp)); ldl <- ld50(coef(fmp)); c(ldp, ldl)

The actual estimates from this data are 43.663 years and 43.601 years respectively.

Poisson models

With the poisson family the default link is the log, and in practice the major use of this family

is to �t surrogate poisson log-linear models to frequency data, whose actual distribution is often

multinomial. This is a large and important subject we will not discuss further here. It even

forms a major part of the use of non-gaussian generalized models overall.

Occasionally genuinely poisson data arises in practice and in the past it was often analysed as

gaussian data after either a log or a square-root transformation. As a graceful alternative to the

latter, a poisson generalized linear model may be �tted as in the following example:

> fmod <- glm(y ~ A+B + x, family=poisson(link=sqrt), data=worm.counts)
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Quasi-likelihood models

For all families the variance of the response will depend on the mean and will have the scale

parameter as a multiplier. The form of dependence of the variance on the mean is a characteristic

of the response distribution; for example for the poisson distribution Var[y] = �.

For quasi-likelihood estimation and inference the precise response distribution is not speci�ed,

but rather only a link function and the form of the variance function as it depends on the mean.

Since quasi-likelihood estimation uses formally identical techniques to those for the gaussian dis-

tribution, this family provides a way of �tting gaussian models with non-standard link functions

or variance functions, incidently.

For example, consider �tting the non-linear regression

y =

�

1

z

1

z

2

� �

2

+ e (1)

this may be written alternatively as

y =

1

�

1

x

1

+ �

2

x

2

+ e

where x
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= �
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. Supposing a suitable data frame to

be set up we could �t this non-linear regression as

> nlfit <- glm(y~x1+x2-1,family=

quasi(link=inverse,variance=constant), data=biochem)

The reader is referred to the manual and the help document for further information, as needed.

10.7 Nonlinear regression models; parametrized data frames

Note that these features are not implemented yet.

R provides two functions to �t nonlinear models that do not conform even to the partially linear

paradigm of generalized linear models. These are ms() for arbitrary minimization problems

where the objective functions is a sum of similar terms, and nls() for conventional nonlinear

least squares estimation of normal nonlinear regression models.

In this brief introduction we only consider the nonlinear regression function nls() and leave ms()

for the reader to pursue as needed.

10.7.1 Changes to the form of the model formula

In specifying a linear, or generalized linear model we could allow the regression parameters to be

de�ned implicitly, and to be given names by transference from the column of the model matrix

that they multiply.

In arbitrary nonlinear models no such simplicity applies and we have to specify the model as

an ordinary expression that includes both determining variables and parameters together. For

example to specify a model for a nonlinear regression such as 1 above, we would use

y ~ t1*x1/(x2 - t2)

where y is the response variable, x1 and x2 are determining variables and t1 and t2 are scalar

parameters.

In such model formul� all operators have their usual arithmetic expression meaning, and the

useful facility of expanding factors and forming cross and nested structures is no longer available.

All parameters must be explicitly de�ned in the formula, even if they come from a linear part of

the model.
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10.7.2 Specifying the parameters

Since the model formula now contains both determining variables and parameters, there has to

be some mechanism for specifying which are which. But of course once the parameters have been

speci�ed the remaining variates in the model formula must be variables.

As well as specifying which are the parameters, it is also necessary in this case to specify an

initial approximation for each with which to start the iterative estimation procedure.

There are two ways of specifying this information:

� If the call to nls() has a start= parameter speci�ed, its value must be a list of named

components. The names of the list specify the names of the parameters and the values

specify the starting values.

� If the data is held in a data frame, the parameters may similarly be de�ned as a parameters

attribute of the data frame.

Since our policy is generally to work with data frames as much as follows, we show the second

possibility in the next example.

Example

Consider again a nonlinear regression of the form 1. An easy way to �nd initial estimates for the

parameters is to regress x

2

y on x

1

and x

2

:

> fm0 <- lm(x2*y ~ x1 + x2 - 1, data=biochem)

> th <- coef(fm0)

To name the parameters and associate them with the biochem is done as follows:

> parameters(biochem) <- list(t1=th[1], t2=th[2])

Now to �t the nonlinear regression model:

> fm <- nls(y ~ t1*x1/(x2 - t2), data=biochem)

At this point we could use the summary() function and most of the other generics to investigate

the model and display information. To extract the coe�cients we could now use, for example

> th <- coef(fm)

and to make these least squares estimates the new values of the parameters associated with

biochem we could simply repeat the step

> parameters(biochem) <- list(t1=th[1], t2=th[2])

Note that the function parameters() may either be used as an expression, in which case it ex-

tracts the list of parameters from a data frame, or it may be used as the target for an assignment,

in which case it accepts a parameter list for a speci�ed data frame. In this respect it is very

similar to the attributes() function. There is also a function param() analogous to attr(),

which handles one parameter at a time under a character string name.

10.8 Some non-standard models

Note that only a few of these features have been implemented.

We conclude this section with just a brief mention of some of the other facilities available in R

for special regression and data analysis problems.



48 Statistical models in R

Local approximating regressions. The loess() function �ts a nonparametric regression by

using a locally weighted regression. Such regressions are useful for highlighting a trend in

messy data or for data reduction to give some insight into a large data set.

Robust regression There are several functions available for �tting regression models in a way

resistant to the inuence of extreme outliers in the data. The most sophisticated of these

is rreg(), but others include lmsfit() for least median squares regression and l1fit()

for regression using the L

1

�norm. However these do not as yet have the facility of using

formul� to specify the model function, for example, and conform to an older protocol, which

makes them sometimes rather tedious to use. There is also a robust() facility to change

a glm family object into a robust version for use with the glm() model �tting function.

Generalized additive models. This technique aims to construct a regression function from

smooth additive functions of the determining variables, usually one for each determining

variable. The function gam() is in many ways similar to the other model �tting functions

outlined above. In addition there are other model �tting functions that do a similar job.

These include avas() and ace(). On the other hand ppreg() is available for projection

pursuit regression, but this technique is still very much in need of a complete theoretical

treatment and further practical experience. These latter functions are again conforming

to an older protocol for model �tting functions and lack the convenience of the newer

functions.

Tree based models Rather than seek an explicit global linear model for prediction or inter-

pretation, tree based models seek to bifurcate the data, recursively, at critical points of

the determining variables in order to partition the data ultimately into groups that are as

homogeneous as possible within, and as heterogeneous as possible between. The results

often lead to insights that other data analysis methods tend not to yield.

Models are again speci�ed in the ordinary linear model form. The model �tting function

is tree(), but many other generic functions such as plot() and text() are well adapted

to displaying the results of a tree-based model �t in a graphical way.
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11 Graphical procedures

Graphical facilities are an important and extremely versatile component of the R environment.

It is possible to use the facilities to display a wide variety of statistical graphs and also to build

entirely new types of graph.

The graphics facilities can be used in both interactive modes, but in most cases, interactive use is

more productive. Interactive use is also easy because at startup time R initiates a graphics device

driver which opens a special graphics window for the display of interactive graphics. Although

this is done automatically, it is useful to know that the command used is X11() under Unix,

Windows() under Windows 95 and Windows NT, and Macintosh() on a Macintosh.

Once the device driver is running, R plotting commands can be used to produce a variety of

graphical displays and to create entirely new kinds of display.

Plotting commands are divided into three basic groups:

High-level plotting functions create a new plot on the graphics device, possibly with axes,

labels, titles and so on.

Low-level plotting functions add more information to an existing plot, such as extra points,

lines and labels.

Interactive graphics functions allow you interactively add information to, or extract information

from, an existing plot, using a pointing device such as a mouse.

In addition, R maintains a list of graphical parameters which can be manipulated to customise

your plots.

11.1 High-level plotting commands

High-level plotting functions are designed to generate a complete plot of the data passed as

arguments to the function. Where appropriate, axes, labels and titles are automatically generated

(unless you request otherwise.) High-level plotting commands always start a new plot, erasing

the current plot if necessary.

11.1.1 The plot() function

One of the most frequently used plotting functions in R is the plot() function. This is a generic

function: the type of plot produced is dependent on the type or class of the �rst argument.

plot(x,y)

plot(xy)

If x and y are vectors, plot(x,y) produces a scatterplot of y against x.

The same e�ect can be produced by supplying one argument (second form)

as either a list containing two elements x and y or a two-column matrix.

plot(x) If x is a time series, this produces a time-series plot, if x is a numeric

vector, it produce a plot of the values in the vector against their index in

the vector, and if x is a complex vector, it produces a plot of imaginary

versus real parts of the vector elements.

plot(f)

plot(f,y)

f is a factor object, y is a numeric vector. The �rst form generates a bar

plot of f; the second form produces boxplots of y for each level of f.
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plot(df)

plot(~ expr)

plot(y ~ expr)

df is a data frame, y is any object, expr is a list of object names separated

by `+' (e.g. a + b + c). The �rst two forms produce distributional plots

of the variables in a data frame (�rst form) or of a number of named

objects (second form). The third form plots y against every object named

in expr.

11.1.2 Displaying multivariate data

R provides two very useful functions for representing multivariate data. If X is a numeric matrix

or data frame, the command

> pairs(X)

produces a pairwise scatterplot matrix of the variables de�ned by the columns of X, that is,

every column of X is plotted against every other column of X and the resulting n(n� 1) plots are

arranged in a matrix with plot scales constant over the rows and columns of the matrix.

When three or four variables are involved a coplot may be more enlightening. If a and b are

numeric vectors and c is a numeric vector or factor object (all of the same length), then the

command

> coplot(a ~ b | c)

produces a number of scatterplots of a against b for given values of c. If c is a factor, this simply

means that a is plotted against b for every level of c. When c is numeric, it is divided into

a number of conditioning intervals and for each interval a is plotted against b for values of c

within the interval. The number and position of intervals can be controlled with given.values=

argument to coplot()| the function co.intervals() is useful for selecting intervals. You can

also use two given variables with a command like

> coplot(a ~ b | c + d)

which produces scatterplots of a against b for every joint conditioning interval of c and d.

The coplot() and pairs() function both take an argument panel= which can be used to cus-

tomise the type of plot which appears in each panel. The default is points() to produce a

scatterplot but by supplying some other low-level graphics function of two vectors x and y as the

value of panel= you can produce any type of plot you wish. An example panel function useful

for coplots is panel.smooth().

11.1.3 Display graphics

Other high-level graphics functions produce di�erent types of plots. Some examples are:

tsplot(x1,x2,...) Plots any number of time series on the same scale. This automatic simul-

taneous scaling feature is also useful when the x

i

's are ordinary numeric

vectors, in which case they are plotted against the numbers 1; 2; 3; : : :.

qqnorm(x)

qqline(x)

qqplot(x,y)

Distribution-comparison plots. The �rst form plots the numeric vector x

against the expected Normal order scores (a normal scores plot) and the

second adds a straight line to such a plot by drawing a line throught the

distribution and data quartiles. The third form plots the quantiles of x

against those of y to compare their respective distributions.
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hist(x)

hist(x,nclass=n)

hist(x,

breaks=...)

Produces a histogram of the numeric vector x. A sensible number of classes

is usually chosen, but a recommendation can be given with the nclass=

argument. Alternatively, the breakpoints can be speci�ed exactly with

the breaks= argument. If the probability=T argument is given, the bars

represent relative frequencies instead of counts.

dotchart(x,...) Constructs a dotchart of the data in x. In a dotchart the y�axis gives a

labelling of the data in x and the x�axis gives its value. For example it

allows easy visual selection of all data entries with values lying in speci�ed

ranges.

11.1.4 Arguments to high-level plotting functions

There are a number of arguments which may be passed to high-level graphics functions, as follows:

add=T Forces the function to act as a low-level graphics function, superimposing

the plot on the current plot (some functions only).

axes=F Suppresses generation of axes | useful for adding your own custom axes

with the axis() function. The default, axes=T, means include axes.

log="x"

log="y"

log="xy"

Causes the x, y or both axes to be logarithmic. This will work for many,

but not all, types of plot.

type= The type= argument controls the type of plot produced, as follows:

type="p" Plot individual points (the default)

type="l" Plot lines

type="b" Plot points connected by lines (both)

type="o" Plot points overlaid by lines

type="h" Plot vertical lines from points to the zero axis (high-density)

type="s"

type="S"

Step-function plots. In the �rst form, the top of the vertical de�nes the

point; in the second, the bottom.

type="n" No plotting at all. However axes are still drawn (by default) and the

coordinate system is set up according to the data. Ideal for creating plots

with subsequent low-level graphics functions.

xlab="string"

ylab="string"

Axis labels for the x and y axes. Use these arguments to change the default

labels, usually the names of the objects used in the call to the high-level

plotting function.

main="string" Figure title, placed at the top of the plot in a large font.

sub="string" Sub-title, placed just below the x-axis in a smaller font.
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11.2 Low-level plotting commands

Sometimes the high-level plotting functions don't produce exactly the kind of plot you desire.

In this case, low-level plotting commands can be used to add extra information (such as points,

lines or text) to the current plot.

Some of the more useful low-level plotting functions are:

points(x,y)

lines(x,y)

Adds points or connected lines to the current plot. plot()'s type= ar-

gument can also be passed to these functions (and defaults to "p" for

points() and "l" for lines().)

text(x, y,

labels, ...)

Add text to a plot at points given by x, y. Normally labels is an integer

or character vector in which case labels[i] is plotted at point (x[i],

y[i]). The default is 1:length(x).

Note: This function is often used in the sequence

> plot(x, y, type="n"); text(x, y, names)

The graphics parameter type="n" suppresses the points but sets up the

axes, and the text() function supplies special characters, as speci�ed by

the character vector names for the points.

abline(a, b)

abline(h=y)

abline(v=x)

abline(lm.obj)

Adds a line of slope b and intercept a to the current plot. h=ymay be used

to specify y-coordinates for the heights of horizontal lines to go across a

plot, and v=x similarly for the x-coordinates for vertical lines. Also lm.obj

may be list with a $coefficients component of length 2 (such as the

result of model-�tting functions,) which are taken as an intercept and

slope, in that order.

polygon(x, y,

...)

Draws a polygon de�ned by the ordered vertices in (x,y). and (optionally)

shade it in with hatch lines, or �ll it if the graphics device allows the �lling

of �gures.

legend(x,y,

legend,...)

Adds a legend to the current plot at the speci�ed position. Plotting charac-

ters, line styles, colours etc. are <identi�ed with the labels in the character

vector legend. At least one other argument v (a vector the same length

as legend) with the corresponding values of the plotting unit must also

be given, as follows:

legend( ,angle=v) Shading angles

legend( ,

density=v)

Shading densities

legend( ,fill=v) Colours for �lled boxes

legend( ,col=v) Colours in which points or lines will be drawn

legend( ,lty=v) Line styles

legend( ,pch=v) Plotting characters (character vector)

legend( ,marks=v) Plotting symbols, as obtained when using a numeric argument to pch=

(numeric vector).
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title(main,sub) Adds a title main to the top of the current plot in a large font and (op-

tionally) a sub-title sub at the bottom in a smaller font.

axis(side,...) Adds an axis to the current plot on the side given by the �rst argument

(1 to 4, counting clockwise from the bottom.) Other arguments control

the positioning of the axis within or beside the plot, and tick positions

and labels. Useful for adding custom axes after calling plot() with the

axes=F argument.

Low-level plotting functions usually require some positioning information (e.g. x and y coordi-

nates) to determine where to place the new plot elements. Coordinates are given in terms of

user coordinates which are de�ned by the previous high-level graphics command and are chosen

based on the supplied data.

Where x and y arguments are required, it is also su�cient to supply a single argument being

a list with elements named x and y. Similarly a matrix with two columns is also valid input.

In this way functions such as locator() (see below) may be used to specify positions on a plot

interactively.

11.3 Interactive graphics functions

R also provides functions which allow users to extract or add information to a plot using a mouse.

The simplest of these is the locator() function:

locator(n,type) Waits for the user to select locations on the current plot using the left

mouse button. This continues until n (default 500) points have been se-

lected, or the middle mouse button is pressed. The type argument allows

for plotting at the selected points and has the same e�ect as for high-level

graphics commands; the default is no plotting. locator() returns the

locations of the points selected as a list with two components x and y.

locator() is usually called with no arguments. It is particularly useful for interactively selecting

positions for graphic elements such as legends or labels when it is di�cult to calculate in advance

where the graphic should be placed. For example, to place some informative text near an outlying

point, the command

> text(locator(1), "Outlier", adj=0)

may be useful. locator() will still work if the current device does not support a mouse; in this

case the user will be prompted for x and y coordinates.

identify(x,y,

labels)

Allow the user to highlight any of the points de�ned by x and y (using the

left mouse button) by plotting the corresponding component of labels

nearby (or the index number of the point if labels is absent). Returns

the indices of the selected points when the middle button is pressed.
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Sometimes we want to identify particular points on a plot, rather than their positions. For

example, we may wish the user to select some observation of interest from a graphical display

and then manipulate that observation in some way. Given a number of (x; y) coordinates in two

numeric vectors x and y, we could use the identify() function as follows:

> plot(x,y)

> identify(x,y)

The identify() functions performs no plotting itself, but simply allows the user to move the

mouse pointer and click the left mouse button near a point. The point nearest the mouse pointer

will be highlighted with its index number (that is, its position in the x/y vectors) plotted nearby.

Alternatively, you could use some informative string (such as a case name) as a highlight by

using the labels argument to identify(), or disable highlighting altogether with the plot=F

argument. When the middle button is pressed, identify() returns the indices of the selected

points; you can use these indices to extract the selected points from the original vectors x and y.

11.4 Using graphics parameters

When creating graphics, particularly for presentation or publication purposes, R does not always

produce exactly that which is required. You can, however, customise almost every aspect of the

display using graphics parameters. R maintains a list of a large number of graphics parameters

which control things such as line style, colours, �gure arrangement and text justi�cation among

many others. Every graphics parameter has a name (such as `col', which controls colours,) and

a value (a colour number, for example.)

A separate list of graphics parameters is maintained for each active device, and each device has

a default set of parameters when initialised. Graphics parameters can be set in two ways: either

permanently, a�ecting all graphics functions which access the current device; or temporarily,

a�ecting only a single graphics function call.

11.4.1 Permanent changes: The par() function

The par() function is used to access and modify the list of graphics parameters for the current

graphics device.

par() Without arguments, returns a list of all graphics parameters and their

values for the current device.

par(c("col",

"lty"))

With a character vector argument, returns only the named graphics pa-

rameters (again, as a list.)

par(col=4,lty=2) With named arguments (or a single list argument) , sets the values of

the named graphics parameters, and returns the original values of the

parameters as a list.

Setting graphics parameters with the par() function changes the value of the parameters per-

manently, in the sense that all future calls to graphics functions (on the current device) will

be a�ected by the new value. You can think of setting graphics parameters in this way as set-

ting `default' values for the parameters, which will be used by all graphics functions unless an

alternative value is given.
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Note that calls to par() always a�ect the global values of graphics parameters, even when par()

is called from within a function. This is often undesirable behaviour | usually we want to set

some graphics parameters, do some plotting, and then restore the original values so as not to

a�ect the user's R session. You can restore the initial values by saving the result of par() when

making changes, and restoring the initial values when plotting is complete.

> oldpar <- par(col=4,lty=2)

. . . plotting commands . . .

> par(oldpar)

11.4.2 Temporary changes: Arguments to graphics functions

Graphics parameters may also be passed to (almost) any graphics function as named arguments.

This has the same e�ect as passing the arguments to the par() function, except that the changes

only last for the duration of the function call. For example:

> plot(x,y,pch="+")

produces a scatterplot using a plus sign as the plotting character, without changing the default

plotting character for future plots.

11.5 Graphics parameters list

The following sections detail many of the commonly-used graphical parameters. The R help

documentation for the par() function provides a more concise summary; this is provided as a

somewhat more detailed alternative.

Graphics parameters will be presented in the following form:

name=value A description of the parameter's e�ect. name is the name of the parameter,

that is, the argument name to use in calls to par() or a graphics function.

value is a typical value you might use when setting the parameter.

11.5.1 Graphical elements

R plots are made up of points, lines, text and polygons (�lled regions.) Graphical parameters

exist which control how these graphical elements are drawn, as follows:

pch="+" Character to be used for plotting points. The default varies with graphics

drivers, but it is usually `*' for terminals or window devices, and `�' for

PostScript devices. Plotted points tend to appear slightly above or below

the appropriate position unless you use "." as the plotting character,

which produces centred points.

pch=4 When pch is given as an integer between 0 and 18 inclusive, a specialised

plotting symbol is produced. To see what the symbols are, use the com-

mand

> legend(locator(1),as.character(0:18),marks=0:18)
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lty=2 Line types. Alternative line styles are not supported on all graphics devices

(and vary on those that do) but line type 1 is always a solid line, and line

types 2 and onwards are dotted or dashed lines, or some combination of

both.

lwd=2 Line widths. Desired width of lines, in multiples of the `standard' line

width. A�ects axis lines as well as lines drawn with lines(), etc.

col=2 Colours to be used for points, lines, text, �lled regions and images. Each

of these graphic elements has a list of possible colours, and the value of

this parameter is an index to that list. Obviously, this parameter applies

only to a limited range of devices.

font=2 Font to use for text. The appropriate value of this parameter is dependent

on the graphics device being used; for the postscript() device this is an

index to the system dataset ps.fonts.

adj=-0.1 Justi�cation of text relative to the plotting position. 0 means left justify, 1

means right justify and 0.5 means to centre horizontally about the plotting

position. The actual value is the proportion of text that appears to the

left of the plotting position, so a value of -0.1 leaves a gap of 10% of the

text width between the text and the plotting position.

cex=1.5 Character expansion. The value is the desired size of text characters (in-

cluding plotting characters) relative to the default text size.

11.5.2 Axes and tick marks

Many of R's high-level plots have axes, and you can construct axes yourself with the low-level

axis() graphics function. Axes have three main components: the axis line (line style controlled

by the lty graphics parameter), the tick marks (which mark o� unit divisions along the axis

line) and the tick labels (which mark the units.) These components can be customised with the

following graphics parameters.

lab=c(5,7,12) The �rst two numbers are the desired number of tick intervals on the x

and y axes respectively. The third number is the desired length of axis

labels, in characters (including the decimal point.) Choosing a too-small

value for this parameter may result in all tick labels being rounded to the

same number!

las=1 Orientation of axis labels. 0 means always parallel to axis, 1 means always

horizontal, and 2 mean always perpendicular to the axis.

mgp=c(3,1,0) Positions of axis components. The �rst component is the distance from

the axis label to the axis position, in text lines. The second component

is the distance to the tick labels, and the �nal component is the distance

from the axis position to the axis line (usually zero). Positive numbers

measure outside the plot region, negative numbers inside.
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tck=0.01 Length of tick marks, as a fraction of the size of the plotting region. When

tck is small (less than 0.5) the tick marks on the x and y axes are forced

to be the same size. A value of 1 gives grid lines. Negative values give tick

marks outside the plotting region. Use tck=0.01 and mgp=c(1,-1.5,0)

for internal tick marks.

xaxs="s"

yaxs="d"

Axis styles for the x and y axes, respectively. With styles "s" (standard)

and "e" (extended) the smallest and largest tick marks always lie outside

the range of the data. Extended axes may be widened slightly if any points

are very near the edge. This style of axis can sometimes leave large blank

gaps near the edges. With styles "i" (internal) and "r" (the default) tick

marks always fall within the range of the data, however style "r" leaves a

small amount of space at the edges.

Setting this parameter to "d" (direct axis) locks in the current axis and

uses it for all future plots (or until the parameter is set to one of the other

values above, at least.) Useful for generating series of �xed-scale plots.

11.5.3 Figure margins

A single plot in R is known as a figure and comprises a plot region surrounded by margins

(possibly containing axis labels, titles, etc.) and (usually) bounded by the axes themselves. A

typical �gure appears in Figure 11. Graphics parameters controlling �gure layout include:
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mai=

c(1,0.5,0.5,0)

Widths of the bottom, left, top and right margins, respectively, measured

in inches.

mar=c(4,2,2,1) Similar to mai, except the measurement unit is text lines.

mar and mai are equivalent in the sense that setting one changes the value of the other. The

default values chosen for this parameter are often too large; the right-hand margin is rarely

needed, and neither is the top margin if no title is being used. The bottom and left margins must

be large enough to accommodate the axis and tick labels. Furthermore, the default is chosen

without regard to the size of the device surface: for example, using the postscript() driver

with the height=4 argument will result in a plot which is about 50% margin unless mar or mai

are set explicitly. When multiple �gures are in use (see below) the margins are reduced by half,

however this may not be enough when many �gures share the same page.

11.5.4 Multiple �gure environment

R allows you to create an n�m array of �gures on a single page. Each �gure has its own margins,

and the array of �gures is optionally surrounded by an outer margin as shown in Figure 12.

The graphical parameters relating to multiple �gures are as follows:

mfcol=c(3,2)

mfrow=c(2,4)

Set size of multiple �gure array. The �rst value is the number of rows;

the second is the number of columns. The only di�erence between these

two parameters is that setting mfcol causes �gures to be �lled by column;

mfrow �lls by rows. The arrangement in Figure 12 would have been created

by setting mfrow=c(3,2); the �gure shows the page after four plots have

been drawn.

mfg=c(2,2,3,2) Position of current �gure in a multiple �gure environment. The �rst two

numbers are the row and column of the current �gure; the last two are

the number of rows and columns in the multiple �gure array. Set this

parameter to jump between �gures in the array. You can even use di�erent

values for the last two numbers than the true values for unequally-sized

�gures on the same page.

fig=c(4,9,1,4)/10 Position of the current �gure on the page. Values are the positions of the

left, right, bottom and top edges respectively, as a percentage of the page

measured from the bottom left corner. The example value would be for

a �gure in the bottom right of the page. Set this parameter for arbitrary

positioning of �gures within a page.

oma=c(2,0,3,0)

omi=c(0,0,0.8,0)

Size of outer margins. Like mar and mai, the �rst measures in text lines

and the second in inches, starting with the bottom margin and working

clockwise.

Outer margins are particularly useful for page-wise titles, etc. Text can be added to the outer

margins with the mtext() function with argument outer=T. There are no outer margins by

default, however, so you must create them explicitly using oma or omi.
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11.6 Device drivers

R can generate graphics (of varying levels of quality) on almost any type of display or printing

device. Before this can begin, however, R needs to be informed what type of device it is dealing

with. This is done by starting a device driver. The purpose of a device driver is to convert

graphical instructions from R (`draw a line,' for example) into a form that the particular device

can understand.

Device drivers are started by calling a device driver function. There is one such function for every

device driver: type help(Devices) for a list of them all. For example, issuing the command

> postscript()

causes all future graphics output to be sent to the printer in PostScript format. Some commonly-

used device drivers are:
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motif()

openlook()

X11()

For use with the X11 or Open Windows window systems.

suntools() For use with the SunView windowing system.

postscript() For printing on PostScript printers, or creating PostScript graphics �les.

printer()

crt()

For terminals with little or no graphics capabilities. ASCII-based graphics

are generated.

When you have �nished with a device, be sure to terminate the device driver by issuing the

command

> dev.off()

This ensures that the device �nishes cleanly; for example in the case of hardcopy devices this

ensures that every page is completed and has been sent to the printer.

11.6.1 PostScript diagrams for typeset documents.

By passing the file argument to the postscript() device driver function, you may store the

graphics in PostScript format in a �le of your choice. The plot will be in portrait orientation

unless the horizontal=T argument is given, and you can control the size of the graphic with the

width and height arguments (the plot will be scaled as appropriate to �t these dimensions.) For

example, the command

> postscript("file.ps", height=4)

will produce a �le containing PostScript code for a �gure four inches high, perhaps for inclusion

in a document.

13

It is important to note that if the �le named in the command already exists,

it will be overwritten. This is the case even if the �le was only created earlier in the same R

session.

11.6.2 Multiple graphics devices

In advanced use of R it is often useful to have several graphics devices in use at the same time.

Of course only one graphics device can accept graphics commands at any one time, and this is

known as the current device. When multiple devices are open, they form a numbered sequence

with names giving the kind of device at any position.

The main commands used for operating with multiple devices, and their meanings are as follows:

motif()

postscript()

: : :

Each new call to a device driver function opens a new graphics device,

thus extending by one the device list. This device becomes the current

device, to which graphics output will be sent.

dev.list() returns the number and name of all active devices. The device at position

1 on the list is always the null device which does not accept graphics

commands at all.

13

Warning: The PostScript code produced by the postscript() device driver is not Encapsulated PostScript,

and thus including it in a document electronically (as opposed to physical cut-and-paste) can be rather problematic.

For this type of application, a better solution is to use the fig() driver (available from statlib) and use a conversion

program, such as fig2dev, to convert the resultant �g code to Encapsulated PostScript.
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dev.next()

dev.prev()

returns the number and name of the graphics device next to, or previous

to the current device, respectively.

dev.set(which=k) can be used to change the current graphics device to the one at position

k of the device list. Returns the number and label of the device.

dev.off(k) Terminate the graphics device at point k of the device list. For some

devices, such as postscript devices, this will either print the �le imme-

diately or correctly complete the �le for later printing, depending on how

the device was initiated.

dev.copy(device,

..., which=k)

dev.print(device,

..., which=k)

Make a copy of the device k. Here device is a device function, such as

postscript, with extra arguments, if needed, speci�ed by .... dev.print

is similar, but the copied device is immediately closed, so that end ac-

tions, such as printing hardcopies, are immediately performed. (See also

printgraph()).

graphics.off() Terminate all graphics devices on the list, except the null device.
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A R: An introductory session

The following session is intended to introduce to you some features of the R environment by using

them. Many features of the system will be unfamiliar and puzzling at �rst, but this will soon

disappear. This is written for the Unix user. Those using Macintosh and Windows will have to

adapt the discussion appropriately.

login:

...

Login, start your windowing system. You should also have the

�le morley.data in your working directory. If not, seek the

local expert. If you have, proceed.

> R Start R.

The R program begins, with a banner.

(Within R the prompt on the left hand side will not be shown to avoid

confusion.) The graphics window should appear automatically

on the screen.

x <- rnorm(50)

y <- rnorm(x)

Generate two pseudo random normal vectors of x� and y�co-

ordinates.

plot(x, y)

Plot the points in the plane.

objects() See which R objects are now in the R image.

rm(x,y) Remove objects no longer needed. (Clean up).

x <- 1:20 Make x = (1; 2; : : : ; 20)

w <- 1 + sqrt(x)/2 A `weight' vector of standard deviations.

dummy <- data.frame(x=x,

y= x + rnorm(x)*w)

dummy

Make a data frame of two columns, x and y, and look at it.

fm <- lm(y~x, data=dummy)

summary(fm)

Fit a simple linear regression of y on x and look at the analysis.

fm1 <- lm(y~x, data=dummy,

weight=1/w^2)

summary(fm1)

Since we know the standard deviations, we can do a weighted

regression.

attach(dummy) Make the columns in the data frame visible as variables.

lrf <- lowess(x, y) Make a nonparametric local regression function.

plot(x, y) Standard point plot.

lines(x, lrf$y) Add in the local regression.

abline(0, 1, lty=3) The true regression line: (intercept 0, slope 1).

abline(coef(fm)) Unweighted regression line.

abline(coef(fm1),lty=4) Weighted regression line.

detach() Remove data frame from the search list.

plot(fitted(fm),

resid(fm),

xlab="Fitted values",

ylab="Residuals", main=

"Residuals vs Fitted")

A standard regression diagnostic plot to check for heteroscedas-

ticity. Can you see it?
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qqnorm(resid(fm), main=

"Residuals Rankit Plot")

A normal scores plot to check for skewness, kurtosis and out-

liers. (Not very useful here.)

rm(fm,fm1,lrf,x,dummy) Clean up again.

The next section will look at data from the classical experiment

of Michaelson and Morley to measure the speed of light.

system("more morley.data") Optional. Temporarily interrupt R and look at the �le. The

function system is the way to invoke commands under the op-

erating system. This will only work on Unix.

mm <- read.table(

"morley.data")

mm

Read in the Michaelson and Morley data as a data frame, and

look at it. There are �ve experiments (col. Expt) and each has

20 runs (col. Run) and sl is the recorded speed of light, suitably

coded.

mmExpt < �factor(mmExpt)

mmRun < �factor(mmRun)

Change Expt and Run into factors.

attach(mm) Make the data frame visible at position 2 (the default).

plot(Expt,Speed, main=

"Speed of Light Data",

xlab="Experiment No.")

Compare the �ve experiments with simple boxplots.

fm <- aov(Speed~Run+Expt,

data=mm)

summary(fm)

Analyse as a randomized block, with `runs' and `experiments'

as factors.

fm0 <- update(fm,

.~.-Run)

anova(fm0,fm)

Fit the sub-model omitting `runs', and compare using a formal

analysis of variance.

detach()

rm(fm, fm0)

Clean up before moving on.

We now look at some more graphical features: contour and

image plots.

x <- seq(-pi, pi, len=50)

y <- x

x is a vector of 50 equally spaced values in �� � x � �. y is

the same.

f <- outer(x, y,

function(x,y)

cos(y)/(1+x^2))

f is a square matrix, with rows and columns indexed by x and

y respectively, of values of the function cos(y)=(1 + x

2

).

oldpar <- par()

par(pty="s")

Save the plotting parameters and set the plotting region to

\square".

contour(x, y, f)

contour(x, y, f,

nlevels=15, add=T)

Make a contour map of f ; add in more lines for more detail.

fa <- (f-t(f))/2 fa is the \asymmetric part" of f . (t() is transpose).

contour(x, y, fa, nint=15) Make a contour,. . .

par(oldpar) . . . and restore the old graphics parameters.

image(x, y, f)

image(x, y, fa)

Make some pretty high density image plots, (of which you can

get hardcopies if you wish)

objects(); rm(x,y,f,fa) and clean up before moving on.
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th <- seq(-pi, pi,

len=100)

z <- exp(1i*th)

R can do complex arithmetic, also. 1i is used for the complex

number i

par(pty="s")

plot(z, type="l")

Plotting complex arguments means plot imaginary versus real

parts. This should be a circle.

w <- rnorm(100) +

rnorm(100)*1i

Suppose we want to sample points within the unit circle. One

method would be to take complex numbers with standard nor-

mal real and imaginary parts. . .

w <- ifelse(Mod(w) > 1,

1/w, w)

and to map any outside the circle onto their reciprocal.

plot(w, xlim=c(-1,1),

ylim=c(-1,1), pch="+",

xlab="x", ylab="y")

lines(z)

All points are inside the unit circle, but the distribution is not

uniform.

w <- sqrt(runif(100))*

exp(2*pi*runif(100)*1i)

plot(w, xlim=c(-1,1),

ylim=c(-1,1), pch="+",

xlab="x", ylab="y")

lines(z)

The second method uses the uniform distribution. The points

should now look more evenly spaced over the disc.

rm(th,w,z) Clean up again.

q() Quit the R program. . .

> . . . and return to UNIX.
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B The Inbuilt Command Line Editor in R

B.1 Preliminaries

The August 1991 release of R has inbuilt command line editor that allows recall, editing and

re-submission of prior commands.

To use it, start the R program with

$ Splus -e

Inside the editor either emacs or vi conventions are available, according to the shell environment

variable S CLEDITOR. To get the emacs conventions use (in csh and variants)

$ setenv S CLEDITOR emacs

and for the vi conventions to apply, put vi instead of emacs. This statement would normally be

included in your .login �le (or equivalent) and would then be done automatically at login time.

To avoid forgetting to include the -e a handy alias for your .cshrc �le is, say

alias S+ 'Splus -e'

after which S+ is the command to start R with command line editor.

The usual typographical conventions apply: ^M means Hold the Control down while you press

the m key, but Esc m means First press the Esc key and then the m key. Note that case is

signi�cant after Esc.

B.2 Editing Actions

The R program keeps a history of the commands you type, including the error lines, and com-

mands in your history may be recalled, changed if necessary, and re-submitted as new commands.

In emacs style command line editing any straight typing you do while in this editing phase causes

the characters to be inserted in the command you are editing, displacing any characters to the

right of the cursor. In vi mode character insertion mode is started by Esc i or Esc a, characters

are typed and insertion mode is �nished by typing a further Esc .

Pressing the Return command at any time causes the command to be re-submitted.

Other editing actions are summarised in the following table.

Unfortunately it does not seem to be possible to bind the motion keys, for example, to the arrow

keys, which is something of a nuisance.
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B.3 Command Line Editor Summary

1. Command recall and vertical motion emacs style vi style

Go to the previous command (backwards in the history) ^P Esc k

Go to the next command (forwards in the history) ^N Esc j

Find the last command with the text string in it ^R text Esc ? text

2. Horizontal motion of the cursor

Go to the beginning of the command ^A Esc ^

Go to the end of the line ^E Esc $

Go back one word Esc b Esc b

Go forward one word Esc f Esc w

Go back one character ^B Esc h

Go forward one character ^F Esc l

3. Editing and re-submission

Insert text at the cursor text Esc i text Esc

Append text after cursor ^Ftext Esc a text Esc

Delete the previous character (left of the cursor) Delete Esc shift-x

Delete the character under the cursor ^D Esc x

Delete rest of the word under the cursor, and `save' it Esc d Esc dw

Delete from cursor to end of command, and `save' it ^K Esc shift-d

Insert (yank) the last `saved' text here ^Y Esc shift-y

Transpose the character under the cursor with the next ^T Esc xp

Change the rest of the word to lower case Esc l

Change the rest of the word to capitals (upper case) Esc c

Re-submit the command to R Return Return

NOTE: With vi style commands the Esc need only be issued before the �rst recall command,

and to terminate insert and append commands, as is usual in vi.

The �nal Return terminates the command line editing sequence for commands of either style.
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C Exercises

C.1 The cloud point data

Source: Draper & Smith, Applied Regression Analysis, p. 162

Category: Polynomial regression. Simple plots.

Description

The cloud point of a liquid is a measure of the degree of crystalization in a stock that can be

measured by the refractive index. It has been suggested that the percentage of I

8

in the base

stock is an excellent predictor of cloud point using the second or third order model:

Y = �

0

+ �

1

x+ �

2

x

2

+ �

3

x

3

+ E; E � N(0; �

2

)

Data

The following data was collected on stocks with known percentage of I

8

:

I

8

% Cloud Point I

8

% Cloud Point I

8

% Cloud Point I

8

% Cloud Point

0 21.9 2 26.1 5 28.9 8 31.4

0 22.1 3 26.8 6 29.8 8 31.5

0 22.8 3 27.3 6 30.0 9 31.8

1 24.5 4 28.2 6 30.3 10 33.1

2 26.0 4 28.5 7 30.4

The data may be read from �le cloud.data in a form suitable to construct a data frame.

Suggested analysis

Fit polynomial regression models using the lm() function, and choose the degree carefully.

C.2 The Janka hardness data

Source: E. J. Williams: Regression Analysis, Wiley, 1959.

Category: Polynomial regression. Transformations.

Description

The Janka hardness is an important structural property of Australian timbers, which is di�cult

to measure. It is, however, related to the density of the timber, which is relatively easy to

measure. A low degree polynomial regression is suggested as appropriate.

Y = �

0

+ �

1

x+ �

2

x

2

+ � � �+ E

where Y is the hardness and x the density.
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Data

The following data comes from samples of 36 Australian Eucalypt hardwoods.

D H D H D H D H D H D H

24.7 484 30.3 587 39.4 1210 42.9 1270 53.4 1880 59.8 1940

24.8 427 32.7 704 39.9 989 45.8 1180 56.0 1980 66.0 3260

27.3 413 35.6 979 40.3 1160 46.9 1400 56.5 1820 67.4 2700

28.4 517 38.5 914 40.6 1010 48.2 1760 57.3 2020 68.8 2890

28.4 549 38.8 1070 40.7 1100 51.5 1710 57.6 1980 69.1 2740

29.0 648 39.3 1020 40.7 1130 51.5 2010 59.2 2310 69.1 3140

The data may be read as a data frame from �le janka.data.

Suggested analysis

Fit polynomial regression models, choosing the degree carefully. Examine the residuals and see

if the data has any obvious outliers or heteroscedasticity. Check to see what e�ect a square root

or log transformation has on the residual pattern when plotted against �tted values.

More advanced: Consider a quasi-likelihood model with variance proportional to the mean and

a square root link.

C.3 The Tuggeranong house price data

Source: Dr Ray Correll, Personal communication

Category: Multiple regression, coplots.

Description

Before buying a house in Tuggeranong in February, 1987, a cautious potential householder col-

lected some data on houses on the market. The data for 20 such houses is shown in the table

and is available as the �le house.dat. The variables collected are, in order, price, total oor

area, block area, number of main rooms, age of house and whether or not the house was centrally

heated.

Data

The data is given in Table 5 and is available as the �le house.data.

Suggested analysis

Explore the data with coplot() using Age and CentHeat as conditioning variables.

Choose a multiple regression model carefully and check for outliers, (that is, for \bargains" and

\rip-o�s").



C.4 Yorke Penninsula wheat yield data 69

Price ($000s) Floor (m

2

) Block (m

2

) Rooms Age (years) Cent. Heat.

52.00 111.0 830 5 6.2 no

54.75 128.0 710 5 7.5 no

57.50 101.0 1000 5 4.2 no

57.50 131.0 690 6 8.8 no

59.75 93.0 900 5 1.9 yes

62.50 112.0 640 6 5.2 no

64.75 137.6 700 6 6.6 yes

67.25 148.5 740 6 2.3 no

67.50 113.5 660 6 6.1 no

69.75 152.0 645 7 9.2 no

70.00 121.5 730 5 4.3 yes

75.50 141.0 730 7 4.3 no

77.50 124.0 670 6 1.0 yes

77.50 153.5 795 7 7.0 yes

81.25 149.0 900 6 3.6 yes

82.50 135.0 810 6 1.7 yes

86.25 162.0 930 6 1.2 yes

87.50 145.0 825 6 0.0 yes

88.00 172.0 950 7 2.3 yes

92.00 170.5 870 7 0.7 yes

Table 5: The Tuggeranong house price data

C.4 Yorke Penninsula wheat yield data

Source: K. W. Morris (private communication)

Category: Multiple regression.

Description

The annual yield of wheat in a marginal wheat growing district on the Yorke Penninsula, South

Australia, together with the rainfall for the three growing months, for the years 1931{1955. The

year itself is potentially a surrogate predictor to allow for improvements in varieties and farm

practice. Yield is in bushels per acre, and rainfall is in inches.

Data

The data is given in Table 6 and may be read as a data frame from �le sawheat.data.

Suggested analysis

Fit a multiple regression model and check the results, via residual plots especially.
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Year Rain0 Rain1 Rain2 Yield Year Rain0 Rain1 Rain2 Yield

1931 .05 1.61 3.52 .31 1944 3.30 4.19 2.11 4.60

1932 1.15 .60 3.46 .00 1945 .44 3.41 1.55 .35

1933 2.22 4.94 3.06 5.47 1946 .50 3.26 1.20 .00

1934 1.19 11.26 4.91 16.73 1947 .18 1.52 1.80 .00

1935 1.40 10.95 4.23 10.54 1948 .80 3.25 3.55 2.98

1936 2.96 4.96 .11 5.89 1949 7.08 5.93 .93 11.89

1937 2.68 .67 2.17 .03 1950 2.54 4.71 2.51 6.56

1938 3.66 8.49 11.95 16.03 1951 1.08 3.37 4.02 1.30

1939 5.15 3.60 2.18 6.57 1952 .22 3.24 4.93 .03

1940 6.44 2.69 1.37 8.43 1953 .55 1.78 1.97 .00

1941 2.01 6.88 .92 8.68 1954 1.65 3.22 1.65 3.09

1942 .73 3.30 3.97 2.49 1955 .72 3.42 3.31 2.72

1943 2.52 1.93 1.16 .98

Table 6: Yorke Penninsula wheat yield data

C.5 The Iowa wheat yield data

Source: CAED Report, 1964. Quoted in Draper & Smith.

Category: Multiple regression; diagnostics.

Description

The data gives the pre-season and three growing months' precipitation, the mean temperatures

for the three growing months and harvest month, the year, and the yield of wheat for the USA

state of Iowa, for the years 1930{1962.

Data

The data is given in Table 7 and may be read as a data frame from �le iowheat.data.

Suggested analysis

Fit a multiple regression model and select carefully the predictors. Work either by backward

elimination of forward selection. Examine the residuals by plotting them in turn against each

predictor variable.

Consider the e�ect of adding quadratic terms in the predictors.

It is interesting to compare this set of data with the Yorke Penninsula data for a similar period.

C.6 The gasoline yield data

Source: Estimate gasoline yields from crudes

by Nilon H. Prater, Petroleum Re�ner, 35, #5.

Category: Analysis of variance, covariance, and multiple regression.
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Year Rain0 Temp1 Rain1 Temp2 Rain2 Temp3 Rain3 Temp4 Yield

1930 17.75 60.2 5.83 69.0 1.49 77.9 2.42 74.4 34.0

1931 14.76 57.5 3.83 75.0 2.72 77.2 3.30 72.6 32.9

1932 27.99 62.3 5.17 72.0 3.12 75.8 7.10 72.2 43.0

1933 16.76 60.5 1.64 77.8 3.45 76.4 3.01 70.5 40.0

1934 11.36 69.5 3.49 77.2 3.85 79.7 2.84 73.4 23.0

1935 22.71 55.0 7.00 65.9 3.35 79.4 2.42 73.6 38.4

1936 17.91 66.2 2.85 70.1 0.51 83.4 3.48 79.2 20.0

1937 23.31 61.8 3.80 69.0 2.63 75.9 3.99 77.8 44.6

1938 18.53 59.5 4.67 69.2 4.24 76.5 3.82 75.7 46.3

1939 18.56 66.4 5.32 71.4 3.15 76.2 4.72 70.7 52.2

1940 12.45 58.4 3.56 71.3 4.57 76.7 6.44 70.7 52.3

1941 16.05 66.0 6.20 70.0 2.24 75.1 1.94 75.1 51.0

1942 27.10 59.3 5.93 69.7 4.89 74.3 3.17 72.2 59.9

1943 19.05 57.5 6.16 71.6 4.56 75.4 5.07 74.0 54.7

1944 20.79 64.6 5.88 71.7 3.73 72.6 5.88 71.8 52.0

1945 21.88 55.1 4.70 64.1 2.96 72.1 3.43 72.5 43.5

1946 20.02 56.5 6.41 69.8 2.45 73.8 3.56 68.9 56.7

1947 23.17 55.6 10.39 66.3 1.72 72.8 1.49 80.6 30.5

1948 19.15 59.2 3.42 68.6 4.14 75.0 2.54 73.9 60.5

1949 18.28 63.5 5.51 72.4 3.47 76.2 2.34 73.0 46.1

1950 18.45 59.8 5.70 68.4 4.65 69.7 2.39 67.7 48.2

1951 22.00 62.2 6.11 65.2 4.45 72.1 6.21 70.5 43.1

1952 19.05 59.6 5.40 74.2 3.84 74.7 4.78 70.0 62.2

1953 15.67 60.0 5.31 73.2 3.28 74.6 2.33 73.2 52.9

1954 15.92 55.6 6.36 72.9 1.79 77.4 7.10 72.1 53.9

1955 16.75 63.6 3.07 67.2 3.29 79.8 1.79 77.2 48.4

1956 12.34 62.4 2.56 74.7 4.51 72.7 4.42 73.0 52.8

1957 15.82 59.0 4.84 68.9 3.54 77.9 3.76 72.9 62.1

1958 15.24 62.5 3.80 66.4 7.55 70.5 2.55 73.0 66.0

1959 21.72 62.8 4.11 71.5 2.29 72.3 4.92 76.3 64.2

1960 25.08 59.7 4.43 67.4 2.76 72.6 5.36 73.2 63.2

1961 17.79 57.4 3.36 69.4 5.51 72.6 3.04 72.4 75.4

1962 26.61 66.6 3.12 69.1 6.27 71.6 4.31 72.5 76.0

Table 7: The Iowa historical wheat yield data

Modern regression.

Description

The data gives the gasoline yield as a percent of crude oil, say y, and four independent variables

which may inuence yield. These are

x

1

: The crude oil gravity, in

0

API,
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x

2

: The crude oil vapour pressure,

x

3

: The crude oil 10% point, ASTM,

x

4

: The gasoline end point.

The data comes as 10 separate samples, and within each sample the values for x

1

, x

2

, and x

3

are

constant.

Data

The data is shown in Table 8, and is available as the �le oil.data in a form suitable for con-

structing a data frame.

Sample x

1

x

2

x

3

x

4

y Sample x

1

x

2

x

3

x

4

y

1 31.8 0.2 316 365 8.5 6 40.0 6.1 217 212 7.4

1 31.8 0.2 316 379 14.7 6 40.0 6.1 217 272 18.2

1 31.8 0.2 316 428 18.0 6 40.0 6.1 217 340 30.4

2 32.2 2.4 284 351 14.0 7 40.3 4.8 231 307 14.4

2 32.2 2.4 284 424 23.2 7 40.3 4.8 231 367 26.8

7 40.3 4.8 231 395 34.9

3 32.2 5.2 236 267 10.0 8 40.8 3.5 210 218 8.0

3 32.2 5.2 236 360 24.8 8 40.8 3.5 210 273 13.1

3 32.2 5.2 236 402 31.7 8 40.8 3.5 210 347 26.6

4 38.1 1.2 274 285 5.0 9 41.3 1.8 267 235 2.8

4 38.1 1.2 274 365 17.6 9 41.3 1.8 267 275 6.4

4 38.1 1.2 274 444 32.1 9 41.3 1.8 267 358 16.1

9 41.3 1.8 267 416 27.8

5 38.4 6.1 220 235 6.9 10 50.8 8.6 190 205 12.2

5 38.4 6.1 220 300 15.2 10 50.8 8.6 190 275 22.3

5 38.4 6.1 220 365 26.0 10 50.8 8.6 190 345 34.7

5 38.4 6.1 220 410 33.6 10 50.8 8.6 190 407 45.7

Table 8: The gasoline recovery data

Suggested analysis

Using EndPt as a covariate, check to see if di�erences between samples can be accounted for by

regression models on the other predictors.

More advanced: Fit a two stratum ANOVA model using between and within samples as the two

strata.

C.7 The Michaelson and Morley speed of light data

Source: Weekes: A Genstat Primer.

Category: Analysis of Variance.
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Description

The classical data of Michaelson and Morley on the speed of light. The data consists of �ve exper-

iments, each consisting of 20 consecutive \runs". The response is the speed of light measurement,

suitably coded. The data is here viewed as a randomized block experiment with experiment and

run as the factors. run may also be considered a quantitative variate to account for linear (or

polynomial) changes in the measurement over the course of a single experiment.

Data

The data is given in Table 9 and may be read as a data frame from �le morley.data in a form

suitable for constructing a data frame.

Runs 1{10 Runs 11{20

E

1

E

2

E

3

E

4

E

5

E

1

E

2

E

3

E

4

E

5

850 960 880 890 890 1000 830 880 910 870

740 940 880 810 840 980 790 910 920 870

900 960 880 810 780 930 810 850 890 810

1070 940 860 820 810 650 880 870 860 740

930 880 720 800 760 760 880 840 880 810

850 800 720 770 810 810 830 840 720 940

950 850 620 760 790 1000 800 850 840 950

980 880 860 740 810 1000 790 840 850 800

980 900 970 750 820 960 760 840 850 810

880 840 950 760 850 960 800 840 780 870

Table 9: The Michaelson and Morley speed of light data

Suggested analysis

Using an single classi�cation ANOVA model check for di�erences between experiments and sum-

marise your conclusions.

C.8 The rat genotype data

Source: Quoted in Sche�e, H.: The Analysis of Variance

Category: Unbalanced double classi�cation.

Description

Data from a foster feeding experiment with rat mothers and litters of four di�erent genotypes:

A, F , I and J . The measurement is the litter weight gain after a trial feeding period.

Data

The data is given in Table 10 and may be read as a data frame from �le genotype.data.
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Litter's Mother's Genotype

Genotype A F I J

A 61.5 55.0 52.5 42.0

68.2 42.0 61.8 54.0

64.0 60.2 49.5 61.0

65.0 52.7 48.2

59.7 39.6

F 60.3 50.8 56.5 51.3

51.7 64.7 59.0 40.5

49.3 61.7 47.2

48.0 64.0 53.0

62.0

I 37.0 56.3 39.7 50.0

36.3 69.8 46.0 43.8

68.0 67.0 61.3 54.5

55.3

55.7

J 59.0 59.5 45.2 44.8

57.4 52.8 57.0 51.5

54.0 56.0 61.4 53.0

47.0 42.0

54.0

Table 10: The rat genotype data

Suggested analysis

Fit a double classi�caiton model. Check for interaction using both a formal analysis and graph-

ically using interaction.plot(). Test the main e�ects and summarise.

C.9 Fisher's sugar beet data

Source: R. A. Fisher, Design of Experiments.

Category: Analysis of variance and covariance.

Description

A classical 3�2

3

randomized block experiment in four blocks of size 24. The response is the total

weight of sugarbeet roots o� the plot, but this is accompanied by the number of roots measured.

The suggestion is that number of roots should be a covariate to allow for varying plot size.

The factors are Variety. (3 levels, a, b and c), and N, P and K each at 2 levels, present or absent.
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Data

The data is given in Table 11 and may be read from the �le sugar.data in a form suitable to

construct a data frame.

Block 1 Block 2 Block 3 Block 4

V N P K No Wt No Wt No Wt No Wt

a � � � 124 162 133 162 114 127 127 158

a � � k 131 152 161 164 130 141 145 188

a � p � 115 173 134 175 134 142 109 162

a � p k 126 140 133 158 106 148 132 160

a n � � 136 184 134 178 127 168 139 199

a n � k 134 112 156 193 101 171 138 191

a n p � 132 190 104 166 119 157 132 193

a n p k 120 175 147 155 107 139 148 192

b � � � 145 133 147 130 139 138 127 128

b � � k 156 117 152 137 107 121 147 147

b � p � 152 140 138 101 125 124 120 143

b � p k 137 127 145 132 125 132 143 139

b n � � 124 163 138 159 140 166 159 174

b n � k 136 143 142 144 133 142 148 159

b n p � 140 168 142 150 133 118 138 157

b n p k 146 144 135 160 138 155 140 153

c � � � 113 122 138 132 119 123 127 146

c � � k 91 107 149 171 118 142 129 151

c � p � 123 118 139 142 127 120 124 138

c � p k 129 140 126 115 129 130 142 152

c n � � 121 118 141 152 127 149 127 165

c n � k 126 148 128 152 107 147 110 136

c n p � 103 112 144 175 102 152 143 173

c n p k 120 162 125 160 129 173 137 185

Table 11: Fisher's sugar beet data

Suggested analysis

Analyse the data as a randomised block experiment with Wt as the response and No as a covariate.

Prune the model of all unnecessary interaction terms and summarise.

C.10 A barley split plot �eld trial

Source: Unknown. Traditional data.



76 Exercises

Category: Multistratum analysis of variance.

Description

An experiment involving barley varieties and manure (nitrogen) was conducted in 6 blocks of 3

whole plots.

Each whole plot was divided into 4 subplots. Three varieties of barley were used in the experiment

with one variety being sown in each whole plot, while the four levels of manure (0, 0.01, 0.02,

and 0.04 tons per acre) were used, one level in each of the four subplots of each whole plot. In

the above table V

i

denotes the ith variety and N

j

denotes the jth level of nitrogen.

Data

Block Variety N

1

N

2

N

3

N

4

Block Variety N

1

N

2

N

3

N

4

V

1

111 130 157 174 V

1

74 89 81 122

I V

2

117 114 161 141 IV V

2

64 103 132 133

V

3

105 140 118 156 V

3

70 89 104 117

V

1

61 91 97 100 V

1

62 90 100 116

II V

2

70 108 126 149 V V

2

80 82 94 126

V

3

96 124 121 144 V

3

63 70 109 99

V

1

68 64 112 86 V

1

53 74 118 113

III V

2

60 102 89 96 VI V

2

89 82 86 104

V

3

89 129 132 124 V

3

97 99 119 121

Table 12: A split plot barley �eld trial

The data is given in Table 12 and may be read as a data frame from �le barley.data.

Suggested analysis

Analyse as a split plot �eld experiment and summarise.

C.11 The snail mortality data

Source: Zoology Department, The University of Adelaide.

Category: Generalized Linear Modelling.

Description

Groups of 20 snails were held for periods of 1, 2, 3 or 4 weeks (exposure) in carefully controlled

conditions of temperature (3 levels) and relative humidity (4 levels). There were two species of

snail, A and B, and the experiment was designed as a 4�3�4�2 completely randomized design.

At the end of the exposure time the snails were tested to see if they had survived; this process

itself is fatal for the animals. The object of the exercise was to model the probability of survival

in terms of the stimulus variables, and in particular to test for di�erences between species.

The data is unusual in that in most cases fatalities during the experiment were fairly small.
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Data

Relative Humidity

60.0% 65.8% 70.5% 75.8%

Temperature Temperature Temperature Temperature

Species Exposure 10 15 20 10 15 20 10 15 20 10 15 20

A 1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 1 0 1 0 0 0 0 0 0 0

3 1 4 5 0 2 4 0 2 3 0 1 2

4 7 7 7 4 4 7 3 3 5 2 3 3

B 1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 3 2 0 2 1 0 0 1 1 0 1

3 7 11 11 4 5 9 2 4 6 2 3 5

4 12 14 16 10 12 12 5 7 9 4 5 7

Table 13: The snail mortality data

The data is given in Table 13 and may be read as a data frame from �le snails.data.

Suggested analysis

The data is intersting in that although it has many extremely small cell counts there is every

indication that some of the likelihood ratio large sample theory is quite safe.

Fit Binomial models to the data with either a logit or a probit link. Show that a model with

parallel regressions on Temp, Humid, Exposure and Exposure

2

for each species (in the logit/probit

scale) is reasonable, and summarise.

C.12 The Kalythos blindness data

Source: S. D. Silvey: Statistical Inference. (Fictitious?)

Category: Generalized linear modelling

Description

On the Greek island of Kalythos the male inhabitants su�er from a congenital eye disease, the

e�ects of which become more marked with increasing age. Samples of islander males of various

ages were tested for blindness and the results recorded.

Data

Age: 20 35 45 55 70

No. tested: 50 50 50 50 50

No. blind: 6 17 26 37 44

Table 14: The Kalythos blindness data

The data is given in Table 14 and may be read as a data frame from �le kalythos.data.
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Suggested analysis

Using an logit or probit model estimate the LD50, that is, the age at which the probability of

blindness is p =

1

2

, together the standard error. Check how di�erent the logit and probit models

are in this respect.

C.13 The Stormer viscometer calibration data

Source: E. J. Williams: Regression Analysis, Wiley, 1959

Category: Nonlinear regression, special regression.

Description

The stormer viscometer measures the viscosity of a uid by measuring the time taken for an inner

cylinder in the mechanism to perform a �xed number of revolutions in response to an actuating

weight. The viscometer is calibrated by measuring the time taken with varying weights while

the mechanism is suspended in uids of accurately known viscosity. The data comes from such a

calibration, and theoretical considerations suggest a nonlinear relationship between time, weight

and viscosity of the form

T

i

=

�v

i

w

i

� �

+E

i

where � and � are unknown parameters to be estimated.

Data

Weight

Viscosity 20 50 100

14.7 35.6 17.6

27.5 54.3 24.3

42.0 75.6 31.4

75.7 121.2 47.2 24.6

89.7 150.8 58.3 30.0

146.6 229.0 85.6 41.7

158.3 270.0 101.1 50.3

161.1 92.2 45.1

298.3 187.2 89.0

86.5

Table 15: The Stormer viscometer calibration data

The data is given in Table 15 and may be read as a data frame from �le stormer.data.

Suggested analysis

Estimate the nonlinear regression model using the nlr() software. A suitable initial value may

be obtained by writing the regression model in the form

w

i

T

i

= �v

i

+ �T

i

+ (w

i

� �)E

i
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and regressing w

i

T

i

on v

i

and T

i

using ordinary linear regression.

C.14 The chlorine availability data

Source: Draper & Smith, Applied Regression Analysis, (adapted).

Category: Nonlinear regression

Description

The following set of industrial chemical data shows the amount of chlorine available in a certain

product at various times of testing after manufacture. A nonlinear regression model for the

chlorine decay of the form

Y = �

0

+ �

1

exp(��x)

has been suggested on theoretical grounds, with Y the amount remaining at time x.

Data

Weeks Percent available Weeks Percent available Weeks Percent available

8 49, 49 20 42, 43, 42 32 40, 41

10 47, 47, 48, 48 22 40, 41, 41 34 40

12 43, 45, 46, 46 24 40, 40, 42 36 38, 41

14 43, 43, 45 26 40, 41, 41 38 40, 40

16 43, 43, 44 28 40, 41 40 39

18 45, 46 30 38, 40, 40 42 39

Table 16: The chlorine availability data.

The data is given in Table 16 and may be read as a data frame from �le chlorine.data.

Suggested analysis

Fit the nonlinear regression model using the nlr() function. A simple way to �nd an initial

value is to guess a value for �, say � = 1 and plot Y against exp(��x). Now repeatedly either

double or halve � until the plot is near to linear. (This can be done very simply with the inbuilt

line editor.) Once an initial value for � is available, initial values for the others can be got by

linear regression.

Check the �tted model for suspicious data points.

C.15 The saturated steam pressure data

Source: Quoted in Draper & Smith: Applied Regression Analysis. . .

Category: Nonlinear regression.
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Description

The data gives the temperature (

0

C) and pressure (Pascals) in a saturated steam driven exper-

imental device. The relationship between pressure, Y , and temperature, x, in saturated steam

can be written as

Y = � exp

�

�x

 + x

�

+E

However a more realistic model may have the experimental errors multiplicative rather than

additive, in which case an analysis in the log scale using the model

logY = log�+

�

�x

 + x

�

+ E

may be more appropriate.

Data

Temp Press Temp Press Temp Press

0 4.14 50 98.76 90 522.78

10 8.52 60 151.13 95 674.32

20 16.31 70 224.74 100 782.04

30 32.18 80 341.35 105 920.01

40 64.62 85 423.36

Table 17: Temperature and pressure in saturated steam

The data is given in Table 17 and may be read as a data frame from �le steam.data.

Suggested analysis

Fit both models and compare. Initial values may be got by a similar method to that employed

for the Chlorine data, since again there is only one nonlinear parameter.

C.16 Count Rumford's friction data

Source: Bates & Watts: Nonlinear Regression Analysis. . .

Category: Nonlinear regression

Description

Data on the amount of heat generated by friction was obtained by Lord Rumford in 1798. A bore

was �tted into a stationary cylinder and pressed against the bottom by a screw. The bore was

turned by a team of horses for 30 minutes, after which Lord Rumford \su�ered the thermometer

to remain in its place nearly three quarters of an hour, observing and noting down, at small

intervals of time, the temperature indicated by it".

Newton's law of cooling suggests a nonlinear regression model of the form

Y = �

0

+ �

1

exp(��x)

where Y is the temperature and x is the time in minutes.
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Data

Time Temp Time Temp

(min.) (

0

F) (min.) (

0

F)

4.0 126 24.0 115

5.0 125 28.0 114

7.0 123 31.0 113

12.0 120 34.0 112

14.0 119 37.5 111

16.0 118 41.0 110

20.0 116

Table 18: The Rumford friction cooling data

The data is given in Table 18 and may be read as a data frame from �le rumford.data.

Suggested analysis

This data is mainly of historical interest. Handle similarly to the Chlorine data above.

C.17 The jelly�sh data

Source: Interactive Statistics, Ed. Don McNeil.

Category: Bivariate, two sample data.

Description

Two samples of jelly�sh, from Danger Island and Salamander Bay respectively, were measured

for length and width.

Data

The data is given in Table 19 and may be read as a data frame from �le jellyfish.data.

Suggested analysis

Plot the two samples and mark in their convex hulls. Test for di�erences using Hotelling's T

2

.

(A simple way of conducting the analysis is to regress a dummy variable for Location on Length

and width and to test the signi�cance of both regression coe�cients simultaneously.

C.18 The Arch�ological pottery data

Source: Tubb, A. et al. Arch�ometry, 22, 153{171, (1980)

Category: Multivariate analysis
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Danger Island Salamander Bay

Width Length Width Length Width Length Width Length

6.0 9.0 11.0 13.0 12.0 14.0 16.0 20.0

6.5 8.0 11.0 14.0 13.0 17.0 16.0 20.0

6.5 9.0 11.0 14.0 14.0 16.5 16.0 21.0

7.0 9.0 12.0 13.0 14.0 19.0 16.5 19.0

7.0 10.0 13.0 14.0 15.0 16.0 17.0 20.0

7.0 11.0 14.0 16.0 15.0 17.0 18.0 19.0

8.0 9.5 15.0 16.0 15.0 18.0 18.0 19.0

8.0 10.0 15.0 16.0 15.0 18.0 18.0 20.0

8.0 10.0 15.0 19.0 15.0 19.0 19.0 20.0

8.0 11.0 16.0 16.0 15.0 21.0 19.0 22.0

9.0 11.0 16.0 18.0 20.0 22.0

10.0 13.0 16.0 19.0 21.0 21.0

Table 19: The jelly�sh data { Danger Island and Salamander Bay

Description

The data arises from a chemical analysis of 26 samples of pottery found at Romano-British kiln

sites in Wales, Gwent and the New Forest. The variables describe the composition, in terms of

various metals, and are expressed as percentages of the oxides of the metals.

The metals are aluminium, iron, magnesium, calcium and sodium and the sites are

L: Llanederyn, C: Caldicot I: Island Thorns A: Ashley Rails

Data

The data is given in Table 20 and may be read as a data frame from �le pottery.data.

Suggested analysis

Investigate both numerically and graphically using a simple discriminant analysis. Exhibit the

four samples using the �rst two discriminant functions as coordinate axes. Summarise.

C.19 The Beaujolais quality data

Source: Quoted in Weekes: A Genstat Primer

Category: Multivariate analsysis

Description

Quality measurements for some identi�ed samples of young Beaujolais. Extracted from Table 1

in M. G. Jackson, et al : Red wine quality: correlations between colour, aroma and avour and

pigment and other parameters of young Beaujolais, Journal of Science of Food and Agriculture,

29, 715{727, (1978).
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Site Al Fe Mg Ca Na Site Al Fe Mg Ca Na

L 14.4 7.00 4.30 0.15 0.51 C 11.8 5.44 3.94 0.30 0.04

L 13.8 7.08 3.43 0.12 0.17 C 11.6 5.39 3.77 0.29 0.06

L 14.6 7.09 3.88 0.13 0.20 I 18.3 1.28 0.67 0.03 0.03

L 11.5 6.37 5.64 0.16 0.14 I 15.8 2.39 0.63 0.01 0.04

L 13.8 7.06 5.34 0.20 0.20 I 18.0 1.50 0.67 0.01 0.06

L 10.9 6.26 3.47 0.17 0.22 I 18.0 1.88 0.68 0.01 0.04

L 10.1 4.26 4.26 0.20 0.18 I 20.8 1.51 0.72 0.07 0.10

L 11.6 5.78 5.91 0.18 0.16 A 17.7 1.12 0.56 0.06 0.06

L 11.1 5.49 4.52 0.29 0.30 A 18.3 1.14 0.67 0.06 0.05

L 13.4 6.92 7.23 0.28 0.20 A 16.7 0.92 0.53 0.01 0.05

L 12.4 6.13 5.69 0.22 0.54 A 14.8 2.74 0.67 0.03 0.05

L 13.1 6.64 5.51 0.31 0.24 A 19.1 1.64 0.60 0.10 0.03

L 12.7 6.69 4.45 0.20 0.22

L 12.5 6.44 3.94 0.22 0.23

Table 20: The pottery composition data

Data

Label OQ AC pH TSO Label OQ AC pH TSO

A 13.54 1.51 3.36 13.8 I 12.25 1.32 3.38 1.4

B 12.58 1.35 3.15 5.2 J 14.04 1.52 3.61 4.5

C 11.83 1.09 3.30 10.6 K 12.67 1.62 3.38 0.4

D 12.83 1.15 3.41 2.2 L 13.54 1.57 3.55 7.9

E 12.83 1.32 3.44 2.3 M 13.75 1.63 3.34 6.3

F 12.12 1.23 3.31 10.5 N 9.63 0.78 3.19 40.4

G 11.29 1.14 3.49 2.5 O 12.42 1.14 3.31 3.1

H 12.79 1.22 3.56 16.7

Table 21: Quality measurements on young Beaujolais wine samples

The data is given in Table 21 and may be read as a data frame from �le beaujolais.data.

Suggested analysis

Look at ways of exhibiting the data graphically. Consider a principal component analysis using

the correlation matrix and look for any wild outliers.

C.20 The painters data of de Piles

Source: Weekes: A Genstat Primer.

Category: Multivariate Analysis: Discriminant Analysis.
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Description

The data shows the subjective assessment, on a 0{20 integer scale, of 54 classical painters. The

painters were assessed on four characteristics: composition, drawing, colour and expression. The

data is due to the Eighteenth century art critic, de Piles.

The School to which a painter belongs is indicated by a letter code as follows:

A Renaissance E Lombard

B Mannerist F Sixteenth Century

C Seicento G Seventeenth Century

D Venetian H French

Data

The data is given in Table 22 and may be read as a data frame from �le painters.data.

Suggested analysis

Using a multivariate analysis of variance check for di�erences between schools. Use the likelihood

ratio test. Also �nd the canonical F�statistics and discriminant functions.

Plot the painters on the �rst two discriminant function axes and use the school symbol as a plot-

ting character. Mark in the convex hulls of the schools. Using identify() �nd interactively some

of the painers that appear to lie towards the extremes of the plot, or who deviate considerably

from their school mean.
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Composition Drawing Colour Expression School

Da Udine 10 8 16 3 A

Da Vinci 15 16 4 14 A

Del Piombo 8 13 16 7 A

Del Sarto 12 16 9 8 A

Fr. Penni 0 15 8 0 A

Guilio Romano 15 16 4 14 A

Michelangelo 8 17 4 8 A

Perino del Vaga 15 16 7 6 A

Perugino 4 12 10 4 A

Raphael 17 18 12 18 A

F. Zucarro 10 13 8 8 B

Fr. Salviata 13 15 8 8 B

Parmigiano 10 15 6 6 B

Primaticcio 15 14 7 10 B

T. Zucarro 13 14 10 9 B

Volterra 12 15 5 8 B

Barocci 14 15 6 10 C

Cortona 16 14 12 6 C

Josepin 10 10 6 2 C

L. Jordaens 13 12 9 6 C

Testa 11 15 0 6 C

Vanius 15 15 12 13 C

Bassano 6 8 17 0 D

Bellini 4 6 14 0 D

Giorgione 8 9 18 4 D

Murillo 6 8 15 4 D

Palma Giovane 12 9 14 6 D

Palma Vecchio 5 6 16 0 D

Pordenone 8 14 17 5 D

Tintoretto 15 14 16 4 D

Titian 12 15 18 6 D

Veronese 15 10 16 3 D

Albani 14 14 10 6 E

Caravaggio 6 6 16 0 E

Corregio 13 13 15 12 E

Domenichino 15 17 9 17 E

Guercino 18 10 10 4 E

Lanfranco 14 13 10 5 E

The Carraci 15 17 13 13 E

Durer 8 10 10 8 F

Holbein 9 10 16 13 F

Pourbus 4 15 6 6 F

Van Leyden 8 6 6 4 F

Diepenbeck 11 10 14 6 G

J. Jordaens 10 8 16 6 G

Otho Venius 13 14 10 10 G

Rembrandt 15 6 17 12 G

Rubens 18 13 17 17 G

Teniers 15 12 13 6 G

Van Dyck 15 10 17 13 G

Bourdon 10 8 8 4 H

Le Brun 16 16 8 16 H

Le Suer 15 15 4 15 H

Poussin 15 17 6 15 H

Table 22: The subjective assessment data of de Piles


