This is video.c in view mode; [Download] [Up]
/* * Copyright (c) 1992 The Regents of the University of California. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice and the following * two paragraphs appear in all copies of this software. * * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. */ /* This file contains C code that implements * the video decoder model. */ #include <stdio.h> #include <stdlib.h> #include <assert.h> #ifndef MIPS #include <sys/time.h> #else #include <sys/types.h> #include <sys/system.h> #endif #include "decoders.h" #include "video.h" #include "util.h" #include "proto.h" /* Declarations of functions. */ static void ReconIMBlock(); static void ReconPMBlock(); static void ReconBMBlock(); static void ReconBiMBlock(); static void ReconSkippedBlock(); static void DoPictureDisplay(); static int ParseSeqHead(); static int ParseGOP(); static int ParsePicture(); static int ParseSlice(); static int ParseMacroBlock(); static void ProcessSkippedPFrameMBlocks(); static void ProcessSkippedBFrameMBlocks(); extern int ditherType; char *ditherFlags; /* Macro for returning 1 if num is positive, -1 if negative, 0 if 0. */ #define Sign(num) ((num > 0) ? 1 : ((num == 0) ? 0 : -1)) /* Declare global pointer to vid stream used for current decoding. */ VidStream *curVidStream = NULL; /* Set up array for fast conversion from zig zag order to row/column coordinates. */ int zigzag[64][2] = { 0, 0, 1, 0, 0, 1, 0, 2, 1, 1, 2, 0, 3, 0, 2, 1, 1, 2, 0, 3, 0, 4, 1, 3, 2, 2, 3, 1, 4, 0, 5, 0, 4, 1, 3, 2, 2, 3, 1, 4, 0, 5, 0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 7, 0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 7, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 3, 7, 4, 6, 5, 5, 6, 4, 7, 3, 7, 4, 6, 5, 5, 6, 4, 7, 5, 7, 6, 6, 7, 5, 7, 6, 6, 7, 7, 7}; /* Array mapping zigzag to array pointer offset. */ int zigzag_direct[64] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63}; /* Set up array for fast conversion from row/column coordinates to zig zag order. */ int scan[8][8] = { {0, 1, 5, 6, 14, 15, 27, 28}, {2, 4, 7, 13, 16, 26, 29, 42}, {3, 8, 12, 17, 25, 30, 41, 43}, {9, 11, 18, 24, 31, 40, 44, 53}, {10, 19, 23, 32, 39, 45, 52, 54}, {20, 22, 33, 38, 46, 51, 55, 60}, {21, 34, 37, 47, 50, 56, 59, 61}, {35, 36, 48, 49, 57, 58, 62, 63}}; /* Initialize P and B skip flags. */ static int No_P_Flag = 0; static int No_B_Flag = 0; /* Max lum, chrom indices for illegal block checking. */ static int lmaxx; static int lmaxy; static int cmaxx; static int cmaxy; /* * We use a lookup table to make sure values stay in the 0..255 range. * Since this is cropping (ie, x = (x < 0)?0:(x>255)?255:x; ), wee call this * table the "crop table". * MAX_NEG_CROP is the maximum neg/pos value we can handle. */ #define MAX_NEG_CROP 384 #define NUM_CROP_ENTRIES (256+2*MAX_NEG_CROP) #define assertCrop(x) assert(((x) >= -MAX_NEG_CROP) && \ ((x) <= 256+MAX_NEG_CROP)) static unsigned char cropTbl[NUM_CROP_ENTRIES]; /* The following accounts for time and size spent in various parsing acitivites if ANALYSIS has been defined. */ #ifdef ANALYSIS unsigned int bitCount = 0; int showmb_flag = 0; int showEachFlag = 0; typedef struct { int frametype; unsigned int totsize; unsigned int number; unsigned int i_mbsize; unsigned int p_mbsize; unsigned int b_mbsize; unsigned int bi_mbsize; unsigned int i_mbnum; unsigned int p_mbnum; unsigned int b_mbnum; unsigned int bi_mbnum; unsigned int i_mbcbp[64]; unsigned int p_mbcbp[64]; unsigned int b_mbcbp[64]; unsigned int bi_mbcbp[64]; unsigned int i_mbcoeff[64]; unsigned int p_mbcoeff[64]; unsigned int b_mbcoeff[64]; unsigned int bi_mbcoeff[64]; double tottime; } Statval; Statval stat_a[4]; unsigned int pictureSizeCount; unsigned int mbSizeCount; unsigned int *mbCBPPtr, *mbCoeffPtr, *mbSizePtr; unsigned int cacheHit[8][8]; unsigned int cacheMiss[8][8]; static void init_stat_struct(astat) Statval *astat; { int j; astat->frametype = 0; astat->totsize = 0; astat->number = 0; astat->i_mbsize = 0; astat->p_mbsize = 0; astat->b_mbsize = 0; astat->bi_mbsize = 0; astat->i_mbnum = 0; astat->p_mbnum = 0; astat->b_mbnum = 0; astat->bi_mbnum = 0; for (j = 0; j < 64; j++) { astat->i_mbcbp[j] = 0; astat->p_mbcbp[j] = 0; astat->b_mbcbp[j] = 0; astat->bi_mbcbp[j] = 0; astat->i_mbcoeff[j] = 0; astat->p_mbcoeff[j] = 0; astat->b_mbcoeff[j] = 0; astat->bi_mbcoeff[j] = 0; } astat->tottime = 0.0; } void init_stats() { int i, j; for (i = 0; i < 4; i++) { init_stat_struct(&(stat_a[i])); stat_a[i].frametype = i; } for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { cacheHit[i][j] = 0; cacheMiss[i][j] = 0; } } bitCount = 0; } static void PrintOneStat() { int i; printf("\n"); switch (stat_a[0].frametype) { case I_TYPE: printf("I FRAME\n"); break; case P_TYPE: printf("P FRAME\n"); break; case B_TYPE: printf("B FRAME\n"); break; } printf("Size: %d bytes + %d bits\n", stat_a[0].totsize / 8, stat_a[0].totsize % 8); if (stat_a[0].i_mbnum > 0) { printf("\tI Macro Block Stats:\n"); printf("\t%d I Macroblocks\n", stat_a[0].i_mbnum); printf("\tAvg. Size: %d bytes + %d bits\n", stat_a[0].i_mbsize / (8 * stat_a[0].i_mbnum), (stat_a[0].i_mbsize * stat_a[0].i_mbnum) % 8); printf("\t\tCoded Block Pattern Histogram:\n"); for (i = 0; i < 64; i += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].i_mbcbp[i], stat_a[0].i_mbcbp[i + 1], stat_a[0].i_mbcbp[i + 2], stat_a[0].i_mbcbp[i + 3], stat_a[0].i_mbcbp[i + 4], stat_a[0].i_mbcbp[i + 5], stat_a[0].i_mbcbp[i + 6], stat_a[0].i_mbcbp[i + 7]); } printf("\n\t\tNumber of Coefficients/Block Histogram:\n"); for (i = 0; i < 64; i += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].i_mbcoeff[i], stat_a[0].i_mbcoeff[i + 1], stat_a[0].i_mbcoeff[i + 2], stat_a[0].i_mbcoeff[i + 3], stat_a[0].i_mbcoeff[i + 4], stat_a[0].i_mbcoeff[i + 5], stat_a[0].i_mbcoeff[i + 6], stat_a[0].i_mbcoeff[i + 7]); } } if (stat_a[0].p_mbnum > 0) { printf("\tP Macro Block Stats:\n"); printf("\t%d P Macroblocks\n", stat_a[0].p_mbnum); printf("\tAvg. Size: %d bytes + %d bits\n", stat_a[0].p_mbsize / (8 * stat_a[0].p_mbnum), (stat_a[0].p_mbsize / stat_a[0].p_mbnum) % 8); printf("\t\tCoded Block Pattern Histogram:\n"); for (i = 0; i < 64; i += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].p_mbcbp[i], stat_a[0].p_mbcbp[i + 1], stat_a[0].p_mbcbp[i + 2], stat_a[0].p_mbcbp[i + 3], stat_a[0].p_mbcbp[i + 4], stat_a[0].p_mbcbp[i + 5], stat_a[0].p_mbcbp[i + 6], stat_a[0].p_mbcbp[i + 7]); } printf("\n\t\tNumber of Coefficients/Block Histogram:\n"); for (i = 0; i < 64; i += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].p_mbcoeff[i], stat_a[0].p_mbcoeff[i + 1], stat_a[0].p_mbcoeff[i + 2], stat_a[0].p_mbcoeff[i + 3], stat_a[0].p_mbcoeff[i + 4], stat_a[0].p_mbcoeff[i + 5], stat_a[0].p_mbcoeff[i + 6], stat_a[0].p_mbcoeff[i + 7]); } } if (stat_a[0].b_mbnum > 0) { printf("\tB Macro Block Stats:\n"); printf("\t%d B Macroblocks\n", stat_a[0].b_mbnum); printf("\tAvg. Size: %d bytes + %d bits\n", stat_a[0].b_mbsize / (8 * stat_a[0].b_mbnum), (stat_a[0].b_mbsize / stat_a[0].b_mbnum) % 8); printf("\t\tCoded Block Pattern Histogram:\n"); for (i = 0; i < 64; i += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].b_mbcbp[i], stat_a[0].b_mbcbp[i + 1], stat_a[0].b_mbcbp[i + 2], stat_a[0].b_mbcbp[i + 3], stat_a[0].b_mbcbp[i + 4], stat_a[0].b_mbcbp[i + 5], stat_a[0].b_mbcbp[i + 6], stat_a[0].b_mbcbp[i + 7]); } printf("\n\t\tNumber of Coefficients/Block Histogram:\n"); for (i = 0; i < 64; i += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].b_mbcoeff[i], stat_a[0].b_mbcoeff[i + 1], stat_a[0].b_mbcoeff[i + 2], stat_a[0].b_mbcoeff[i + 3], stat_a[0].b_mbcoeff[i + 4], stat_a[0].b_mbcoeff[i + 5], stat_a[0].b_mbcoeff[i + 6], stat_a[0].b_mbcoeff[i + 7]); } } if (stat_a[0].bi_mbnum > 0) { printf("\tBi Macro Block Stats:\n"); printf("\t%d Bi Macroblocks\n", stat_a[0].bi_mbnum); printf("\tAvg. Size: %d bytes + %d bits\n", stat_a[0].bi_mbsize / (8 * stat_a[0].bi_mbnum), (stat_a[0].bi_mbsize * stat_a[0].bi_mbnum) % 8); printf("\t\tCoded Block Pattern Histogram:\n"); for (i = 0; i < 64; i += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].bi_mbcbp[i], stat_a[0].bi_mbcbp[i + 1], stat_a[0].bi_mbcbp[i + 2], stat_a[0].bi_mbcbp[i + 3], stat_a[0].bi_mbcbp[i + 4], stat_a[0].bi_mbcbp[i + 5], stat_a[0].bi_mbcbp[i + 6], stat_a[0].bi_mbcbp[i + 7]); } printf("\n\t\tNumber of Coefficients/Block Histogram:\n"); for (i = 0; i < 64; i += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[0].bi_mbcoeff[i], stat_a[0].bi_mbcoeff[i + 1], stat_a[0].bi_mbcoeff[i + 2], stat_a[0].bi_mbcoeff[i + 3], stat_a[0].bi_mbcoeff[i + 4], stat_a[0].bi_mbcoeff[i + 5], stat_a[0].bi_mbcoeff[i + 6], stat_a[0].bi_mbcoeff[i + 7]); } } printf("\nTime to Decode: %g secs.\n", stat_a[0].tottime); printf("****************\n"); } void PrintAllStats() { int i, j; unsigned int supertot, supernum; double supertime; printf("\n"); printf("General Info: \n"); printf("Width: %d\nHeight: %d\n", curVidStream->mb_width * 16, curVidStream->mb_height * 16); for (i = 1; i < 4; i++) { if (stat_a[i].number == 0) continue; switch (i) { case 1: printf("I FRAMES\n"); break; case 2: printf("P FRAMES\n"); break; case 3: printf("B FRAMES\n"); break; } printf("Number: %d\n", stat_a[i].number); printf("Avg. Size: %d bytes + %d bits\n", stat_a[i].totsize / (8 * stat_a[i].number), (stat_a[i].totsize / stat_a[i].number) % 8); if (stat_a[i].i_mbnum > 0) { printf("\tI Macro Block Stats:\n"); printf("\t%d I Macroblocks\n", stat_a[i].i_mbnum); printf("\tAvg. Size: %d bytes + %d bits\n", stat_a[i].i_mbsize / (8 * stat_a[i].i_mbnum), (stat_a[i].i_mbsize / stat_a[i].i_mbnum) % 8); printf("\t\tCoded Block Pattern Histogram:\n"); for (j = 0; j < 64; j += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].i_mbcbp[j], stat_a[i].i_mbcbp[j + 1], stat_a[i].i_mbcbp[j + 2], stat_a[i].i_mbcbp[j + 3], stat_a[i].i_mbcbp[j + 4], stat_a[i].i_mbcbp[j + 5], stat_a[i].i_mbcbp[j + 6], stat_a[i].i_mbcbp[j + 7]); } printf("\n\t\tNumber of Coefficients/Block Histogram:\n"); for (j = 0; j < 64; j += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].i_mbcoeff[j], stat_a[i].i_mbcoeff[j + 1], stat_a[i].i_mbcoeff[j + 2], stat_a[i].i_mbcoeff[j + 3], stat_a[i].i_mbcoeff[j + 4], stat_a[i].i_mbcoeff[j + 5], stat_a[i].i_mbcoeff[j + 6], stat_a[i].i_mbcoeff[j + 7]); } } if (stat_a[i].p_mbnum > 0) { printf("\tP Macro Block Stats:\n"); printf("\t%d P Macroblocks\n", stat_a[i].p_mbnum); printf("\tAvg. Size: %d bytes + %d bits\n", stat_a[i].p_mbsize / (8 * stat_a[i].p_mbnum), (stat_a[i].p_mbsize / stat_a[i].p_mbnum) % 8); printf("\t\tCoded Block Pattern Histogram:\n"); for (j = 0; j < 64; j += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].p_mbcbp[j], stat_a[i].p_mbcbp[j + 1], stat_a[i].p_mbcbp[j + 2], stat_a[i].p_mbcbp[j + 3], stat_a[i].p_mbcbp[j + 4], stat_a[i].p_mbcbp[j + 5], stat_a[i].p_mbcbp[j + 6], stat_a[i].p_mbcbp[j + 7]); } printf("\n\t\tNumber of Coefficients/Block Histogram:\n"); for (j = 0; j < 64; j += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].p_mbcoeff[j], stat_a[i].p_mbcoeff[j + 1], stat_a[i].p_mbcoeff[j + 2], stat_a[i].p_mbcoeff[j + 3], stat_a[i].p_mbcoeff[j + 4], stat_a[i].p_mbcoeff[j + 5], stat_a[i].p_mbcoeff[j + 6], stat_a[i].p_mbcoeff[j + 7]); } } if (stat_a[i].b_mbnum > 0) { printf("\tB Macro Block Stats:\n"); printf("\t%d B Macroblocks\n", stat_a[i].b_mbnum); printf("\tAvg. Size: %d bytes + %d bits\n", stat_a[i].b_mbsize / (8 * stat_a[i].b_mbnum), (stat_a[i].b_mbsize * stat_a[i].b_mbnum) % 8); printf("\t\tCoded Block Pattern Histogram:\n"); for (j = 0; j < 64; j += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].b_mbcbp[j], stat_a[i].b_mbcbp[j + 1], stat_a[i].b_mbcbp[j + 2], stat_a[i].b_mbcbp[j + 3], stat_a[i].b_mbcbp[j + 4], stat_a[i].b_mbcbp[j + 5], stat_a[i].b_mbcbp[j + 6], stat_a[i].b_mbcbp[j + 7]); } printf("\n\t\tNumber of Coefficients/Block Histogram:\n"); for (j = 0; j < 64; j += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].b_mbcoeff[j], stat_a[i].b_mbcoeff[j + 1], stat_a[i].b_mbcoeff[j + 2], stat_a[i].b_mbcoeff[j + 3], stat_a[i].b_mbcoeff[j + 4], stat_a[i].b_mbcoeff[j + 5], stat_a[i].b_mbcoeff[j + 6], stat_a[i].b_mbcoeff[j + 7]); } } if (stat_a[i].bi_mbnum > 0) { printf("\tBi Macro Block Stats:\n"); printf("\t%d Bi Macroblocks\n", stat_a[i].bi_mbnum); printf("\tAvg. Size: %d bytes + %d bits\n", stat_a[i].bi_mbsize / (8 * stat_a[i].bi_mbnum), (stat_a[i].bi_mbsize * stat_a[i].bi_mbnum) % 8); printf("\t\tCoded Block Pattern Histogram:\n"); for (j = 0; j < 64; j += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].bi_mbcbp[j], stat_a[i].bi_mbcbp[j + 1], stat_a[i].bi_mbcbp[j + 2], stat_a[i].bi_mbcbp[j + 3], stat_a[i].bi_mbcbp[j + 4], stat_a[i].bi_mbcbp[j + 5], stat_a[i].bi_mbcbp[j + 6], stat_a[i].bi_mbcbp[j + 7]); } printf("\n\t\tNumber of Coefficients/Block Histogram:\n"); for (j = 0; j < 64; j += 8) { printf("\t%.6d %.6d %.6d %.6d %.6d %.6d %.6d %.6d\n", stat_a[i].bi_mbcoeff[j], stat_a[i].bi_mbcoeff[j + 1], stat_a[i].bi_mbcoeff[j + 2], stat_a[i].bi_mbcoeff[j + 3], stat_a[i].bi_mbcoeff[j + 4], stat_a[i].bi_mbcoeff[j + 5], stat_a[i].bi_mbcoeff[j + 6], stat_a[i].bi_mbcoeff[j + 7]); } } printf("\nAvg. Time to Decode: %f secs.\n", (stat_a[i].tottime / ((double) stat_a[i].number))); printf("\n"); printf("*************************\n\n"); } supertot = stat_a[1].totsize + stat_a[2].totsize + stat_a[3].totsize; supernum = stat_a[1].number + stat_a[2].number + stat_a[3].number; supertime = stat_a[1].tottime + stat_a[2].tottime + stat_a[3].tottime; printf("Total Number of Frames: %d\n", supernum); printf("Avg Frame Size: %d bytes %d bits\n", supertot / (8 * supernum), (supertot / supernum) % 8); printf("Total Time Decoding: %g secs.\n", supertime); printf("Avg Decoding Time/Frame: %g secs.\n", supertime / ((double) supernum)); printf("Avg Decoding Frames/Sec: %g secs.\n", ((double) supernum) / supertime); printf("\n"); printf("Cache Hits/Miss\n"); for (i = 0; i < 8; i++) { printf("%.6d/%.6d\t%.6d/%.6d\t%.6d/%.6d\t%.6d/%.6d\n", cacheHit[i][0], cacheMiss[i][0], cacheHit[i][1], cacheMiss[i][1], cacheHit[i][2], cacheMiss[i][2], cacheHit[i][3], cacheMiss[i][3]); printf("%.6d/%.6d\t%.6d/%.6d\t%.6d/%.6d\t%.6d/%.6d\n", cacheHit[i][4], cacheMiss[i][4], cacheHit[i][5], cacheMiss[i][5], cacheHit[i][6], cacheMiss[i][6], cacheHit[i][7], cacheMiss[i][7]); } } static void CollectStats() { int i, j; i = stat_a[0].frametype; stat_a[i].totsize += stat_a[0].totsize; stat_a[i].number += stat_a[0].number; stat_a[i].i_mbsize += stat_a[0].i_mbsize; stat_a[i].p_mbsize += stat_a[0].p_mbsize; stat_a[i].b_mbsize += stat_a[0].b_mbsize; stat_a[i].bi_mbsize += stat_a[0].bi_mbsize; stat_a[i].i_mbnum += stat_a[0].i_mbnum; stat_a[i].p_mbnum += stat_a[0].p_mbnum; stat_a[i].b_mbnum += stat_a[0].b_mbnum; stat_a[i].bi_mbnum += stat_a[0].bi_mbnum; for (j = 0; j < 64; j++) { stat_a[i].i_mbcbp[j] += stat_a[0].i_mbcbp[j]; stat_a[i].p_mbcbp[j] += stat_a[0].p_mbcbp[j]; stat_a[i].b_mbcbp[j] += stat_a[0].b_mbcbp[j]; stat_a[i].bi_mbcbp[j] += stat_a[0].bi_mbcbp[j]; stat_a[i].i_mbcoeff[j] += stat_a[0].i_mbcoeff[j]; stat_a[i].p_mbcoeff[j] += stat_a[0].p_mbcoeff[j]; stat_a[i].b_mbcoeff[j] += stat_a[0].b_mbcoeff[j]; stat_a[i].bi_mbcoeff[j] += stat_a[0].bi_mbcoeff[j]; } stat_a[i].tottime += stat_a[0].tottime; init_stat_struct(&(stat_a[0])); } static unsigned int bitCountRead() { return bitCount; } static void StartTime() { stat_a[0].tottime = ReadSysClock(); } static void EndTime() { stat_a[0].tottime = ReadSysClock() - stat_a[0].tottime; } #endif double realTimeStart; int totNumFrames = 0; double ReadSysClock() { struct timeval tv; (void) gettimeofday(&tv, (struct timezone *)NULL); return (tv.tv_sec + tv.tv_usec / 1000000.0); } void PrintTimeInfo() { double spent; spent = ReadSysClock() - realTimeStart; } /* *-------------------------------------------------------------- * * NewVidStream -- * * Allocates and initializes a VidStream structure. Takes * as parameter requested size for buffer length. * * Results: * A pointer to the new VidStream structure. * * Side effects: * None. * *-------------------------------------------------------------- */ VidStream * NewVidStream(bufLength) int bufLength; { int i, j; VidStream *new; static unsigned char default_intra_matrix[64] = { 8, 16, 19, 22, 26, 27, 29, 34, 16, 16, 22, 24, 27, 29, 34, 37, 19, 22, 26, 27, 29, 34, 34, 38, 22, 22, 26, 27, 29, 34, 37, 40, 22, 26, 27, 29, 32, 35, 40, 48, 26, 27, 29, 32, 35, 40, 48, 58, 26, 27, 29, 34, 38, 46, 56, 69, 27, 29, 35, 38, 46, 56, 69, 83}; /* Check for legal buffer length. */ if (bufLength < 4) return NULL; /* Make buffer length multiple of 4. */ bufLength = (bufLength + 3) >> 2; /* Allocate memory for new structure. */ new = (VidStream *) malloc(sizeof(VidStream)); /* Initialize pointers to extension and user data. */ new->group.ext_data = new->group.user_data = new->picture.extra_info = new->picture.user_data = new->picture.ext_data = new->slice.extra_info = new->ext_data = new->user_data = NULL; /* Copy default intra matrix. */ for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { new->intra_quant_matrix[j][i] = default_intra_matrix[i * 8 + j]; } } /* Initialize crop table. */ for (i = (-MAX_NEG_CROP); i < NUM_CROP_ENTRIES - MAX_NEG_CROP; i++) { if (i <= 0) { cropTbl[i + MAX_NEG_CROP] = 0; } else if (i >= 255) { cropTbl[i + MAX_NEG_CROP] = 255; } else { cropTbl[i + MAX_NEG_CROP] = i; } } /* Initialize non intra quantization matrix. */ for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { new->non_intra_quant_matrix[j][i] = 16; } } /* Initialize pointers to image spaces. */ new->current = new->past = new->future = NULL; for (i = 0; i < RING_BUF_SIZE; i++) { new->ring[i] = NULL; } /* Create buffer. */ new->buf_start = (unsigned int *) malloc(bufLength * 4); /* * Set max_buf_length to one less than actual length to deal with messy * data without proper seq. end codes. */ new->max_buf_length = bufLength - 1; /* Initialize bitstream i/o fields. */ new->bit_offset = 0; new->buf_length = 0; new->buffer = new->buf_start; /* Return structure. */ return new; } /* *-------------------------------------------------------------- * * DestroyVidStream -- * * Deallocates a VidStream structure. * * Results: * None. * * Side effects: * None. * *-------------------------------------------------------------- */ void DestroyVidStream(astream) VidStream *astream; { int i; if (astream->ext_data != NULL) free(astream->ext_data); if (astream->user_data != NULL) free(astream->user_data); if (astream->group.ext_data != NULL) free(astream->group.ext_data); if (astream->group.user_data != NULL) free(astream->group.user_data); if (astream->picture.extra_info != NULL) free(astream->picture.extra_info); if (astream->picture.ext_data != NULL) free(astream->picture.ext_data); if (astream->picture.user_data != NULL) free(astream->picture.user_data); if (astream->slice.extra_info != NULL) free(astream->slice.extra_info); if (astream->buf_start != NULL) free(astream->buf_start); for (i = 0; i < RING_BUF_SIZE; i++) { if (astream->ring[i] != NULL) { DestroyPictImage(astream->ring[i]); astream->ring[i] = NULL; } } free((char *) astream); } /* *-------------------------------------------------------------- * * NewPictImage -- * * Allocates and initializes a PictImage structure. * The width and height of the image space are passed in * as parameters. * * Results: * A pointer to the new PictImage structure. * * Side effects: * None. * *-------------------------------------------------------------- */ PictImage * NewPictImage(width, height) unsigned int width, height; { PictImage *new; /* Allocate memory space for new structure. */ new = (PictImage *) malloc(sizeof(PictImage)); /* Allocate memory for image spaces. */ #ifdef SH_MEM new->ximage = NULL; if (shmemFlag) { Visual *fc_visual; int depth; Visual *FindFullColorVisual(); if (ditherType == FULL_COLOR_DITHER) { fc_visual = FindFullColorVisual(display, &depth); new->ximage = XShmCreateImage(display, fc_visual, depth, ZPixmap, NULL, &(new->shminfo), width, height); } else if (ditherType == MONO_DITHER || ditherType == MONO_THRESHOLD) { new->ximage = XShmCreateImage(display, None, 1, XYBitmap, NULL, &(new->shminfo), width, height); } else { new->ximage = XShmCreateImage(display, None, 8, ZPixmap, NULL, &(new->shminfo), width, height); } /* If no go, then revert to normal Xlib calls. */ if (new->ximage == NULL) { shmemFlag = 0; goto shmemerror; } /* Success here, continue. */ new->shminfo.shmid = shmget(IPC_PRIVATE, (new->ximage->bytes_per_line * new->ximage->height), IPC_CREAT | 0777); if (new->shminfo.shmid < 0) { XDestroyImage(new->ximage); new->ximage = NULL; shmemFlag = 0; goto shmemerror; } new->shminfo.shmaddr = (char *) shmat(new->shminfo.shmid, 0, 0); if (new->shminfo.shmaddr == ((char *) -1)) { XDestroyImage(new->ximage); new->ximage = NULL; shmemFlag = 0; goto shmemerror; } new->ximage->data = new->shminfo.shmaddr; new->display = (unsigned char *) new->ximage->data; new->shminfo.readOnly = False; XShmAttach(display, &(new->shminfo)); XSync(display, False); if (gXErrorFlag) { /* Ultimate failure here. */ XDestroyImage(new->ximage); new->ximage = NULL; shmemFlag = 0; gXErrorFlag = 0; goto shmemerror; } else { shmctl(new->shminfo.shmid, IPC_RMID, 0); } } else #endif { shmemerror: if (ditherType == FULL_COLOR_DITHER) { new->display = (unsigned char *) malloc(width * height * 4); } else { new->display = (unsigned char *) malloc(width * height); } } new->luminance = (unsigned char *) malloc(width * height); new->Cr = (unsigned char *) malloc(width * height / 4); new->Cb = (unsigned char *) malloc(width * height / 4); /* Reset locked flag. */ new->locked = 0; /* Return pointer to new structure. */ return new; } /* *-------------------------------------------------------------- * * DestroyPictImage -- * * Deallocates a PictImage structure. * * Results: * None. * * Side effects: * None. * *-------------------------------------------------------------- */ void DestroyPictImage(apictimage) PictImage *apictimage; { if (apictimage->luminance != NULL) { free(apictimage->luminance); } if (apictimage->Cr != NULL) { free(apictimage->Cr); } if (apictimage->Cb != NULL) { free(apictimage->Cb); } #ifdef SH_MEM if (apictimage->ximage != NULL) { XShmDetach(display, &(apictimage->shminfo)); XDestroyImage(apictimage->ximage); shmdt(apictimage->shminfo.shmaddr); apictimage->ximage = NULL; apictimage->display = NULL; } #endif if (apictimage->display != NULL) { free(apictimage->display); } free(apictimage); } /* *-------------------------------------------------------------- * * mpegVidRsrc -- * * Parses bit stream until MB_QUANTUM number of * macroblocks have been decoded or current slice or * picture ends, whichever comes first. If the start * of a frame is encountered, the frame is time stamped * with the value passed in time_stamp. If the value * passed in buffer is not null, the video stream buffer * is set to buffer and the length of the buffer is * expected in value passed in through length. The current * video stream is set to vid_stream. If vid_stream * is passed as NULL, a new VidStream structure is created * and initialized and used as the current video stream. * * Results: * A pointer to the video stream structure used. * * Side effects: * Bit stream is irreversibly parsed. If a picture is completed, * a function is called to display the frame at the correct time. * *-------------------------------------------------------------- */ VidStream * mpegVidRsrc(time_stamp, vid_stream) TimeStamp time_stamp; VidStream *vid_stream; { static int first = 1; unsigned int data; int i, status; /* If vid_stream is null, create new VidStream structure. */ if (vid_stream == NULL) { return NULL; } /* * Set global curVidStream to vid_stream. Necessary because bit i/o use * curVidStream and are not passed vid_stream. Also set global bitstream * parameters. */ curVidStream = vid_stream; bitOffset = curVidStream->bit_offset; #ifdef UTIL2 curBits = *curVidStream->buffer << bitOffset; #else curBits = *curVidStream->buffer; #endif bufLength = curVidStream->buf_length; bitBuffer = curVidStream->buffer; /* * If called for the first time, find start code, make sure it is a * sequence start code. */ if (first) { next_start_code(); show_bits32(data); if (data != SEQ_START_CODE) { fprintf(stderr, "This is not an MPEG stream."); DestroyVidStream(curVidStream); exit(1); } first = 0; } /* Get next 32 bits (size of start codes). */ show_bits32(data); /* * Process according to start code (or parse macroblock if not a start code * at all. */ switch (data) { case SEQ_END_CODE: /* Display last frame. */ if (vid_stream->future != NULL) { vid_stream->current = vid_stream->future; ExecuteDisplay(vid_stream); } /* Sequence done. Do the right thing. For right now, exit. */ #ifdef ANALYSIS PrintAllStats(); #endif PrintTimeInfo(); if (loopFlag) longjmp(env, 1); DestroyVidStream(curVidStream); exit(0); break; case SEQ_START_CODE: /* Sequence start code. Parse sequence header. */ if (ParseSeqHead(vid_stream) != PARSE_OK) goto error; /* * Return after sequence start code so that application above can use * info in header. */ goto done; case GOP_START_CODE: /* Group of Pictures start code. Parse gop header. */ if (ParseGOP(vid_stream) != PARSE_OK) goto error; case PICTURE_START_CODE: /* Picture start code. Parse picture header and first slice header. */ status = ParsePicture(vid_stream, time_stamp); if (status == SKIP_PICTURE) { next_start_code(); // fprintf(stderr, "Skipping picture..."); while (!next_bits(32, PICTURE_START_CODE)) { if (next_bits(32, GOP_START_CODE)) break; else if (next_bits(32, SEQ_END_CODE)) break; flush_bits(24); next_start_code(); } // fprintf(stderr, "Done.\n"); goto done; } else if (status != PARSE_OK) goto error; if (ParseSlice(vid_stream) != PARSE_OK) goto error; break; default: /* Check for slice start code. */ if ((data >= SLICE_MIN_START_CODE) && (data <= SLICE_MAX_START_CODE)) { /* Slice start code. Parse slice header. */ if (ParseSlice(vid_stream) != PARSE_OK) goto error; } break; } /* Parse next MB_QUANTUM macroblocks. */ for (i = 0; i < MB_QUANTUM; i++) { /* Check to see if actually a startcode and not a macroblock. */ if (!next_bits(23, 0x00000000)) { /* Not start code. Parse Macroblock. */ if (ParseMacroBlock(vid_stream) != PARSE_OK) goto error; #ifdef ANALYSIS if (showmb_flag) { DoDitherImage(vid_stream->current->luminance, vid_stream->current->Cr, vid_stream->current->Cb, vid_stream->current->display, vid_stream->mb_height * 16, vid_stream->mb_width * 16); ExecuteDisplay(vid_stream); } #endif } else { /* Not macroblock, actually start code. Get start code. */ next_start_code(); show_bits32(data); /* * If start code is outside range of slice start codes, frame is * complete, display frame. */ if ((data < SLICE_MIN_START_CODE) || (data > SLICE_MAX_START_CODE)) { #ifdef ANALYSIS EndTime(); stat_a[0].totsize += bitCountRead() - pictureSizeCount; if (showEachFlag) { PrintOneStat(); }; CollectStats(); #endif DoPictureDisplay(vid_stream); } break; } } /* Return pointer to video stream structure. */ goto done; error: fprintf(stderr, "Error!!!!\n"); next_start_code(); goto done; done: /* Copy global bit i/o variables back into vid_stream. */ vid_stream->buffer = bitBuffer; vid_stream->buf_length = bufLength; vid_stream->bit_offset = bitOffset; return vid_stream; } /* *-------------------------------------------------------------- * * ParseSeqHead -- * * Assumes bit stream is at the begining of the sequence * header start code. Parses off the sequence header. * * Results: * Fills the vid_stream structure with values derived and * decoded from the sequence header. Allocates the pict image * structures based on the dimensions of the image space * found in the sequence header. * * Side effects: * Bit stream irreversibly parsed off. * *-------------------------------------------------------------- */ static int ParseSeqHead(vid_stream) VidStream *vid_stream; { unsigned int data; int i; /* Flush off sequence start code. */ flush_bits32; /* Get horizontal size of image space. */ get_bits12(data); vid_stream->h_size = data; /* Get vertical size of image space. */ get_bits12(data); vid_stream->v_size = data; /* Calculate macroblock width and height of image space. */ vid_stream->mb_width = (vid_stream->h_size + 15) / 16; vid_stream->mb_height = (vid_stream->v_size + 15) / 16; /* Initialize lmaxx, lmaxy, cmaxx, cmaxy. */ lmaxx = vid_stream->mb_width*16-1; lmaxy = vid_stream->mb_height*16-1; cmaxx = vid_stream->mb_width*8-1; cmaxy = vid_stream->mb_height*8-1; /* * Initialize ring buffer of pict images now that dimensions of image space * are known. */ #ifdef SH_MEM if (display != NULL) { InstallXErrorHandler(); } #endif if (vid_stream->ring[0] == NULL) { for (i = 0; i < RING_BUF_SIZE; i++) { vid_stream->ring[i] = NewPictImage(vid_stream->mb_width * 16, vid_stream->mb_height * 16); } } #ifdef SH_MEM if (display != NULL) { DeInstallXErrorHandler(); } #endif /* Parse of aspect ratio code. */ get_bits4(data); vid_stream->aspect_ratio = (unsigned char) data; /* Parse off picture rate code. */ get_bits4(data); vid_stream->picture_rate = (unsigned char) data; /* Parse off bit rate. */ get_bits18(data); vid_stream->bit_rate = data; /* Flush marker bit. */ flush_bits(1); /* Parse off vbv buffer size. */ get_bits10(data); vid_stream->vbv_buffer_size = data; /* Parse off contrained parameter flag. */ get_bits1(data); if (data) { vid_stream->const_param_flag = TRUE; } else vid_stream->const_param_flag = FALSE; /* * If intra_quant_matrix_flag set, parse off intra quant matrix values. */ get_bits1(data); if (data) { for (i = 0; i < 64; i++) { get_bits8(data); vid_stream->intra_quant_matrix[zigzag[i][1]][zigzag[i][0]] = (unsigned char) data; } } /* * If non intra quant matrix flag set, parse off non intra quant matrix * values. */ get_bits1(data); if (data) { for (i = 0; i < 64; i++) { get_bits8(data); vid_stream->non_intra_quant_matrix[zigzag[i][1]][zigzag[i][0]] = (unsigned char) data; } } /* Go to next start code. */ next_start_code(); /* * If next start code is extension start code, parse off extension data. */ if (next_bits(32, EXT_START_CODE)) { flush_bits32; if (vid_stream->ext_data != NULL) { free(vid_stream->ext_data); vid_stream->ext_data = NULL; } vid_stream->ext_data = get_ext_data(); } /* If next start code is user start code, parse off user data. */ if (next_bits(32, USER_START_CODE)) { flush_bits32; if (vid_stream->user_data != NULL) { free(vid_stream->user_data); vid_stream->user_data = NULL; } vid_stream->user_data = get_ext_data(); } return PARSE_OK; } /* *-------------------------------------------------------------- * * ParseGOP -- * * Parses of group of pictures header from bit stream * associated with vid_stream. * * Results: * Values in gop header placed into video stream structure. * * Side effects: * Bit stream irreversibly parsed. * *-------------------------------------------------------------- */ static int ParseGOP(vid_stream) VidStream *vid_stream; { unsigned int data; /* Flush group of pictures start code. WWWWWWOOOOOOOSSSSSSHHHHH!!! */ flush_bits32; /* Parse off drop frame flag. */ get_bits1(data); if (data) { vid_stream->group.drop_flag = TRUE; } else vid_stream->group.drop_flag = FALSE; /* Parse off hour component of time code. */ get_bits5(data); vid_stream->group.tc_hours = data; /* Parse off minute component of time code. */ get_bits6(data); vid_stream->group.tc_minutes = data; /* Flush marker bit. */ flush_bits(1); /* Parse off second component of time code. */ get_bits6(data); vid_stream->group.tc_seconds = data; /* Parse off picture count component of time code. */ get_bits6(data); vid_stream->group.tc_pictures = data; /* Parse off closed gop and broken link flags. */ get_bits2(data); if (data > 1) { vid_stream->group.closed_gop = TRUE; if (data > 2) { vid_stream->group.broken_link = TRUE; } else vid_stream->group.broken_link = FALSE; } else { vid_stream->group.closed_gop = FALSE; if (data) { vid_stream->group.broken_link = TRUE; } else vid_stream->group.broken_link = FALSE; } /* Goto next start code. */ next_start_code(); /* If next start code is extension data, parse off extension data. */ if (next_bits(32, EXT_START_CODE)) { flush_bits32; if (vid_stream->group.ext_data != NULL) { free(vid_stream->group.ext_data); vid_stream->group.ext_data = NULL; } vid_stream->group.ext_data = get_ext_data(); } /* If next start code is user data, parse off user data. */ if (next_bits(32, USER_START_CODE)) { flush_bits32; if (vid_stream->group.user_data != NULL) { free(vid_stream->group.user_data); vid_stream->group.user_data = NULL; } vid_stream->group.user_data = get_ext_data(); } return PARSE_OK; } /* *-------------------------------------------------------------- * * ParsePicture -- * * Parses picture header. Marks picture to be presented * at particular time given a time stamp. * * Results: * Values from picture header put into video stream structure. * * Side effects: * Bit stream irreversibly parsed. * *-------------------------------------------------------------- */ static int ParsePicture(vid_stream, time_stamp) VidStream *vid_stream; TimeStamp time_stamp; { unsigned int data; int i; /* Flush header start code. */ flush_bits32; /* Parse off temporal reference. */ get_bits10(data); vid_stream->picture.temp_ref = data; /* Parse of picture type. */ get_bits3(data); vid_stream->picture.code_type = data; if ((vid_stream->picture.code_type == B_TYPE) && (No_B_Flag || (vid_stream->past == NULL) || (vid_stream->future == NULL))) return SKIP_PICTURE; if ((vid_stream->picture.code_type == P_TYPE) && (No_P_Flag || (vid_stream->future == NULL))) return SKIP_PICTURE; #ifdef ANALYSIS StartTime(); stat_a[0].frametype = vid_stream->picture.code_type; stat_a[0].number = 1; stat_a[0].totsize = 45; pictureSizeCount = bitCountRead(); #endif /* Parse off vbv buffer delay value. */ get_bits16(data); vid_stream->picture.vbv_delay = data; /* If P or B type frame... */ if ((vid_stream->picture.code_type == 2) || (vid_stream->picture.code_type == 3)) { /* Parse off forward vector full pixel flag. */ get_bits1(data); if (data) vid_stream->picture.full_pel_forw_vector = TRUE; else vid_stream->picture.full_pel_forw_vector = FALSE; /* Parse of forw_r_code. */ get_bits3(data); /* Decode forw_r_code into forw_r_size and forw_f. */ vid_stream->picture.forw_r_size = data - 1; vid_stream->picture.forw_f = (1 << vid_stream->picture.forw_r_size); } /* If B type frame... */ if (vid_stream->picture.code_type == 3) { /* Parse off back vector full pixel flag. */ get_bits1(data); if (data) vid_stream->picture.full_pel_back_vector = TRUE; else vid_stream->picture.full_pel_back_vector = FALSE; /* Parse off back_r_code. */ get_bits3(data); /* Decode back_r_code into back_r_size and back_f. */ vid_stream->picture.back_r_size = data - 1; vid_stream->picture.back_f = (1 << vid_stream->picture.back_r_size); } /* Get extra bit picture info. */ if (vid_stream->picture.extra_info != NULL) { free(vid_stream->picture.extra_info); vid_stream->picture.extra_info = NULL; } vid_stream->picture.extra_info = get_extra_bit_info(); /* Goto next start code. */ next_start_code(); /* If start code is extension start code, parse off extension data. */ if (next_bits(32, EXT_START_CODE)) { flush_bits32; if (vid_stream->picture.ext_data != NULL) { free(vid_stream->picture.ext_data); vid_stream->picture.ext_data = NULL; } vid_stream->picture.ext_data = get_ext_data(); } /* If start code is user start code, parse off user data. */ if (next_bits(32, USER_START_CODE)) { flush_bits32; if (vid_stream->picture.user_data != NULL) { free(vid_stream->picture.user_data); vid_stream->picture.user_data = NULL; } vid_stream->picture.user_data = get_ext_data(); } /* Find a pict image structure in ring buffer not currently locked. */ i = 0; while (vid_stream->ring[i]->locked != 0) { if (++i >= RING_BUF_SIZE) { perror("Fatal error. Ring buffer full."); exit(1); } } /* Set current pict image structure to the one just found in ring. */ vid_stream->current = vid_stream->ring[i]; /* Set time stamp. */ vid_stream->current->show_time = time_stamp; /* Reset past macroblock address field. */ vid_stream->mblock.past_mb_addr = -1; return PARSE_OK; } /* *-------------------------------------------------------------- * * ParseSlice -- * * Parses off slice header. * * Results: * Values found in slice header put into video stream structure. * * Side effects: * Bit stream irreversibly parsed. * *-------------------------------------------------------------- */ static int ParseSlice(vid_stream) VidStream *vid_stream; { unsigned int data; /* Flush slice start code. */ flush_bits(24); /* Parse off slice vertical position. */ get_bits8(data); vid_stream->slice.vert_pos = data; /* Parse off quantization scale. */ get_bits5(data); vid_stream->slice.quant_scale = data; /* Parse off extra bit slice info. */ if (vid_stream->slice.extra_info != NULL) { free(vid_stream->slice.extra_info); vid_stream->slice.extra_info = NULL; } vid_stream->slice.extra_info = get_extra_bit_info(); /* Reset past intrablock address. */ vid_stream->mblock.past_intra_addr = -2; /* Reset previous recon motion vectors. */ vid_stream->mblock.recon_right_for_prev = 0; vid_stream->mblock.recon_down_for_prev = 0; vid_stream->mblock.recon_right_back_prev = 0; vid_stream->mblock.recon_down_back_prev = 0; /* Reset macroblock address. */ vid_stream->mblock.mb_address = ((vid_stream->slice.vert_pos - 1) * vid_stream->mb_width) - 1; /* Reset past dct dc y, cr, and cb values. */ vid_stream->block.dct_dc_y_past = 1024; vid_stream->block.dct_dc_cr_past = 1024; vid_stream->block.dct_dc_cb_past = 1024; return PARSE_OK; } /* *-------------------------------------------------------------- * * ParseMacroBlock -- * * Parseoff macroblock. Reconstructs DCT values. Applies * inverse DCT, reconstructs motion vectors, calculates and * set pixel values for macroblock in current pict image * structure. * * Results: * Here's where everything really happens. Welcome to the * heart of darkness. * * Side effects: * Bit stream irreversibly parsed off. * *-------------------------------------------------------------- */ static int ParseMacroBlock(vid_stream) VidStream *vid_stream; { int addr_incr; unsigned int data; int mask, i, recon_right_for, recon_down_for, recon_right_back, recon_down_back; int zero_block_flag; BOOLEAN mb_quant, mb_motion_forw, mb_motion_back, mb_pattern; int no_dith_flag = 0; #ifdef ANALYSIS mbSizeCount = bitCountRead(); #endif /* * Parse off macroblock address increment and add to macroblock address. */ do { DecodeMBAddrInc(addr_incr); if (addr_incr == MB_ESCAPE) { vid_stream->mblock.mb_address += 33; addr_incr = MB_STUFFING; } } while (addr_incr == MB_STUFFING); vid_stream->mblock.mb_address += addr_incr; if (vid_stream->mblock.mb_address > (vid_stream->mb_height * vid_stream->mb_width - 1)) return SKIP_TO_START_CODE; /* * If macroblocks have been skipped, process skipped macroblocks. */ if (vid_stream->mblock.mb_address - vid_stream->mblock.past_mb_addr > 1) { if (vid_stream->picture.code_type == P_TYPE) ProcessSkippedPFrameMBlocks(vid_stream); else if (vid_stream->picture.code_type == B_TYPE) ProcessSkippedBFrameMBlocks(vid_stream); } /* Set past macroblock address to current macroblock address. */ vid_stream->mblock.past_mb_addr = vid_stream->mblock.mb_address; /* Based on picture type decode macroblock type. */ switch (vid_stream->picture.code_type) { case I_TYPE: DecodeMBTypeI(mb_quant, mb_motion_forw, mb_motion_back, mb_pattern, vid_stream->mblock.mb_intra); break; case P_TYPE: DecodeMBTypeP(mb_quant, mb_motion_forw, mb_motion_back, mb_pattern, vid_stream->mblock.mb_intra); break; case B_TYPE: DecodeMBTypeB(mb_quant, mb_motion_forw, mb_motion_back, mb_pattern, vid_stream->mblock.mb_intra); break; } /* If quantization flag set, parse off new quantization scale. */ if (mb_quant == TRUE) { get_bits5(data); vid_stream->slice.quant_scale = data; } /* If forward motion vectors exist... */ if (mb_motion_forw == TRUE) { /* Parse off and decode horizontal forward motion vector. */ DecodeMotionVectors(vid_stream->mblock.motion_h_forw_code); /* If horiz. forward r data exists, parse off. */ if ((vid_stream->picture.forw_f != 1) && (vid_stream->mblock.motion_h_forw_code != 0)) { get_bitsn(vid_stream->picture.forw_r_size, data); vid_stream->mblock.motion_h_forw_r = data; } /* Parse off and decode vertical forward motion vector. */ DecodeMotionVectors(vid_stream->mblock.motion_v_forw_code); /* If vert. forw. r data exists, parse off. */ if ((vid_stream->picture.forw_f != 1) && (vid_stream->mblock.motion_v_forw_code != 0)) { get_bitsn(vid_stream->picture.forw_r_size, data); vid_stream->mblock.motion_v_forw_r = data; } } /* If back motion vectors exist... */ if (mb_motion_back == TRUE) { /* Parse off and decode horiz. back motion vector. */ DecodeMotionVectors(vid_stream->mblock.motion_h_back_code); /* If horiz. back r data exists, parse off. */ if ((vid_stream->picture.back_f != 1) && (vid_stream->mblock.motion_h_back_code != 0)) { get_bitsn(vid_stream->picture.back_r_size, data); vid_stream->mblock.motion_h_back_r = data; } /* Parse off and decode vert. back motion vector. */ DecodeMotionVectors(vid_stream->mblock.motion_v_back_code); /* If vert. back r data exists, parse off. */ if ((vid_stream->picture.back_f != 1) && (vid_stream->mblock.motion_v_back_code != 0)) { get_bitsn(vid_stream->picture.back_r_size, data); vid_stream->mblock.motion_v_back_r = data; } } #ifdef ANALYSIS if (vid_stream->mblock.mb_intra) { stat_a[0].i_mbnum++; mbCBPPtr = stat_a[0].i_mbcbp; mbCoeffPtr = stat_a[0].i_mbcoeff; mbSizePtr = &(stat_a[0].i_mbsize); } else if (mb_motion_back && mb_motion_forw) { stat_a[0].bi_mbnum++; mbCBPPtr = stat_a[0].bi_mbcbp; mbCoeffPtr = stat_a[0].bi_mbcoeff; mbSizePtr = &(stat_a[0].bi_mbsize); } else if (mb_motion_back) { stat_a[0].b_mbnum++; mbCBPPtr = stat_a[0].b_mbcbp; mbCoeffPtr = stat_a[0].b_mbcoeff; mbSizePtr = &(stat_a[0].b_mbsize); } else { stat_a[0].p_mbnum++; mbCBPPtr = stat_a[0].p_mbcbp; mbCoeffPtr = stat_a[0].p_mbcoeff; mbSizePtr = &(stat_a[0].p_mbsize); } #endif /* If mblock pattern flag set, parse and decode CBP (code block pattern). */ if (mb_pattern == TRUE) { DecodeCBP(vid_stream->mblock.cbp); } /* Otherwise, set CBP to zero. */ else vid_stream->mblock.cbp = 0; #ifdef ANALYSIS mbCBPPtr[vid_stream->mblock.cbp]++; #endif /* Reconstruct motion vectors depending on picture type. */ if (vid_stream->picture.code_type == P_TYPE) { /* * If no forw motion vectors, reset previous and current vectors to 0. */ if (!mb_motion_forw) { recon_right_for = 0; recon_down_for = 0; vid_stream->mblock.recon_right_for_prev = 0; vid_stream->mblock.recon_down_for_prev = 0; } /* * Otherwise, compute new forw motion vectors. Reset previous vectors to * current vectors. */ else { ComputeForwVector(&recon_right_for, &recon_down_for); } } if (vid_stream->picture.code_type == B_TYPE) { /* Reset prev. and current vectors to zero if mblock is intracoded. */ if (vid_stream->mblock.mb_intra) { vid_stream->mblock.recon_right_for_prev = 0; vid_stream->mblock.recon_down_for_prev = 0; vid_stream->mblock.recon_right_back_prev = 0; vid_stream->mblock.recon_down_back_prev = 0; } else { /* If no forw vectors, current vectors equal prev. vectors. */ if (!mb_motion_forw) { recon_right_for = vid_stream->mblock.recon_right_for_prev; recon_down_for = vid_stream->mblock.recon_down_for_prev; } /* * Otherwise compute forw. vectors. Reset prev vectors to new values. */ else { ComputeForwVector(&recon_right_for, &recon_down_for); } /* If no back vectors, set back vectors to prev back vectors. */ if (!mb_motion_back) { recon_right_back = vid_stream->mblock.recon_right_back_prev; recon_down_back = vid_stream->mblock.recon_down_back_prev; } /* Otherwise compute new vectors and reset prev. back vectors. */ else { ComputeBackVector(&recon_right_back, &recon_down_back); } /* * Store vector existance flags in structure for possible skipped * macroblocks to follow. */ vid_stream->mblock.bpict_past_forw = mb_motion_forw; vid_stream->mblock.bpict_past_back = mb_motion_back; } } /* For each possible block in macroblock. */ if (ditherType == GRAY_DITHER || ditherType == MONO_DITHER || ditherType == MONO_THRESHOLD) { for (mask = 32, i = 0; i < 4; mask >>= 1, i++) { /* If block exists... */ if ((vid_stream->mblock.mb_intra) || (vid_stream->mblock.cbp & mask)) { zero_block_flag = 0; ParseReconBlock(i); } else { zero_block_flag = 1; } /* If macroblock is intra coded... */ if (vid_stream->mblock.mb_intra) { ReconIMBlock(vid_stream, i); } else if (mb_motion_forw && mb_motion_back) { ReconBiMBlock(vid_stream, i, recon_right_for, recon_down_for, recon_right_back, recon_down_back, zero_block_flag); } else if (mb_motion_forw || (vid_stream->picture.code_type == P_TYPE)) { ReconPMBlock(vid_stream, i, recon_right_for, recon_down_for, zero_block_flag); } else if (mb_motion_back) { ReconBMBlock(vid_stream, i, recon_right_back, recon_down_back, zero_block_flag); } } /* Kill the Chrominace blocks... */ if ((vid_stream->mblock.mb_intra) || (vid_stream->mblock.cbp & 0x2)) { ParseAwayBlock(4); } if ((vid_stream->mblock.mb_intra) || (vid_stream->mblock.cbp & 0x1)) { ParseAwayBlock(5); } } else { for (mask = 32, i = 0; i < 6; mask >>= 1, i++) { /* If block exists... */ if ((vid_stream->mblock.mb_intra) || (vid_stream->mblock.cbp & mask)) { zero_block_flag = 0; ParseReconBlock(i); } else { zero_block_flag = 1; } /* If macroblock is intra coded... */ if (vid_stream->mblock.mb_intra) { ReconIMBlock(vid_stream, i); } else if (mb_motion_forw && mb_motion_back) { ReconBiMBlock(vid_stream, i, recon_right_for, recon_down_for, recon_right_back, recon_down_back, zero_block_flag); } else if (mb_motion_forw || (vid_stream->picture.code_type == P_TYPE)) { ReconPMBlock(vid_stream, i, recon_right_for, recon_down_for, zero_block_flag); } else if (mb_motion_back) { ReconBMBlock(vid_stream, i, recon_right_back, recon_down_back, zero_block_flag); } } } /* If D Type picture, flush marker bit. */ if (vid_stream->picture.code_type == 4) flush_bits(1); /* If macroblock was intracoded, set macroblock past intra address. */ if (vid_stream->mblock.mb_intra) vid_stream->mblock.past_intra_addr = vid_stream->mblock.mb_address; #ifdef ANALYSIS *mbSizePtr += bitCountRead() - mbSizeCount; #endif return PARSE_OK; } /* *-------------------------------------------------------------- * * ReconIMBlock -- * * Reconstructs intra coded macroblock. * * Results: * None. * * Side effects: * None. * *-------------------------------------------------------------- */ static void ReconIMBlock(vid_stream, bnum) VidStream *vid_stream; int bnum; { int mb_row, mb_col, row, col, row_size, rr; unsigned char *dest; /* Calculate macroblock row and column from address. */ mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width; mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width; /* If block is luminance block... */ if (bnum < 4) { /* Calculate row and col values for upper left pixel of block. */ row = mb_row * 16; col = mb_col * 16; if (bnum > 1) row += 8; if (bnum % 2) col += 8; /* Set dest to luminance plane of current pict image. */ dest = vid_stream->current->luminance; /* Establish row size. */ row_size = vid_stream->mb_width * 16; } /* Otherwise if block is Cr block... */ else if (bnum == 4) { /* Set dest to Cr plane of current pict image. */ dest = vid_stream->current->Cr; /* Establish row size. */ row_size = vid_stream->mb_width * 8; /* Calculate row,col for upper left pixel of block. */ row = mb_row * 8; col = mb_col * 8; } /* Otherwise block is Cb block, and ... */ else { /* Set dest to Cb plane of current pict image. */ dest = vid_stream->current->Cb; /* Establish row size. */ row_size = vid_stream->mb_width * 8; /* Calculate row,col for upper left pixel value of block. */ row = mb_row * 8; col = mb_col * 8; } /* * For each pixel in block, set to cropped reconstructed value from inverse * dct. */ { short *sp = &vid_stream->block.dct_recon[0][0]; unsigned char *cm = cropTbl + MAX_NEG_CROP; dest += row * row_size + col; for (rr = 0; rr < 4; rr++, sp += 16, dest += row_size) { dest[0] = cm[sp[0]]; assertCrop(sp[0]); dest[1] = cm[sp[1]]; assertCrop(sp[1]); dest[2] = cm[sp[2]]; assertCrop(sp[2]); dest[3] = cm[sp[3]]; assertCrop(sp[3]); dest[4] = cm[sp[4]]; assertCrop(sp[4]); dest[5] = cm[sp[5]]; assertCrop(sp[5]); dest[6] = cm[sp[6]]; assertCrop(sp[6]); dest[7] = cm[sp[7]]; assertCrop(sp[7]); dest += row_size; dest[0] = cm[sp[8]]; assertCrop(sp[8]); dest[1] = cm[sp[9]]; assertCrop(sp[9]); dest[2] = cm[sp[10]]; assertCrop(sp[10]); dest[3] = cm[sp[11]]; assertCrop(sp[11]); dest[4] = cm[sp[12]]; assertCrop(sp[12]); dest[5] = cm[sp[13]]; assertCrop(sp[13]); dest[6] = cm[sp[14]]; assertCrop(sp[14]); dest[7] = cm[sp[15]]; assertCrop(sp[15]); } } } /* *-------------------------------------------------------------- * * ReconPMBlock -- * * Reconstructs forward predicted macroblocks. * * Results: * None. * * Side effects: * None. * *-------------------------------------------------------------- */ static void ReconPMBlock(vid_stream, bnum, recon_right_for, recon_down_for, zflag) VidStream *vid_stream; int bnum, recon_right_for, recon_down_for, zflag; { int mb_row, mb_col, row, col, row_size, rr; unsigned char *dest, *past; static int right_for, down_for, right_half_for, down_half_for; unsigned char *rindex1, *rindex2; unsigned char *index; short int *blockvals; #ifdef LOOSE_MPEG int maxx, maxy; int illegalBlock = 0; int row_start, row_end, rfirst, rlast, col_start, col_end, cfirst, clast; #endif /* Calculate macroblock row and column from address. */ mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width; mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width; if (bnum < 4) { /* Calculate right_for, down_for motion vectors. */ right_for = recon_right_for >> 1; down_for = recon_down_for >> 1; right_half_for = recon_right_for & 0x1; down_half_for = recon_down_for & 0x1; /* Set dest to luminance plane of current pict image. */ dest = vid_stream->current->luminance; if (vid_stream->picture.code_type == B_TYPE) { if (vid_stream->past != NULL) past = vid_stream->past->luminance; } else { /* Set predicitive frame to current future frame. */ if (vid_stream->future != NULL) past = vid_stream->future->luminance; } /* Establish row size. */ row_size = vid_stream->mb_width << 4; /* Calculate row,col of upper left pixel in block. */ row = mb_row << 4; col = mb_col << 4; if (bnum > 1) row += 8; if (bnum % 2) col += 8; #ifdef LOOSE_MPEG /* Check for block illegality. */ maxx = lmaxx; maxy = lmaxy; if (row + down_for + 7 > maxy) illegalBlock |= 0x4; else if (row + down_for < 0) illegalBlock |= 0x1; if (col + right_for + 7 > maxx) illegalBlock |= 0x2; else if (col + right_for < 0) illegalBlock |= 0x8; #endif } /* Otherwise, block is NOT luminance block, ... */ else { /* Construct motion vectors. */ recon_right_for /= 2; recon_down_for /= 2; right_for = recon_right_for >> 1; down_for = recon_down_for >> 1; right_half_for = recon_right_for & 0x1; down_half_for = recon_down_for & 0x1; /* Establish row size. */ row_size = vid_stream->mb_width << 3; /* Calculate row,col of upper left pixel in block. */ row = mb_row << 3; col = mb_col << 3; #ifdef LOOSE_MPEG /* Check for block illegality. */ maxx = cmaxx; maxy = cmaxy; if (row + down_for + 7 > maxy) illegalBlock |= 0x4; else if (row + down_for < 0) illegalBlock |= 0x1; if (col + right_for + 7 > maxx) illegalBlock |= 0x2; else if (col + right_for < 0) illegalBlock |= 0x8; #endif /* If block is Cr block... */ if (bnum == 4) { /* Set dest to Cr plane of current pict image. */ dest = vid_stream->current->Cr; if (vid_stream->picture.code_type == B_TYPE) { if (vid_stream->past != NULL) past = vid_stream->past->Cr; } else { if (vid_stream->future != NULL) past = vid_stream->future->Cr; } } /* Otherwise, block is Cb block... */ else { /* Set dest to Cb plane of current pict image. */ dest = vid_stream->current->Cb; if (vid_stream->picture.code_type == B_TYPE) { if (vid_stream->past != NULL) past = vid_stream->past->Cb; } else { if (vid_stream->future != NULL) past = vid_stream->future->Cb; } } } /* For each pixel in block... */ #ifdef LOOSE_MPEG if (illegalBlock) { if (illegalBlock & 0x1) { row_start = 0; row_end = row+down_for+8; rfirst = rlast = 8 - row_end; } else if (illegalBlock & 0x4) { row_start = row + down_for; row_end = maxy+1; rlast = row_end - row_start - 1; rfirst = 0; } else { row_start = row+down_for; row_end = row_start+8; rfirst = 0; } if (illegalBlock & 0x8) { col_start = 0; col_end = col + right_for + 8; cfirst = clast = 8 - col_end; } else if (illegalBlock & 0x2) { col_start = col + right_for; col_end = maxx + 1; clast = col_end - col_start - 1; cfirst = 0; } else { col_start = col + right_for; col_end = col_start + 8; cfirst = 0; } for (rr = row_start; rr < row_end; rr++) { rindex1 = past + (rr * row_size) + col_start; index = dest + ((row + rfirst) * row_size) + col + cfirst; for (cc = col_start; cc < col_end; cc++) { *index++ = *rindex1++; } } if (illegalBlock & 0x1) { for (rr = rlast -1; rr >=0; rr--) { index = dest + ((row + rr) * row_size) + col; rindex1 = dest + ((row + rlast) * row_size) + col; for (cc = 0; cc < 8; cc ++) { *index++ = *rindex1++; } } } else if (illegalBlock & 0x4) { for (rr = rlast+1; rr < 8; rr++) { index = dest + ((row + rr) * row_size) + col; rindex1 = dest + ((row + rlast) * row_size) + col; for (cc = 0; cc < 8; cc ++) { *index++ = *rindex1++; } } } if (illegalBlock & 0x2) { for (cc = clast+1; cc < 8; cc++) { index = dest + (row * row_size) + (col + cc); rindex1 = dest + (row * row_size) + (col + clast); for (rr = 0; rr < 8; rr++) { *index = *rindex1; index += row_size; rindex1 += row_size; } } } else if (illegalBlock & 0x8) { for (cc = clast-1; cc >= 0; cc--) { index = dest + (row * row_size) + (col + cc); rindex1 = dest + (row * row_size) + (col + clast); for (rr = 0; rr < 8; rr++) { *index = *rindex1; index += row_size; rindex1 += row_size; } } } if (!zflag) { for (rr = 0; rr < 8; rr++) { index = dest + (row*row_size) + col; blockvals = &(vid_stream->block.dct_recon[rr][0]); index[0] += blockvals[0]; index[1] += blockvals[1]; index[2] += blockvals[2]; index[3] += blockvals[3]; index[4] += blockvals[4]; index[5] += blockvals[5]; index[6] += blockvals[6]; index[7] += blockvals[7]; } } } else { #endif index = dest + (row * row_size) + col; rindex1 = past + (row + down_for) * row_size + col + right_for; blockvals = &(vid_stream->block.dct_recon[0][0]); /* * Calculate predictive pixel value based on motion vectors and copy to * dest plane. */ if ((!down_half_for) && (!right_half_for)) { unsigned char *cm = cropTbl + MAX_NEG_CROP; if (!zflag) for (rr = 0; rr < 4; rr++) { index[0] = cm[(int) rindex1[0] + (int) blockvals[0]]; index[1] = cm[(int) rindex1[1] + (int) blockvals[1]]; index[2] = cm[(int) rindex1[2] + (int) blockvals[2]]; index[3] = cm[(int) rindex1[3] + (int) blockvals[3]]; index[4] = cm[(int) rindex1[4] + (int) blockvals[4]]; index[5] = cm[(int) rindex1[5] + (int) blockvals[5]]; index[6] = cm[(int) rindex1[6] + (int) blockvals[6]]; index[7] = cm[(int) rindex1[7] + (int) blockvals[7]]; index += row_size; rindex1 += row_size; index[0] = cm[(int) rindex1[0] + (int) blockvals[8]]; index[1] = cm[(int) rindex1[1] + (int) blockvals[9]]; index[2] = cm[(int) rindex1[2] + (int) blockvals[10]]; index[3] = cm[(int) rindex1[3] + (int) blockvals[11]]; index[4] = cm[(int) rindex1[4] + (int) blockvals[12]]; index[5] = cm[(int) rindex1[5] + (int) blockvals[13]]; index[6] = cm[(int) rindex1[6] + (int) blockvals[14]]; index[7] = cm[(int) rindex1[7] + (int) blockvals[15]]; blockvals += 16; index += row_size; rindex1 += row_size; } else { if (right_for & 0x1) { /* No alignment, use bye copy */ for (rr = 0; rr < 4; rr++) { index[0] = rindex1[0]; index[1] = rindex1[1]; index[2] = rindex1[2]; index[3] = rindex1[3]; index[4] = rindex1[4]; index[5] = rindex1[5]; index[6] = rindex1[6]; index[7] = rindex1[7]; index += row_size; rindex1 += row_size; index[0] = rindex1[0]; index[1] = rindex1[1]; index[2] = rindex1[2]; index[3] = rindex1[3]; index[4] = rindex1[4]; index[5] = rindex1[5]; index[6] = rindex1[6]; index[7] = rindex1[7]; index += row_size; rindex1 += row_size; } } else if (right_for & 0x2) { /* Half-word bit aligned, use 16 bit copy */ short *src = (short *)rindex1; short *dest = (short *)index; row_size >>= 1; for (rr = 0; rr < 4; rr++) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = src[3]; dest += row_size; src += row_size; dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = src[3]; dest += row_size; src += row_size; } } else { /* Word aligned, use 32 bit copy */ int *src = (int *)rindex1; int *dest = (int *)index; row_size >>= 2; for (rr = 0; rr < 4; rr++) { dest[0] = src[0]; dest[1] = src[1]; dest += row_size; src += row_size; dest[0] = src[0]; dest[1] = src[1]; dest += row_size; src += row_size; } } } } else { unsigned char *cm = cropTbl + MAX_NEG_CROP; rindex2 = rindex1 + right_half_for + (down_half_for * row_size); if (!zflag) for (rr = 0; rr < 4; rr++) { index[0] = cm[((int) (rindex1[0] + rindex2[0]) >> 1) + blockvals[0]]; index[1] = cm[((int) (rindex1[1] + rindex2[1]) >> 1) + blockvals[1]]; index[2] = cm[((int) (rindex1[2] + rindex2[2]) >> 1) + blockvals[2]]; index[3] = cm[((int) (rindex1[3] + rindex2[3]) >> 1) + blockvals[3]]; index[4] = cm[((int) (rindex1[4] + rindex2[4]) >> 1) + blockvals[4]]; index[5] = cm[((int) (rindex1[5] + rindex2[5]) >> 1) + blockvals[5]]; index[6] = cm[((int) (rindex1[6] + rindex2[6]) >> 1) + blockvals[6]]; index[7] = cm[((int) (rindex1[7] + rindex2[7]) >> 1) + blockvals[7]]; index += row_size; rindex1 += row_size; rindex2 += row_size; index[0] = cm[((int) (rindex1[0] + rindex2[0]) >> 1) + blockvals[8]]; index[1] = cm[((int) (rindex1[1] + rindex2[1]) >> 1) + blockvals[9]]; index[2] = cm[((int) (rindex1[2] + rindex2[2]) >> 1) + blockvals[10]]; index[3] = cm[((int) (rindex1[3] + rindex2[3]) >> 1) + blockvals[11]]; index[4] = cm[((int) (rindex1[4] + rindex2[4]) >> 1) + blockvals[12]]; index[5] = cm[((int) (rindex1[5] + rindex2[5]) >> 1) + blockvals[13]]; index[6] = cm[((int) (rindex1[6] + rindex2[6]) >> 1) + blockvals[14]]; index[7] = cm[((int) (rindex1[7] + rindex2[7]) >> 1) + blockvals[15]]; blockvals += 16; index += row_size; rindex1 += row_size; rindex2 += row_size; } else for (rr = 0; rr < 4; rr++) { index[0] = (int) (rindex1[0] + rindex2[0]) >> 1; index[1] = (int) (rindex1[1] + rindex2[1]) >> 1; index[2] = (int) (rindex1[2] + rindex2[2]) >> 1; index[3] = (int) (rindex1[3] + rindex2[3]) >> 1; index[4] = (int) (rindex1[4] + rindex2[4]) >> 1; index[5] = (int) (rindex1[5] + rindex2[5]) >> 1; index[6] = (int) (rindex1[6] + rindex2[6]) >> 1; index[7] = (int) (rindex1[7] + rindex2[7]) >> 1; index += row_size; rindex1 += row_size; rindex2 += row_size; index[0] = (int) (rindex1[0] + rindex2[0]) >> 1; index[1] = (int) (rindex1[1] + rindex2[1]) >> 1; index[2] = (int) (rindex1[2] + rindex2[2]) >> 1; index[3] = (int) (rindex1[3] + rindex2[3]) >> 1; index[4] = (int) (rindex1[4] + rindex2[4]) >> 1; index[5] = (int) (rindex1[5] + rindex2[5]) >> 1; index[6] = (int) (rindex1[6] + rindex2[6]) >> 1; index[7] = (int) (rindex1[7] + rindex2[7]) >> 1; index += row_size; rindex1 += row_size; rindex2 += row_size; } } #ifdef LOOSE_MPEG } #endif } /* *-------------------------------------------------------------- * * ReconBMBlock -- * * Reconstructs back predicted macroblocks. * * Results: * None. * * Side effects: * None. * *-------------------------------------------------------------- */ static void ReconBMBlock(vid_stream, bnum, recon_right_back, recon_down_back, zflag) VidStream *vid_stream; int bnum, recon_right_back, recon_down_back, zflag; { int mb_row, mb_col, row, col, row_size, rr; unsigned char *dest, *future; int right_back, down_back, right_half_back, down_half_back; unsigned char *rindex1, *rindex2; unsigned char *index; short int *blockvals; #ifdef LOOSE_MPEG int illegalBlock = 0; int maxx, maxy; int row_start, row_end, rlast, rfirst, col_start, col_end, clast, cfirst; #endif /* Calculate macroblock row and column from address. */ mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width; mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width; /* If block is luminance block... */ if (bnum < 4) { /* Calculate right_back, down_bakc motion vectors. */ right_back = recon_right_back >> 1; down_back = recon_down_back >> 1; right_half_back = recon_right_back & 0x1; down_half_back = recon_down_back & 0x1; /* Set dest to luminance plane of current pict image. */ dest = vid_stream->current->luminance; /* * If future frame exists, set future to luminance plane of future frame. */ if (vid_stream->future != NULL) future = vid_stream->future->luminance; /* Establish row size. */ row_size = vid_stream->mb_width << 4; /* Calculate row,col of upper left pixel in block. */ row = mb_row << 4; col = mb_col << 4; if (bnum > 1) row += 8; if (bnum % 2) col += 8; #ifdef LOOSE_MPEG /* Check for block illegality. */ maxx = lmaxx; maxy = lmaxy; if (row + down_back + 7 > maxy) illegalBlock |= 0x4; else if (row + down_back < 0) illegalBlock |= 0x1; if (col + right_back + 7 > maxx) illegalBlock |= 0x2; else if (col + right_back < 0) illegalBlock |= 0x8; #endif } /* Otherwise, block is NOT luminance block, ... */ else { /* Construct motion vectors. */ recon_right_back /= 2; recon_down_back /= 2; right_back = recon_right_back >> 1; down_back = recon_down_back >> 1; right_half_back = recon_right_back & 0x1; down_half_back = recon_down_back & 0x1; /* Establish row size. */ row_size = vid_stream->mb_width << 3; /* Calculate row,col of upper left pixel in block. */ row = mb_row << 3; col = mb_col << 3; #ifdef LOOSE_MPEG /* Check for block illegality. */ maxx = cmaxx; maxy = cmaxy; if (row + down_back + 7 > maxy) illegalBlock |= 0x4; else if (row + down_back < 0) illegalBlock |= 0x1; if (col + right_back + 7 > maxx) illegalBlock |= 0x2; else if (col + right_back < 0) illegalBlock |= 0x8; #endif /* If block is Cr block... */ if (bnum == 4) { /* Set dest to Cr plane of current pict image. */ dest = vid_stream->current->Cr; /* * If future frame exists, set future to Cr plane of future image. */ if (vid_stream->future != NULL) future = vid_stream->future->Cr; } /* Otherwise, block is Cb block... */ else { /* Set dest to Cb plane of current pict image. */ dest = vid_stream->current->Cb; /* * If future frame exists, set future to Cb plane of future frame. */ if (vid_stream->future != NULL) future = vid_stream->future->Cb; } } /* For each pixel in block do... */ #ifdef LOOSE_MPEG if (illegalBlock) { if (illegalBlock & 0x1) { row_start = 0; row_end = row+down_back+8; rfirst = rlast = 8 - row_end; } else if (illegalBlock & 0x4) { row_start = row + down_back; row_end = maxy+1; rlast = row_end - row_start - 1; rfirst = 0; } else { row_start = row+down_back; row_end = row_start+8; rfirst = 0; } if (illegalBlock & 0x8) { col_start = 0; col_end = col + right_back + 8; cfirst = clast = 8 - col_end; } else if (illegalBlock & 0x2) { col_start = col + right_back; col_end = maxx + 1; clast = col_end - col_start - 1; cfirst = 0; } else { col_start = col + right_back; col_end = col_start + 8; cfirst = 0; } for (rr = row_start; rr < row_end; rr++) { rindex1 = future + (rr * row_size) + col_start; index = dest + ((row + rfirst) * row_size) + col + cfirst; for (cc = col_start; cc < col_end; cc++) { *index++ = *rindex1++; } } if (illegalBlock & 0x1) { for (rr = rlast -1; rr >=0; rr--) { index = dest + ((row + rr) * row_size) + col; rindex1 = dest + ((row + rlast) * row_size) + col; for (cc = 0; cc < 8; cc ++) { *index++ = *rindex1++; } } } else if (illegalBlock & 0x4) { for (rr = rlast+1; rr < 8; rr++) { index = dest + ((row + rr) * row_size) + col; rindex1 = dest + ((row + rlast) * row_size) + col; for (cc = 0; cc < 8; cc ++) { *index++ = *rindex1++; } } } if (illegalBlock & 0x2) { for (cc = clast+1; cc < 8; cc++) { index = dest + (row * row_size) + (col + cc); rindex1 = dest + (row * row_size) + (col + clast); for (rr = 0; rr < 8; rr++) { *index = *rindex1; index += row_size; rindex1 += row_size; } } } else if (illegalBlock & 0x8) { for (cc = clast-1; cc >= 0; cc--) { index = dest + (row * row_size) + (col + cc); rindex1 = dest + (row * row_size) + (col + clast); for (rr = 0; rr < 8; rr++) { *index = *rindex1; index += row_size; rindex1 += row_size; } } } if (!zflag) { for (rr = 0; rr < 8; rr++) { index = dest + (row*row_size) + col; blockvals = &(vid_stream->block.dct_recon[rr][0]); index[0] += blockvals[0]; index[1] += blockvals[1]; index[2] += blockvals[2]; index[3] += blockvals[3]; index[4] += blockvals[4]; index[5] += blockvals[5]; index[6] += blockvals[6]; index[7] += blockvals[7]; } } } else { #endif index = dest + (row * row_size) + col; rindex1 = future + (row + down_back) * row_size + col + right_back; blockvals = &(vid_stream->block.dct_recon[0][0]); if ((!right_half_back) && (!down_half_back)) { unsigned char *cm = cropTbl + MAX_NEG_CROP; if (!zflag) for (rr = 0; rr < 4; rr++) { index[0] = cm[(int) rindex1[0] + (int) blockvals[0]]; index[1] = cm[(int) rindex1[1] + (int) blockvals[1]]; index[2] = cm[(int) rindex1[2] + (int) blockvals[2]]; index[3] = cm[(int) rindex1[3] + (int) blockvals[3]]; index[4] = cm[(int) rindex1[4] + (int) blockvals[4]]; index[5] = cm[(int) rindex1[5] + (int) blockvals[5]]; index[6] = cm[(int) rindex1[6] + (int) blockvals[6]]; index[7] = cm[(int) rindex1[7] + (int) blockvals[7]]; index += row_size; rindex1 += row_size; index[0] = cm[(int) rindex1[0] + (int) blockvals[8]]; index[1] = cm[(int) rindex1[1] + (int) blockvals[9]]; index[2] = cm[(int) rindex1[2] + (int) blockvals[10]]; index[3] = cm[(int) rindex1[3] + (int) blockvals[11]]; index[4] = cm[(int) rindex1[4] + (int) blockvals[12]]; index[5] = cm[(int) rindex1[5] + (int) blockvals[13]]; index[6] = cm[(int) rindex1[6] + (int) blockvals[14]]; index[7] = cm[(int) rindex1[7] + (int) blockvals[15]]; blockvals += 16; index += row_size; rindex1 += row_size; } else { if (right_back & 0x1) { /* No alignment, use bye copy */ for (rr = 0; rr < 4; rr++) { index[0] = rindex1[0]; index[1] = rindex1[1]; index[2] = rindex1[2]; index[3] = rindex1[3]; index[4] = rindex1[4]; index[5] = rindex1[5]; index[6] = rindex1[6]; index[7] = rindex1[7]; index += row_size; rindex1 += row_size; index[0] = rindex1[0]; index[1] = rindex1[1]; index[2] = rindex1[2]; index[3] = rindex1[3]; index[4] = rindex1[4]; index[5] = rindex1[5]; index[6] = rindex1[6]; index[7] = rindex1[7]; index += row_size; rindex1 += row_size; } } else if (right_back & 0x2) { /* Half-word bit aligned, use 16 bit copy */ short *src = (short *)rindex1; short *dest = (short *)index; row_size >>= 1; for (rr = 0; rr < 4; rr++) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = src[3]; dest += row_size; src += row_size; dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = src[3]; dest += row_size; src += row_size; } } else { /* Word aligned, use 32 bit copy */ int *src = (int *)rindex1; int *dest = (int *)index; row_size >>= 2; for (rr = 0; rr < 4; rr++) { dest[0] = src[0]; dest[1] = src[1]; dest += row_size; src += row_size; dest[0] = src[0]; dest[1] = src[1]; dest += row_size; src += row_size; } } } } else { unsigned char *cm = cropTbl + MAX_NEG_CROP; rindex2 = rindex1 + right_half_back + (down_half_back * row_size); if (!zflag) for (rr = 0; rr < 4; rr++) { index[0] = cm[((int) (rindex1[0] + rindex2[0]) >> 1) + blockvals[0]]; index[1] = cm[((int) (rindex1[1] + rindex2[1]) >> 1) + blockvals[1]]; index[2] = cm[((int) (rindex1[2] + rindex2[2]) >> 1) + blockvals[2]]; index[3] = cm[((int) (rindex1[3] + rindex2[3]) >> 1) + blockvals[3]]; index[4] = cm[((int) (rindex1[4] + rindex2[4]) >> 1) + blockvals[4]]; index[5] = cm[((int) (rindex1[5] + rindex2[5]) >> 1) + blockvals[5]]; index[6] = cm[((int) (rindex1[6] + rindex2[6]) >> 1) + blockvals[6]]; index[7] = cm[((int) (rindex1[7] + rindex2[7]) >> 1) + blockvals[7]]; index += row_size; rindex1 += row_size; rindex2 += row_size; index[0] = cm[((int) (rindex1[0] + rindex2[0]) >> 1) + blockvals[8]]; index[1] = cm[((int) (rindex1[1] + rindex2[1]) >> 1) + blockvals[9]]; index[2] = cm[((int) (rindex1[2] + rindex2[2]) >> 1) + blockvals[10]]; index[3] = cm[((int) (rindex1[3] + rindex2[3]) >> 1) + blockvals[11]]; index[4] = cm[((int) (rindex1[4] + rindex2[4]) >> 1) + blockvals[12]]; index[5] = cm[((int) (rindex1[5] + rindex2[5]) >> 1) + blockvals[13]]; index[6] = cm[((int) (rindex1[6] + rindex2[6]) >> 1) + blockvals[14]]; index[7] = cm[((int) (rindex1[7] + rindex2[7]) >> 1) + blockvals[15]]; blockvals += 16; index += row_size; rindex1 += row_size; rindex2 += row_size; } else for (rr = 0; rr < 4; rr++) { index[0] = (int) (rindex1[0] + rindex2[0]) >> 1; index[1] = (int) (rindex1[1] + rindex2[1]) >> 1; index[2] = (int) (rindex1[2] + rindex2[2]) >> 1; index[3] = (int) (rindex1[3] + rindex2[3]) >> 1; index[4] = (int) (rindex1[4] + rindex2[4]) >> 1; index[5] = (int) (rindex1[5] + rindex2[5]) >> 1; index[6] = (int) (rindex1[6] + rindex2[6]) >> 1; index[7] = (int) (rindex1[7] + rindex2[7]) >> 1; index += row_size; rindex1 += row_size; rindex2 += row_size; index[0] = (int) (rindex1[0] + rindex2[0]) >> 1; index[1] = (int) (rindex1[1] + rindex2[1]) >> 1; index[2] = (int) (rindex1[2] + rindex2[2]) >> 1; index[3] = (int) (rindex1[3] + rindex2[3]) >> 1; index[4] = (int) (rindex1[4] + rindex2[4]) >> 1; index[5] = (int) (rindex1[5] + rindex2[5]) >> 1; index[6] = (int) (rindex1[6] + rindex2[6]) >> 1; index[7] = (int) (rindex1[7] + rindex2[7]) >> 1; index += row_size; rindex1 += row_size; rindex2 += row_size; } } #ifdef LOOSE_MPEG } #endif } /* *-------------------------------------------------------------- * * ReconBiMBlock -- * * Reconstructs bidirectionally predicted macroblocks. * * Results: * None. * * Side effects: * None. * *-------------------------------------------------------------- */ static void ReconBiMBlock(vid_stream, bnum, recon_right_for, recon_down_for, recon_right_back, recon_down_back, zflag) VidStream *vid_stream; int bnum, recon_right_for, recon_down_for, recon_right_back, recon_down_back; int zflag; { int mb_row, mb_col, row, col, row_size, rr; unsigned char *dest, *past, *future; int right_for, down_for, right_half_for, down_half_for; int right_back, down_back, right_half_back, down_half_back; unsigned char *index, *rindex1, *bindex1; short int *blockvals; int forw_row_start, back_row_start, forw_col_start, back_col_start; #ifdef LOOSE_MPEG int illegal_forw = 0; int illegal_back = 0; #endif /* Calculate macroblock row and column from address. */ mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width; mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width; /* If block is luminance block... */ if (bnum < 4) { /* * Calculate right_for, down_for, right_half_for, down_half_for, * right_back, down_bakc, right_half_back, and down_half_back, motion * vectors. */ right_for = recon_right_for >> 1; down_for = recon_down_for >> 1; right_half_for = recon_right_for & 0x1; down_half_for = recon_down_for & 0x1; right_back = recon_right_back >> 1; down_back = recon_down_back >> 1; right_half_back = recon_right_back & 0x1; down_half_back = recon_down_back & 0x1; /* Set dest to luminance plane of current pict image. */ dest = vid_stream->current->luminance; /* If past frame exists, set past to luminance plane of past frame. */ if (vid_stream->past != NULL) past = vid_stream->past->luminance; /* * If future frame exists, set future to luminance plane of future frame. */ if (vid_stream->future != NULL) future = vid_stream->future->luminance; /* Establish row size. */ row_size = (vid_stream->mb_width << 4); /* Calculate row,col of upper left pixel in block. */ row = (mb_row << 4); col = (mb_col << 4); if (bnum > 1) row += 8; if (bnum & 0x01) col += 8; forw_col_start = col + right_for; forw_row_start = row + down_for; back_col_start = col + right_back; back_row_start = row + down_back; #ifdef LOOSE_MPEG /* Check for illegal pred. blocks. */ if (forw_col_start+8 > lmaxx) illegal_forw = 1; else if (forw_col_start < 0) illegal_forw = 1; if (forw_row_start+8 > lmaxy) illegal_forw = 1; else if (forw_row_start < 0) illegal_forw = 1; if (back_col_start+8 > lmaxx) illegal_back = 1; else if (back_col_start < 0) illegal_back = 1; if (back_row_start+8 > lmaxy) illegal_back = 1; else if (back_row_start < 0) illegal_back = 1; #endif } /* Otherwise, block is NOT luminance block, ... */ else { /* Construct motion vectors. */ recon_right_for /= 2; recon_down_for /= 2; right_for = recon_right_for >> 1; down_for = recon_down_for >> 1; right_half_for = recon_right_for & 0x1; down_half_for = recon_down_for & 0x1; recon_right_back /= 2; recon_down_back /= 2; right_back = recon_right_back >> 1; down_back = recon_down_back >> 1; right_half_back = recon_right_back & 0x1; down_half_back = recon_down_back & 0x1; /* Establish row size. */ row_size = (vid_stream->mb_width << 3); /* Calculate row,col of upper left pixel in block. */ row = (mb_row << 3); col = (mb_col << 3); forw_col_start = col + right_for; forw_row_start = row + down_for; back_col_start = col + right_back; back_row_start = row + down_back; #ifdef LOOSE_MPEG /* Check for illegal pred. blocks. */ if (forw_col_start+8 > cmaxx) illegal_forw = 1; else if (forw_col_start < 0) illegal_forw = 1; if (forw_row_start+8 > cmaxy) illegal_forw = 1; else if (forw_row_start < 0) illegal_forw = 1; if (back_col_start+8 > cmaxx) illegal_back = 1; else if (back_col_start < 0) illegal_back = 1; if (back_row_start+8 > cmaxy) illegal_back = 1; else if (back_row_start < 0) illegal_back = 1; #endif /* If block is Cr block... */ if (bnum == 4) { /* Set dest to Cr plane of current pict image. */ dest = vid_stream->current->Cr; /* If past frame exists, set past to Cr plane of past image. */ if (vid_stream->past != NULL) past = vid_stream->past->Cr; /* * If future frame exists, set future to Cr plane of future image. */ if (vid_stream->future != NULL) future = vid_stream->future->Cr; } /* Otherwise, block is Cb block... */ else { /* Set dest to Cb plane of current pict image. */ dest = vid_stream->current->Cb; /* If past frame exists, set past to Cb plane of past frame. */ if (vid_stream->past != NULL) past = vid_stream->past->Cb; /* * If future frame exists, set future to Cb plane of future frame. */ if (vid_stream->future != NULL) future = vid_stream->future->Cb; } } /* For each pixel in block... */ index = dest + (row * row_size) + col; #ifdef LOOSE_MPEG if (illegal_forw) rindex1 = future + back_row_start * row_size + back_col_start; else #endif rindex1 = past + forw_row_start * row_size + forw_col_start; #ifdef LOOSE_MPEG if (illegal_back) bindex1 = past + forw_row_start * row_size + forw_col_start; else #endif bindex1 = future + back_row_start * row_size + back_col_start; blockvals = (short int *) &(vid_stream->block.dct_recon[0][0]); { unsigned char *cm = cropTbl + MAX_NEG_CROP; if (!zflag) for (rr = 0; rr < 4; rr++) { index[0] = cm[((int) (rindex1[0] + bindex1[0]) >> 1) + blockvals[0]]; index[1] = cm[((int) (rindex1[1] + bindex1[1]) >> 1) + blockvals[1]]; index[2] = cm[((int) (rindex1[2] + bindex1[2]) >> 1) + blockvals[2]]; index[3] = cm[((int) (rindex1[3] + bindex1[3]) >> 1) + blockvals[3]]; index[4] = cm[((int) (rindex1[4] + bindex1[4]) >> 1) + blockvals[4]]; index[5] = cm[((int) (rindex1[5] + bindex1[5]) >> 1) + blockvals[5]]; index[6] = cm[((int) (rindex1[6] + bindex1[6]) >> 1) + blockvals[6]]; index[7] = cm[((int) (rindex1[7] + bindex1[7]) >> 1) + blockvals[7]]; index += row_size; rindex1 += row_size; bindex1 += row_size; index[0] = cm[((int) (rindex1[0] + bindex1[0]) >> 1) + blockvals[8]]; index[1] = cm[((int) (rindex1[1] + bindex1[1]) >> 1) + blockvals[9]]; index[2] = cm[((int) (rindex1[2] + bindex1[2]) >> 1) + blockvals[10]]; index[3] = cm[((int) (rindex1[3] + bindex1[3]) >> 1) + blockvals[11]]; index[4] = cm[((int) (rindex1[4] + bindex1[4]) >> 1) + blockvals[12]]; index[5] = cm[((int) (rindex1[5] + bindex1[5]) >> 1) + blockvals[13]]; index[6] = cm[((int) (rindex1[6] + bindex1[6]) >> 1) + blockvals[14]]; index[7] = cm[((int) (rindex1[7] + bindex1[7]) >> 1) + blockvals[15]]; blockvals += 16; index += row_size; rindex1 += row_size; bindex1 += row_size; } else for (rr = 0; rr < 4; rr++) { index[0] = (int) (rindex1[0] + bindex1[0]) >> 1; index[1] = (int) (rindex1[1] + bindex1[1]) >> 1; index[2] = (int) (rindex1[2] + bindex1[2]) >> 1; index[3] = (int) (rindex1[3] + bindex1[3]) >> 1; index[4] = (int) (rindex1[4] + bindex1[4]) >> 1; index[5] = (int) (rindex1[5] + bindex1[5]) >> 1; index[6] = (int) (rindex1[6] + bindex1[6]) >> 1; index[7] = (int) (rindex1[7] + bindex1[7]) >> 1; index += row_size; rindex1 += row_size; bindex1 += row_size; index[0] = (int) (rindex1[0] + bindex1[0]) >> 1; index[1] = (int) (rindex1[1] + bindex1[1]) >> 1; index[2] = (int) (rindex1[2] + bindex1[2]) >> 1; index[3] = (int) (rindex1[3] + bindex1[3]) >> 1; index[4] = (int) (rindex1[4] + bindex1[4]) >> 1; index[5] = (int) (rindex1[5] + bindex1[5]) >> 1; index[6] = (int) (rindex1[6] + bindex1[6]) >> 1; index[7] = (int) (rindex1[7] + bindex1[7]) >> 1; index += row_size; rindex1 += row_size; bindex1 += row_size; } } } /* *-------------------------------------------------------------- * * ProcessSkippedPFrameMBlocks -- * * Processes skipped macroblocks in P frames. * * Results: * Calculates pixel values for luminance, Cr, and Cb planes * in current pict image for skipped macroblocks. * * Side effects: * Pixel values in pict image changed. * *-------------------------------------------------------------- */ static void ProcessSkippedPFrameMBlocks(vid_stream) VidStream *vid_stream; { int row_size, half_row, mb_row, mb_col, row, col, rr; int addr, row_incr, half_row_incr, crow, ccol; int *dest, *src, *dest1, *src1; /* Calculate row sizes for luminance and Cr/Cb macroblock areas. */ row_size = vid_stream->mb_width << 4; half_row = (row_size >> 1); row_incr = row_size >> 2; half_row_incr = half_row >> 2; /* For each skipped macroblock, do... */ for (addr = vid_stream->mblock.past_mb_addr + 1; addr < vid_stream->mblock.mb_address; addr++) { /* Calculate macroblock row and col. */ mb_row = addr / vid_stream->mb_width; mb_col = addr % vid_stream->mb_width; /* Calculate upper left pixel row,col for luminance plane. */ row = mb_row << 4; col = mb_col << 4; /* For each row in macroblock luminance plane... */ dest = (int *)(vid_stream->current->luminance + (row * row_size) + col); src = (int *)(vid_stream->future->luminance + (row * row_size) + col); for (rr = 0; rr < 8; rr++) { /* Copy pixel values from last I or P picture. */ dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = src[3]; dest += row_incr; src += row_incr; dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = src[3]; dest += row_incr; src += row_incr; } /* * Divide row,col to get upper left pixel of macroblock in Cr and Cb * planes. */ crow = row >> 1; ccol = col >> 1; /* For each row in Cr, and Cb planes... */ dest = (int *)(vid_stream->current->Cr + (crow * half_row) + ccol); src = (int *)(vid_stream->future->Cr + (crow * half_row) + ccol); dest1 = (int *)(vid_stream->current->Cb + (crow * half_row) + ccol); src1 = (int *)(vid_stream->future->Cb + (crow * half_row) + ccol); for (rr = 0; rr < 4; rr++) { /* Copy pixel values from last I or P picture. */ dest[0] = src[0]; dest[1] = src[1]; dest1[0] = src1[0]; dest1[1] = src1[1]; dest += half_row_incr; src += half_row_incr; dest1 += half_row_incr; src1 += half_row_incr; dest[0] = src[0]; dest[1] = src[1]; dest1[0] = src1[0]; dest1[1] = src1[1]; dest += half_row_incr; src += half_row_incr; dest1 += half_row_incr; src1 += half_row_incr; } } vid_stream->mblock.recon_right_for_prev = 0; vid_stream->mblock.recon_down_for_prev = 0; } /* *-------------------------------------------------------------- * * ProcessSkippedBFrameMBlocks -- * * Processes skipped macroblocks in B frames. * * Results: * Calculates pixel values for luminance, Cr, and Cb planes * in current pict image for skipped macroblocks. * * Side effects: * Pixel values in pict image changed. * *-------------------------------------------------------------- */ static void ProcessSkippedBFrameMBlocks(vid_stream) VidStream *vid_stream; { int row_size, half_row, mb_row, mb_col, row, col, rr; int right_half_for, down_half_for, c_right_half_for, c_down_half_for; int right_half_back, down_half_back, c_right_half_back, c_down_half_back; int addr, right_for, down_for; int recon_right_for, recon_down_for; int recon_right_back, recon_down_back; int right_back, down_back; int c_right_for, c_down_for; int c_right_back, c_down_back; unsigned char forw_lum[256]; unsigned char forw_cr[64], forw_cb[64]; unsigned char back_lum[256], back_cr[64], back_cb[64]; int row_incr, half_row_incr; int ccol, crow; /* Calculate row sizes for luminance and Cr/Cb macroblock areas. */ row_size = vid_stream->mb_width << 4; half_row = (row_size >> 1); row_incr = row_size >> 2; half_row_incr = half_row >> 2; /* Establish motion vector codes based on full pixel flag. */ if (vid_stream->picture.full_pel_forw_vector) { recon_right_for = vid_stream->mblock.recon_right_for_prev << 1; recon_down_for = vid_stream->mblock.recon_down_for_prev << 1; } else { recon_right_for = vid_stream->mblock.recon_right_for_prev; recon_down_for = vid_stream->mblock.recon_down_for_prev; } if (vid_stream->picture.full_pel_back_vector) { recon_right_back = vid_stream->mblock.recon_right_back_prev << 1; recon_down_back = vid_stream->mblock.recon_down_back_prev << 1; } else { recon_right_back = vid_stream->mblock.recon_right_back_prev; recon_down_back = vid_stream->mblock.recon_down_back_prev; } /* If only one motion vector, do display copy, else do full calculation. */ /* Calculate motion vectors. */ if (vid_stream->mblock.bpict_past_forw) { right_for = recon_right_for >> 1; down_for = recon_down_for >> 1; right_half_for = recon_right_for & 0x1; down_half_for = recon_down_for & 0x1; recon_right_for /= 2; recon_down_for /= 2; c_right_for = recon_right_for >> 1; c_down_for = recon_down_for >> 1; c_right_half_for = recon_right_for & 0x1; c_down_half_for = recon_down_for & 0x1; } if (vid_stream->mblock.bpict_past_back) { right_back = recon_right_back >> 1; down_back = recon_down_back >> 1; right_half_back = recon_right_back & 0x1; down_half_back = recon_down_back & 0x1; recon_right_back /= 2; recon_down_back /= 2; c_right_back = recon_right_back >> 1; c_down_back = recon_down_back >> 1; c_right_half_back = recon_right_back & 0x1; c_down_half_back = recon_down_back & 0x1; } /* For each skipped macroblock, do... */ for (addr = vid_stream->mblock.past_mb_addr + 1; addr < vid_stream->mblock.mb_address; addr++) { /* Calculate macroblock row and col. */ mb_row = addr / vid_stream->mb_width; mb_col = addr % vid_stream->mb_width; /* Calculate upper left pixel row,col for luminance plane. */ row = mb_row << 4; col = mb_col << 4; crow = row / 2; ccol = col / 2; /* If forward predicted, calculate prediction values. */ if (vid_stream->mblock.bpict_past_forw) { ReconSkippedBlock(vid_stream->past->luminance, forw_lum, row, col, row_size, right_for, down_for, right_half_for, down_half_for, 16); ReconSkippedBlock(vid_stream->past->Cr, forw_cr, crow, ccol, half_row, c_right_for, c_down_for, c_right_half_for, c_down_half_for, 8); ReconSkippedBlock(vid_stream->past->Cb, forw_cb, crow, ccol, half_row, c_right_for, c_down_for, c_right_half_for, c_down_half_for, 8); } /* If back predicted, calculate prediction values. */ if (vid_stream->mblock.bpict_past_back) { ReconSkippedBlock(vid_stream->future->luminance, back_lum, row, col, row_size, right_back, down_back, right_half_back, down_half_back, 16); ReconSkippedBlock(vid_stream->future->Cr, back_cr, crow, ccol, half_row, c_right_back, c_down_back, c_right_half_back, c_down_half_back, 8); ReconSkippedBlock(vid_stream->future->Cb, back_cb, crow, ccol, half_row, c_right_back, c_down_back, c_right_half_back, c_down_half_back, 8); } if (vid_stream->mblock.bpict_past_forw && !vid_stream->mblock.bpict_past_back) { int *dest, *dest1; int *src, *src1; dest = (int *)(vid_stream->current->luminance + (row * row_size) + col); src = (int *)forw_lum; for (rr = 0; rr < 16; rr++) { /* memcpy(dest, forw_lum+(rr<<4), 16); */ dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = src[3]; dest += row_incr; src += 4; } dest = (int *)(vid_stream->current->Cr + (crow * half_row) + ccol); dest1 = (int *)(vid_stream->current->Cb + (crow * half_row) + ccol); src = (int *)forw_cr; src1 = (int *)forw_cb; for (rr = 0; rr < 8; rr++) { /* * memcpy(dest, forw_cr+(rr<<3), 8); memcpy(dest1, forw_cb+(rr<<3), * 8); */ dest[0] = src[0]; dest[1] = src[1]; dest1[0] = src1[0]; dest1[1] = src1[1]; dest += half_row_incr; dest1 += half_row_incr; src += 2; src1 += 2; } } else if (vid_stream->mblock.bpict_past_back && !vid_stream->mblock.bpict_past_forw) { int *src, *src1; int *dest, *dest1; dest = (int *)(vid_stream->current->luminance + (row * row_size) + col); src = (int *)back_lum; for (rr = 0; rr < 16; rr++) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = src[3]; dest += row_incr; src += 4; } dest = (int *)(vid_stream->current->Cr + (crow * half_row) + ccol); dest1 = (int *)(vid_stream->current->Cb + (crow * half_row) + ccol); src = (int *)back_cr; src1 = (int *)back_cb; for (rr = 0; rr < 8; rr++) { /* * memcpy(dest, back_cr+(rr<<3), 8); memcpy(dest1, back_cb+(rr<<3), * 8); */ dest[0] = src[0]; dest[1] = src[1]; dest1[0] = src1[0]; dest1[1] = src1[1]; dest += half_row_incr; dest1 += half_row_incr; src += 2; src1 += 2; } } else { unsigned char *src1, *src2, *src1a, *src2a; unsigned char *dest, *dest1; dest = vid_stream->current->luminance + (row * row_size) + col; src1 = forw_lum; src2 = back_lum; for (rr = 0; rr < 16; rr++) { dest[0] = (int) (src1[0] + src2[0]) >> 1; dest[1] = (int) (src1[1] + src2[1]) >> 1; dest[2] = (int) (src1[2] + src2[2]) >> 1; dest[3] = (int) (src1[3] + src2[3]) >> 1; dest[4] = (int) (src1[4] + src2[4]) >> 1; dest[5] = (int) (src1[5] + src2[5]) >> 1; dest[6] = (int) (src1[6] + src2[6]) >> 1; dest[7] = (int) (src1[7] + src2[7]) >> 1; dest[8] = (int) (src1[8] + src2[8]) >> 1; dest[9] = (int) (src1[9] + src2[9]) >> 1; dest[10] = (int) (src1[10] + src2[10]) >> 1; dest[11] = (int) (src1[11] + src2[11]) >> 1; dest[12] = (int) (src1[12] + src2[12]) >> 1; dest[13] = (int) (src1[13] + src2[13]) >> 1; dest[14] = (int) (src1[14] + src2[14]) >> 1; dest[15] = (int) (src1[15] + src2[15]) >> 1; dest += row_size; src1 += 16; src2 += 16; } dest = vid_stream->current->Cr + (crow * half_row) + ccol; dest1 = vid_stream->current->Cb + (crow * half_row) + ccol; src1 = forw_cr; src2 = back_cr; src1a = forw_cb; src2a = back_cb; for (rr = 0; rr < 8; rr++) { dest[0] = (int) (src1[0] + src2[0]) >> 1; dest[1] = (int) (src1[1] + src2[1]) >> 1; dest[2] = (int) (src1[2] + src2[2]) >> 1; dest[3] = (int) (src1[3] + src2[3]) >> 1; dest[4] = (int) (src1[4] + src2[4]) >> 1; dest[5] = (int) (src1[5] + src2[5]) >> 1; dest[6] = (int) (src1[6] + src2[6]) >> 1; dest[7] = (int) (src1[7] + src2[7]) >> 1; dest += half_row; src1 += 8; src2 += 8; dest1[0] = (int) (src1a[0] + src2a[0]) >> 1; dest1[1] = (int) (src1a[1] + src2a[1]) >> 1; dest1[2] = (int) (src1a[2] + src2a[2]) >> 1; dest1[3] = (int) (src1a[3] + src2a[3]) >> 1; dest1[4] = (int) (src1a[4] + src2a[4]) >> 1; dest1[5] = (int) (src1a[5] + src2a[5]) >> 1; dest1[6] = (int) (src1a[6] + src2a[6]) >> 1; dest1[7] = (int) (src1a[7] + src2a[7]) >> 1; dest1 += half_row; src1a += 8; src2a += 8; } } } } /* *-------------------------------------------------------------- * * ReconSkippedBlock -- * * Reconstructs predictive block for skipped macroblocks * in B Frames. * * Results: * No return values. * * Side effects: * None. * *-------------------------------------------------------------- */ static void ReconSkippedBlock(source, dest, row, col, row_size, right, down, right_half, down_half, width) unsigned char *source; unsigned char *dest; int row, col, row_size, right, down, right_half, down_half, width; { int rr; unsigned char *source2; source += ((row + down) * row_size) + col + right; if (width == 16) { if ((!right_half) && (!down_half)) { if (right & 0x1) { /* No alignment, use bye copy */ for (rr = 0; rr < 16; rr++) { dest[0] = source[0]; dest[1] = source[1]; dest[2] = source[2]; dest[3] = source[3]; dest[4] = source[4]; dest[5] = source[5]; dest[6] = source[6]; dest[7] = source[7]; dest[8] = source[8]; dest[9] = source[9]; dest[10] = source[10]; dest[11] = source[11]; dest[12] = source[12]; dest[13] = source[13]; dest[14] = source[14]; dest[15] = source[15]; dest += 16; source += row_size; } } else if (right & 0x2) { /* Half-word bit aligned, use 16 bit copy */ short *src = (short *)source; short *d = (short *)dest; row_size >>= 1; for (rr = 0; rr < 16; rr++) { d[0] = src[0]; d[1] = src[1]; d[2] = src[2]; d[3] = src[3]; d[4] = src[4]; d[5] = src[5]; d[6] = src[6]; d[7] = src[7]; d += 8; src += row_size; } } else { /* Word aligned, use 32 bit copy */ int *src = (int *)source; int *d = (int *)dest; row_size >>= 2; for (rr = 0; rr < 16; rr++) { d[0] = src[0]; d[1] = src[1]; d[2] = src[2]; d[3] = src[3]; d += 4; src += row_size; } } } else { source2 = source + right_half + (row_size * down_half); for (rr = 0; rr < width; rr++) { dest[0] = (int) (source[0] + source2[0]) >> 1; dest[1] = (int) (source[1] + source2[1]) >> 1; dest[2] = (int) (source[2] + source2[2]) >> 1; dest[3] = (int) (source[3] + source2[3]) >> 1; dest[4] = (int) (source[4] + source2[4]) >> 1; dest[5] = (int) (source[5] + source2[5]) >> 1; dest[6] = (int) (source[6] + source2[6]) >> 1; dest[7] = (int) (source[7] + source2[7]) >> 1; dest[8] = (int) (source[8] + source2[8]) >> 1; dest[9] = (int) (source[9] + source2[9]) >> 1; dest[10] = (int) (source[10] + source2[10]) >> 1; dest[11] = (int) (source[11] + source2[11]) >> 1; dest[12] = (int) (source[12] + source2[12]) >> 1; dest[13] = (int) (source[13] + source2[13]) >> 1; dest[14] = (int) (source[14] + source2[14]) >> 1; dest[15] = (int) (source[15] + source2[15]) >> 1; dest += width; source += row_size; source2 += row_size; } } } else { /* (width == 8) */ assert(width == 8); if ((!right_half) && (!down_half)) { if (right & 0x1) { for (rr = 0; rr < width; rr++) { dest[0] = source[0]; dest[1] = source[1]; dest[2] = source[2]; dest[3] = source[3]; dest[4] = source[4]; dest[5] = source[5]; dest[6] = source[6]; dest[7] = source[7]; dest += 8; source += row_size; } } else if (right & 0x02) { short *d = (short *)dest; short *src = (short *)source; row_size >>= 1; for (rr = 0; rr < width; rr++) { d[0] = src[0]; d[1] = src[1]; d[2] = src[2]; d[3] = src[3]; d += 4; src += row_size; } } else { int *d = (int *)dest; int *src = (int *)source; row_size >>= 2; for (rr = 0; rr < width; rr++) { d[0] = src[0]; d[1] = src[1]; d += 2; src += row_size; } } } else { source2 = source + right_half + (row_size * down_half); for (rr = 0; rr < width; rr++) { dest[0] = (int) (source[0] + source2[0]) >> 1; dest[1] = (int) (source[1] + source2[1]) >> 1; dest[2] = (int) (source[2] + source2[2]) >> 1; dest[3] = (int) (source[3] + source2[3]) >> 1; dest[4] = (int) (source[4] + source2[4]) >> 1; dest[5] = (int) (source[5] + source2[5]) >> 1; dest[6] = (int) (source[6] + source2[6]) >> 1; dest[7] = (int) (source[7] + source2[7]) >> 1; dest += width; source += row_size; source2 += row_size; } } } } /* *-------------------------------------------------------------- * * DoPictureDisplay -- * * Converts image from Lum, Cr, Cb to colormap space. Puts * image in lum plane. Updates past and future frame * pointers. Dithers image. Sends to display mechanism. * * Results: * Pict image structure locked if displaying or if frame * is needed as past or future reference. * * Side effects: * Lum plane pummelled. * *-------------------------------------------------------------- */ static void DoPictureDisplay(vid_stream) VidStream *vid_stream; { /* Convert to colormap space and dither. */ DoDitherImage(vid_stream->current->luminance, vid_stream->current->Cr, vid_stream->current->Cb, vid_stream->current->display, vid_stream->mb_height * 16, vid_stream->mb_width * 16); /* Update past and future references if needed. */ if ((vid_stream->picture.code_type == I_TYPE) || (vid_stream->picture.code_type == P_TYPE)) { if (vid_stream->future == NULL) { vid_stream->future = vid_stream->current; vid_stream->future->locked |= FUTURE_LOCK; } else { if (vid_stream->past != NULL) { vid_stream->past->locked &= ~PAST_LOCK; } vid_stream->past = vid_stream->future; vid_stream->past->locked &= ~FUTURE_LOCK; vid_stream->past->locked |= PAST_LOCK; vid_stream->future = vid_stream->current; vid_stream->future->locked |= FUTURE_LOCK; vid_stream->current = vid_stream->past; ExecuteDisplay(vid_stream); } } else ExecuteDisplay(vid_stream); } /* *-------------------------------------------------------------- * * ToggleBFlag -- * * Called to set no b frame processing flag. * * Results: * No_B_Flag flag is toggled from present value to opposite value. * * Side effects: * None. * *-------------------------------------------------------------- */ void ToggleBFlag() { if (No_B_Flag) { No_B_Flag = 0; } else No_B_Flag = 1; } /* *-------------------------------------------------------------- * * TogglePFlag -- * * Called to set no p frame processing flag. * * Results: * No_P_Flag flag is toggled from present value to opposite value. * * Side effects: * None. * *-------------------------------------------------------------- */ void TogglePFlag() { if (No_P_Flag) { No_P_Flag = 0; } else No_P_Flag = 1; }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.