This is sgp8.c in view mode; [Download] [Up]
/************************/ /* sgp8.c */ /* */ /* sdp8 orbital model */ /************************/ /***** description * * $Id: sgp8.c,v 1.3 1993/04/28 17:12:25 craig Exp $ * */ /***** modification history * * translated by f2c (version of 12 March 1993 7:07:21). * * $Log: sgp8.c,v $ * Revision 1.3 1993/04/28 17:12:25 craig * changed atan2 call to matan2 call * * Revision 1.2 1993/04/21 19:53:51 craig * changed ecnsts to pcnsts. * * Revision 1.1 1993/04/02 18:05:34 craig * Initial revision * * */ /***** include files *****/ #include <math.h> #include "satellite.h" #include "satproto.h" #include "aaproto.h" /***** global variables *****/ extern struct ELEMENT element; extern struct PCONSTANTS pcnsts; extern struct MCONSTANTS mcnsts; /******************/ /* SGP8 14 NOV 80 */ /******************/ int sgp8 (int *iflag, double tsince) { /* Initialized data */ static double rho = .15696615; /* Local variables */ double alpha2, aodp, aovr, axnm, aynm, beta, beta2m, betao, betao2; double cape, cs2f2g, csf, cslamb, del1, delo, diwc; double ecosf, eeta, eosq, eta, eta2; double omgasm, pardt1, pardt2, pardt4, pom2, psim2, rdot, rvdot; double sn2f2g, snf, sni2du, snlamb, temp, theta4, tsi; double xlamb, xmam, xndtn, xnodes; double b, r; double am, ao, di, dr, em, fm, pm, po, rm, xn; double a1, b1, b2, b3, c0, c1, c4, c5, d1, d2, d3, d4, d5; double g1, g2, g3, g4, g5, g10, g13, g14, ux, uy, uz; double vx, vy, vz, y4, y5, z1, z7; double zc2, zc5; double csfg, snfg, cos2g; double cose, sine, cosg, sing, sinos, cosos; double aldtal, c0dtc0, c1dtc1, eddot, etddt, etdt, psdtps; double temp1, tmnddt, tsddts, tsdtts, xnddt, xntrdt; double c8, c9, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15; double d16, d17, d18, d19, d20, d23, d25; double c4dt, c5dt, d1dt, d2dt, d3dt, d4dt, d5dt; double sin2g; static int isimp; register int i; static double a3cof, edot, omgdt, theta2, tthmun, unmth2, unm5th; static double xgdt1, xhdt1, xlldot, xmdt1, xndt, xnodp, xnodot; static double cosi, sini, cosio2, sinio2; static double d1ddt, ed, gamma, ovgpp, pp, qq, xnd; if (*iflag != 0) { /* RECOVER ORIGINAL MEAN MOTION (XNODP) AND SEMIMAJOR AXIS (AODP) */ /* FROM INPUT ELEMENTS --------- CALCULATE BALLISTIC COEFFICIENT */ /* (B TERM) FROM INPUT B* DRAG TERM */ a1 = pow (pcnsts.xke / element.xno, mcnsts.tothrd); cosi = cos (element.xincl); theta2 = cosi * cosi; tthmun = theta2 * 3. - 1.; eosq = element.eo * element.eo; betao2 = 1. - eosq; betao = sqrt (betao2); del1 = pcnsts.ck2 * 1.5 * tthmun / (a1 * a1 * betao * betao2); ao = a1 * (1. - del1 * (mcnsts.tothrd * .5 + del1 * (del1 * 134. / 81.))); delo = pcnsts.ck2 * 1.5 * tthmun / (ao * ao * betao * betao2); aodp = ao / (1. - delo); xnodp = element.xno / (delo + 1.); b = element.bstar * 2. / rho; /* INITIALIZATION */ isimp = 0; po = aodp * betao2; pom2 = 1. / (po * po); sini = sin (element.xincl); sing = sin (element.omegao); cosg = cos (element.omegao); temp = element.xincl * .5; sinio2 = sin (temp); cosio2 = cos (temp); theta4 = theta2 * theta2; unm5th = 1. - theta2 * 5.; unmth2 = 1. - theta2; a3cof = -pcnsts.xj3 / pcnsts.ck2 * pow (pcnsts.ae, 3.); pardt1 = pcnsts.ck2 * 3. * pom2 * xnodp; pardt2 = pardt1 * pcnsts.ck2 * pom2; pardt4 = pcnsts.ck4 * 1.25 * pom2 * pom2 * xnodp; xmdt1 = pardt1 * .5 * betao * tthmun; xgdt1 = pardt1 * -.5 * unm5th; xhdt1 = -pardt1 * cosi; xlldot = xnodp + xmdt1 + pardt2 * .0625 * betao * (13. - theta2 * 78. + theta4 * 137.); omgdt = xgdt1 + pardt2 * .0625 * (7. - theta2 * 114. + theta4 * 395.) + pardt4 * (3. - theta2 * 36. + theta4 * 49.); xnodot = xhdt1 + (pardt2 * .5 * (4. - theta2 * 19.) + pardt4 * 2. * (3. - theta2 * 7.)) * cosi; tsi = 1. / (po - pcnsts.s); eta = element.eo * pcnsts.s * tsi; eta2 = eta * eta; psim2 = fabs (1. / (1. - eta2)); alpha2 = eosq + 1.; eeta = element.eo * eta; cos2g = cosg * cosg * 2. - 1.; d5 = tsi * psim2; d1 = d5 / po; d2 = eta2 * (eta2 * 4.5 + 36.) + 12.; d3 = eta2 * (eta2 * 2.5 + 15.); d4 = eta * (eta2 * 3.75 + 5.); b1 = pcnsts.ck2 * tthmun; b2 = -pcnsts.ck2 * unmth2; b3 = a3cof * sini; c0 = b * .5 * rho * pcnsts.qoms2t * xnodp * aodp * pow (tsi, 4.) * pow (psim2, 3.5) / sqrt (alpha2); c1 = xnodp * 1.5 * (alpha2 * alpha2) * c0; c4 = d1 * d3 * b2; c5 = d5 * d4 * b3; xndt = c1 * (eta2 * (eosq * 34. + 3.) + 2. + eeta * 5. * (eta2 + 4.) + eosq * 8.5 + d1 * d2 * b1 + c4 * cos2g + c5 * sing); xndtn = xndt / xnodp; /* IF DRAG IS VERY SMALL, THE ISIMP FLAG IS SET AND THE */ /* EQUATIONS ARE TRUNCATED TO LINEAR VARIATION IN MEAN */ /* MOTION AND QUADRATIC VARIATION IN MEAN ANOMALY */ if (fabs (xndtn * pcnsts.xmnpda) < .00216) { isimp = 1; edot = -mcnsts.tothrd * xndtn * (1. - element.eo); } else { d6 = eta * (eta2 * 22.5 + 30.); d7 = eta * (eta2 * 12.5 + 5.); d8 = eta2 * (eta2 + 6.75) + 1.; c8 = d1 * d7 * b2; c9 = d5 * d8 * b3; edot = -c0 * (eta * (eta2 + 4. + eosq * (eta2 * 7. + 15.5)) + element.eo * (eta2 * 15. + 5.) + d1 * d6 * b1 + c8 * cos2g + c9 * sing); d20 = mcnsts.tothrd * .5 * xndtn; aldtal = element.eo * edot / alpha2; tsdtts = aodp * 2. * tsi * (d20 * betao2 + element.eo * edot); etdt = (edot + element.eo * tsdtts) * tsi * pcnsts.s; psdtps = -eta * etdt * psim2; sin2g = sing * 2. * cosg; c0dtc0 = d20 + tsdtts * 4. - aldtal - psdtps * 7.; c1dtc1 = xndtn + aldtal * 4. + c0dtc0; d9 = eta * (eosq * 68. + 6.) + element.eo * (eta2 * 15. + 20.); d10 = eta * 5. * (eta2 + 4.) + element.eo * (eta2 * 68. + 17.); d11 = eta * (eta2 * 18. + 72.); d12 = eta * (eta2 * 10. + 30.); d13 = eta2 * 11.25 + 5.; d14 = tsdtts - psdtps * 2.; d15 = (d20 + element.eo * edot / betao2) * 2.; d1dt = d1 * (d14 + d15); d2dt = etdt * d11; d3dt = etdt * d12; d4dt = etdt * d13; d5dt = d5 * d14; c4dt = b2 * (d1dt * d3 + d1 * d3dt); c5dt = b3 * (d5dt * d4 + d5 * d4dt); d16 = d9 * etdt + d10 * edot + b1 * (d1dt * d2 + d1 * d2dt) + c4dt * cos2g + c5dt * sing + xgdt1 * (c5 * cosg - c4 * 2. * sin2g); xnddt = c1dtc1 * xndt + c1 * d16; eddot = c0dtc0 * edot - c0 * ((eta2 * 3. + 4. + eeta * 30. + eosq * (eta2 * 21. + 15.5)) * etdt + (eta2 * 15. + 5. + eeta * (eta2 * 14. + 31.)) * edot + b1 * (d1dt * d6 + d1 * etdt * (eta2 * 67.5 + 30.)) + b2 * (d1dt * d7 + d1 * etdt * (eta2 * 37.5 + 5.)) * cos2g + b3 * (d5dt * d8 + d5 * etdt * eta * (eta2 * 4. + 13.5)) * sing + xgdt1 * (c9 * cosg - c8 * 2. * sin2g)); d25 = edot * edot; d17 = xnddt / xnodp - xndtn * xndtn; tsddts = tsdtts * 2. * (tsdtts - d20) + aodp * tsi * (mcnsts.tothrd * betao2 * d17 - d20 * 4. * element.eo * edot + (d25 + element.eo * eddot) * 2.); etddt = (eddot + edot * 2. * tsdtts) * tsi * pcnsts.s + tsddts * eta; d18 = tsddts - tsdtts * tsdtts; d19 = -(psdtps * psdtps) / eta2 - eta * etddt * psim2 - psdtps * psdtps; d23 = etdt * etdt; d1ddt = d1dt * (d14 + d15) + d1 * (d18 - d19 * 2. + mcnsts.tothrd * d17 + (alpha2 * d25 / betao2 + element.eo * eddot) * 2. / betao2); xntrdt = xndt * (mcnsts.tothrd * 2. * d17 + (d25 + element.eo * eddot) * 3. / alpha2 - aldtal * aldtal * 6. + d18 * 4. - d19 * 7.) + c1dtc1 * xnddt + c1 * (c1dtc1 * d16 + d9 * etddt + d10 * eddot + d23 * (eeta * 30. + 6. + eosq * 68.) + etdt * edot * (eta2 * 30. + 40. + eeta * 272.) + d25 * (eta2 * 68. + 17.) + b1 * (d1ddt * d2 + d1dt * 2. * d2dt + d1 * (etddt * d11 + d23 * (eta2 * 54. + 72.))) + b2 * (d1ddt * d3 + d1dt * 2. * d3dt + d1 * (etddt * d12 + d23 * (eta2 * 30. + 30.))) * cos2g + b3 * ((d5dt * d14 + d5 * (d18 - d19 * 2.)) * d4 + d4dt * 2. * d5dt + d5 * (etddt * d13 + eta * 22.5 * d23)) * sing + xgdt1 * ((d20 * 7. + element.eo * 4. * edot / betao2) * (c5 * cosg - c4 * 2. * sin2g) + (c5dt * 2. * cosg - c4dt * 4. * sin2g - xgdt1 * (c5 * sing + c4 * 4. * cos2g)))); tmnddt = xnddt * 1.0e9; temp = tmnddt * tmnddt - xndt * 1.0e18 * xntrdt; pp = (temp + tmnddt * tmnddt) / temp; gamma = -xntrdt / (xnddt * (pp - 2.)); xnd = xndt / (pp * gamma); qq = 1. - eddot / (edot * gamma); ed = edot / (qq * gamma); ovgpp = 1. / (gamma * (pp + 1.)); } *iflag = 0; } /* UPDATE FOR SECULAR GRAVITY AND ATMOSPHERIC DRAG */ xmam = fmod2p (element.xmo + xlldot * tsince); omgasm = element.omegao + omgdt * tsince; xnodes = element.xnodeo + xnodot * tsince; if (isimp == 1) { xn = xnodp + xndt * tsince; em = element.eo + edot * tsince; z1 = xndt * .5 * tsince * tsince; } else { temp = 1. - gamma * tsince; temp1 = pow (temp, pp); xn = xnodp + xnd * (1. - temp1); em = element.eo + ed * (1. - pow (temp, qq)); z1 = xnd * (tsince + ovgpp * (temp * temp1 - 1.)); } z7 = mcnsts.tothrd * 3.5 * z1 / xnodp; xmam = fmod2p (xmam + z1 + z7 * xmdt1); omgasm += z7 * xgdt1; xnodes += z7 * xhdt1; /* SOLVE KEPLERS EQUATION */ zc2 = xmam + em * sin (xmam) * (em * cos (xmam) + 1.); for (i = 1; i <= 10; ++i) { sine = sin (zc2); cose = cos (zc2); zc5 = 1. / (1. - em * cose); cape = (xmam + em * sine - zc2) * zc5 + zc2; if (fabs (cape - zc2) <= mcnsts.e6a) { break; } zc2 = cape; } /* SHORT PERIOD PRELIMINARY QUANTITIES */ am = pow (pcnsts.xke / xn, mcnsts.tothrd); beta2m = 1. - em * em; sinos = sin (omgasm); cosos = cos (omgasm); axnm = em * cosos; aynm = em * sinos; pm = am * beta2m; g1 = 1. / pm; g2 = pcnsts.ck2 * .5 * g1; g3 = g2 * g1; beta = sqrt (beta2m); g4 = a3cof * .25 * sini; g5 = a3cof * .25 * g1; snf = beta * sine * zc5; csf = (cose - em) * zc5; fm = matan2 (snf, csf); snfg = snf * cosos + csf * sinos; csfg = csf * cosos - snf * sinos; sn2f2g = snfg * 2. * csfg; cs2f2g = csfg * csfg * 2. - 1.; ecosf = em * csf; g10 = fm - xmam + em * snf; rm = pm / (ecosf + 1.); aovr = am / rm; g13 = xn * aovr; g14 = -g13 * aovr; dr = g2 * (unmth2 * cs2f2g - tthmun * 3.) - g4 * snfg; diwc = g3 * 3. * sini * cs2f2g - g5 * aynm; di = diwc * cosi; /* UPDATE FOR SHORT PERIOD PERIODICS */ sni2du = sinio2 * (g3 * ((1. - theta2 * 7.) * .5 * sn2f2g - unm5th * 3. * g10) - g5 * sini * csfg * (ecosf + 2.)) - g5 * .5 * theta2 * axnm / cosio2; xlamb = fm + omgasm + xnodes + g3 * ((cosi * 6. + 1. - theta2 * 7.) * .5 * sn2f2g - (unm5th + cosi * 2.) * 3. * g10) + g5 * sini * (cosi * axnm / (cosi + 1.) - (ecosf + 2.) * csfg); y4 = sinio2 * snfg + csfg * sni2du + snfg * .5 * cosio2 * di; y5 = sinio2 * csfg - snfg * sni2du + csfg * .5 * cosio2 * di; r = rm + dr; rdot = xn * am * em * snf / beta + g14 * (g2 * 2. * unmth2 * sn2f2g + g4 * csfg); rvdot = xn * (am * am) * beta / rm + g14 * dr + am * g13 * sini * diwc; /* ORIENTATION VECTORS */ snlamb = sin (xlamb); cslamb = cos (xlamb); temp = (y5 * snlamb - y4 * cslamb) * 2.; ux = y4 * temp + cslamb; vx = y5 * temp - snlamb; temp = (y5 * cslamb + y4 * snlamb) * 2.; uy = -y4 * temp + snlamb; vy = -y5 * temp + cslamb; temp = sqrt (1. - y4 * y4 - y5 * y5) * 2.; uz = y4 * temp; vz = y5 * temp; /* POSITION AND VELOCITY */ element.x = r * ux; element.y = r * uy; element.z = r * uz; element.xdot = rdot * ux + rvdot * vx; element.ydot = rdot * uy + rvdot * vy; element.zdot = rdot * uz + rvdot * vz; return (0); }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.