This is parseblock.c in view mode; [Download] [Up]
/* * Copyright (c) 1992 The Regents of the University of California. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice and the following * two paragraphs appear in all copies of this software. * * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. */ #define NO_SANITY_CHECKS #include <assert.h> #include "video.h" #include "proto.h" #include "decoders.h" /* External declarations. */ extern int zigzag_direct[]; /* Macro for returning 1 if num is positive, -1 if negative, 0 if 0. */ #define Sign(num) ((num > 0) ? 1 : ((num == 0) ? 0 : -1)) /* *-------------------------------------------------------------- * * ParseReconBlock -- * * Parse values for block structure from bitstream. * n is an indication of the position of the block within * the macroblock (i.e. 0-5) and indicates the type of * block (i.e. luminance or chrominance). Reconstructs * coefficients from values parsed and puts in * block.dct_recon array in vid stream structure. * sparseFlag is set when the block contains only one * coeffictient and is used by the IDCT. * * Results: * * * Side effects: * Bit stream irreversibly parsed. * *-------------------------------------------------------------- */ #define DCT_recon blockPtr->dct_recon #define DCT_dc_y_past blockPtr->dct_dc_y_past #define DCT_dc_cr_past blockPtr->dct_dc_cr_past #define DCT_dc_cb_past blockPtr->dct_dc_cb_past #define DECODE_DCT_COEFF_FIRST DecodeDCTCoeffFirst #define DECODE_DCT_COEFF_NEXT DecodeDCTCoeffNext void ParseReconBlock(n) int n; { #ifdef RISC unsigned int temp_curBits; int temp_bitOffset; int temp_bufLength; unsigned int *temp_bitBuffer; #endif Block *blockPtr = &curVidStream->block; int coeffCount; if (bufLength < 100) correct_underflow(); #ifdef RISC temp_curBits = curBits; temp_bitOffset = bitOffset; temp_bufLength = bufLength; temp_bitBuffer = bitBuffer; #endif { /* * Copy the globals curBits, bitOffset, bufLength, and bitBuffer * into local variables with the same names, so the macros use the * local variables instead. This allows register allocation and * can provide 1-2 fps speedup. On machines with not so many registers, * don't do this. */ #ifdef RISC register unsigned int curBits = temp_curBits; register int bitOffset = temp_bitOffset; register int bufLength = temp_bufLength; register unsigned int *bitBuffer = temp_bitBuffer; #endif int diff; int size, level, i, run, pos, coeff; short int *reconptr; unsigned char *iqmatrixptr, *niqmatrixptr; int qscale; reconptr = DCT_recon[0]; /* * Hand coded version of memset that's a little faster... * Old call: * memset((char *) DCT_recon, 0, 64*sizeof(short int)); */ { INT32 *p; p = (INT32 *) reconptr; p[0] = p[1] = p[2] = p[3] = p[4] = p[5] = p[6] = p[7] = p[8] = p[9] = p[10] = p[11] = p[12] = p[13] = p[14] = p[15] = p[16] = p[17] = p[18] = p[19] = p[20] = p[21] = p[22] = p[23] = p[24] = p[25] = p[26] = p[27] = p[28] = p[29] = p[30] = p[31] = 0; } if (curVidStream->mblock.mb_intra) { if (n < 4) { /* * Get the luminance bits. This code has been hand optimized to * get by the normal bit parsing routines. We get some speedup * by grabbing the next 16 bits and parsing things locally. * Thus, calls are translated as: * * show_bitsX <--> next16bits >> (16-X) * get_bitsX <--> val = next16bits >> (16-flushed-X); * flushed += X; * next16bits &= bitMask[flushed]; * flush_bitsX <--> flushed += X; * next16bits &= bitMask[flushed]; * * I've streamlined the code a lot, so that we don't have to mask * out the low order bits and a few of the extra adds are removed. * bsmith */ unsigned int next16bits, index, flushed; show_bits16(next16bits); index = next16bits >> (16-7); size = dct_dc_size_luminance[index].value; flushed = dct_dc_size_luminance[index].num_bits; next16bits &= bitMask[16+flushed]; if (size != 0) { flushed += size; diff = next16bits >> (16-flushed); if (!(diff & bitTest[32-size])) { diff = rBitMask[size] | (diff + 1); } } else { diff = 0; } flush_bits(flushed); if (n == 0) { coeff = diff << 3; if (curVidStream->mblock.mb_address - curVidStream->mblock.past_intra_addr > 1) coeff += 1024; else coeff += DCT_dc_y_past; DCT_dc_y_past = coeff; } else { coeff = DCT_dc_y_past + (diff << 3); DCT_dc_y_past = coeff; } } else { /* * Get the chrominance bits. This code has been hand optimized to * as described above */ unsigned int next16bits, index, flushed; show_bits16(next16bits); index = next16bits >> (16-8); size = dct_dc_size_chrominance[index].value; flushed = dct_dc_size_chrominance[index].num_bits; next16bits &= bitMask[16+flushed]; if (size != 0) { flushed += size; diff = next16bits >> (16-flushed); if (!(diff & bitTest[32-size])) { diff = rBitMask[size] | (diff + 1); } } else { diff = 0; } flush_bits(flushed); if (n == 4) { coeff = diff << 3; if (curVidStream->mblock.mb_address - curVidStream->mblock.past_intra_addr > 1) coeff += 1024; else coeff += DCT_dc_cr_past; DCT_dc_cr_past = coeff; } else { coeff = diff << 3; if (curVidStream->mblock.mb_address - curVidStream->mblock.past_intra_addr > 1) coeff += 1024; else coeff += DCT_dc_cb_past; DCT_dc_cb_past = coeff; } } *reconptr = coeff; i = 0; pos = 0; coeffCount = (coeff != 0); if (curVidStream->picture.code_type != 4) { qscale = curVidStream->slice.quant_scale; iqmatrixptr = curVidStream->intra_quant_matrix[0]; while(1) { DECODE_DCT_COEFF_NEXT(run, level); if (run == END_OF_BLOCK) break; i = i + run + 1; pos = zigzag_direct[i]; coeff = (level * qscale * ((int) iqmatrixptr[pos])) >> 3; if (level < 0) { coeff += (coeff & 1); } else { coeff -= (coeff & 1); } reconptr[pos] = coeff; if (coeff) { coeffCount++; } } #ifdef ANALYSIS { extern unsigned int *mbCoeffPtr; mbCoeffPtr[pos]++; } #endif flush_bits(2); goto end; } } else { niqmatrixptr = curVidStream->non_intra_quant_matrix[0]; qscale = curVidStream->slice.quant_scale; DECODE_DCT_COEFF_FIRST(run, level); i = run; pos = zigzag_direct[i]; if (level < 0) { coeff = (((level<<1) - 1) * qscale * ((int) (niqmatrixptr[pos]))) >> 4; coeff += (coeff & 1); } else { coeff = (((level<<1) + 1) * qscale * ((int) (*(niqmatrixptr+pos)))) >> 4; coeff -= (coeff & 1); } reconptr[pos] = coeff; if (coeff) { coeffCount = 1; } if (curVidStream->picture.code_type != 4) { while(1) { DECODE_DCT_COEFF_NEXT(run, level); if (run == END_OF_BLOCK) break; i = i+run+1; pos = zigzag_direct[i]; if (level < 0) { coeff = (((level<<1) - 1) * qscale * ((int) (niqmatrixptr[pos]))) >> 4; coeff += (coeff & 1); } else { coeff = (((level<<1) + 1) * qscale * ((int) (*(niqmatrixptr+pos)))) >> 4; coeff -= (coeff & 1); } reconptr[pos] = coeff; if (coeff) { coeffCount++; } } #ifdef ANALYSIS { extern unsigned int *mbCoeffPtr; mbCoeffPtr[pos]++; } #endif flush_bits(2); goto end; } } end: if (coeffCount == 1) j_rev_dct_sparse (reconptr, pos); else j_rev_dct(reconptr); #ifdef RISC temp_curBits = curBits; temp_bitOffset = bitOffset; temp_bufLength = bufLength; temp_bitBuffer = bitBuffer; #endif } #ifdef RISC curBits = temp_curBits; bitOffset = temp_bitOffset; bufLength = temp_bufLength; bitBuffer = temp_bitBuffer; #endif } #undef DCT_recon #undef DCT_dc_y_past #undef DCT_dc_cr_past #undef DCT_dc_cb_past /* *-------------------------------------------------------------- * * ParseAwayBlock -- * * Parses off block values, throwing them away. * Used with grayscale dithering. * * Results: * None. * * Side effects: * None. * *-------------------------------------------------------------- */ void ParseAwayBlock(n) int n; { unsigned int diff; unsigned int size, run; int level; if (bufLength < 100) correct_underflow(); if (curVidStream->mblock.mb_intra) { /* If the block is a luminance block... */ if (n < 4) { /* Parse and decode size of first coefficient. */ DecodeDCTDCSizeLum(size); /* Parse first coefficient. */ if (size != 0) { get_bitsn(size, diff); } } /* Otherwise, block is chrominance block... */ else { /* Parse and decode size of first coefficient. */ DecodeDCTDCSizeChrom(size); /* Parse first coefficient. */ if (size != 0) { get_bitsn(size, diff); } } } /* Otherwise, block is not intracoded... */ else { /* Decode and set first coefficient. */ DECODE_DCT_COEFF_FIRST(run, level); } /* If picture is not D type (i.e. I, P, or B)... */ if (curVidStream->picture.code_type != 4) { /* While end of macroblock has not been reached... */ while (1) { /* Get the dct_coeff_next */ DECODE_DCT_COEFF_NEXT(run, level); if (run == END_OF_BLOCK) break; } /* End_of_block */ flush_bits(2); } }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.