
Persistence of Vision

Ray-Tracer

(POV-Ray)

User’s Documentation 3.0.10

Copyright 1996 POV-Team

Contents

1 Introduction 1

1.1 Notation . 1

I Installation Guide 3

2 Program Description 5

2.1 What is Ray-Tracing? . 5

2.2 What is POV-Ray? . 6

2.3 Which Version of POV-Ray should you use? 7

2.3.1 IBM-PC and Compatibles . 7

2.3.1.1 MS-Dos . 7

2.3.1.2 Windows . 8

2.3.1.3 Linux . 9

2.3.2 Apple Macintosh . 10

2.3.3 Commodore Amiga . 11

2.3.4 SunOS . 12

2.3.5 Generic Unix . 12

2.3.6 All Versions . 13

2.3.7 Compiling POV-Ray . 13

2.3.7.1 Directroy Structure . 14

2.3.7.2 Configuring POV-Ray Source 15

2.3.7.3 Conclusion . 16

i

ii CONTENTS

2.4 Where to Find POV-Ray Files . 16

2.4.1 Graphics Developer Forum on CompuServe17

2.4.2 Internet . 17

2.4.3 PC Graphics Area on America On-Line 17

2.4.4 The Graphics Alternative BBS in El Cerrito, CA 17

2.4.5 PCGNet . 18

2.4.6 POV-Ray Related Books and CD-ROMs 20

3 Quick Start 21

3.1 Installing POV-Ray . 21

3.2 Basic Usage . 22

3.2.1 Running Files in Other Directories 23

3.2.2 INI Files . 25

3.2.3 Alternatives toPOVRAY.INI . 25

3.2.4 Batch Files . 26

3.2.5 Display Types . 27

II Tutorial Guide 31

4 Beginning Tutorial 33

4.1 Your First Image . 33

4.1.1 Understanding POV-Ray’s Coordinate System 33

4.1.2 Adding Standard Include Files 34

4.1.3 Adding a Camera . 35

4.1.4 Describing an Object . 35

4.1.5 Adding Texture to an Object . 36

4.1.6 Defining a Light Source . 37

4.2 Using the Camera . 38

4.2.1 Camera Types . 38

4.2.2 Using Focal Blur . 38

4.2.3 Using Camera Ray Perturbation 38

CONTENTS iii

4.3 Simple Shapes . 38

4.3.1 Box Object . 38

4.3.2 Cone Object . 39

4.3.3 Cylinder Object . 39

4.3.4 Plane Object . 40

4.3.5 Standard Include Objects . 40

4.4 Advanced Shapes . 41

4.4.1 Bicubic Patch Object . 41

4.4.2 Blob Object . 48

4.4.3 Height Field Object . 48

4.4.4 Julia Fractal Object . 50

4.4.5 Lathe Object . 50

4.4.6 Mesh Object . 50

4.4.7 Polygon Object . 52

4.4.8 Prism Object . 54

4.4.9 Superquadric Ellipsoid Object 54

4.4.10 Surface of Revolution Object .59

4.4.11 Text Object . 60

4.4.12 Torus Object . 64

4.5 CSG Objects . 70

4.5.1 What is CSG? . 70

4.5.2 CSG Union . 70

4.5.3 CSG Intersection . 72

4.5.4 CSG Difference . 72

4.5.5 CSG Merge . 74

4.5.6 CSG Pitfalls . 75

4.5.6.1 Coincidence Surfaces . 75

4.6 The Light Source . 75

4.6.1 The Ambient Light Source . 76

4.6.2 The Point Light Source . 76

iv CONTENTS

4.6.3 The Spotlight Source . 77

4.6.4 The Cylindrical Light Source . 79

4.6.5 The Area Light Source . 79

4.6.6 Assigning an Object to a Light Source81

4.6.7 Light Source Specials . 82

4.6.7.1 Using Shadowless Lights 82

4.6.7.2 Using Light Fading . 83

4.6.7.3 Light Sources and Atmosphere 84

4.7 Simple Texture Options . 84

4.7.1 Surface Finishes . 84

4.7.2 Adding Bumpiness . 85

4.7.3 Creating Color Patterns . 85

4.7.4 Pre-defined Textures . 86

4.8 Advanced Texture Options . 87

4.8.1 Pigment and Normal Patterns . 87

4.8.2 Pigments . 87

4.8.2.1 Using Color List Pigments 88

4.8.2.2 Using Pigment and Patterns 89

4.8.2.3 Using Pattern Modifiers 89

4.8.2.4 Using Transparent Pigments and Layered Textures 91

4.8.2.5 Using Pigment Maps . 92

4.8.3 Normals . 94

4.8.3.1 Using Basic Normal Modifiers 94

4.8.3.2 Blending Normals . 95

4.8.4 Finishes . 97

4.8.4.1 Using Ambient . 97

4.8.4.2 Using Surface Highlights 99

4.8.4.3 Using Reflection and Metallic 100

4.8.4.4 Using Refraction . 101

4.8.4.5 Light Attenuation and Caustics 102

CONTENTS v

4.8.4.6 Using Iridescence . 103

4.8.5 Halos . 104

4.8.5.1 What are Halos? . 104

4.8.5.2 The Emitting Halo . 104

4.8.5.2.1 Starting with a Basic Halo 104

4.8.5.2.2 Increasing the Brightness 107

4.8.5.2.3 Adding Some Turbulence 107

4.8.5.2.4 Resizing the Halo 108

4.8.5.2.5 Using Frequency to Improve Realism 109

4.8.5.2.6 Changing the Halo Color 110

4.8.5.3 The Glowing Halo . 111

4.8.5.4 The Attenuating Halo . 112

4.8.5.4.1 Making a Cloud . 112

4.8.5.4.2 Scaling the Halo Container 113

4.8.5.4.3 Adding Additional Halos 114

4.8.5.5 The Dust Halo . 115

4.8.5.5.1 Starting With an Object Lit by a Spotlight 115

4.8.5.5.2 Adding Some Dust 116

4.8.5.5.3 Decreasing the Dust Density 116

4.8.5.5.4 Making the Shadows Look Good 117

4.8.5.5.5 Adding Turbulence 118

4.8.5.5.6 Using a Coloured Dust 119

4.8.5.6 Halo Pitfalls . 119

4.8.5.6.1 Where Halos are Allowed 119

4.8.5.6.2 Overlapping Container Objects 121

4.8.5.6.3 Multiple Attenuating Halos 121

4.8.5.6.4 Halos and Hollow Objects 121

4.8.5.6.5 Scaling a Halo Container 121

4.8.5.6.6 Choosing a Sampling Rate 122

4.8.5.6.7 Using Turbulence 122

vi CONTENTS

4.9 Using Atmospheric Effects .122

4.9.1 The Background . 123

4.9.2 The Sky Sphere . 123

4.9.2.1 Creating a Sky with a Color Gradient 123

4.9.2.2 Adding the Sun . 125

4.9.2.3 Adding Some Clouds . 126

4.9.3 The Fog . 127

4.9.3.1 A Constant Fog . 127

4.9.3.2 Setting a Minimum Translucency 128

4.9.3.3 Creating a Filtering Fog 129

4.9.3.4 Adding Some Turbulence to the Fog 129

4.9.3.5 Using Ground Fog . 130

4.9.3.6 Using Multiple Layers of Fog 130

4.9.3.7 Fog and Hollow Objects 131

4.9.4 The Atmosphere . 131

4.9.4.1 Starting With an Empty Room 131

4.9.4.2 Adding Dust to the Room 133

4.9.4.3 Choosing a Good Sampling Rate 133

4.9.4.4 Using a Coloured Atmosphere 135

4.9.4.5 Atmosphere Tips . 135

4.9.4.5.1 Choosing the Distance and Scattering Parameters. . 135

4.9.4.5.2 Atmosphere and Light Sources 136

4.9.4.5.3 Atmosphere Scattering Types 136

4.9.4.5.4 Increasing the Image Resolution 137

4.9.4.5.5 Using Hollow Objects and Atmosphere 137

4.9.5 The Rainbow . 137

4.9.5.1 Starting With a Simple Rainbow 137

4.9.5.2 Increasing the Rainbow’s Translucency 139

4.9.5.3 Using a Rainbow Arc . 140

CONTENTS vii

III Reference Guide 143

5 POV-Ray Reference 145

6 POV-Ray Options 147

6.1 Setting POV-Ray Options . 147

6.1.1 Command Line Switches . 147

6.1.2 Using INI Files . 148

6.1.3 Using the POVINI Environment Variable 150

6.2 Options Reference . 151

6.2.1 Animation Options . 151

6.2.1.1 External Animation Loop 151

6.2.1.2 Internal Animation Loop 152

6.2.1.3 Subsets of Animation Frames 153

6.2.1.4 Cyclic Animation . 154

6.2.1.5 Field Rendering . 154

6.2.2 Output Options . 155

6.2.2.1 General Output Options 155

6.2.2.1.1 Height and Width of Output 155

6.2.2.1.2 Partial Output Options 155

6.2.2.1.3 Interrupting Options 156

6.2.2.1.4 Resuming Options 157

6.2.2.2 Display Output Options 158

6.2.2.2.1 Display Hardware Settings 158

6.2.2.2.2 Display Related Settings 159

6.2.2.2.3 Mosaic Preview . 160

6.2.2.3 File Output Options . 161

6.2.2.3.1 Output File Type 161

6.2.2.3.2 Output File Name 163

6.2.2.3.3 Output File Buffer 163

6.2.2.4 CPU Utilization Histogram 164

viii CONTENTS

6.2.2.4.1 File Type . 164

6.2.2.4.2 File Name . 165

6.2.2.4.3 Grid Size . 165

6.2.3 Scene Parsing Options . 166

6.2.3.1 Input File Name . 166

6.2.3.2 Library Paths . 166

6.2.3.3 Language Version . 167

6.2.3.4 Removing User Bounding 167

6.2.4 Shell-out to Operating System .168

6.2.4.1 String Substitution in Shell Commands168

6.2.4.2 Shell Command Sequencing 169

6.2.4.3 Shell Command Return Actions 170

6.2.5 Text Output . 172

6.2.5.1 Text Streams . 173

6.2.5.2 Console Text Output . 174

6.2.5.3 Directing Text Streams to Files 174

6.2.5.4 Help Screen Switches . 176

6.2.6 Tracing Options . 176

6.2.6.1 Quality Settings . 176

6.2.6.2 Radiosity Setting . 177

6.2.6.3 Automatic Bounding Control 177

6.2.6.4 Anti-Aliasing Options . 178

7 Scene Description Language 183

7.1 Language Basics . 183

7.1.1 Identifiers and Keywords . 183

7.1.2 Comments . 186

7.1.3 Float Expressions . 187

7.1.3.1 Float Literals . 188

7.1.3.2 Float Identifiers . 188

7.1.3.3 Float Operators . 188

CONTENTS ix

7.1.4 Vector Expressions . 190

7.1.4.1 Vector Literals . 190

7.1.4.2 Vector Identifiers . 190

7.1.4.3 Vector Operators . 191

7.1.4.4 Operator Promotion . 192

7.1.5 Specifying Colors . 192

7.1.5.1 Color Vectors . 193

7.1.5.2 Color Keywords . 193

7.1.5.3 Color Identifiers . 194

7.1.5.4 Color Operators . 194

7.1.5.5 Common Color Pitfalls . 195

7.1.6 Strings . 196

7.1.6.1 String Literals . 196

7.1.6.2 String Identifiers . 197

7.1.7 Built-in Identifiers . 197

7.1.7.1 Constant Built-in Identifiers 197

7.1.7.2 Built-in Identifierclock 198

7.1.7.3 Built-in Identifierversion 198

7.1.8 Functions . 199

7.1.8.1 Float Functions . 199

7.1.8.2 Vector Functions . 201

7.1.8.3 String Functions . 202

7.2 Language Directives . 204

7.2.1 Include Files . 204

7.2.2 Declare . 205

7.2.2.1 Declaring identifiers . 205

7.2.3 Default Directive . 206

7.2.4 Version Directive . 208

7.2.5 Conditional Directives . 209

7.2.5.1 IF ELSE Directives . 209

x CONTENTS

7.2.5.2 IFDEF Directives . 209

7.2.5.3 IFNDEF Directives . 210

7.2.5.4 SWITCH CASE and RANGE Directives 210

7.2.5.5 WHILE Directive . 211

7.2.6 User Message Directives . 212

7.2.6.1 Text Message Streams . 212

7.2.6.2 Text Formatting . 213

7.3 POV-Ray Coordinate System . 214

7.3.1 Transformations . 214

7.3.1.1 Translate . 214

7.3.1.2 Scale . 215

7.3.1.3 Rotate . 216

7.3.1.4 Matrix Keyword . 216

7.3.2 Transformation Order . 217

7.3.3 Transform Identifiers . 217

7.3.4 Transforming Textures and Objects 218

7.4 Camera . 219

7.4.1 Type of Projection . 220

7.4.2 Focal Blur . 222

7.4.3 Camera Ray Perturbation . 222

7.4.4 Placing the Camera . 222

7.4.4.1 Location and LookAt . 223

7.4.4.2 The Sky Vector . 223

7.4.4.3 The Direction Vector . 223

7.4.4.4 Angle . 224

7.4.4.5 Up and Right Vectors . 224

7.4.4.5.1 Aspect Ratio . 225

7.4.4.5.2 Handedness . 226

7.4.4.6 Transforming the Camera 227

7.4.5 Camera Identifiers . 228

CONTENTS xi

7.5 Objects . 228

7.5.1 Empty and Solid Objects . 229

7.5.1.1 Halo Pitfall . 229

7.5.1.2 Refraction Pitfall . 230

7.5.2 Finite Solid Primitives . 231

7.5.2.1 Blob . 231

7.5.2.2 Box . 234

7.5.2.3 Cone . 235

7.5.2.4 Cylinder . 235

7.5.2.5 Height Field . 236

7.5.2.6 Julia Fractal . 239

7.5.2.7 Lathe . 242

7.5.2.8 Prism . 244

7.5.2.9 Sphere . 246

7.5.2.10 Superquadric Ellipsoid . 246

7.5.2.11 Surface of Revolution . 247

7.5.2.12 Text . 249

7.5.2.13 Torus . 250

7.5.3 Finite Patch Primitives . 251

7.5.3.1 Bicubic Patch . 252

7.5.3.2 Disc . 253

7.5.3.3 Mesh . 254

7.5.3.4 Polygon . 254

7.5.3.5 Triangle and Smooth Triangle 256

7.5.4 Infinite Solid Primitives . 257

7.5.4.1 Plane . 257

7.5.4.2 Poly, Cubic and Quartic 258

7.5.4.3 Quadric . 260

7.5.5 Constructive Solid Geometry . 261

7.5.5.1 About CSG . 261

xii CONTENTS

7.5.5.2 Inside and Outside . 261

7.5.5.3 Inverse . 262

7.5.5.4 Union . 262

7.5.5.5 Intersection . 263

7.5.5.6 Difference . 264

7.5.5.7 Merge . 265

7.5.6 Light Sources . 265

7.5.6.1 Point Lights . 266

7.5.6.2 Spotlights . 266

7.5.6.3 Cylindrical Lights . 268

7.5.6.4 Area Lights . 269

7.5.6.5 Shadowless Lights . 271

7.5.6.6 Lookslike . 271

7.5.6.7 Light Fading . 272

7.5.6.8 Atmosphere Interaction 272

7.5.6.9 Atmospheric Attenuation 273

7.5.7 Object Modifiers . 273

7.5.7.1 ClippedBy . 273

7.5.7.2 BoundedBy . 274

7.5.7.3 Hollow . 276

7.5.7.4 NoShadow . 276

7.5.7.5 Sturm . 277

7.6 Textures . 277

7.6.1 Pigment . 278

7.6.1.1 Solid Color Pigments . 279

7.6.1.2 Color List Pigments . 279

7.6.1.3 Color Maps . 280

7.6.1.4 Pigment Maps . 281

7.6.1.5 Image Maps . 283

7.6.1.5.1 Specifying an Image Map 283

CONTENTS xiii

7.6.1.5.2 The maptype Option 284

7.6.1.5.3 The Filter and Transmit Bitmap Modifiers 284

7.6.1.5.4 Using the Alpha Channel 285

7.6.1.6 Quick Color . 285

7.6.2 Normal . 286

7.6.2.1 Slope Maps . 288

7.6.2.2 Normal Maps . 290

7.6.2.3 Bump Maps . 292

7.6.2.3.1 Specifying a Bump Map 292

7.6.2.3.2 BumpSize . 293

7.6.2.3.3 UseIndex and UseColor 293

7.6.3 Finish . 294

7.6.3.1 Ambient . 295

7.6.3.2 Diffuse Reflection Items 295

7.6.3.2.1 Diffuse . 296

7.6.3.2.2 Brilliance . 296

7.6.3.2.3 Crand Graininess 296

7.6.3.3 Highlights . 297

7.6.3.3.1 Phong Highlights 297

7.6.3.3.2 Specular Highlight 298

7.6.3.3.3 Metallic Highlight Modifier 298

7.6.3.4 Specular Reflection . 299

7.6.3.5 Refraction . 299

7.6.3.5.1 Light Attenuation 300

7.6.3.5.2 Faked Caustics . 301

7.6.3.6 Iridescence . 301

7.6.4 Halo . 302

7.6.4.1 Halo Mapping . 303

7.6.4.2 Multiple Halos . 304

7.6.4.3 Halo Type . 305

xiv CONTENTS

7.6.4.3.1 Attenuating . 305

7.6.4.3.2 Dust . 305

7.6.4.3.3 Emitting . 306

7.6.4.3.4 Glowing . 306

7.6.4.4 Density Mapping . 307

7.6.4.4.1 Box Mapping . 307

7.6.4.4.2 Cylindrical Mapping 307

7.6.4.4.3 Planar Mapping . 307

7.6.4.4.4 Spherical Mapping 308

7.6.4.5 Density Function . 308

7.6.4.5.1 Constant . 308

7.6.4.5.2 Linear . 308

7.6.4.5.3 Cubic . 309

7.6.4.5.4 Poly . 309

7.6.4.6 Halo Color Map . 310

7.6.4.7 Halo Sampling . 310

7.6.4.7.1 Number of Samples 311

7.6.4.7.2 Super-Sampling . 311

7.6.4.7.3 Jitter . 311

7.6.4.8 Halo Modifiers . 312

7.6.4.8.1 Turbulence Modifier 312

7.6.4.8.2 Octaves Modifier 312

7.6.4.8.3 Omega Modifier . 312

7.6.4.8.4 Lambda Modifier 312

7.6.4.8.5 Frequency Modifier 312

7.6.4.8.6 Phase Modifier . 313

7.6.4.8.7 Transformation Modifiers 313

7.6.5 Special Textures . 313

7.6.5.1 Texture Maps . 313

7.6.5.2 Tiles . 315

CONTENTS xv

7.6.5.3 Material Maps . 315

7.6.5.3.1 Specifying a Material Map 315

7.6.6 Layered Textures . 317

7.6.7 Patterns . 318

7.6.7.1 Agate . 319

7.6.7.2 Average . 319

7.6.7.3 Bozo . 320

7.6.7.4 Brick . 321

7.6.7.5 Bumps . 322

7.6.7.6 Checker . 322

7.6.7.7 Crackle . 323

7.6.7.8 Dents . 323

7.6.7.9 Gradient . 324

7.6.7.10 Granite . 324

7.6.7.11 Hexagon . 325

7.6.7.12 Leopard . 326

7.6.7.13 Mandel . 326

7.6.7.14 Marble . 327

7.6.7.15 Onion . 328

7.6.7.16 Quilted . 328

7.6.7.17 Radial . 328

7.6.7.18 Ripples . 329

7.6.7.19 Spiral1 . 330

7.6.7.20 Spiral2 . 330

7.6.7.21 Spotted . 330

7.6.7.22 Waves . 331

7.6.7.23 Wood . 331

7.6.7.24 Wrinkles . 331

7.6.8 Pattern Modifiers . 332

7.6.8.1 Transforming Patterns . 332

xvi CONTENTS

7.6.8.2 Frequency and Phase . 332

7.6.8.3 Waveform . 333

7.6.8.4 Turbulence . 334

7.6.8.5 Octaves . 335

7.6.8.6 Lambda . 335

7.6.8.7 Omega . 336

7.6.8.8 Warps . 336

7.6.8.8.1 Black Hole Warp 336

7.6.8.8.2 Repeat Warp . 342

7.6.8.8.3 Turbulence Warp 343

7.6.8.9 Bitmap Modifiers . 345

7.6.8.9.1 The once Option . 345

7.6.8.9.2 The ”maptype” Option 345

7.6.8.9.3 The interpolate Option 346

7.7 Atmospheric Effects . 347

7.7.1 Atmosphere . 347

7.7.2 Background . 350

7.7.3 Fog . 351

7.7.4 Sky Sphere . 352

7.7.5 Rainbow . 353

7.8 Global Settings . 355

7.8.1 ADCBailout . 356

7.8.2 Ambient Light . 356

7.8.3 AssumedGamma . 357

7.8.3.1 Monitor Gamma . 357

7.8.3.2 Image File Gamma . 358

7.8.3.3 Scene File Gamma . 359

7.8.4 HFGray 16 . 359

7.8.5 Irid Wavelength . 360

7.8.6 MaxTraceLevel . 360

CONTENTS xvii

7.8.7 MaxIntersections . 361

7.8.8 NumberOf Waves . 362

7.8.9 Radiosity . 362

7.8.9.1 How Radiosity Works . 362

7.8.9.2 Adjusting Radiosity . 363

7.8.9.2.1 brightness . 364

7.8.9.2.2 count . 364

7.8.9.2.3 distancemaximum 364

7.8.9.2.4 errorbound . 365

7.8.9.2.5 graythreshold . 365

7.8.9.2.6 lowerror factor . 366

7.8.9.2.7 minimumreuse . 366

7.8.9.2.8 nearestcount . 366

7.8.9.2.9 radiosityquality . 367

7.8.9.2.10 recursionlimit . 367

7.8.9.3 Tips on Radiosity . 367

IV Appendix 369

A Copyright 371

A.1 General License Agreement . 371

A.2 Usage Provisions . 372

A.3 General Rules for All Distributions 372

A.4 Definition ofFull Package . 372

A.5 Conditions for Shareware/Freeware Distribution Companies 373

A.6 Conditions for On-Line Services and BBS’s Including Internet 374

A.7 Online or Remote Execution of POV-Ray 374

A.8 Conditions for Distribution of Custom Versions 374

A.9 Conditions for Commercial Bundling 376

A.10 Other Provisions . 376

A.11 Revocation of License . 377

A.12 Disclaimer . 377

A.13 Technical Support . 377

xviii CONTENTS

B Authors 379

C Contacting the Authors 385

D Postcards for POV-Ray Team Members 387

E POV-Ray Output Messages 389

E.1 Options in Use . 389

E.2 Warning Messages . 389

E.2.1 Warnings during the Parsing Stage389

E.2.2 Other Warnings . 389

E.3 Error Messages . 389

E.3.1 Scene File Errors . 390

E.3.2 Other Errors . 390

E.4 Statistics . 390

F Tips and Hints 391

F.1 Scene Design Tips . 391

F.2 Scene Debugging Tips . 391

F.3 Animation Tips . 392

F.4 Texture Tips . 393

F.5 Height Field Tips . 393

F.6 Converting ”Handedness” . 394

G Frequently Asked Questions 395

G.1 General Questions . 395

G.2 POV-Ray Option Questions . 395

G.3 Atmosphere Questions . 396

H Suggested Reading 399

List of Figures

4.1 The lext-handed coordinate system. 34

4.2 The point configuration of our cup object. 59

6.1 Example of how the adpative super-sampling works. 180

7.1 The perspective camera. 220

7.2 The geometry of a box. 234

7.3 The geometry of a cone. 235

7.4 The geometry of a cylinder. 236

7.5 The size and orientation of an un-scaled height field. 237

7.6 The geometry of a sphere. 247

7.7 A segment in a surface of revolution. 250

7.8 Major and minor radius of a torus. 251

7.9 Two overlapping objects. 262

7.10 The union of two objects. 263

7.11 The intersection between two objects. 264

7.12 The difference between two objects. 264

7.13 Merge removes inner surfaces. .265

7.14 The geometry of a spotlight. 267

7.15 Different light intensity multiplier curves. 268

7.16 Area light adaptive sampling. .. 271

7.17 Light fading functions for different fading powers. 272

7.18 An object clipped by another object. 274

xix

xx LIST OF FIGURES

7.19 The different halo density functions. 309

7.20 The hexagon pattern. 325

7.21 Quilted pattern functions. .. 329

7.22 The different atmospheric scattering functions. 348

List of Tables

2.1 Graphic-orientated BBSs in North America. 18

2.2 Graphic-orientated BBSs in Europe. 19

2.3 Graphic-orientated BBSs in the rest of the world. 19

6.1 Number of samples for different super-sampling methods. 181

7.1 All available julia fractal functions. 242

xxi

Chapter 1

Introduction

Note that this document is still in work and there may (and will) be some larger
changes. Do not waste your time, money and paper to print thisdocument! You
should also note that we will release a nicely formatted Postscript version of the
docs in the near future.

This document details the use of the Persistence of Vision Ray Tracer (POV-Ray).
It is broken down into four parts: the installation guide, the tutorial guide, the refer-
ence guide and the appendix. The first part (see chapter 2 on page 5 chapter and 3
on page 21) tells you where to get and how to install POV-Ray. It also gives a short
introduction to ray-tracing. The tutorial explains step bystep how to use the different
features of POV-Ray (see chapter 4 on page 33). The referencegives a complete de-
scription of all features available in POV-Ray by explaining all command line options
(INI file keywords) and the scene description language (see chapter 5 on page 145,
chapter 6 on page 147 and chapter 7 on page 183). The appendix includes some tips
and hints, suggested reading, contact addresses and legal information.

POV-Ray is based on DKBTrace 2.12 by David K. Buck and Aaron A. Collins.

1.1 Notation

Throughout this document the following notation is used to mark keywords of the scene
description language, command line options, INI file keywords and file names.

name scene description keyword
name command line option
name INI file keyword
NAME file name
name Internet address, Usenet group

1

2 CHAPTER 1. INTRODUCTION

Part I

Installation Guide

3

Chapter 2

Program Description

The Persistence of Vision Ray-Tracer creates three-dimensional, photo-realistic im-
ages using a rendering technique called ray-tracing. It reads in a text file containing
information describing the objects and lighting in a scene and generates an image of
that scene from the view point of a camera also described in the text file. Ray-tracing is
not a fast process by any means, but it produces very high quality images with realistic
reflections, shading, perspective and other effects.

2.1 What is Ray-Tracing?

Ray-tracing is a rendering technique that calculates an image of a scene by shooting
rays into the scene. The scene is build from shapes, light sources, a camera, materials,
special features, etc.

For every pixel in the final image a viewing ray is shot into thescene and tested for
intersection with any of the objects in the scene. Viewing rays originate from the
viewer, represented by the camera, and pass through the viewing window (representing
the final image).

Every time an object is hit, the color of the surface at that point is calculated. For this
purpose the amount of light coming from any light source in the scene is determined
to tell wether the surface point lies in shadow or not. If the surface is reflective or
translucent new rays are set up and traced in order to determine the contribution of the
reflected and refracted light to the final surface color.

Special features like interdiffuse reflection (radiosity), atmospheric effects and area
lights make it necessary to shoot a lot of additional rays into the scene for every pixel.

5

6 CHAPTER 2. PROGRAM DESCRIPTION

2.2 What is POV-Ray?

The Persistence of Vision Ray-Tracer was developed from DKBTrace 2.12 (written
by David K. Buck and Aaron A. Collins) by a bunch of people, called the POV-Team,
in their spare time. The headquarters of the POV-Team is in the GRAPHDEV forum
on CompuServe (see 2.4.1 on page 17 for more details).

The POV-Ray package includes detailed instructions on using the ray-tracer and cre-
ating scenes. Many stunning scenes are included with POV-Ray so you can start creat-
ing images immediately when you get the package. These scenes can be modified so
you don’t have to start from scratch.

In addition to the pre-defined scenes is a large library of predefined shapes and mate-
rials that you can use in your own scenes by just including theappropriate files and
typing the name of the shape or material.

Here are some highlights of POV-Ray’s features:

• Easy to use scene description language.
• Large library of stunning example scene files.
• Standard include files that pre-define many shapes, colors and textures.
• Very high quality output image files (up to 48-bit color).
• 15 and 24 bit color display on IBM-PC’s using appropriate hardware.
• Create landscapes using smoothed height fields.
• Spotlights, cylindrical lights and area lights for sophisticated lighting.
• Phong and specular highlighting for more realistic-looking surfaces.
• Interdiffuse reflection (radiosity) for more realistic lighting.
• Atmospheric effects like atmosphere, fog and rainbow.
• Halos to model effects like clouds, dust, fire and steam.
• Several image file output formats including Targa, PNG and PPM.
• Basic shape primitives such as. . . spheres, boxes, quadrics, cylinders,

cones, triangles and planes.
• Advanced shape primitives such as. . . torii (donuts), hyperboloids,

paraboloids, bezier patches, height fields (mountains), blobs, quartics,
smooth triangles, text, fractals, superquadrics, surfaces of revolution,
prisms, polygons, lathes and fractals.

• Shapes can easily be combined to create new complex shapes using Con-
structive Solid Geometry (CSG). POV-Ray supports unions, merges, in-
tersections and differences.

• Objects are assigned materials called textures (a texture describes the
coloring and surface properties of a shape).

• Built-in color and normal patterns: Agate, Bozo, Bumps, Checker,
Crackle, Dents, Granite, Gradient, Hexagon, Leopard, Mandel, Marble,
Onion, Quilted, Ripples, Spotted, Sprial, Radial, Waves, Wood, Wrinkles
and image file mapping.

• Users can create their own textures or use pre-defined textures such as
. . . Brass, Chrome, Copper, Gold, Silver, Stone, Wood.

2.3. WHICH VERSION OF POV-RAY SHOULD YOU USE? 7

• Combine textures using layering of semi-transparent textures or tiles of
textures or material map files.

• Display preview of image while computing (not available on all plat-
forms).

• Halt rendering when part way through.
• Continue rendering a halted partial scene later.

2.3 Which Version of POV-Ray should you use?

POV-Ray can be used under MS-Dos, Windows 3.x, 95 and NT; Apple Macintosh 68k
and Power PC; Commodore Amiga; Linux, UNIX and other platforms.

The latest versions of the necessary files are available overCompuServe, Internet,
America Online and several BBS’s. See section 2.4 on page 16 for more info.

2.3.1 IBM-PC and Compatibles

Currently there are three different versions for the IBM-PCrunning under different
operating systems (MS-Dos, Windows, Linux) as described below.

2.3.1.1 MS-Dos

The MS-Dos version runs under Ms-Dos or as a dos application under Windows’95,
Windows NT, Windows 3.1 or 3.11. It also runs under OS/2 and Warp.

Required hardware and software:

• A 386 or better CPU and at least 4 meg of RAM.
• About 6 meg disk space to install and 2-10 meg or more beyond that for

working space.
• A text editor capable of editing plain ASCII text files. TheEDIT program

that comes with MS-Dos will work for moderate size files.
• Graphic file viewer capable of viewing GIF and perhaps TGA andPNG

formats.

Required POV-Ray files:

• POVMSDOS.EXE — a self-extracting archive containing the program,
sample scenes, standard include files and documentation in ahypertext
help format with help viewer. This file may be split into smaller files for
easier downloading. Check the directory of your download orftp site to
see if other files are needed.

8 CHAPTER 2. PROGRAM DESCRIPTION

Recommended:

• Pentium or 486dx or math co-processor for 386 or 486sx.
• 8 meg or more RAM.
• SVGA display preferably with VESA interface and high color or true

color ability.

Optional: The source code is not needed to use POV-Ray. It is provided for the curious
and adventurous.

• POVMSD S.ZIP —- The C source code for POV-Ray for MS-Dos Con-
tains generic parts and MS-Dos specific parts. It does not include sample
scenes, standard include files and documentation so you should also get
the executable archive as well

• A C compiler that can create 32-bit protected mode applications. We
support Watcom 10.5a, Borland 4.52 with Dos Power Pack and DGJPP
2.0 (GNU GCC) compilers.

2.3.1.2 Windows

The Windows version runs under Windows’95, Windows NT and under Windows 3.1
or 3.11 if Win32s extensions are added. Also runs under OS/2 Warp.

Required hardware and software:

• A 386 or better CPU and at least 8 meg of RAM.
• About 12 meg disk space to install and 2-10 meg or more beyond that for

working space.

Required POV-Ray files:

• User archivePOVWIN3.EXE — a self-extracting archive containing the
program, sample scenes, standard include files and documentation. This
file may be split into smaller files for easier downloading. Check the
directory of your download or ftp site to see if other files areneeded.

Recommended:

• Pentium or 486dx or math co-processor for 386 or 486sx.
• 16 meg or more RAM.
• SVGA display preferably with high color or true color ability and drivers

installed.

Optional: The source code is not needed to use POV-Ray. It is provided for the curious
and adventurous.

2.3. WHICH VERSION OF POV-RAY SHOULD YOU USE? 9

• POVWIN S.ZIP — The C source code for POV-Ray for Windows. Con-
tains generic parts and Windows specific parts. It does not include sample
scenes, standard include files and documentation so you should also get
the executable archive as well.

• POV-Ray can only be compiled using C compilers that create 32-bit Win-
dows applications. We support Watcom 10.5a, Borland 4.52/5.0 compil-
ers. The source code is not needed to use POV-Ray. It is provided for the
curious and adventurous.

2.3.1.3 Linux

Required hardware and software:

• A 386 or better CPU and at least 4 meg of RAM.
• About 6 meg disk space to install and 2-10 meg or more beyond that for

working space.
• A text editor capable of editing plain ASCII text files.
• Any recent (1994 onwards) Linux kernel and support for ELF format

binaries. POV-Ray for Linux is not in a.out-format.
• ELF libraries libc.so.5, libm.so.5 and one or both of libX11.so.6 or lib-

vga.so.1.

Required POV-Ray files:

• POVLINUX.TGZ or POVLINUX.TAR.GZ — archive containing an official
binary for each SVGALib and X-Windows modes. Also contains sample
scenes, standard include files and documentation.

Recommended:

• Pentium or 486dx or math co-processor for 386 or 486sx.
• 8 meg or more RAM.
• SVGA display preferably high color or true color ability.
• If you want display, you’ll need either SVGALib or X-Windows.
• Graphic file viewer capable of viewing PPM, TGA or PNG formats.

Optional: The source code is not needed to use POV-Ray. It is provided for the curious
and adventurous.

• POVUNI S.TAR.GZ or POVUNI S.TGZ — The C source code for POV-
Ray for Linux. Contains generic parts and Linux specific parts. It does
not include sample scenes, standard include files and documentation so
you should also get the executable archive as well.

• The GNU C compiler and (optionally) the X include files and libraries
andknowledge of how to use it. Although we provide source code for
generic Unix systems, we do not provide technical support onhow to
compile the program.

10 CHAPTER 2. PROGRAM DESCRIPTION

2.3.2 Apple Macintosh

The Macintosh versions run under Apple’s MacOS operating system version 7.0 or
better, on any 68020/030/040-based Macintosh (with or without a floating point copro-
cessor) or any of the Power Macintosh computers.

Required hardware and software:

• A 68020 or better CPU without a floating point unit (LC or Performa or
Centris series) and at least 8 meg RAM or

• A 68020 or better CPU *with* a floating point unit (Mac II or Quadra
series) and at least 8 meg RAM or

• Any Power Macintosh computer and at least 8 meg RAM.
• System 7 or newer and color QuickDraw (System 6 is no longer sup-

ported).
• About 6 meg free disk space to install and an additional 2-10 meg free

space for working space.
• Graphic file viewer utility capable of viewing Mac PICT, GIF,and per-

haps TGA and PNG formats (the shareware GIFConverter or Graphic-
Converter applications are good.)

Required POV-Ray files:

• POVMACNF.SIT or POVMACNF.SIT.HQX — a Stuffit archive containing
the non-FPU 68K Macintosh application, sample scenes, standard in-
clude files and documentation (slower version for Macs without an FPU)
or

• POVMAC68.SIT or POVMAC68.SIT.HQX — a Stuffit archive contain-
ing the FPU 68K Macintosh application, sample scenes, standard include
files and documentation (faster version for Macs WITH an FPU)or

• POVPMAC.SIT or POVPMAC.SIT.HQX — a Stuffit archive containing the
native Power Macintosh application, sample scenes, standard include
files and documentation.

Recommended:

• 68030/33 or faster with FPU, or any Power Macintosh
• 8 meg or more RAM for 68K Macintosh; 16 meg or more for Power

Macintosh systems.
• Color monitor preferred, 256 colors OK, but thousands or millions of

colors is even better.

Optional: The source code is not needed to use POV-Ray. It is provided for the curious
and adventurous. POV-Ray can be compiled using Apple’s MPW 3.3, Metrowerks
CodeWarrior 8 or Symantec 8.

2.3. WHICH VERSION OF POV-RAY SHOULD YOU USE? 11

• POVMACS.SIT or POVMACS.SIT.HQX — The full C source code for
POV-Ray for Macintosh. Contains generic parts and Macintosh specific
parts. It does not include sample scenes, standard include files and docu-
mentation so you should also get the executable archive as well.

2.3.3 Commodore Amiga

The Amiga version comes in several flavors: 68000/68020 without FPU (not recom-
mended, very slow), 68020/68881(68882), 68030/68882 and 68040. There are also
two sub-versions, one with a CLI-only interface, and one with a GUI (requires MUI
3.1). All versions run under OS2.1 and up. Support exists forpensharing and window
display under OS3.x with 256 color palettes and CybeGFX display library support.

Required:

• at least 4 meg of RAM.
• at least 2 meg of hard disk space for the necessities, 5-20 more recom-

mended for workspace.
• an ASCII text editor, GUI configurable to launch the editor ofyour

choice.
• Graphic file viewer - POV-Ray outputs to PNG, Targa (TGA) and PPM

formats, converters from the PPMBIN distribution are included to con-
vert these to IFF ILBM files.

Required POV-Ray files:

• POVAMI.LHA – a LHA archive containing executible, sample scenes,
standard include files and documentation.

Recommended:

• 8 meg or more of RAM.
• 68030 and 68882 or higher processor.
• 24bit display card (CyberGFX library supported)

As soon as a stable compiler is released for Amiga PowerPC systems, plans are to add
this to the flavor list.

Optional: The source code is not needed to use POV-Ray. It is provided for the curious
and adventurous.

• POVLHA S.ZIP — The C source code for POV-Ray for Amiga. Con-
tains generic parts and Amiga specific parts, includes sample scenes,
standard include files and documentation. It does not include sample
scenes, standard include files and documentation so you should also get
the executable archive as well.

12 CHAPTER 2. PROGRAM DESCRIPTION

2.3.4 SunOS

Required hardware and software:

• A Sun SPARC processor and at least 4 meg of RAM.
• About 6 meg disk space to install and 2-10 meg or more beyond that for

working space.
• A text editor capable of editing plain ASCII text files.
• SunOS 4.1.3 or other operating system capable of running such a binary

(Solaris or possibly Linux for Sparc).

Required POV-Ray files:

• POVSUNOS.TGZ or POVSUNOS.TAR.GZ — archive containing an of-
ficial binary for each text-only and X-Windows modes. Also contains
sample scenes, standard include files and documentation.

Recommended:

• 8 meg or more RAM.
• If you want display, you’ll need X-Windows or an X-Term.
• preferably 24-bit TrueColor display ability, although theX display code

is known to work with ANY combination of visual and color depth.
• Graphic file viewer capable of viewing PPM, TGA or PNG formats.

Optional: The source code is not needed to use POV-Ray. It is provided for the curious
and adventurous.

• POVUNI S.TGZ or POVUNI S.TAR.GZ — The C source code for POV-
Ray for UNIX. Contains generic UNIX parts and Linux specific parts. It
does not include sample scenes, standard include files and documentation
so you should also get the executable archive as well.

• A C compiler and (optionally) the X include files and libraries and
knowledge of how to use it.

Although we provide source code for generic Unix systems, wedo not provide techni-
cal support on how to compile the program.

2.3.5 Generic Unix

Required:

• POVUNI S.TGZ or POVUNI S.TAR.GZ — The C source code for POV-
Ray for Unix. Either archive contains full generic source, Unix and X-
Windows specific source.

2.3. WHICH VERSION OF POV-RAY SHOULD YOU USE? 13

• POVUNI D.TGZ or POVUNI D.TAR.GZ or any archive containing the sam-
ple scenes, standard include files and documentation. This could be the
Linux or SunOS executable archives described above.

• A C compiler for your computer andknowledge of how to use it. Al-
though we provide source code for generic Unix systems, we donot pro-
vide technical support on how to compile the program.

• A text editor capable of editing plain ASCII text files.

Recommended:

• Math co-processor.
• 8 meg or more RAM.
• Graphic file viewer capable of viewing PPM, TGA or PNG formats.

Optional:

• X Windows if you want to be able to display as you render.
• You will need the X-Windows include files as well. If you’re not familiar

with compiling programs for X-Windows you may need some helpfrom
someone who is knowledgeable at your installation because the X include
files and libraries are not always in a standard place.

2.3.6 All Versions

Each executable archive includes full documentation for POV-Ray itself as well as
specific instructions for using POV-Ray with your type of platform.

All versions of the program share the same ray-tracing features like shapes, lighting
and textures. In other words, an IBM-PC can create the same pictures as a Cray super-
computer as long as it has enough memory.

The user will want to get the executable that best matches their computer hardware.
See the section 2.4 on page 16 for where to find these files. You can contact those
sources to find out what the best version is for you and your computer.

2.3.7 Compiling POV-Ray

The following sections will help you to compile the portableC source code into a
working executable version of POV-Ray. They are only for those people who want
to compile a custom version of POV-Ray or to port it to an unsupported platform or
compiler.

The first question you should ask yourself before proceedingis Do I really need to
compile POV-Ray at all?Official POV-Ray Team executable versions are available for
MS-Dos, Windows 3.1x/95/NT, Mac 68k, Mac Power PC, Amiga, Linux for Intel x86,

14 CHAPTER 2. PROGRAM DESCRIPTION

and SunOS. Other unofficial compiles may soon be available for other platforms. If
you do not intend to add any custom or experimental features to the program and if
an executable already exists for your platform then you neednot compile this program
yourself.

If you do want to proceed you should be aware that you are very nearly on your own.
The following sections and other related compiling documentation assume you know
what you are doing. It assumes you have an adequate C compilerinstalled and working.
It assumes you know how to compile and link large, multi-partprograms using aMAKE

utility or an IDE project file if your compiler supports them.Because makefiles and
project files often specify drive, directory or path information, we cannot promise our
makefiles or projects will work on your system. We assume you know how to make
changes to makefiles and projects to specify where your system libraries and other
necessary files are located.

In general you should not expect any technical support from the POV-Ray Team on
how to compile the program. Everything is provided here as is. All we can say with
any certainty is that we were able to compile it on our systems. If it doesn’t work for
you we probably cannot tell you why.

There is no technical documentation for the source code itself except for the comments
in the source files. We try our best to write clear, well- commented code but some
sections are barely commented at all and some comments may beout dated. We do
not provide any technical support to help you to add features. We do not explain how a
particular feature works. In some instances, the person whowrote a part of the program
is no longer active in the Team and we don’t know exactly how itworks.

When making any custom version of POV-Ray or any unofficial compile, please make
sure you read and follow all provisions of our license in A on page 371. In general you
can modify and use POV-Ray on your own however you want but if you distribute your
unofficial version you must follow our rules. You may not under any circumstances
use portions of POV-Ray source code in other programs.

2.3.7.1 Directroy Structure

POV-Ray source code is distributed in archives with files arranged in a particular hier-
archy of directories or folders. When extracting the archives you should do so in a way
that keeps the directory structure intact. In general we suggest you create a directory
calledPOVRAY3 and extract the files from there. The extraction will create adirectory
calledSOURCE with many files and sub-directories.

In general, there are separate archives for each hardware platform and operating system
but each of these archives may support more than one compiler. For example here is
the directory structure for the MS-Dos archive.

SOURCE

SOURCE\LIBPNG

2.3. WHICH VERSION OF POV-RAY SHOULD YOU USE? 15

SOURCE\ZLIB
SOURCE\MSDOS

SOURCE\MSDOS\PMODE

SOURCE\MSDOS\BORLAND

SOURCE\MSDOS\DJGPP

SOURCE\MSDOS\WATCOM

The SOURCE directory contains source files for the generic parts of POV-Ray that are
the same on all platforms. TheSOURCE\LIBPNG contains files for compiling a library
of routines used in reading and writing PNG (Portable Network Graphics) image files.
TheSOURCE\ZLIB contains files for compiling a library of routines used byLIBPNG
to compress and uncompress data streams. All of these files are used by all platforms
and compilers. They are in every version of the source archives.

The SOURCE\MSDOS directory contains all source files for the MS-Dos version com-
mon to all supported MS-Dos compilers. ThePMODE sub-directory contains source
files for PMODE.LIB which is required by all MS-Dos versions. TheBORLAND,
DJGPP, and WATCOM sub-directories contain source, makefiles and project filesfor
C compilers by Borland, DJGPP and Watcom.

The SOURCE\MSDOS directory is only in the MS-Dos archive. Similarly the Win-
dows archive contains aSOURCE\WINDOWS directory. The Unix archive contains
SOURCE/UNIX etc.

The SOURCE\MSDOS directory contains a fileCMPL MSD.DOC which contains com-
piling information specific to the MS-Dos version. Other platform specific directo-
ries contain similarCMPL XXX.DOC files and the compiler specific sub-directories
also contain compiler specificCMPL XXX.DOC files. Be sure to read all pertinent
CMPL XXX.DOC files for your platform and compiler.

2.3.7.2 Configuring POV-Ray Source

Every platform has a header fileCONFIG.H that is generally in the platform specific
directory but may be in the compiler specific directory. Someplatforms have multiple
versions of this file and you may need to copy or rename it asCONFIG.H. This file
is included in every module of POV-Ray. It contains any prototypes, macros or other
definitions that may be needed in the generic parts of POV-Raybut must be customized
for a particular platform or compiler.

For example different operating systems use different characters as a separator between
directories and file names. MS-Dos uses back slash, Unix a front slash or Mac a colon.
The CONFIG.H file for MS-Dos and Windows contains the following:

#define FILENAME_SEPARATOR ’\\’

which tells the generic part of POV-Ray to use a back slash.

16 CHAPTER 2. PROGRAM DESCRIPTION

Every customization that the generic part of the code needs has a default setting in the
file SOURCE\FRAME.H which is also included in every module afterCONFIG.H. The
FRAME.H header contains many groups of defines such as this:

#ifndef FILENAME_SEPARATOR

#define FILENAME_SEPARATOR ’/’

#endif

which basically saysif we didn’t define this previously inCONFIG.H then here’s a
default value. SeeFRAME.H to see what other values you might wish to configure.

If any definitions are used to specify platform specific functions you should also include
a prototype for that function. The fileSOURCE\MSDOS\CONFIG.H, for example, not
only contains the macro:

#define POV_DISPLAY_INIT(w,h) MSDOS_Display_Init ((w), (h));

to define the name of the graphics display initialization function, it contains the proto-
type:

void MSDOS_Display_Init (int w, int h);

If you plan to port POV-Ray to an unsupported platform you should probably start with
the simplest, non-display generic Unix version. Then add new custom pieces via the
CONFIG.H file.

2.3.7.3 Conclusion

We understand that the above sections are only the most trivial first steps but half the
fun of working on POV-Ray source is digging in and figuring it out on your own. That’s
how the POV-Ray Team members got started. We’ve tried to makethe code as clear as
we can.

Be sure to read theCMPL XXX.DOC files in your platform specific and compiler spe-
cific directories for some more minor help if you are working on a supported platform
or compiler.

Good luck!

2.4 Where to Find POV-Ray Files

The latest versions of the POV-Ray software are available from the following sources.

2.4. WHERE TO FIND POV-RAY FILES 17

2.4.1 Graphics Developer Forum on CompuServe

POV-Ray’s headquarters are on CompuServe, GRAPHDEV forum,ray-tracing sec-
tions. We meet there to share info and graphics and discuss ray tracing, frac-
tals and other kinds of computer art. Everyone is welcome to join in on the ac-
tion on CIS GRAPHDEV. Hope to see you there! You can get information on
joining CompuServe by calling (800)848-8990 or visit the CompuServe home page
http://www.compuserve.com. Direct CompuServe access is also available in
Japan, Europe and many other countries.

2.4.2 Internet

The internet home of POV-Ray is reachable on the World Wide Web via the address
http://www.povray.org and via ftp asftp.povray.org. Please stop by
often for the latest files, utilities, news and images from the official POV-Ray internet
site.

The comp.graphics.rendering.raytracing newsgroup has many compe-
tent POV-Ray users that are very willing to share their knowledge. They generally ask
that you first browse a few files to see if someone has already answered the same ques-
tion, and of course, that you follow proper ”netiquette”. Ifyou have any doubts about
the qualifications of the folks that frequent the group, a fewminutes spend at the Ray
Tracing Competition pages atwww.povray.org will quickly convince you!

2.4.3 PC Graphics Area on America On-Line

There’s an area now on America On-Line dedicated to POV-Ray support and infor-
mation. You can find it in the PC Graphics section of AOL. Jump keyword POV (the
keyword PCGRAPHICS brings you to the top of the graphics related section). This
area includes the Apple Macintosh executables also. It is best if messages are left in
the Company Supportsection. Currently, Bill Pulver (BPulver) is our representative
there.

2.4.4 The Graphics Alternative BBS in El Cerrito, CA

For those on the West coast, you may want to find the POV-Ray files onThe Graphics
Alternative BBS. It’s a great graphics BBS run by Adam Shiffman. TGA is high quality,
active and progressive BBS system which offers both qualitymessaging and files to its
1300+ users.

510-524-2780 (PM14400FXSA v.32bis 14.4k, Public)
510-524-2165 (USR DS v.32bis/HST 14.4k, Subscribers)

18 CHAPTER 2. PROGRAM DESCRIPTION

USA and Canada
411-Exchange Alpharetta GA 404-345-0008
Autodesk Global Village San Rafael CA 415-507-5921
CAD/Engineering Services Hendersonville TN 615-822-2539
Canis Major Nashville TN 615-385-4268
CEAO BBS Columbus OH 614-481-3194
CHAOS BBS Columbia MO 314-874-2930
Joes CODE BBS West Bloomfield MI 810-855-0894
John’s Graphics Brooklyn Park MN 612-425-4436
PC-AUG Phoenix AZ 602-952-0638
SAUG BBS Bellevue WA 206-644-7115
Space Command BBS Kennewick WA 509-735-4894
The CAD/fx BBS Mesa AZ 602-835-0274
The Drawing Board BBS Anchorage AK 907-349-5412
The Graphics Alternative El Cerrito CA 510-524-2780
The Happy Canyon Denver CO 303-759-3598
The New Graphics BBS Piscataway NJ 908-271-8878
The University Shrewsbury Twp NJ 908-544-8193
The Virtual Dimension Oceanside CA 619-722-0746
Time-Out BBS Sadsburyville PA 610-857-2648

Table 2.1: Graphic-orientated BBSs in North America.

2.4.5 PCGNet

The Professional CAD and Graphics Network (PCGnet) serves both the CAD and
Graphics communities by making information useful to them widely available.

Formerly known as ADEnet, PCGnet is a new network created from the ground up,
incorporating new nodes and focusing evenly on both CAD and graphics related topics,
including, but not limited to the following topics: design,drafting, engineering, 2d
and 3d modeling, multimedia, systems, raster imaging, raytracing, 3d rendering and
animation.

PCGnet is designed to serve the needs of all callers by stimulating interest and gener-
ating support forums for active users who have an interest inthe CAD and graphics re-
lated topics previously mentioned; interest and support isgenerated through PCGnet’s
message conferences, file sharing across the network, and industry news and press re-
leases. PCGnet’s message conference are moderated forums designed to accommodate
friendly, yet professional and informative discussion of CAD and graphics related sub-
jects.

TGA BBS serves as the central hub for a large network of graphics-oriented BBS sys-
tems around the world. In table 2.1, table 2.2 on the next pageand table 2.3 on the
facing page you wil find a concise listing of active PCGNet nodes at the time of this
writing. The POV-Team can not vouch for the currency of this information, nor verify
that any of these boards may carry POV-Ray.

2.4. WHERE TO FIND POV-RAY FILES 19

Austria
AutoCAD User Group Graz 43-316-574-426

Belgium
Lucas Visions BBS Boom 32-3-8447-229

Denmark
Horreby SuperBBS Nykoebing Falster 45-53-84-7074

Finland
DH-Online Jari Hiltunen 358-0-40562248
Triplex BBS Helsinki 358-0-5062277

France
CAD Connection Montesson 33-1-39529854
Zyllius BBS! Saint Paul 33-93320505

Germany
Ray BBS Munich Munich 49-89-984723
Tower of Magic Gelsenkirchen 49-209-780670

Netherlands
BBS Bennekom: Fractal Board Bennekom 31-318-415331
CAD-BBS Nieuwegein 31-30-6090287

31-30-6056353
Foundation One Baarn 31-35-5422143

Slovenia
MicroArt Koper 386-66-34986

Sweden
Autodesk On-line Gothenburg 46-31-401718

United Kingdom
CADenza BBS Leicester, UK 44-116-259-6725
Raytech BBS Tain, Scotland 44-1862-83-2020
The Missing Link Surrey, England 44-181-641-8593

Table 2.2: Graphic-orientated BBSs in Europe.

Australia
MULTI-CAD Magazine BBS Toowong QLD 61-7-878-2940
My Computer Company Erskineville NSW 61-2-557-1489
Sydney PCUG Compaq BBS Caringbah NSW 61-2-540-1842
The Baud Room Melbourne VIC 61-3-481-8720

New Zealand
The Graphics Connection Wellington 64-4-566-8450
The Graphics Connection II New Plymouth 64-6-757-8092
The Graphics Connection III Auckland 64-9-309-2237

Table 2.3: Graphic-orientated BBSs in the rest of the world.

Country or long distance dial numbers may require additional numbers to be used.
Consult your local phone company.

20 CHAPTER 2. PROGRAM DESCRIPTION

2.4.6 POV-Ray Related Books and CD-ROMs

The following items were produced by POV-Team members. Although they are only
current to POV-Ray 2.2 they will still be helpful. Steps are being taken to update the
POV-Ray CDROM to version 3.0, with a new version expected around October 1996.

The books listed below have been recently listed as out-of-print but may still be found
in some bookstores or libraries (Visit http://www.dnai.com:80/waite/ for more details).

Ray Tracing Creations, 2d Ed.
Chris Young and Drew Wells
ISBN 1-878739-69-7
Waite Group Press 1994
700 pages with color insert and POV-Ray 2.2 on 3.5” MS-Dos disk.

Ray Tracing Worlds with POV-Ray
Alexander Enzmann, Lutz Kretzschmar, Chris Young
ISBN 1-878739-64-6
Waite Group Press 1994
Includes Moray 1.5x modeler and POV-Ray 2.2 on 3.5” MS-Dos disks.

Ray Tracing for the Macintosh CD
Eduard Schwan
ISBN 1-878739-72-7
Waite Group Press, 1994
Comes with a CD-ROM full of scenes, images, and QuickTime movies, and
an interactive keyword reference. Also a floppy with POV-Rayfor those who
don’t have a CD ROM drive.

The Official POV-Ray CDROM: The Official POV-Ray CDROM is a compilation of
images, scene source, program source, utilities and tips onPOV-Ray and 3D graphics
from the Internet and Compuserve. This CD is aimed not only atthose who want
to create their own images or do general 3D programming work,but also at those
who want simply to experience some high-quality renderingsdone by some of the best
POV-Ray artists, and to learn from their source code. The CDROM contains over 500
ray-traced images.

It’s a good resource for those learning POV-Ray as well as those who are already pro-
ficient, and contains a Microsoft Windows-based interactive tutorial. The disk comes
with a fold-out poster and reference sheet. The CD is compatible with DOS/Windows
and Macintosh formats.

The CDROM is available for free retrieval and browsing on theWorld Wide Web at
http://www.povray.org/pov-cdrom. For more details you may also visit
http://www.povray.org/povcd.

Chapter 3

Quick Start

The next section describes how to quickly install POV-Ray and render sample scenes on
your computer. It is assumed that you are using an IBM-PC compatible computer with
MS-Dos. For other platforms you must refer to the specific documentation included in
POV-Ray’s archive.

3.1 Installing POV-Ray

[*** STILL BEING WRITTEN ***]

Specific installation instructions are included with the executable program for your
computer. In general, there are two ways to install POV-Ray.

[Note that the generic word ”directory” is used throughout.Your operating system
may use another word (subdirectory, folder, etc.)]

1) The messy way: Create a directory called POVRAY and copy all POV-Ray files into
it. Edit and run all files and programs from this directory. This method works, but is
not recommended.

Or the preferred way:

2) Create a directory called POVRAY and several subdirectories called INCLUDE,
DEMO, SCENES, UTIL. The self-extracting archives used in some versions of the
program will create subdirectories for you. If you create your own, the file tree for this
should look something like this:

Copy the executable file and docs into the directory POVRAY. Copy the standard in-
clude files into the subdirectory INCLUDE. Copy the sample scene files into the sub-
directory SCENES. And copy any POV-Ray related utility programs and their related
files into the subdirectory UTIL. Your own scene files will go into the SCENES subdi-
rectory. Also, you’ll need to add the directories\POVRAY and\POVRAY\UTIL to
your ”search path” so the executable programs can be run fromany directory.

21

22 CHAPTER 3. QUICK START

Note that some operating systems don’t have an equivalent tothe multi-path search
command.

The second method is a bit more difficult to set-up, but is preferred. There are many
files associated with POV-Ray and they are far easier to deal with when separated into
several directories.

3.2 Basic Usage

Notice: If you did not install the program using theINSTALL.EXE system, the exam-
ples and instructions given here may not work! The installation process configures
POVRAY.INI and several important batch files. Without these files configured, the ex-
amples herein may not work.

POV-Ray’s basic purpose is to read a scene description written in the POV language
and to write an image file. The scene files are plain ASCII text files that you create
using a text editor. Dozens of sample files are included with this package to illustrate
the various features.

You invoke POV-Ray by typing a command at the MS-Dos prompt. The command
is POVRAY and it must be followed by one or more command line switches. Each
switch begins with a plus or minus sign. Blanks separate the switches. The switches
may be upper or lower case.

Note: The examples in this documentation assume you installed POV-Ray in the
C:\POVRAY3 directory. The installer will let you install POV-Ray anywhere and will
properly configure it for the drive and directory you specified. You just substitute that
drive and directory anywhere we tell you to useC:\POVRAY3. Change to that directory
now. Then type the following command line and press [ENTER]

POVRAY +ISHAPES +D1

The +I command (forinput) tells the program what file to read as input. If you don’t
give an extension on the file name,.POV is assumed. Thus+ISHAPES tells it to read
in SHAPES.POV to be rendered.

The +D switch (for display) tells the program to turn the graphic preview display on.
A –D would turn it off. The number ”1” tells it what type of displayto use. Type ”1” is
the old fashioned standard generic VGA at 320 by 200 resolution and just 256 colors.
This is pretty much guaranteed to work on any VGA video system.

There are other options in effect besides those you typed on the command line. They
are stored in a file calledPOVRAY.INI which was created by the install system. POV-
Ray automatically looks for this file in the same directory wherePOVRAY.EXE resides.
See 3.2.2 on page 25 and 6.1.2 on page 148 for more informationon POVRAY.INI and
other INI files.

3.2. BASIC USAGE 23

When you enter the command shown above, you will see brightlycolored geometric
shapes begin to appear as POV-Ray calculates the color of each pixel row by row. You
will probably be disappointed with the graphic display results. That is because this is
only a preview display. The actual image is in full 24-bit color but we cannot display
that high quality using simple VGA with a fixed set of 256 colors. If your hardware
supports the VESA interface standard or you have a VESA TSR driver loaded, try
running with+DG rather than+D1. This will give you access to all of the various
modes your video hardware can use. If you have 15-bit or 16- bit high color capability
try +DGH or if you have 24-bit true color capability try+DGT to see the image in all
its glory. See section 3.2.5 on page 27 below for more information on graphics preview.

When the program finishes, you will hear beeps. After admiring the image, press
[ENTER]. You will see a text screen of statistics. If the textis too much to fit on
the screen you may press [CURSOR UP] or [CURSOR DOWN] keys to read more
text. Notice that there are tabs at the bottom of the screen. Press [CURSOR LEFT]
or [CURSOR RIGHT] keys to view other interesting text information. Press [ENTER]
again to exit POV-Ray.

If you do not have high color or true color ability you will have to view the image file to
see the real colors. The image fileSHAPES.TGA is written to your current directory. By
default POV-Ray creates files in TGA format. This is a standard format for storing 24-
bit true-color images. You will need an image viewing program to view the file. Such
programs are usually available from the same place where youobtained POV-Ray but
a viewer is not included in this package.

If you cannot view TGA files you may add the switch+FN and POV-Ray will output
PNG (Portable Network Graphic) format. If PNG format vieweris not available then
type the following

T2G SHAPES

and press [ENTER]. This will run a batch file that invokes theTGA2GIF program. The
program will read yourSHAPES.TGA file, create an optimal 256 color palette and write
a GIF format fileSHAPES.GIF. Most image viewing programs support GIF.

3.2.1 Running Files in Other Directories

Normally POV-Ray only looks in the current directory for thefiles it needs. It does
not search your MS-Dos path for data files; it only searches for programs. In the
sample scene you just ran, fileSHAPES.POV was in the current directory so this was
no problem. That scene also needed other files but yourPOVRAY.INI file tells POV-Ray
other places to search for necessary files.

If you allowed the install system to update yourAUTOEXEC.BAT file, then you can
change to any drive or directory and can run POV-Ray from thatdirectory. You will
also be able to use the batch files and utilities that came withthis package in any

24 CHAPTER 3. QUICK START

directory. For future reference let’s call the ”use-C:\POVRAY3-in-your-path-plan” as
plan one.

There are some circumstances where you may not want to putC:\POVRAY3 in your
path. There is a limit of 128 characters in your path statement and you may not have
room for it. Try rendering theSHAPES example from a different directory. If it doesn’t
work, then you forgot to re-boot your system so the new path takes effect. If after re-
booting it still doesn’t work, it probably means your path istoo full. You will have to
adopt a different plan.

Chances are, you already have several directories in your path. Most systems have
C:\DOS, C:\WINDOWS or some directory such asC:\UTILITY already in the path. We
have provided several small batch files that you can copy to that directory. For fu-
ture reference we’ll call the ”put-batch-files-in-a-directory-already-on-the-path-plan”
asplan two.

At any dos prompt, type the wordpathand press [ENTER]. It will show you what direc-
tories are already on your path. Then copy the following filesfrom your C:\POVRAY3
directory to any of the directories already on your path. Thefiles are:

RUNPOV.BAT RERUNPOV.BAT RUNPHELP.BAT T2G.BAT

Once you have copied these files, try the following example. In this case, do not invoke
the program with the commandPOVRAY. Instead useRUNPOV as follows:

cd\POVRAY3\POV3DEMO\SHOWOFF

RUNPOV +ISUNSET3 +D1

This changes to the\POVRAY3\POV3DEMO\SHOWOFF directory where the fileSUN-
SET3.POV is found. It runs the fileRUNPOV.BAT. That batch file is set up to run POV-
Ray even if it is not on the dos path. It also passes the switches along to POV-Ray.
These batch files have other uses, even if you are usingplan oneas described above or
plan threeas described below. For more on these batch files, see 3.2.4 onpage 26.

All of the early examples in this document assumed you were running POV-Ray from
the directory where it was installed such asC:\POVRAY3. This approach of always
using the installation directory is in factplan three. If you are using this method, you
need to tell POV-Ray where else to look for files. In the case ofSUNSET3.POV you
could do this:

POVRAY +IC:\POVRAY3\POV3DEMO\SHOWOFF\SUNSET3 +D1

However some scenes need more than one file. For example the directoryDRUMS2 that
can be found under\POVRAY3\POVSCN\LEVEL3 contains three files:DRUMS.POV,
DRUMS.INC andREDNEWT.GIF all of which are required for that one scene. In this
case you should use the+L switch (for library) to add new library paths to those that
POV-Ray will search. You would render the scene with this command.

POVRAY +L\POVRAY3\POVSCN\LEVEL3\DRUMS2 +IDRUMS +D1

3.2. BASIC USAGE 25

3.2.2 INI Files

There were more options used in these renderings than just the switches+I, +D, and
+L that you specify. When you run the program, POV- Ray automatically looks for the
file POVRAY.INI in whatever directory thatPOVRAY.EXE is in. The POVRAY. INI file
contains many options that control how POV-Ray works. We have set this file up so
that it is especially easy to run your first scene with minimalproblems. The file should
be placed in the same directory asPOVRAY.EXE and it will automatically read when
POV-Ray is run. If you ever movePOVRAY.EXE to a different directory, be sure to
movePOVRAY.INI too.

Complete details on all of the available switches and options that can be given on the
command line or inPOVRAY.INI are given in 6 on page 147.

You may also create INI files of your own with switches or options similar to
POVRAY.INI. If you put a file name on the command line without a plus or minus
sign before it, POV-Ray reads it as an INI file. Try this. . .

POVRAY RES120 +ISHAPES +D1

This causes POV-Ray to look for a file calledRES120.INI which we have provided. It
sets your resolution to 120 by 90 pixels for a quick preview. The following INI files
have been provided for you.

RES120.INI Sets resolution to 120 by 90.
RES320.INI Sets resolution to 320 by 200.
RES640.INI Sets resolution to 640 by 480.
RES800.INI Sets resolution to 800 by 600.
RES1K.INI Sets resolution to 1024 by 768.
LOW.INI Sets low quality at 120 by 90.
SLOW.INI Turns on radiosity and anti-aliasing; slow but beautiful.
TGAFLI.INI Create an FLI animation from TGA images.
PNGFLI.INI Create an FLI animation from DTA images.
ZIPFLI.INI Create an FLI animation from zipped images.
TGAFLC.INI Create an FLC animation from TGA images.
PNGFLC.INI Create an FLC animation from DTA images.
ZIPFLC.INI Create an FLC animation from zipped images.

You can create your own custom INI’s which can contain any command in the reference
guide.

3.2.3 Alternatives toPOVRAY.INI

The POVRAY.INI file is supposed to hold your favorite global default optionsthat you
want to use all the time. You should feel free to edit it with new options that suit your

26 CHAPTER 3. QUICK START

needs. However it must be located in the same directory asPOVRAY.EXE or it won’t be
found. The dos path isn’t searched nor will+L commands help becausePOVRAY.INI is
processed before any command line switches.

If your POVRAY.EXE resides on a CD-ROM then you can’t edit thePOVRAY.INI on
the CD. There is an alternative. You may use an environment variable to specify an
alternative global default.

In your AUTOEXEC.BAT file add a line similar to this:

set POVINI=D:\DIRECT\FILE. INI

which sets the POVINI environment variable to whatever drive, directory and INI file
you choose. If you specify any POVINI environment variable thenPOVRAY.INI is not
read. This is true even if the file you named doesn’t exist. Note that you are specifying
an entire path and file name. This is not a pointer to a directory containingPOVRAY.INI.
It is a pointer to the actual file itself.

Note that the POVRAYOPT environment variable in previous versions of POV-Ray is
no longer supported.

3.2.4 Batch Files

We’ve already described how the fileRUNPOV.BAT can be used as an alternative to
running POV-Ray directly.RUNPOV.BAT also has one other use. It uses the+GI switch
to create a file calledRERUN. INI. This makes it very easy to run the same file over
again with the same parameters. When creating your own scenefiles you will probably
make dozens of test renders. This is a very valuable feature.Here is how it works. . .
Suppose you render a scene as follows:

RUNPOV +IMYSCENE +D1 RES120

This rendersMYSCENE.POV at 120 by 90 resolution. Note there is no such scene. This
is hypothetical. After viewing it, you noticed a mistake which you fixed with your text
editor. To rerun the scene type:

RERUNPOV

and that’s all. It will rerun the same scene you just ran. Suppose you want more detail
on the next run. You can add more switches or INI files. For example:

RERUNPOV RES320

3.2. BASIC USAGE 27

will rerun at higher resolution. Subsequent uses ofRERUNPOV will be at 320 by 200
until you tell it differently. As another example, the+A switch turns on anti-aliasing.
Typing ”RERUNPOV +A” reruns with anti- aliasing on. All subsequent reruns will have
it on until you do a ”RERUNPOV –A” to turn it off. Note if you do anotherRUNPOV it
starts over from yourPOVRAY.INI defaults and it overwrites the oldRERUN.INI.

Two other batch files are included.RUNPHELP.BAT is only used as an alternative way
to run POVHELP from another directory. If you used installationplan two then use
RUNPHELP.BAT rather thanPOVHELP.EXE. This batch file serves no other purpose.

Finally T2G.BAT invokes theTGA2GIF.EXE program for converting TGA files to GIF
files. You could runTGA2GIF directly but its default parameters do not generally
produce the best results. If you use T2G instead, it adds somecommand line switches
which work better. For a full list of switches available forTGA2GIF, type TGA2GIF

with no parameters and it will display the available switches and options.

3.2.5 Display Types

You have already seen how to turn on graphics preview using+D1. Here are details on
other variations of the+D switch. Use–D to turn the display off. If you use–D then
you will probably want to add the+V switch to turn on verbose status messages so you
can monitor the progress of the rendering while in progress.

The number ”1” after the+D tells it what kind of video hardware to use. If you use+D
alone or+D0 then POV-Ray will attempt to auto detect your hardware type.Use+D?
to see a message about what type of hardware POV-Ray found.

You may also explicitly tell POV-Ray what hardware to use. The following chart lists
all of the supported types.

+D0 Auto detect (S)VGA type (Default)
+D1 Standard VGA 320×200
+D2 Standard VGA 360×480
+D3 Tseng Labs 3000 SVGA 640×480
+D4 Tseng Labs 4000 SVGA
+D5 AT&T VDC600 SVGA 640×400
+D6 Oak Technologies SVGA 640×480
+D7 Video 7 SVGA 640×480
+D8 Video 7 Vega (Cirrus) VGA 360×480
+D9 Paradise SVGA 640×480
+DA Ahead Systems Ver. A SVGA 640×480
+DB Ahead Systems Ver. B SVGA 640×480
+DC Chips & Technologies SVGA 640×480
+DD ATI SGVA 640×480
+DE Everex SVGA 640×480
+DF Trident SVGA 640×480
+DG VESA Standard SVGA Adapter

28 CHAPTER 3. QUICK START

+DH ATI XL display card
+DI Diamond Computer Systems SpeedSTAR 24X

The most common type is a VESA standard card which uses+DG. VESA is a standard
software interface that works on a wide variety of cards. Those cards which do not
have VESA support directly built-in, generally have a videodriver that you can load to
provide VESA support. The programUNIVBE is a high quality universal VESA driver
that may work for you. It can be found athttp://www.povray.org or possibly
other POV-Ray sites.

The options listed above had been tested worked under earlier versions of POV-Ray but
there have been many changes in the program and we cannot guarantee these all still
work. If you can use VESA then do so. It has been well tested andwill give you the
most flexibility.

After the +D and the type, you may specify a 3rd character that specifies the palette
type.

+D?3 Use 332 palette with dithering (default and best for VGA systems).
This is a fixed palette of 256 colors with each color consisting 3-bits
of red data, 3-bits green and 2-bits blue.

+D?0 Use HSV palette option for VGA display. This is a fixed paletteof
256 colors where colors are matched according to hue, saturation
and intensity rather than the amount of red, green and blue.

+D?G Use fixed gray scale palette option for VGA display.
+D?H Use HiColor option. Displays more than 32000 colors with dither-

ing. Supported on VESA, SpeedSTAR 24X, ATI XL HiColor and
Tseng 4000 based cards with high color 15 or 16 bit options.

+D?T For Truecolor 24 bit cards. Use 24 bit color. Supported on theDia-
mond SpeedSTAR 24X and cards with 24bit VESA support only.

Here are some examples:

+D0H Auto detect the VGA display type and display the image to the
screen as it’s being worked on. Use the 15-bit HiColor chip and
dithering to display more than 32,000 colors on screen.

+D4 Display to a TSENG 4000 chipset VGA using the 332 palette op-
tion.

+D4H Display to a TSENG 4000 chipset VGA using the HiColor option.
+DG0 Display to a VESA VGA adapter and use the HSV palette option.
+DG3 Display to a VESA VGA adapter and use the 332 palette option.
+DGH Display to a VESA VGA adapter and use the HiColor option for

over 32,000 colors.
+DGT Display to a VESA VGA adapter and use the TrueColor option for

over 16 million colors.

3.2. BASIC USAGE 29

Note that your VESA BIOS must support these options in order for you to use them.
Some cards may support HiColor and/or TrueColor at the hardware level but not
through their VESA BIOS.

30 CHAPTER 3. QUICK START

Part II

Tutorial Guide

31

Chapter 4

Beginning Tutorial

The beginning tutorial explains step by step how to use POV-Ray’s scene description
language to create your own scenes. The use of almost every feature of POV-Ray’s
language is explained in detail. You will learn basic thingslike placing cameras and
light sources. You will also learn how to create a large variety of objects and how to
assign different textures to them. The more sophisticated features like radiosity, halos,
and atmospheric effects will also be explaind in detail.

The following sections explain the features in roughly the same order as they are de-
scribed in the reference chapter.

4.1 Your First Image

Let’s create the scene file for a simple picture. Since ray-tracers thrive on spheres,
that’s what we’ll render first.

4.1.1 Understanding POV-Ray’s Coordinate System

First, we have to tell POV-Ray where our camera is and where it’s looking. To do this,
we use 3D coordinates. The usual coordinate system for POV-Ray has the positive
Y axis pointing up, the positive X axis pointing to the right,and the positive Z axis
pointing into the screen as shown in figure 4.1 on the following page.

This kind of coordinate system is called a left-handed coordinate system. If you use
your left hand’s fingers you can easily see why it is called left-handed. Just point your
thumb in the direction of the positive x-axis, your index finger in the direction of the
positive y-axis and your middle finger in the positive z-axisdirection. You can only do
this with your left hand. If you had used your right hand you would not have been able
to point the middle finger in the correct direction.

33

34 CHAPTER 4. BEGINNING TUTORIAL

y

x

z

Figure 4.1: The left-handed coordinate system (the z-axis is pointing away from the
viewer).

The left hand can also be used to determine rotation directions. To do this you must
perform the famousComputer Graphics Aerobicsexercise. Hold up your left hand.
Point your thumb in the positive direction of the axis of rotation. Your fingers will curl
in the positive direction of rotation. Similarly if you point your thumb in the negative
direction of the axis your fingers will curl in the negative direction of rotation.

If you want to use a right-handed system, as some CAD systems such as AutoCAD do,
theright vector in the camera specification needs to be changed. See the detailed
description in 7.4.4.5.2 on page 226. In a right-handed system you use your right hand
for theAerobics.

Note that there is some controversy over whether POV-Ray’s method of doing a right-
handed system is really proper. If you want to avoid problemswe suggest you stick
with the left-handed system which is not in dispute.

4.1.2 Adding Standard Include Files

Using your personal favorite text editor, create a file called demo.pov. Now type in
the following (the input is case sensitive, so be sure to get capital and lowercase letters
correct).

#include "colors.inc" // The include files contain

#include "shapes.inc" // pre-defined scene elements

#include "finish.inc"

#include "glass.inc"

#include "metals.inc"

#include "stones.inc"

#include "woods.inc"

4.1. YOUR FIRST IMAGE 35

The first include statement reads in definitions for various useful colors. The second
include statement reads in some useful shapes. The next readpre-defined finishes,
glass, metal, stone, and wood textures. When you get a chance, have a look through
them to see but a few of the many possible shapes and textures available.

You should only include files you really need in your scene. Some of the include
files coming with POV-Ray are quite large and you should better save the parsing time
(and memory) if you don’t need them. In the following examples we will only use
the colors.inc, finish.inc andstones.inc include files so you’ll better
remove the appropriate lines from your scene file.

You may have as many include files as needed in a scene file. Include files may them-
selves contain include files, but you are limited to declaring includes nested only ten
levels ”deep”.

Filenames specified in the include statements will be searched for in the current direc-
tory first and, if not found, will then be searched for in directories specified by any
+L or Library Path options active. This would facilitate keeping all your ”include”
(. INC) files such asSHAPES.INC, COLORS.INC, andTEXTURES.INC in an ”include”
subdirectory, and giving an+L option on the command line to where your library of
include files are.

4.1.3 Adding a Camera

The camera declaration describes where and how the camera sees the scene. It givesx,
y, z coordinates to indicate the position of the camera and what part of the scene it is
pointing at. You describex, y, zcoordinates using a three-partvector. A vector is spec-
ified by putting three numeric values between a pair of angle brackets and separating
the values with commas.

Add the following camera statement to the scene.

camera {

location <0, 2, -3>

look_at <0, 1, 2>

}

Briefly, location 〈0,2,−3〉 places the camera up two units and back three units
from the center of the ray-tracing universe which is at〈0,0,0〉. Remember that by
default+z is into the screen and−z is back out of the screen.

Also look at 〈0,1,2〉 rotates the camera to point atx, y, z coordinates〈0,1,2〉. A
point 5 units in front of and 1 unit lower than the camera. The look at point should be
the center of attention of your image.

4.1.4 Describing an Object

Now that the camera is set up to record the scene, let’s place ayellow sphere into the
scene. Add the following to your scene file:

36 CHAPTER 4. BEGINNING TUTORIAL

sphere {

<0, 1, 2>, 2

texture {

pigment { color Yellow }

}

}

The first vector specifies the center of the sphere. In this example thex coordinate is
zero so it is centered left and right. It is also aty= 1 or 1 unit up from the origin. The
z coordinate is 2 which is 5 units in front of the camera, which is atz=−3. After the
center vector is a comma followed by the radius which in this case is 2 units. Since the
radius is half the width of a sphere, the sphere is 4 units wide.

4.1.5 Adding Texture to an Object

After we have defined the location and size of the sphere, we need to describe the
appearance of the surface. Thetexture { . . . } block specifies these parameters.
Texture blocks describe the color, bumpiness and finish properties of an object. In this
example we will specify the color only. This is the minimum wemust do. All other
texture options except color will use default values.

The color you define is the way you want it to look if fully illuminated. If you were
painting a picture of a sphere you would use dark shades of a color to indicate the
shadowed side and bright shades on the illuminated side. However ray-tracing takes
care of that for you. You pick the basic color inherent in the object and POV-Ray
brightens or darkens it depending on the lighting in the scene. Because we are defining
the basic color the object actuallyhas rather than how itlooks the parameter is called
pigment.

Many types of color patterns are available for use in apigment { . . . } statement.
The keywordcolor specifies that the whole object is to be one solid color ratherthan
some pattern of colors. You can use one of the color identifiers previously defined in
the standard include filecolors.inc.

If no standard color is available for your needs, you may define your own color by
using the color keyword followed byred, green andblue keywords specifying the
amount of red, green and blue to be mixed. For example a nice shade of pink can be
specified by:

color red 1.0 green 0.8 blue 0.8

The values after each keyword should be in the range 0.0 to 1.0. Any of the three
components not specified will default to 0. A shortcut notation may also be used. The
following produces the same shade of pink:

4.1. YOUR FIRST IMAGE 37

color rgb <1.0, 0.8, 0.8>

Colors are explained in more detail in section 7.1.5 on page 192.

4.1.6 Defining a Light Source

One more detail is needed for our scene. We need a light source. Until you create one,
there is no light in this virtual world. Thus add the line

light_source { <2, 4, -3> color White}

to your scene file to get your first complete POV-Ray scene file as shown below.

#include "colors.inc"

background { color Cyan }

camera {

location <0, 2, -3>

look_at <0, 1, 2>

}

sphere {

<0, 1, 2>, 2

texture {

pigment { color Yellow }

}

}

light_source { <2, 4, -3> color White}

The vector in thelight source statement specifies the location of the light as 2
units to our right, 4 units above the origin and 3 units back from the origin. The light
source is invisible, it only casts light, so no texture is needed.

That’s it! Close the file and render a small picture of it usingthe command

POVRAY +W160+H120+P +X +D0 –V -IDEMO.POV

If your computer does not use the command line, see your platform specific docs for
the correct command to render a scene.

You may also set any other command line options you like. The scene is written to
the image filedemo.tga (or some suffix other than.TGA if your computer uses a
different default file format).

The scene you just traced isn’t quite state of the art but we’ll have to start with the
basics before we soon get to much more fascinating features and scenes.

38 CHAPTER 4. BEGINNING TUTORIAL

4.2 Using the Camera

[*** STILL BEING WRITTEN ***]

4.2.1 Camera Types

[*** STILL BEING WRITTEN ***]

4.2.2 Using Focal Blur

[*** STILL BEING WRITTEN ***]

4.2.3 Using Camera Ray Perturbation

[*** STILL BEING WRITTEN ***]

4.3 Simple Shapes

So far we’ve just used the sphere shape. There are many other types of shapes that can
be rendered by POV-Ray. The following sections will describe how to use some of the
more simple objects as a replacement for the sphere used above.

4.3.1 Box Object

The box is one of the most common objects used. Try this example in place of the
sphere:

box {

<-1, 0, -1>, // Near lower left corner

< 1, 0.5, 3> // Far upper right corner

texture {

T_Stone25 // Pre-defined from stones.inc

scale 4 // Scale by the same amount in all

// directions

}

rotate y*20 // Equivalent to "rotate <0,20,0>"

}

4.3. SIMPLE SHAPES 39

In this example you can see that a box is defined by specifying the 3D coordinates of its
opposite corners. The first vector must be the minimumx, y, zcoordinates and the 2nd
vector must be the maximumx, y, zvalues. Box objects can only be defined parallel to
the axes of the world coordinate system. You can later rotatethem to any angle. Note
that you can perform simple math on values and vectors. In therotate parameter we
multiplied the vector identifiery by 20. This is the same as〈0,1,0〉×20 or〈0,20,0〉.

4.3.2 Cone Object

Here’s another example showing how to use a cone:

cone {

<0, 1, 0>, 0.3 // Center and radius of one end

<1, 2, 3>, 1.0 // Center and radius of other end

texture { T_Stone25 scale 4 }

}

The cone shape is defined by the center and radius of each end. In this example one end
is at location〈0,1,0〉 and has radius of 0.3 while the other end is centered at〈1,2,3〉
with radius= 1. If you want the cone to come to a sharp point then useradius= 0.
The solid end caps are parallel to each other and perpendicular to the cone axis. If you
want an open cone with no end caps then add the keywordopen after the 2nd radius
like this:

cone {

<0, 1, 0>, 0.3 // Center and radius of one end

<1, 2, 3>, 1.0 // Center and radius of other end

open // Removes end caps

texture { T_Stone25 scale 4 }

}

4.3.3 Cylinder Object

You may also define a cylinder like this:

cylinder {

<0, 1, 0>, // Center of one end

<1, 2, 3>, // Center of other end

0.5 // Radius

open // Remove end caps

texture { T_Stone25 scale 4 }

}

40 CHAPTER 4. BEGINNING TUTORIAL

4.3.4 Plane Object

Let’s try out a computer graphics standard —The Checkered Floor. Add the following
object to the first version of theDEMO.POV file, the one including the sphere.

plane { <0, 1, 0>, -1

pigment {

checker color Red, color Blue

}

}

The object defined here is an infinite plane. The vector〈0,1,0〉 is the surface normal
of the plane (i.e. if you were standing on the surface, the normal points straight up).
The number afterward is the distance that the plane is displaced along the normal from
the origin — in this case, the floor is placed aty= −1 so that the sphere aty= 1,
radius= 2, is resting on it.

Notice that there is notexture { . . . } statement. There really is an implied texture
there. You might find that continually typing statements that are nested liketexture
{pigment { . . . }} can get to be a tiresome so POV-Ray lets you leave out the
texture { . . . } under many circumstances. In general you only need the texture
block surrounding a texture identifier (like theT Stone25example above), or when
creating layered textures (which are covered later).

This pigment uses the checker color pattern and specifies that the two colors red and
blue should be used.

Because the vectors〈1,0,0〉, 〈0,1,0〉 and 〈0,0,1〉 are used frequently, POV-Ray has
three built-in vector identifiersx, y, andz respectively that can be used as a shorthand.
Thus the plane could be defined as:

plane { y, -1

pigment { ... }

}

Note that you do not use angle brackets around vector identifiers.

Looking at the floor, you’ll notice that the ball casts a shadow on the floor. Shadows
are calculated very accurately by the ray-tracer, which creates precise, sharp shadows.
In the real world, penumbral or ”soft” shadows are often seen. Later you’ll learn how
to use extended light sources to soften the shadows.

4.3.5 Standard Include Objects

The standard include fileSHAPES.INC contains some pre-defined shapes that are about
the size of a sphere with a radius of one unit. You can invoke them like this:

4.4. ADVANCED SHAPES 41

#include "shapes.inc"

object {

UnitBox

texture { T_Stone25 scale 4 }

scale 0.75

rotate <-20,25,0>

translate y

}

4.4 Advanced Shapes

After you have gained some experience with the simpler shapes available in POV-Ray
it is time to go on to the more advanced, thrilling shapes.

You should be aware that the shapes described below are not trivial to understand.
Don’t worry if you do not know how to use them or how they work. Just try the
examples and play with the features described in the reference chapter. There is nothing
better than learning by doing.

4.4.1 Bicubic Patch Object

Bicubic or Bezier patches are useful surface representations because they allow an easy
definition of surfaces using only a few control points. For ray tracing (or rendering)
the patches are approximated using triangles. The control points serve to determine the
shape of the patch. Instead of defining the vertices of triangles, you simply give the
coordinates of the control points. A single patch has 16 control points, four at each
corner, and the rest positioned to divide the patch into smaller sections. Bezier patches
are almost always created using a third party modeler so for this tutorial, we will use
MORAY (any other modeler that supports Bezier patches and POV can also be used).
We will useMORAY only to create the patch itself, not the other elements of thescene.

Bezier patches are actually very useful and, with a little practice, some pretty amazing
things can be created with them. For our first tutorial, let’smake a sort of a teepee/tent
shape using a single sheet patch.

First, startMORAY and, from the main edit screen, click on ”CREATE”. Name your
objectTeepee. The ”CREATE BEZIER PATCH” dialogue box will appear. Make sure
that ”SHEET” is depressed. Click on ”OK, CREATE”. At the bottom of the main edit
screen, click on ”EXTENDED EDIT”.

Hold the cursor over the ”TOP” view and right click to make thepop-up menu appear.
Click on ”MAXIMIZE”. [ALT]-drag to zoom in a little. Click on ”MARK ALL”, and
under the transformation mode box, ”UFRM SCL”. Drag the mouse to scale the patch

42 CHAPTER 4. BEGINNING TUTORIAL

until it is approximately four units wide. Click on ”TRANSLATE”, and move the patch
so that its center is over the origin. Right click — ”MINIMIZE”, ”UNMARK ALL”.

[SHIFT]-drag a box around the lower right control point to mark it. [ALT]-zoom
into the ”FRONT” view so that you can see the patch better. In the ”FRONT” view,
”TRANSLATE” that point 10 units along the negativez-axis (note that in MORAY z
is up). ”UNMARK ALL”. Repeat this procedure for each of the other three corner
points. Make sure you remember to ”UNMARK ALL” once each point has been trans-
lated. You should have a shape that looks as though it is standing on four pointed legs.
”UNMARK ALL”.

Working once again in the ”TOP” view, [SHIFT]-drag a box around the four center
control points to mark them. Right-click over the ”TOP” view, ”MAXIMIZE”. Click
on ”UFRM SCL” and drag the mouse to scale the four points closetogether. [ALT]-
drag to zoom closer and get them as close together as you can. [ALT]-drag to zoom
out, right click, ”MINIMIZE”.

In the ”FRONT” view, ”TRANSLATE” the marked points 10 units along the positivez-
axis. ”UNMARK ALL”. The resulting shape is quite interesting, was simple to model,
and could not be produced using CSG primitives. Now let’s useit in a scene.

Click on ”DONE” to return to the main edit screen. Notice thatU STEPS and
V STEPS are both set to 3 and flatness is set to 0.01. Leave them alone for now.
Click on ”FILES”, and then ”SAVE SEL” (save selection). Nameyour new file
TEEPEE1.MDL. Press [F3] and openTEEPEE1.MDL. There is no need to save the
original file. WhenTEEPEE1 is open, create a quick ”dummy” texture (MORAY will
not allow you to export data without a texture), say, white with default finish, name it
TeePeeTex, and apply it to the object. Save the file and press [CTRL-F9].MORAY will
create two files:TEEPEE1.INC andTEEPEE1.POV.

Exit MORAY and copyTEEPEE1.INC andTEEPEE1.POV into your working directory
where you are doing these tutorials. Create a new file calledBEZDEMO.POV and edit
it as follows:

#include "colors.inc"

camera {

location <0, .1, -60>

look_at 0

angle 36

}

background { color Gray25 }

light_source { <300, 300, -700> White }

plane { y, -12

texture {

pigment {

4.4. ADVANCED SHAPES 43

checker

color Green

color Yellow

}

}

}

Using a text editor, create and declare a simple texture for your teepee object:

#declare TeePeeTex = texture {

pigment {

color rgb <1, 1, 1,>

}

finish {

ambient .2

diffuse .6

}

}

Now, paste in the bezier patch data fromTEEPEE1.POV (the additional object key-
words added byMORAY were removed):

bicubic_patch {

type 1 flatness 0.0100 u_steps 3 v_steps 3,

<-5.174134, 5.528420, -13.211995>,

<-1.769023, 5.528420, 0.000000>,

<1.636088, 5.528420, 0.000000>,

<5.041199, 5.528420, -13.003932>,

<-5.174134, 1.862827, 0.000000>,

<0.038471, 0.031270, 18.101474>,

<0.036657, 0.031270, 18.101474>,

<5.041199, 1.862827, 0.000000>,

<-5.174134, -1.802766, 0.000000>,

<0.038471, 0.028792, 18.101474>,

<0.036657, 0.028792, 18.101474>,

<5.041199, -1.802766, 0.000000>,

<-5.174134, -5.468359, -13.070366>,

<-1.769023, -5.468359, 0.000000>,

<1.636088, -5.468359, 0.000000>,

<4.974128, -5.468359, -12.801446>

texture {

TeePeeTex

}

rotate -90*x // to orient the object to LHC

rotate 25*y // to see the four "legs" better

}

Add the above rotations so that the patch is oriented to POV’sleft-handed coordinate
system (remember the patch was made inMORAY in a right handed coordinate system)

44 CHAPTER 4. BEGINNING TUTORIAL

and so we can see all four legs. Rendering this at 200x150 -a wesee pretty much what
we expect, a whiteteepeeover a green and yellow checkered plane. Let’s take a little
closer look. Render it again, this time at 320x200.

Now we see that something is amiss. There appears to be sharp angling, almost like
faceting, especially near the top. This is indeed a kind of faceting and is due to the
U STEPS and VSTEPS parameters. Let’s change these from 3 to 4 and see what
happens.

That’s much better, but it took a little longer to render. This is an unavoidable tradeoff.
If you want even finer detail, use a USTEPS and VSTEPS value of 5 and set flatness
to 0. But expect to use lots of memory and an even longer tracing time.

Well, we can’t just leave this scene without adding a few items just for interest. Declare
the patch object and scatter a few of them around the scene:

#declare TeePee = bicubic_patch {

type 1 flatness 0.0100 u_steps 3 v_steps 3,

<-5.174134, 5.528420, -13.211995>,

<-1.769023, 5.528420, 0.000000>,

<1.636088, 5.528420, 0.000000>,

<5.041199, 5.528420, -13.003932>,

<-5.174134, 1.862827, 0.000000>,

<0.038471, 0.031270, 18.101474>,

<0.036657, 0.031270, 18.101474>,

<5.041199, 1.862827, 0.000000>,

<-5.174134, -1.802766, 0.000000>,

<0.038471, 0.028792, 18.101474>,

<0.036657, 0.028792, 18.101474>,

<5.041199, -1.802766, 0.000000>,

<-5.174134, -5.468359, -13.070366>,

<-1.769023, -5.468359, 0.000000>,

<1.636088, -5.468359, 0.000000>,

<4.974128, -5.468359, -12.801446>

texture {

TeePeeTex

}

rotate -90*x // to orient the object to LHC

rotate 25*y // to see the four "legs" better

}

object { TeePee }

object { TeePee translate <8, 0, 8> }

object { TeePee translate <-9, 0, 9> }

object { TeePee translate <18, 0, 24> }

object { TeePee translate <-18, 0, 24> }

That looks good. Let’s do something about that boring gray background. Delete the
background declaration and replace it with:

4.4. ADVANCED SHAPES 45

plane { y, 500

texture {

pigment { SkyBlue }

finish { ambient 1 diffuse 0}

}

texture {

pigment {

bozo

turbulence .5

color_map {

[0 White]

[1 White filter 1]

}

}

finish { ambient 1 diffuse 0 }

scale <1000, 250, 250>

rotate <5, 45, 0>

}

}

This adds a pleasing cirrus-cloud filled sky. Now, let’s change the checkered plane to
rippled sand dunes:

plane {y,-12

texture {

pigment {

color <.85, .5, .15>

}

finish {

ambient .25

diffuse .6

crand .5

}

normal {

ripples .35

turbulence .25

frequency 5

}

scale 10

translate 50*x

}

}

Render this at 320x240 -a. Not bad! Let’s just add one more element. Let’s place a
golden egg under each of the teepees. And since this is a bezier patch tutorial, let’s
make the eggs out of bezier patches.

Return toMORAY and create another bezier patch. Name itEgg1and select ”CYLIN-
DRICAL 2 - PATCH” from the ”CREATE BEZIER PATCH” dialogue box. Click on

46 CHAPTER 4. BEGINNING TUTORIAL

”EXTENDED EDIT”. ”MARK ALL”, and rotate the patch so that thecylinder lays
on its side. ”UNMARK ALL”. In the ”FRONT” view, [SHIFT]-draga box around the
four points on the right end to mark them. In the ”SIDE” view, right click, ”MAXI-
MIZE”. [ALT]-drag to zoom in a little closer. ”UFRM SCL” the points together as
close as possible. Zoom in closer to get them nice and tight. Zoom out, right click,
”MINIMIZE”.

Click on ”TRANSLATE” and drag the points to the left so that they are aligned on the
z-axis with the next group of four points. This should create ablunt end to the patch.
Repeat this procedure for the other end. ”UNMARK ALL”.

In the ”FRONT” view, the control grid should be a rectangle now and the patch should
be an ellipsoid. [SHIFT]-drag a box around the upper right corner of the control grid
to mark those points. Then [SHIFT]-drag a box around the lower right corner to mark
those points as well. In the ”SIDE” view, ”UFRM SCL” the points apart a little to make
that end of the egg a little wider than the other. ”UNMARK ALL”.

The egg may need a little proportional adjustment. You should be able to ”MARK
ALL” and ”LOCAL SCL” in the three views until you get it to looklike an egg. When
you are satisfied that it does, ”UNMARK ALL” and click on done.Learning from our
teepee object, we now go ahead and change USTEPS and VSTEPS to 4.

Create a dummy texture, white with default finish, name itEggTex, and apply it to the
egg. From the FILES menu, ”SAVE SEL” to filenameEGG1.MDL. Load this file and
export ([CTRL F9]). ExitMORAY and copy the filesEGG1.INC andEGG1.POV into
your working directory.

Back in BEZDEMO.POV, create a nice, shiny gold texture:

#declare EggTex = texture {

pigment { BrightGold }

finish {

ambient .1

diffuse .4

specular 1

roughness 0.001

reflection .5

metallic

}

}

And while we’re at it, let’s dandy up ourTeePeeTex:

#declare TeePeeTex = texture {

pigment { Silver }

finish {

ambient .1

diffuse .4

specular 1

4.4. ADVANCED SHAPES 47

roughness 0.001

reflection .5

metallic

}

}

Now paste in your egg patch data and declare your egg:

#declare Egg = union { // Egg1

bicubic_patch {

type 1 flatness 0.0100 u_steps 4 v_steps 4,

<2.023314, 0.000000, 4.355987>,

<2.023314, -0.000726, 4.355987>,

<2.023312, -0.000726, 4.356867>,

<2.023312, 0.000000, 4.356867>,

<2.032037, 0.000000, 2.734598>,

<2.032037, -1.758562, 2.734598>,

<2.027431, -1.758562, 6.141971>,

<2.027431, 0.000000, 6.141971>,

<-1.045672, 0.000000, 3.281572>,

<-1.045672, -1.758562, 3.281572>,

<-1.050279, -1.758562, 5.414183>,

<-1.050279, 0.000000, 5.414183>,

<-1.044333, 0.000000, 4.341816>,

<-1.044333, -0.002947, 4.341816>,

<-1.044341, -0.002947, 4.345389>,

<-1.044341, 0.000000, 4.345389>

}

bicubic_patch {

type 1 flatness 0.0100 u_steps 4 v_steps 4,

<2.023312, 0.000000, 4.356867>,

<2.023312, 0.000726, 4.356867>,

<2.023314, 0.000726, 4.355987>,

<2.023314, 0.000000, 4.355987>,

<2.027431, 0.000000, 6.141971>,

<2.027431, 1.758562, 6.141971>,

<2.032037, 1.758562, 2.734598>,

<2.032037, 0.000000, 2.734598>,

<-1.050279, 0.000000, 5.414183>,

<-1.050279, 1.758562, 5.414183>,

<-1.045672, 1.758562, 3.281572>,

<-1.045672, 0.000000, 3.281572>,

<-1.044341, 0.000000, 4.345389>,

<-1.044341, 0.002947, 4.345389>,

<-1.044333, 0.002947, 4.341816>,

<-1.044333, 0.000000, 4.341816>

}

texture { EggTex }

translate <0.5, 0, -5> // center egg around origin

48 CHAPTER 4. BEGINNING TUTORIAL

translate -9.8*y // place egg on the ground

}

Now place a copy of the egg under each teepee. This should require only the x and z
coordinates of each teepee:

object { Egg }

object { Egg translate <8, 0, 8> }

object { Egg translate <-9, 0, 9> }

object { Egg translate <18, 0, 24> }

object { Egg translate <-18, 0, 24> }

Render this at 320x240–A. Everything looks good so run it again at 640x480+A. Now
we see that there is still some faceting near the top of the teepees and on the eggs as
well. The only solution is to raise USTEPS and VSTEPS from 4 to 5 and set flatness
to 0 for all our bezier objects. Make the changes and render itagain at 640x480+A.

4.4.2 Blob Object

[*** STILL BEING WRITTEN *** Dieter Bayer]

4.4.3 Height Field Object

A height field is an object that has a surface that is determined by the color value or
palette index number of an image designed for that purpose. With height fields, realistic
mountains and other types of terrain can easily be made. First, you need an image from
which to create the height field. It just so happens that POV-Ray is ideal for creating
such an image.

Make a new file calledIMAGE.POV and edit it to contain the following:

#include "colors.inc"

global_settings {

assumed_gamma 2.2

hf_gray_16

}

Thehf gray 16 keyword causes the output to be in a special 16 bit grayscale that is
perfect for generating height fields. The normal 8 bit outputwill lead to less smooth
surfaces.

Now create a camera positioned so that it points directly down thez-axis at the origin.

4.4. ADVANCED SHAPES 49

camera {

location <0, 0, -10>

look_at 0

}

Then create a plane positioned like a wall atz= 0. This plane will completely fill the
screen. It will be colored with white and gray wrinkles.

plane { z, 10

pigment {

wrinkles

color_map {

[0 0.3*White]

[1 White]

}

}

}

Finally, create a light source.

light_source { <0, 20, -100> color White }

Render this scene at 640x480+A0.1 +FT. You will get an image that will produce an
excellent heightfield.

Now we will use this image to create a height field. Create a newfile called
HFDEMO.POV and edit it as follows:

#include "colors.inc"

Add a camera that is two units above the origin and ten units back . . .

camera{

location <0, 2, -10>

look_at 0

angle 15

}

. . . and a light source.

light_source{ <1000,1000,-1000> White }

50 CHAPTER 4. BEGINNING TUTORIAL

Now add the height field. In the following syntax, a Targa image file is specified, the
height field issmoothed, it is given a simple white pigment, it is translated to center it
around the origin, and it is scaled so that it resembles mountains and fills the screen.

height_field {

tga "image.tga"

smooth

pigment { White }

translate <-.5, -.5, -.5>

scale <17, 1.75, 17>

}

Save the file and render it at 320x240–A. Later, when you are satisfied that the height
field is the way you want it render it at a higher resolution with antialiasing.

Wow! The Himalayas have come to your computer screen!

4.4.4 Julia Fractal Object

[*** STILL BEING WRITTEN ***]

4.4.5 Lathe Object

[*** STILL BEING WRITTEN *** Dieter Bayer]

4.4.6 Mesh Object

Mesh objects are very useful because they allow you to createobjects containing hun-
dreds or thousands of triangles. Compared to a simple union of triangles the mesh
object stores the triangles more efficiently. Copies of meshobjects need only a little
additional memory because the triangles are stored only once.

Almost every object can be approximated using triangles butyou may need a lot of
triangles to create more complex shapes. Thus we will only create a very simple mesh
example. This example will show a very useful feature of the triangles meshs though:
a different texture can be assigned to each triangle in the mesh.

Now let us start. We’ll create a simple box with differently colored sides. Create an
empty file calledMESHDEMO.POV and add the following lines.

camera {

location <20, 20, -50>

look_at <0, 5, 0>

}

4.4. ADVANCED SHAPES 51

light_source { <50, 50, -50> color rgb<1, 1, 1> }

#declare Red = texture {

pigment { color rgb<0.8, 0.2, 0.2> }

finish { ambient 0.2 diffuse 0.5 }

}

#declare Green = texture {

pigment { color rgb<0.2, 0.8, 0.2> }

finish { ambient 0.2 diffuse 0.5 }

}

#declare Blue = texture {

pigment { color rgb<0.2, 0.2, 0.8> }

finish { ambient 0.2 diffuse 0.5 }

}

We must declare all textures we want to use inside the mesh before the mesh is created.
Textures cannot be specified inside the mesh due to the worsermemory performance
that would result.

Now add the mesh object. Three sides of the box will use individual textures while the
other will use the ”global” mesh texture.

mesh {

/* top side */

triangle { <-10,10,-10>,<10,10,-10>,<10,10,10>

texture { Red }

}

triangle { <-10,10,-10>,<-10,10,10>,<10,10,10>

texture { Red }

}

/* bottom side */

triangle { <-10,-10,-10>,<10,-10,-10>,<10,-10,10> }

triangle { <-10,-10,-10>,<-10,-10,10>,<10,-10,10> }

/* left side */

triangle { <-10,-10,-10>,<-10,-10,10>,<-10,10,10> }

triangle { <-10,-10,-10>,<-10,10,-10>,<-10,10,10> }

/* right side */

triangle { <10,-10,-10>,<10,-10,10>,<10,10,10>

texture { Green }

}

triangle { <10,-10,-10>,<10,10,-10>,<10,10,10>

texture { Green }

}

/* front side */

triangle { <-10,-10,-10>,<10,-10,-10>,<-10,10,-10>

texture { Blue }

52 CHAPTER 4. BEGINNING TUTORIAL

}

triangle { <-10,10,-10>,<10,10,-10>,<10,-10,-10>

texture { Blue }

}

/* back side */

triangle { <-10,-10,10>,<10,-10,10>,<-10,10,10> }

triangle { <-10,10,10>,<10,10,10>,<10,-10,10> }

texture {

pigment { color rgb<0.9, 0.9, 0.9> }

finish { ambient 0.2 diffuse 0.7 }

}

}

Trace the scene at 320x240. You’ll see that the top, right, and front side of the box
have different textures. Thought this is not a very impressive example it shows what
you can do with mesh objects. More complex examples, also using smooth triangles,
can be found under the scene directory asCHESMSH.POV andROBOTMSH.POV.

4.4.7 Polygon Object

The polygon object can be used to create any planar, n-sided shapes like squares, rect-
angles, pentagons, hexagons, octagons, etc.

A polygon is defined by a number of points that describe its shape. Since polygons
have to be closed the first point has to be repeated at the end ofthe point sequence.

In the following example we will create the wordPOV using just one polygon state-
ment.

We start with thinking about the points we need to describe the desired shape. We want
the letters to lie in thex-y-plane with the letterO being at the center. The letters extend
from y= 0 to y= 1. Thus we get the following points for each letter (thez coordinate
is automatically set to zero).

Letter P (outer polygon):

<-0.8, 0.0>, <-0.8, 1.0>,

<-0.3, 1.0>, <-0.3, 0.5>,

<-0.7, 0.5>, <-0.7, 0.0>

Letter P (inner polygon):

<-0.7, 0.6>, <-0.7, 0.9>,

<-0.4, 0.9>, <-0.4, 0.6>

Letter O (outer polygon):

<-0.25, 0.0>, <-0.25, 1.0>,

< 0.25, 1.0>, < 0.25, 0.0>

4.4. ADVANCED SHAPES 53

Letter O (inner polygon):

<-0.15, 0.1>, <-0.15, 0.9>,

< 0.15, 0.9>, < 0.15, 0.1>

Letter V:

<0.45, 0.0>, <0.30, 1.0>,

<0.40, 1.0>, <0.55, 0.1>,

<0.70, 1.0>, <0.80, 1.0>,

<0.65, 0.0>

Both lettersP andO have a hole while the letterV consists of only one polygon. We’ll
start with the letterV because it is easier to define than the other two letters.

Create a new file calledPOLYGDEM.POV and add the following text.

camera {

orthographic

location <0, 0, -10>

right 1.3 * 4/3 * x

up 1.3 * y

look_at <0, 0.5, 0>

}

light_source { <25, 25, -100> color rgb 1 }

polygon {

8,

<0.45, 0.0>, <0.30, 1.0>, // Letter "V"

<0.40, 1.0>, <0.55, 0.1>,

<0.70, 1.0>, <0.80, 1.0>,

<0.65, 0.0>,

<0.45, 0.0>

pigment { color rgb <1, 0, 0> }

}

As noted above the polygon has to be closed by appending the first point to the point
sequence. A closed polygon is always defined by a sequence of points that ends when
a point is the same as the first point.

After we have created the letterV we’ll continue with the letterP. Since it has a hole we
have to find a way of cutting this hole into the basic shape. This is quite easy. We just
define the outer shape of the letterP, which is a closed polygon, and add the sequence
of points that describes the hole, which is also a closed polygon. That’s all we have to
do. There’ll be a hole where both polygons overlap.

In general you’ll get holes whenever an even number of sub-polygons inside a single
polygon statement overlap. A sub-polygon is defined by a closed sequence of points.

54 CHAPTER 4. BEGINNING TUTORIAL

The letterP consists of two sub-polyons, one for the outer shape and one for the hole.
Since the hole polygon overlaps the outer shape polygon we’ll get a hole.

After you’ve understood how multiple sub-polygons in a single polygon statement
work, it’s quite easy to add the missingO letter.

Finally, we get the complete wordPOV.

polygon {

30,

<-0.8, 0.0>, <-0.8, 1.0>, // Letter "P"

<-0.3, 1.0>, <-0.3, 0.5>, // outer shape

<-0.7, 0.5>, <-0.7, 0.0>,

<-0.8, 0.0>,

<-0.7, 0.6>, <-0.7, 0.9>, // whole

<-0.4, 0.9>, <-0.4, 0.6>,

<-0.7, 0.6>

<-0.25, 0.0>, <-0.25, 1.0>, // Letter "O"

< 0.25, 1.0>, < 0.25, 0.0>, // outer shape

<-0.25, 0.0>,

<-0.15, 0.1>, <-0.15, 0.9>, // whole

< 0.15, 0.9>, < 0.15, 0.1>,

<-0.15, 0.1>,

<0.45, 0.0>, <0.30, 1.0>, // Letter "V"

<0.40, 1.0>, <0.55, 0.1>,

<0.70, 1.0>, <0.80, 1.0>,

<0.65, 0.0>,

<0.45, 0.0>

pigment { color rgb <1, 0, 0> }

}

4.4.8 Prism Object

[*** STILL BEING WRITTEN *** Dieter Bayer]

4.4.9 Superquadric Ellipsoid Object

Sometimes we want to make an object that does not have perfectly sharp edges like a
box does. Then, the super quadric ellipsoid is a useful object. It is described by the
simple syntax:

superellipsoid { <r, n> }

4.4. ADVANCED SHAPES 55

Wherer andn are float values greater than zero and less than or equal to one. Let’s
make a superellipsoid and experiement with the values ofr andn to see what kind of
shapes we can make.

Create a file calledSUPELLPS.POV and edit it as follows:

#include "colors.inc"

camera {

location <10, 5, -20>

look_at 0

angle 15

}

background { color rgb <.5, .5, .5> }

light_source { <10, 50, -100> White }

The addition of a gray background makes it a little easier to see our object. Now type:

superellipsoid { <.25, .25>

pigment { Red }

}

Save the file and trace it at 200x150–A to see the shape. It will look like a box, but
the edges will be rounded off. Now let’s experiment with different values ofr andn.
For the next trace, try〈1,0.2〉. The shape now looks like a cylinder, but the top edges
are rounded. Now try〈0.1,1〉. This shape is an odd one! We don’t know exactly what
to call it, but it is interesting. Finally, lets try〈1,1〉. Well, this is more familiar. . . a
sphere!

There are a couple of facts about superellipsoids you shouldknow. First, you should
not use a value of 0 for eitherr nor n. This will cause POV-Ray to incorrectly make
a black box instead of your desired shape. Second, very smallvalues ofr andn may
yield strange results so they should be avoided. Finally, the Sturmian root solver will
not work with superellipsoids.

Superellipsoids are finite objects so they respond to auto-bounding and can be used in
CSG.

Now let’s use the superellipsoid to make something that would be useful in a scene.
We will make a tiled floor and place a couple of superellipsoidobjects hovering over
it. We can start with the file we have already made.

Rename itTILES.POV. Edit it so that it reads as follows:

#include "colors.inc"

#include "textures.inc"

56 CHAPTER 4. BEGINNING TUTORIAL

camera {

location <10, 5, -20>

look_at 0

angle 15

}

background { color rgb <.5, .5, .5> }

light_source{ <10, 50, -100> White }

Note that we have added#include "textures.inc" so we can use pre-defined
textures. Now we want to define the superellipsoid which willbe our tile.

#declare Tile = superellipsoid { <0.5, 0.1>

scale <1, .05, 1>

}

Superellipsoids are roughly 2×2×2 units unless you scale them otherwise. If we wish
to lay a bunch of our tiles side by side, they will have to be offset from each other so
they don’t overlap. We should select an offset value that is slightly more than 2 so that
we have some space between the tiles to fill with grout. So now add this:

#declare Offset = 2.1

We now want to lay down a row of tiles. Each tile will be offset from the original by
an ever-increasing amount in both the+z and−z directions. We refer to our offset and
multiply by the tile’s rank to determine the position of eachtile in the row. We also
union these tiles into a single object calledRowlike this:

#declare Row = union {

object { Tile }

object { Tile translate z*Offset }

object { Tile translate z*Offset*2 }

object { Tile translate z*Offset*3 }

object { Tile translate z*Offset*4 }

object { Tile translate z*Offset*5 }

object { Tile translate z*Offset*6 }

object { Tile translate z*Offset*7 }

object { Tile translate z*Offset*8 }

object { Tile translate z*Offset*9 }

object { Tile translate z*Offset*10 }

object { Tile translate -z*Offset }

object { Tile translate -z*Offset*2 }

object { Tile translate -z*Offset*3 }

object { Tile translate -z*Offset*4 }

object { Tile translate -z*Offset*5 }

4.4. ADVANCED SHAPES 57

object { Tile translate -z*Offset*6 }

}

This gives us a single row of 17 tiles, more than enough to fill the screen. Now we
must make copies of theRowand translate them, again by the offset value, in both the
+x and−x directions in ever increasing amounts in the same manner.

object { Row }

object { Row translate x*Offset }

object { Row translate x*Offset*2 }

object { Row translate x*Offset*3 }

object { Row translate x*Offset*4 }

object { Row translate x*Offset*5 }

object { Row translate x*Offset*6 }

object { Row translate x*Offset*7 }

object { Row translate -x*Offset }

object { Row translate -x*Offset*2 }

object { Row translate -x*Offset*3 }

object { Row translate -x*Offset*4 }

object { Row translate -x*Offset*5 }

object { Row translate -x*Offset*6 }

object { Row translate -x*Offset*7 }

Finally, our tiles are complete. But we need a texture for them. To do this we union
all of the Rowstogether and apply aWhite Marblepigment and a somewhat shiny
refelctive surface to it:

union{

object { Row }

object { Row translate x*Offset }

object { Row translate x*Offset*2 }

object { Row translate x*Offset*3 }

object { Row translate x*Offset*4 }

object { Row translate x*Offset*5 }

object { Row translate x*Offset*6 }

object { Row translate x*Offset*7 }

object { Row translate -x*Offset }

object { Row translate -x*Offset*2 }

object { Row translate -x*Offset*3 }

object { Row translate -x*Offset*4 }

object { Row translate -x*Offset*5 }

object { Row translate -x*Offset*6 }

object { Row translate -x*Offset*7 }

pigment { White_Marble }

finish { phong 1 phong_size 50 reflection .35 }

}

58 CHAPTER 4. BEGINNING TUTORIAL

We now need to add thegrout. This can simply be a white plane. We have stepped up
the ambient here a little so it looks whiter.

plane { y, 0 //this is the grout

pigment { color White }

finish { ambient .4 diffuse .7 }

}

To complete our scene, let’s add five different superellipsoids, each a different color,
so that they hover over our tiles and are reflected in them.

superellipsoid {

<0.1, 1>

pigment { Red }

translate <5, 3, 0>

scale .45

}

superellipsoid {

<1, 0.25>

pigment { Blue }

translate <-5, 3, 0>

scale .45

}

superellipsoid {

<0.2, 0.6>

pigment { Green }

translate <0, 3, 5>

scale .45

}

superellipsoid {

<0.25, 0.25>

pigment { Yellow }

translate <0, 3, -5>

scale .45

}

superellipsoid {

<1, 1>

pigment { Pink }

translate y*3

scale .45

}

Trace the scene at 320x200–A to see the result. If you are happy with that, do a final
trace at 640x480+A0.2.

4.4. ADVANCED SHAPES 59

4.4.10 Surface of Revolution Object

Bottles, vases, and glasses make nice objects in ray-tracedscenes. We want to create a
golden, cup using the surface of revolution object (SOR object).

We first start by thinking about the shape of the final object. It is quite difficult to come
up with a set of points that describe a given curve without thehelp of a modelling
program supporting POV’s surface of revolution object. If such a program is available
you should take advantage of it.

−4.0 −2.0 0.0 2.0 4.0
Radius r

0.0

2.0

4.0

6.0

8.0

10.0

H
ei

gh
t h

P0

P1

P2

P3

P4

P5

P6

P7

Figure 4.2: The point configuration of our cup object.

We will use the point configuration shown in figure 4.2. There are eight points describ-
ing the curve that will be rotated about they-axis to get our cup. The curve was calcu-
lated using the method described in the reference section (see 7.5.2.11 on page 247).

Now it is time to come up with a scene that uses the above SOR object. Edit a file
calledsordemo.pov and enter the following text.

#include "colors.inc"

#include "golds.inc"

global_settings { assumed_gamma 2.2 }

camera {

location <10, 15, -20>

look_at <0, 5, 0>

angle 45

}

background { color rgb<0.2, 0.4, 0.8> }

60 CHAPTER 4. BEGINNING TUTORIAL

light_source { <100, 100, -100> color rgb 1 }

plane { y, 0

pigment { checker color Red, color Green scale 10 }

}

sor {

8,

<0.0, -0.5>,

<3.0, 0.0>,

<1.0, 0.2>,

<0.5, 0.4>,

<0.5, 4.0>,

<1.0, 5.0>,

<3.0, 10.0>,

<4.0, 11.0>

texture { T_Gold_1B }

}

The scene contains our cup object resting on a checkered plane. Trace the scene at
320x240 to see the resulting image.

The surface of revolution is described by starting with the number of points followed
by the points with ascending heights. Each point determinesthe radius the curve for a
given height. E. g. the first point tells POV-Ray that at height −0.5 the radius is 0. You
should take care that each point has a larger height than its predecessor. If this is not
the case the program will abort with an error message.

4.4.11 Text Object

Creating text objects using POV-Ray always used to mean thatthe letters had to be
built either from CSG, a painstaking process, or by using a black and white image of
the letters as a height field, a method that was only somewhat satisfactory. Now, for
POV-Ray 3.0, a new primitive has been introduced that can useany TrueType font to
create text objects. These objects can be used in CSG, transformed, and textured just
like any other POV primitive.

For this tutorial, we will make two uses of the text object. First, let’s just make some
block letters sitting on a checkered plane. Any TTF font should do, but for this tutorial,
we will use the ones bundled with POV-Ray 3.0.

Create a file calledTEXTDEMO.POV and edit it as follows:

#include "colors.inc"

camera {

location <0, 1, -10>

4.4. ADVANCED SHAPES 61

look_at 0

angle 36

}

light_source { <500,500,-1000> White }

plane { y,0

pigment { checker Green White }

}

Now let’s add the text object. We will use the fontTIMROM.TTF and we will create
the stringPOV-RAY 3.0. For now, we will just make the letters red. The syntax is
very simple. The first string in quotes is the font name, the second one is the string
to be rendered. The two floats are the thickness and offset values. The thickness float
determines how thick the block letters will be. Values of.5 to 2 are usually best for
this. The offset value will add to the kerning distance of theletters. We will leave this
a 0 for now.

text { ttf "timrom.ttf" "POV-RAY 3.0" 1, 0

pigment { Red }

}

Rendering this at 200x150–A, we notice that the letters are off to the right of the
screen. This is because they are placed so that the lower leftfront corner of the first
letter is at the origin. To center the string we need to translate it−x some distance. But
how far? In the docs we see that the letters are all 0.5 to 0.75 units high. If we assume
that each one takes about 0.5 units of space on thex-axis, this means that the string is
about 6 units long (12 characters and spaces). Let’s translate the string 3 units along
the negativex-axis.

text { ttf "timrom.ttf" "POV-RAY 3.0" 1, 0

pigment { Red }

translate -3*x

}

That’s better. Now let’s play around with some of the parameters of the text object.
First, let’s raise the thickness float to something outlandish . . . say 25!

text { ttf "timrom.ttf" "POV-RAY 3.0" 25, 0

pigment { Red }

translate -2.25*x

}

Actually, that’s kind of cool. Now let’s return the thickness value to 1 and try a different
offset value. Change the offset float from 0 to 0.1 and render it again.

Wait a minute?! The letters go wandering off up at an angle! That is not what the docs
describe! It almost looks as if the offset value applies in both thex- andy-axis instead

62 CHAPTER 4. BEGINNING TUTORIAL

of just thex axis like we intended. Could it be that a vector is called for here instead of
a float? Let’s try it. Replace0.1 with 0.1*x and render it again.

That works! The letters are still in a straight line along thex axis, just a little further
apart. Let’s verify this and try to offset just in they axis. Replace0.1*x with 0.1*y.
Again, this works as expected with the letters going up to theright at an angle with no
additional distance added along the x axis. Now let’s try thez axis. Replace0.1*y
with 0.1*z. Rendering this yields a disappointment. No offset occurs!The offset
value can only be applied in thex andy directions.

Let’s finish our scene by giving a fancier texture to the blockletters, using that cool
large thickness value, and adding a slight y offset. For fun,we will throw in a sky
sphere, dandy up our plane a bit, and use a little more interesting camera viewpoint
(render the following scene at 640x480+A0.2):

#include "colors.inc"

camera {

location <-5,.15,-2>

look_at <.3,.2,1>

angle 36

}

light_source { <500,500,-1000> White }

plane { y,0

texture {

pigment { SeaGreen }

finish { reflection .35 specular 1 }

normal { ripples .35 turbulence .5 scale .25 }

}

}

text { ttf "timrom.ttf" "POV-RAY 3.0" 25, 0.1*y

pigment { BrightGold }

finish { reflection .25 specular 1 }

translate -3*x

}

#include "skies.inc"

sky_sphere { S_Cloud5 }

Now. let’s try using text in a CSG object. We will attempt to create an inlay in a stone
block using a text object. Create a new file calledTEXTCSG.POV and edit it as follows:

#include "colors.inc"

#include "stones.inc"

4.4. ADVANCED SHAPES 63

background { color rgb 1 }

camera {

location <-3, 5, -15>

look_at 0

angle 25

}

light_source { <500,500,-1000> White }

Now let’s create the block. We want it to be about eight units across because our text
string (POV-RAY 3.0) is about six units long. We also want it about four units highand
about one unit deep. But we need to avoid a potential coincident surface with the text
object so we will make the firstz coordinate 0.1 instead of 0. Finally, we will give this
block a nice stone texture.

box { <-3.5, -1, 0.1>, <3.5, 1, 1>

texture { T_Stone10 }

}

Next, we want to make the text object. We can use the same object we used in the first
turorial except we will use slightly different thickness and offset values.

text { ttf "timrom.ttf" "POV-RAY 3.0" 0.15, 0

pigment { BrightGold }

finish { reflection .25 specular 1 }

translate -3*x

}

Remember that the text object is placed by default so that itsfront surface lies directly
on thex-y-plane. If the front of the box begins atz= 0.1 and thickness is set at 0.15, the
depth of the ”inlay” will be 0.05 units. Go ahead and place a difference block around
the two objects.

difference {

box { <-3.5, -1, 0.1>, <3.5, 1, 1>

texture { T_Stone10 }

}

text { ttf "timrom.ttf" "POV-RAY 3.0" 0.15, 0

pigment { BrightGold }

finish { reflection .25 specular 1 }

translate -3*x

}

}

64 CHAPTER 4. BEGINNING TUTORIAL

Render this at 200x150–A. We can see the inlay clearly and that it is indeed a bright
gold color. Render this at 640x480+A0.2 to see the results more clearly, but be fore-
warned. . . this trace will take a little time.

4.4.12 Torus Object

A torus can be thought of as a donut or an innertube. It is a shape that is vastly useful
in many kinds of CSG so POV-Ray has adopted this 4th order quartic polynomial as a
primitive shape. The syntax for a torus is so simple that it makes it a very easy shape
to work with once you learn what the two float values mean. Instead of a lecture on the
subject, let’s create one and do some experiments with it.

Create a file calledTORDEMO.POV. Edit it as follows:

#include "colors.inc"

camera {

location <0, .1, -25>

look_at 0

angle 36

}

background { color Gray50 }

light_source{ <300, 300, -1000> White }

torus { 4, 1 // major and minor radius

rotate -90*x // so we can see it from the top

pigment { Green }

}

Go ahead and trace this. Well, it’s a donut allright. Let’s try changing the major and
minor radius values and see what happens. Change them as follows:

torus { 5, .25 // major and minor radius

That looks more like a hula-hoop! Let’s try this:

torus { 3.5, 2.5 // major and minor radius

Whoa! A donut with a serious weight problem!

With such a simple syntax, there isn’t much else you can do to atorus besides change
its texture. . . or is there? Let’s see. . .

Torus’ are very useful objects in CSG. Let’s try a little experiment. Make a difference
of a torus and a box:

4.4. ADVANCED SHAPES 65

difference {

torus { 4, 1

rotate x*-90 // so we can see it from the top

}

box { <-5, -5, -1>, <5, 0, 1> }

pigment { Green }

}

Interesting. . . a half-torus. So? So, now add another one flipped the other way. Only,
let’s declare the original half-torus and the necessary transformations so we can use
them again:

#declare Half_Torus = difference {

torus { 4, 1

rotate -90*x // so we can see it from the top

}

box { <-5, -5, -1>, <5, 0, 1> }

pigment { Green }

}

#declare Flip_It_Over = 180*x

#declare Torus_Translate = 8 // 2 * major radius

Now create a union of twoHalf Torusobjects:

union {

object { Half_Torus }

object { Half_Torus

rotate Flip_It_Over

translate Torus_Translate*x

}

}

This makes anS-shaped object, but we can’t see the whole thing from our present
camera. Let’s add a few more links, three in each direction, move the object along the
+z direction and rotate it about the+y axis so we can see more of it. We also notice
that there appears to be a small gap where theHalf Torus’ meet. This is due to the
fact that we are viewing this scene from directly on thex-z plane. We will change the
cameray coordinate from 0 to 0.1 to eliminate this.

union {

object { Half_Torus }

object { Half_Torus

rotate Flip_It_Over

translate x*Torus_Translate

}

66 CHAPTER 4. BEGINNING TUTORIAL

object { Half_Torus

translate x*Torus_Translate*2

}

object { Half_Torus

rotate Flip_It_Over

translate x*Torus_Translate*3

}

object { Half_Torus

rotate Flip_It_Over

translate -x*Torus_Translate

}

object { Half_Torus

translate -x*Torus_Translate*2

}

object { Half_Torus

rotate Flip_It_Over

translate -x*Torus_Translate*3

}

object { Half_Torus

translate -x*Torus_Translate*4

}

rotate y*45

translate z*20

}

Rendering this we see a cool, undulating, snake-like something-or-other. Neato. But
we want to model something useful, something that we might see in real life. How
about a chain?

Thinking about it for a moment, we realize that a single link of a chain can be easily
modeled using two half toruses and two cylinders. Go ahead and create a new file. You
can use the same camera, background, light source, and declared objects and transfor-
mations as you used inTORDEMO.POV:

#include "colors.inc"

camera {

location <0, .1, -25>

look_at 0

angle 36

}

background { color Gray50 }

light_source{ <300, 300, -1000> White }

#declare Half_Torus = difference {

torus { 4,1

sturm

4.4. ADVANCED SHAPES 67

rotate x*-90 // so we can see it from the top

}

box { <-5, -5, -1>, <5, 0, 1> }

pigment { Green }

}

#declare Flip_It_Over = x*180

#declare Torus_Translate = 8

Now, make a complete torus of two half toruses:

union {

object { Half_Torus }

object { Half_Torus rotate Flip_It_Over }

}

This may seem like a wasteful way to make a complete torus, butwe are really going
to move each half apart to make room for the cylinders. First,add the declared cylinder
before the union:

#declare Chain_Segment =

cylinder { <0, 4, 0>, <0, -4, 0>, 1

pigment { Green }

}

Then add twoChain Segmentsto the union and translate them so that they line up with
the minor radius of the torus on each side:

union {

object { Half_Torus }

object { Half_Torus rotate Flip_It_Over }

object { Chain_Segment

translate x*Torus_Translate/2

}

object { Chain_Segment

translate -x*Torus_Translate/2

}

}

Now translate the two half toruses+y and−y so that the clipped ends meet the ends of
the cylinders. This distance is equal to half of the previously declaredTorus Translate:

union {

object { Half_Torus

68 CHAPTER 4. BEGINNING TUTORIAL

translate y*Torus_Translate/2

}

object { Half_Torus

rotate Flip_It_Over

translate -y*Torus_Translate/2

}

object { Chain_Segment

translate x*Torus_Translate/2

}

object { Chain_Segment

translate -x*Torus_Translate/2

}

}

Render this and voila! A single link of a chain. But we aren’t done yet! Whoever heard
of a green chain? We would rather use a nice metallic color instead. First, remove any
pigment blocks in the declared toruses and cylinders. Then add the following before
the union:

#declare Chain_Gold = texture {

pigment { BrightGold }

finish {

ambient .1

diffuse .4

reflection .25

specular 1

metallic

}

}

Then add the texture to the union and declare the union as a single link:

#declare Link = union {

object { Half_Torus

translate y*Torus_Translate/2

}

object { Half_Torus

rotate Flip_It_Over

translate -y*Torus_Translate/2

}

object { Chain_Segment

translate x*Torus_Translate/2

}

object { Chain_Segment

translate -x*Torus_Translate/2

}

texture { Chain_Gold }

}

4.4. ADVANCED SHAPES 69

Now make a union of two links. The second one will have to be translated+y so that
its inner wall just meets the inner wall of the other link, just like the links of a chain.
This distance turns out to be double the previously declaredTorusTranslateminus 2
(twice the minor radius). This can be described by the expression:

Torus_Translate*2-2*y

Declare this expression as follows:

#declare Link_Translate = Torus_Translate*2-2*y

In the object block, we will use this declared value so that wecan multiply it to create
other links. Now, rotate the second link90*y so that it is perpendicular to the first,
just like links of a chain. Finally, scale the union by 1/4 so that we can see the whole
thing:

union {

object { Link }

object { Link translate y*Link_Translate rotate y*90 }

scale .25

}

Render this and you will see a very realistic pair of links. Ifwe want to make an entire
chain, we must declare the above union and then create another union of this declared
object. Be sure to remove the scaling from the declared object:

#declare Link_Pair =

union {

object { Link }

object { Link translate y*Link_Translate rotate y*90 }

}

Now declare your chain:

#declare Chain = union {

object { Link_Pair}

object { Link_Pair translate y*Link_Translate*2 }

object { Link_Pair translate y*Link_Translate*4 }

object { Link_Pair translate y*Link_Translate*6 }

object { Link_Pair translate -y*Link_Translate*2 }

object { Link_Pair translate -y*Link_Translate*4 }

object { Link_Pair translate -y*Link_Translate*6 }

}

70 CHAPTER 4. BEGINNING TUTORIAL

And, finally create your chain with a couple of transformations to make it easier to see.
These include scaling it down by a factor of 1/10, and rotating it so that you can clearly
see each link:

object { Chain scale .1 rotate <0, 45, -45> }

Render this and you should see a very realistic gold chain stretched diagonally across
the screen.

4.5 CSG Objects

Constructive solid geomerty, CSG, is a powerful tool to combine primitve objects to
create more complex objects as shown in the following sections.

4.5.1 What is CSG?

CSG stands forConstructive Solid Geometry. POV-Ray allows you to construct com-
plex solids by combining primitive shapes in four differentways. These are union,
where two or more shapes are added together, intersection where two or more shapes
are combined to make a new shape that consists of the area common to both shapes, dif-
ference where subsequent shapes are subtracted from the first shape, and merge which
is like a union where the surfaces inside the union are removed (useful in transparent
CSG objects). We will deal with each of these in detail in the next few sections.

CSG objects can be extremely complex. They can be deeply nested. In other words
there can be unions of differences or intersections of merges or differences of intersec-
tions or even unions of intersections of differences of merges . . . ad infinitum. CSG
objects are (almost always) finite objects and so respond to auto-bounding and can be
transformed like any other POV primitive shape.

4.5.2 CSG Union

Let’s try making a simple union. Create a file calledCSGDEMO.POV and edit it as
follows:

#include "colors.inc"

camera {

location <0, 1, -10>

look_at 0

angle 36

}

4.5. CSG OBJECTS 71

light_source { <500, 500, -1000> White }

plane { y, -1.5

pigment { checker Green White }

}

Now let’s add two spheres each translated 0.5 units along thex-axis in each direction.
Color one blue and the other red.

sphere { <0, 0, 0>, 1

pigment { Blue }

translate -0.5*x

}

sphere { <0, 0, 0>, 1

pigment { Red }

translate 0.5*x

}

Try tracing this file now at 200x150–A. Now place a union block around the two
spheres. This will create a single CSG union out of the two objects.

union{

sphere { <0, 0, 0>, 1

pigment { Blue }

translate -0.5*x

}

sphere { <0, 0, 0>, 1

pigment { Red }

translate 0.5*x

}

}

Trace the file again. The union will appear no different from what each sphere looked
like on its own, but now we can give the entire union a single texture and transform it
as a whole. Let’s do that now.

union{

sphere { <0, 0, 0>, 1

translate -0.5*x*

}

sphere { <0, 0, 0>, 1

translate 0.5*x

}

pigment { Red }

scale <1, .25, 1>

rotate <30, 0, 45>

}

72 CHAPTER 4. BEGINNING TUTORIAL

Trace the file again. As you can see, the object has changed dramatically. Experiment
with different values of scale and rotate and try some different textures.

There are some advantages of assigning only one texture to a CSG object instead of
assigning the texture to each individual component. First,it is much easier to use
one texture if your CSG object has a lot of components becausechanging the objects
appereance involves changing only one single texture. Second, the file parses faster
because the texture has to be parsed only once. This may be a great factor when do-
ing large scenes or animatons. Third, using only one texturesaves memory because
the texture is only stored once and referenced by all components of the CSG object.
Assigning the texture to all n components means that it is stored n times.

4.5.3 CSG Intersection

Now let’s use these same spheres to illustrate the next kind of CSG object, thein-
tersection. Change the wordunion to intersection and delete thescale and
rotate statements:

intersection {

sphere { <0, 0, 0>, 1

translate -0.5*x

}

sphere { <0, 0, 0>, 1

translate 0.5*x

}

pigment { Red }

}

Trace the file and you will see a lens-shaped object instead ofthe two spheres. This
is because an intersection consists of the area shared by both shapes, in this case the
lens-shaped area where the two spheres overlap. We like thislens-shaped object so we
will use it to demostrate differences.

4.5.4 CSG Difference

Rotate the lens-shaped intersection about they-axis so that the broad side is facing the
camera.

intersection{

sphere { <0, 0, 0>, 1

translate -0.5*x

}

sphere { <0, 0, 0>, 1

translate 0.5*x

4.5. CSG OBJECTS 73

}

pigment { Red }

rotate 90*y

}

Now let’s create a cylinder and stick it right in the middle ofthe lens.

cylinder { <0, 0, -1> <0, 0, 1>, .35

pigment { Blue }

}

Render the scene now to see the position of the cylinder. We will place a difference
block around both the lens-shaped intersection and the cylinder like this:

difference {

intersection {

sphere { <0, 0, 0>, 1

translate -0.5*x

}

sphere { <0, 0, 0>, 1

translate 0.5*x

}

pigment { Red }

rotate 90*y

}

cylinder { <0, 0, -1> <0, 0, 1>, .35

pigment { Blue }

}

}

Now render the file. You should see the lens-shaped intersection with a neat hole in
the middle of it where the cylinder was. The cylinder has beensubtractedfrom the
intersection. Note that the pigment of the cylinder causes the surface of the hole to be
colored blue. If you eliminate this pigment the surface of the hole will be red.

OK, let’s get a little wilder now. Let’s declare our perforated lens object to give it a
name. Let’s also eliminate all textures in the declared object because we will want
them to be in the final union instead.

#declare Lens_With_Hole = difference {

intersection {

sphere { <0, 0, 0>, 1

translate -0.5*x

}

sphere { <0, 0, 0>, 1

translate 0.5*x

74 CHAPTER 4. BEGINNING TUTORIAL

}

rotate 90*y

}

cylinder { <0, 0, -1> <0, 0, 1>, .35 }

}

Now, let’s use union to build a complex shape composed of copies of this object.

union {

object { Lens_With_Hole translate <-.65, .65, 0> }

object { Lens_With_Hole translate <.65, .65, 0> }

object { Lens_With_Hole translate <-.65, -.65, 0> }

object { Lens_With_Hole translate <.65, -.65, 0> }

pigment { Red }

}

Render it. An interesting object to be sure. But let’s try something more. Let’s make it
a partially-transparent object by adding some filter to the pigment block.

union {

object { Lens_With_Hole translate <-.65, .65, 0> }

object { Lens_With_Hole translate <.65, .65, 0> }

object { Lens_With_Hole translate <-.65, -.65, 0> }

object { Lens_With_Hole translate <.65, -.65, 0> }

pigment { Red filter .5 }

}

Now render the file again. This looks pretty good. . . only . . . you can see parts of each
of the lens objects inside the union! This is no good.

4.5.5 CSG Merge

This brings us to the fourth kind of CSG object, themerge. Merges are the same as
unions, but the geometry of the objects in the CSG that is inside the merge is not traced.
This should eliminate the problem with our object. Let’s tryit.

merge {

object { Lens_With_Hole translate <-.65, .65, 0> }

object { Lens_With_Hole translate <.65, .65, 0> }

object { Lens_With_Hole translate <-.65, -.65, 0> }

object { Lens_With_Hole translate <.65, -.65, 0> }

pigment { Red filter .5 }

}

Sure enough, it does!

4.6. THE LIGHT SOURCE 75

4.5.6 CSG Pitfalls

There is a severe pitfall in the POV-Ray’s CSG code that you have to be aware of.

4.5.6.1 Coincidence Surfaces

POV-Ray uses inside/outside tests to determine the points at which a ray intersects
a CSG object. A problem arises when the surfaces of two different shapes coincide
because there is no way (due to numerical problems) to tell wether a point on the
coincident surface belongs to one shape or the other.

Look at the following example where a cylinder is used to cut ahole in a larger box.

difference {

box { -1, 1 pigment { Red } }

cylinder { -z, z, 0.5 pigment { Green } }

}

If you trace this object you’ll see red speckles where the hole is supposed to be. This is
caused by the coincident surfaces of the cylinder and the box. One time the cylinder’s
surface is hit first by a viewing ray, resulting in the correctrendering of the hole, and
another time the box is hit first, leading to a wrong result where the hole vanishes and
red speckles appear.

This problem can be avoided by increasing the size of the cylinder to get rid of the
coincidence surface. This is done by:

difference {

box { -1, 1 pigment { Red } }

cylinder { -1.001*z, 1.001*z, 0.5 pigment { Green } }

}

In general you have to make the subtracted object a little bitlarger in a CSG difference.
Just look for coincident surfaces and increase the subtracted object appropreatly to get
rid of those surfaces.

The same problem occurs in CSG intersections and is also avoided by scaling some of
the involved objects.

4.6 The Light Source

In any ray-traced scene, the light needed to illuminate yourobjects and their surfaces
must come from a light source. There are many kinds of light sources available in
POV-Ray and careful use of the correct kind can yield very impressive results. Let’s
take a moment to explore some of the different kinds of light sources and their various
parameters.

76 CHAPTER 4. BEGINNING TUTORIAL

4.6.1 The Ambient Light Source

The ambient light source is used to simulate the effect of interdiffuse reflection. If
there wasn’t interdiffuse reflection all areas not directlylit by a light source would be
completely dark. POV-Ray uses theambient keyword to determine how much light
coming from the ambient light source is reflected by a surface.

By default the ambient light source, which emits its light everywhere and in all direc-
tions, is pure white (rgb< 1,1,1>). Changing its color can be used to create interesting
effects. First of all the overall light level of the scene canbe adjusted easily. Instead of
changing allambient values only the ambient light source is modified. By assigning
different colors you can create nice effects like a moody reddish ambient lighting. For
more details about the ambient light source see 7.8.2 on page356.

Below is an example of a red ambient light source.

global_settings { ambient_light rgb<1, 0, 0> }

4.6.2 The Point Light Source

Pointlights are exactly what the name indicates. A pointlight has no size, is invisible,
and illuminates everything in the scene equally no matter how far away from the light
source it may be. This is the simplest and most basic light source. There are only
two important parameters, location and color. Let’s designa simple scene and place a
pointlight source in it.

Create a new file and name itLITEDEMO.POV. Edit it as follows:

#include "colors.inc"

#include "textures.inc"

camera {

location <-4, 3, -9>

look_at <0, 0, 0>

angle 48

}

Add the following simple objects:

plane { y, -1

texture {

pigment {

checker

color rgb<0.5, 0, 0>

color rgb<0, 0.5, 0.5>

}

finish {

4.6. THE LIGHT SOURCE 77

diffuse 0.4

ambient 0.2

phong 1

phong_size 100

reflection 0.25

}

}

}

torus { 1.5, 0.5

texture { Brown_Agate }

rotate <90, 160, 0>

translate <-1, 1, 3>

}

box { <-1, -1, -1>, <1, 1, 1>

texture { DMFLightOak }

translate <2, 0, 2.3>

}

cone { <0,1,0>, 0, <0,0,0>, 1

texture { PinkAlabaster }

scale <1, 3, 1>

translate <-2, -1, -1>

}

sphere { <0,0,0>,1

texture { Sapphire_Agate }

translate <1.5, 0, -2>

}

Now add a pointlight:

light_source {

<2, 10, -3>

color White

}

Render this at 200x150–A. You will see that the objects are clearly visible with sharp
shadows. The sides of curved objects nearest the light source are brightest in color
with the areas that are facing away from the light source darkest. Note also that the
checkered plane is illuminated evenly all the way to the horizon. This allows us to see
the plane, but it is not very realistic.

4.6.3 The Spotlight Source

Spotlights are a very useful type of light source. They can beused to add highlights
and illuminate features much as a photographer uses spots todo the same thing. There

78 CHAPTER 4. BEGINNING TUTORIAL

are a few more parameters with spotlights than with pointlights. These areradius,
falloff, tightness, andpoint at. Theradius parameter is the angle of the
fully illuminated cone. Thefalloff parameter is the angle of theumbracone where
the light falls off to darkness. Thetightness is a parameter that determines the rate
of the light falloff. point at is just what it says, where the spotlight is pointing to.
Let’s change the light in our scene as follows:

light_source {

<0, 10, -3>

color White

spotlight

radius 15

falloff 20

tightness 10

point_at <0, 0, 0>

}

Render this at 200x150–A and you will see that only the objects are illuminated. The
rest of the plane and the outer portions of the objects are nowunlit. There is a broad
falloff area, but the shadows are still razor sharp. Let’s try fiddling with some of these
parameters to see what they do. Try changing thefalloff value to 16 (it must
always be larger thanradius) and render again. Now the falloff is very narrow, and
the objects are either brightly lit, or in total darkness. Now, changefalloff back to
20 and change thetightness value to 100 (higher is tighter) and render again. The
spotlight appears to have gotten much smaller, but what has really happened is that the
falloff has become so steep that the radius actually appearssmaller.

We decide that atightness value of 10 (the default) and afalloff value of 18
are best for this spotlight and we now want to put a few spots around the scene for
effect. Lets place a slightly narrower blue and a red one in addition to the white one
we already have:

light_source {

<10, 10, -1>

color Red

spotlight

radius 12

falloff 14

tightness 10

point_at <2, 0, 0>

}

light_source {

<-12, 10, -1>

color Blue

spotlight

radius 12

4.6. THE LIGHT SOURCE 79

falloff 14

tightness 10

point_at <-2, 0, 0>

}

Rendering this we see that the scene now has a wonderfully mysterious air to it. The
three spotlights all converge on the objects making them blue on one side and red on
the other with enough white in the middle to provide a balance.

4.6.4 The Cylindrical Light Source

Spotlights are cone shaped, meaning that their effect will change with distance. The
farther away from the spotlight an object is, the larger the apparant radius will be. But
we may want the radius and falloff to be a particular size no matter how far away
the spotlight is. For this reason, cylindrical light sources are needed. A cylindrical
light source is just like a spotlight, except that the radiusand falloff regions are the
same no matter how far from the light source your object is. The shape is therefore
a cylinder rather than a cone. You can specify a cylindrical lightsource by replacing
thespotlight keyword withcylinder. Try this now with our scene. Replace all
three spotlights with cylinder lights and render again. We see that the scene is much
dimmer. This is because the cylindrical constraints do not let the light spread out like
in a spotlight. Largerradius andfalloff values are needed to do the job. Try a
radius of 20 and afalloff of 30 for all three lights. That’s the ticket!

4.6.5 The Area Light Source

So far all of our light sources have one thing in common. They produce sharp shadows.
This is because the actual light source is a point that is infinitely small. Objects are
either in direct sight of the light, in which case they are fully illuminated, or they
are not, in which case they are fully shaded. In real life, this kind of stark light and
shadow situation exists only in outer space where the directlight of the sun pierces the
total blackness of space. But here on Earth, light bends around objects, bounces off
objects, and usually the source has some dimension, meaningthat it can be partially
hidden from sight (shadows are not sharp anymore). They havewhat is known as an
umbra, or an area of fuzziness where there is neither total light or shade. In order to
simulate thesesoft shadows, a ray-tracer must give its light sources dimension. POV-
Ray accomplishes this with a feature known as an area light.

Area lights have dimension in two axis’. These are specified by the first two vectors
in the area light syntax. You must also specify how many lights are to be in the array.
More will give you cleaner soft shadows but will take longer to render. Usually a 3×3
or a 5×5 array will suffice. You also have the option of specifying anadaptive
value. Theadaptive command tells the ray-tracer that it can adapt to the situation
and send only the needed rays to determine the value of the pixel. If adaptive is

80 CHAPTER 4. BEGINNING TUTORIAL

not used, a separate ray will be sent for every light in the area light. This can really
slow things down. The higher theadaptive value the cleaner the umbra will be but
the longer the trace will take. Usually an adaptive value of 1is sufficient. Finally, you
probably should use thejitter command. This tells the raytracer to slightly move
the position of each light in the area light so that the shadows appear truely soft instead
of giving you an umbra consisting of closely banded shadows.

OK, let’s try one. Comment out the cylinder lights and add thefollowing:

light_source {

<2, 10, -3>

color White

area_light <5, 0, 0>, <0, 0, 5>, 5, 5

adaptive 1

jitter

}

This is a white area light centered at〈2,10,−3〉. It is 5 units (along thex-axis) by
5 units (along thez-axis) in size, and has 25 (5× 5) lights in it. We have specified
adaptive 1 and jitter. Render this at 200x150–A.

Right away we notice two things. The trace takes quite a bit longer than it did with
a point or a spotlight, and the shadows are no longer sharp! They all have nice soft
umbras around them. Wait, it gets better.

Spotlights and cylinder lights can be area lights too! Remember those sharp shadows
from the spotlights in our scene? It would not make much senseto use a 5×5 array for
a spotlight, but a smaller array might do a good job of giving us just the right amount of
umbra for a spotlight. Let’s try it. Comment out the area light and change the cylinder
lights so that they read as follows:

light_source {

<2, 10, -3>

color White

spotlight

radius 15

falloff 18

tightness 10

area_light <1, 0, 0>, <0, 0, 1>, 2, 2

adaptive 1

jitter

point_at <0, 0, 0>

}

light_source {

<10, 10, -1>

color Red

spotlight

radius 12

4.6. THE LIGHT SOURCE 81

falloff 14

tightness 10

area_light <1, 0, 0>, <0, 0, 1>, 2, 2

adaptive 1

jitter

point_at <2, 0, 0>

}

light_source {

<-12, 10, -1>

color Blue

spotlight

radius 12

falloff 14

tightness 10

area_light <1, 0, 0>, <0, 0, 1>, 2, 2

adaptive 1

jitter

point_at <-2, 0, 0>

}

You now have three area-spotlights, one unit square consisting of an array of four
(2×2) lights, three different colors, all shining on your scene. Render this at 200x150
–A. This appears to work perfectly. All our shadows have small,tight umbras, just the
sort you would expect to find on an object under a real spotlight.

4.6.6 Assigning an Object to a Light Source

Light sources are invisible. They are just a location where the light appears to be
coming from. They have no true size or shape. If you want your light source to be a
visible shape, you can use thelooks like keyword. You can specify that your light
source can look like any object you choose. When you uselooks like,no shadow

is applied to the object automatically. This is done so that the object will not block
any illumination from the light source. If you want some blocking to occur (as in a
lampshade), it is better to simply use a union to do the same thing. Let’s add such an
object to our scene. Here is a light bulb I have made just for this purpose:

#declare Lightbulb = union {

merge {

sphere { <0,0,0>,1 }

cylinder { <0,0,1>, <0,0,0>, 1

scale <0.35, 0.35, 1.0>

translate 0.5*z

}

texture {

pigment {color rgb <1, 1, 1>}

82 CHAPTER 4. BEGINNING TUTORIAL

finish {ambient .8 diffuse .6}

}

}

cylinder { <0,0,1>, <0,0,0>, 1

scale <0.4, 0.4, 0.5>

texture { Brass_Texture }

translate 1.5*z

}

rotate -90*x

scale .5

}

Now add the light source:

light_source {

<0, 2, 0>

color White

looks_like { Lightbulb }

}

Rendering this we see that a fairly believable light bulb nowilluminates the scene.
However, if we do not specify a high ambient value, the light bulb is not lit by the light
source. On the plus side, all of the shadows fall away from thelight bulb, just as they
would in a real situation. The shadows are sharp, so let’s make our bulb an area light:

light_source {

<0, 2, 0>

color White

area_light <1, 0, 0>, <0, 1, 0>, 2, 2

adaptive 1

jitter

looks_like { Lightbulb }

}

Note that we have placed this area light in thex-y-plane instead of thex-z-plane. Note
also that the actual appearance of the light bulb is not affected in any way by the light
source. The bulb must be illuminated by some other light source or by, as in this case,
a high ambient value. More interesting results might therefore be obtained in this case
by using halos (see section 4.8.5 on page 104).

4.6.7 Light Source Specials

4.6.7.1 Using Shadowless Lights

Light sources can be assigned theshadowless keyword and no shadows will be cast
due to its presence in a scene. What good is that you may ask. Sometimes, scenes

4.6. THE LIGHT SOURCE 83

are difficult to illuminate properly using the lights you have chosen to illuminate your
objects. It is impractical and unrealisitic to apply a higher ambient value to the texture
of every object in the scene. So instead, you would place a couple of fill lights around
the scene. Fill lights are simply dimmer lights with theshadowless keyword that
act to boost the illumination of other areas of the scene thatmay not be lit well. Let’s
try using one in our scene.

Remember the three colored area spotlights? Go back now and uncomment them and
comment out any other lights you have made. Now add the following:

light_source {

<0, 20, 0>

color Gray75

shadowless

}

This is a fairly dim (Gray75) light 20 units over the center of the scene. It will give
a dim illumination to all objects including the plane in the background. Render it and
see.

4.6.7.2 Using Light Fading

If it is realism we want, it is not realistic for the plane to beevenly illuminated off into
the distance. In real life, light gets scattered as it travels so it diminishes its ability
to illuminate objects the farther it gets from its source. Tosimulate this, POV-Ray
allows you to use two keywords:fade distance, which specifies the distance at
which full illumination is achieved; andfade power, an exponential value which
determines the actual rate of attenuation. Let’s apply these keywords to our fill light.

First, make the fill light a little brighter by changingGray75to Gray50. Now change
that fill light as follows:

light_source {

<0, 20, 0>

color Gray50

fade_distance 5

fade_power 1

shadowless

}

This means that the full value of the fill light will be achieved at a distance of 5 units
away from the light source. Thefade power of 1 means that the falloff will be linear
(the light falls of at a constant rate). Render this to see theresult.

That definitely worked! Now let’s try afade power of 2 and afade distance of
10. Again, this works well. The falloff is much sharper with afade power of 2 so
we had ot raise thefade distance to 10.

84 CHAPTER 4. BEGINNING TUTORIAL

4.6.7.3 Light Sources and Atmosphere

By definition more than default, light sources are affected by atmosphere, i.e. their light
is scattered by the atmosphere. This can be turned off by adding atmosphere off

to the light source block. The light emitted by a light sourcecan also be attenuated by
the atmosphere (and also fog), that is it will be diminished as it travells through it, by
addingatmospheric attenuation on. The falloff is exponential and dependes
on thedistance parameter of the atmosphere (or fog). You should note that this
featuer only affects light coming directly from the light source. Reflected and refracted
light is ignored.

Let’s experiment with these keywords. First we must add an atmosphere to our scene:

#include "atmos.inc"

atmosphere { Atmosphere2 }

Then, so the trace will not take as long and the effect will be easier to see, comment
out the three lines that turn each of the three spotlights into area lights:

//area_light <1, 0, 0>, <0, 0, 1>, 2, 2

//adaptive 1

//jitter

Tracing the scene at 200x150–A we see that indeed the spotlights are visible. We can
see where the blue and red spots cross each other and where thewhite overhead light
shines down through the center of the scene. We also notice that the spotlights appear
to diminish in their intensity as the light descends from thelight source to the objects.
The red light is all but gone in the lower left part of the sceneand the blue light all but
gone in the lower right. This is due to the atmospheric attenuation and lends a further
realism to the scene. The atmosphere-lightsource interaction gives our scene a smoky,
mysterious appearance, but the trace took a long time. Make those spotlights area lights
and it will take even longer. This is an inevitable trade-off— tracing speed for image
quality.

4.7 Simple Texture Options

The pictures rendered so far where somewhat boring regarding the appearance of the
objects. Let’s add some fancy features to the texture.

4.7.1 Surface Finishes

One of the main features of a ray-tracer is its ability to do interesting things with surface
finishes such as highlights and reflection. Let’s add a nice little phong highlight (shiny

4.7. SIMPLE TEXTURE OPTIONS 85

spot) to the sphere. To do this you need afinish parameter. Change the definition
of the sphere to this:

sphere { <0, 1, 2>, 2

texture {

pigment { color Yellow } // pre-defined in COLORS.INC

finish { phong 1 }

}

}

Now render this the same way you did before. Thephong keyword adds a highlight
the same color of the light shining on the object. It adds a lotof credibility to the picture
and makes the object look smooth and shiny. Lower values ofphong will make the
highlight less bright (values should be between 0 and 1).

4.7.2 Adding Bumpiness

The highlight you’ve added illustrates how much of our perception depends on the
reflective properties of an object. Ray-tracing can exploitthis by playing tricks on our
perception to make us see complex details that aren’t reallythere.

Suppose you wanted a very bumpy surface on the object. It would be very difficult to
mathematically model lots of bumps. We can however simulatethe way bumps look
by altering the way light reflects off of the surface. Reflection calculations depend on
a vector called asurface normalvector. This is a vector which points away from the
surface and is perpendicular to it. By artificially modifying (or perturbing) this normal
vector you can simulate bumps. Change the scene to read as follows and render it:

sphere { <0, 1, 2>, 2

texture {

pigment { color Yellow }

normal { bumps 0.4 scale 0.2 }

finish { phong 1 }

}

}

This tells POV-Ray to use abump pattern to modify the surface normal. The value
0.4 controls the apparent depth of the bumps. Usually the bumpsare about 1 unit wide
which doesn’t work very well with a sphere of radius 2. The scale makes the bumps
1/5th as wide but does not affect their depth.

4.7.3 Creating Color Patterns

You can do more than assign a solid color to an object. You can create complex patterns
in the pigment block. Consider this example:

86 CHAPTER 4. BEGINNING TUTORIAL

sphere { <0, 1, 2>, 2

texture {

pigment {

wood

color_map {

[0.0 color DarkTan]

[0.9 color DarkBrown]

[1.0 color VeryDarkBrown]

}

turbulence 0.05

scale <0.2, 0.3, 1>

}

finish { phong 1 }

}

}

The keywordwood specifies a pigment pattern of concentric rings like rings inwood.
Thecolor map specifies that the color of the wood should blend fromDarkTan to
DarkBrownover the first 90% of the vein and fromDarkBrownto VeryDarkBrownover
the remaining 10%. Theturbulence slightly stirs up the pattern so the veins aren’t
perfect circles and thescale factor adjusts the size of the pattern.

Most patterns are set up by default to give you onefeatureacross a sphere of radius
1.0. A feature is very roughly defined as a color transition. For example, awood

texture would have one band on a sphere of radius 1.0. In this example we scale
the pattern using thescale keyword followed by a vector. In this case we scaled
0.2 in thex direction, 0.3 in they direction and thez direction is scaled by 1, which
leaves it unchanged. Scale values larger than one will stretch an element. Scale values
smaller than one will squish an element. And a scale value of one will leave an element
unchanged.

4.7.4 Pre-defined Textures

POV-Ray has some very sophisticated textures pre-defined inthe standard include files
GLASS. INC, METALS.INC, STONES.INC and WOODS.INC. Some are entire textures
with pigment, normal and/orfinish parameters already defined. Some are just
pigments or just finishes. Change the definition of our sphereto the following and then
re-render it:

sphere { <0, 1, 2>, 2

texture {

pigment {

DMFWood4 // pre-defined in textures.inc

scale 4 // Scale by the same amount in all

// directions

4.8. ADVANCED TEXTURE OPTIONS 87

}

finish { Shiny } // pre-defined in finish.inc

}

}

The pigment identifierDMFWood4has already been scaled down quite small when it
was defined. For this example we want to scale the pattern larger. Because we want to
scale it uniformly we can put a single value after the scale keyword rather than a vector
of x, y, z scale factors.

Look through the fileTEXTURES.INC to see what pigments and finishes are defined
and try them out. Just insert the name of the new pigment whereDMFWood4is now
or try a different finish in place ofShinyand re-render your file.

Here is an example of using a complete texture identifier rather than just the pieces.

sphere { <0, 1, 2>, 2

texture { PinkAlabaster }

}

4.8 Advanced Texture Options

The extremely powerful texturing ability is one thing that really sets POV-Ray apart
from other raytracers. So far we have not really tried anything too complex but by now
you should be comfortable enough with the program’s syntax to try some of the more
advanced texture options.

Obviously, we cannot try them all. It would take a tutorial a lot more pages to use
every texturing option available in POV-Ray. For this limited tutorial, we will content
ourselves to just trying a few of them to give you an idea of howtextures are created.
With a little practice, you will soon be creating beautiful textures of your own.

4.8.1 Pigment and Normal Patterns

Previous versions of POV-Ray made a distinction between pigment and normal pat-
terns, i. e. patterns that could be used inside anormal { . . . } or pigment { . . .
} statement. With POV-Ray 3.0 this restriction was removed sothat all patterns listed
in section 7.6.7 on page 318 can be used as a pigment or normal pattern.

4.8.2 Pigments

Every surface must have a color. In POV-Ray, this color is called apigment. It does not
have to be a single color. It can be a color pattern, a color list, or even an image map.

88 CHAPTER 4. BEGINNING TUTORIAL

Pigments can also be layered one on top of the next so long as the uppermost layers are
at least partially transparent so the ones beneath can show through. Let’s play around
with some of these kinds of pigments.

Create a file calledTEXDEMO.POV and edit it as follows:

#include "colors.inc"

camera {

location <1, 1, -7>

look_at 0

angle 36

}

light_source { <1000, 1000, -1000> White }

plane { y, -1.5

pigment { checker Green, White }

}

sphere { <0,0,0>, 1

pigment { Red }

}

Giving this file a quick test render at 200x150-A we see that it is a simple red sphere
against a green and white checkered plane. We will be using the sphere for our textures.

4.8.2.1 Using Color List Pigments

Before we begin you should note that we have already made one kind of pigment, the
color list pigment. In the previous example we have used a checkered pattern on our
plane. There are two other kinds of color list pigments,brick andhexagon. Let’s
quickly try each of these. First, change the plane’s pigmentas follows:

pigment { hexagon Green, White, Yellow }

Rendering this we see a three-color hexagonal pattern. Notethat this pattern requires
three colors. Now change the pigment to$ldots

pigment { brick Gray75, Red rotate -90*x scale .25 }

Looking at the resulting image see that the plane now has a brick pattern. Note that
we had to rotate the pattern to make it appear correctly on theflat plane. This pattern
normally is meant to be used on vertical surfaces. We also hadto scale the pattern
down a bit so we could see it more easily. Feel free to play around with these color list
pigments, change the colors, etc. until you get afloor that you like.

4.8. ADVANCED TEXTURE OPTIONS 89

4.8.2.2 Using Pigment and Patterns

Let’s begin texturing our sphere by using a pattern and a color map consisting of three
colors. Replace the pigment block with the following.

pigment {

gradient x

color_map {

[0.00 color Red]

[0.33 color Blue]

[0.66 color Yellow]

[1.00 color Red]

}

}

Rendering this we see that it gives us an interesting patternof vertical stripes. Try
changing the gradient direction toy. The stripes are horizontal now. Try changing the
gradient direction toz. The stripes are now more like concentric rings. This is because
the gradient direction is directly away from the camera. Change the direction back tox
and add the following change to the pigment block.

pigment {

gradient x

color_map {

[0.00 color Red]

[0.33 color Blue]

[0.66 color Yellow]

[1.00 color Red]

}

rotate -45*z // <- add this line

}

The vertical bars are now slanted at a 45 degree angle. All patterns can be rotated,
scaled, and translated in this manner. Let’s now try some different types of patterns.
One at a time, substitute the following keywords forgradient x and render to see
the result:bozo, marble, agate, granite, leopard, spotted, andwood (if
you like you can test all patterns listed in section 7.6.7 on page 318).

Rendering these we see that each results in a slightly different pattern. But to get really
good results each type of pattern requires the use of some pattern modifiers.

4.8.2.3 Using Pattern Modifiers

Let’s take a look at some pattern modifiers. First, change thepattern type to bozo. Then
add the following change.

90 CHAPTER 4. BEGINNING TUTORIAL

pigment {

bozo

frequency 3 // <- add this line

color_map {

[0.00 color Red]

[0.33 color Blue]

[0.66 color Yellow]

[1.00 color Red]

}

rotate -45*z

}

Thefrequencymodifier determines the number of times the color map repeatsitself
per unit of size. This change makes thebozo pattern we saw earlier have many more
bands in it. Now change the pattern type tomarble. When we rendered this earlier,
we saw a banded pattern similar togradient y that really did not look much like
marble at all. This is because marble really is a kind of gradient and it needs another
pattern modifier to look like marble. This modifier is calledturbulence. Change
the linefrequency 3 to turbulence 1 and render again. That’s better! Now
let’s putfrequency 3 back in right after the turbulence and take another look. Even
more interesting!

But wait, it gets better! Turbulence itself has some modifiers of its own. You can adjust
the turbulence several ways. First, the float that follows the turbulence keyword
can be any value with higher values giving you more turbulence. Second, you can use
the keywordsomega, lambda, andoctaves to change the turbulence parameters.
Let’s try this now:

pigment {

marble

turbulence 0.5

lambda 1.5

omega 0.8

octaves 5

frequency 3

color_map {

[0.00 color Red]

[0.33 color Blue]

[0.66 color Yellow]

[1.00 color Red]

}

rotate 45*z

}

Rendering this we see that the turbulence has changed and thepattern looks differ-
ent. Go ahead and play around with the numerical values ofturbulence, lambda,
omega, andoctaves to see what they do.

4.8. ADVANCED TEXTURE OPTIONS 91

4.8.2.4 Using Transparent Pigments and Layered Textures

Pigments are described by numerical values that give the rgbvalue of the color to be
used (likecolor rgb〈1,0,0〉 giving you a red color). But this syntax will give you
more than just the rgb values. You can specify filtering transparency by changing it
as follows:color rgbf〈1,0,0,1〉. The f stands forfilter, POV-Ray’s word for
filtered transparency. A value of one means that the color is completely transparent,
but still filters the light according to what the pigment is. In this case, the color will be
a transparent red, like red cellophane.

There is another kind of transparency in POV-Ray. It is called transmittanceor non-
filtering transparency (the keyword istransmit). It is different fromfilter in that
it does not filter the light according to the pigment color. Itinstead allows all the light
to pass through unchanged. It can be specified like this:rgbt〈1,0,0,1〉.

Let’s use some transparent pigments to create another kind of texture, the layered tex-
ture. Returning to our previous example, declare the following texture.

#declare LandArea = texture {

pigment {

agate

turbulence 1

lambda 1.5

omega .8

octaves 8

color_map {

[0.00 color rgb <.5, .25, .15>]

[0.33 color rgb <.1, .5, .4>]

[0.86 color rgb <.6, .3, .1>]

[1.00 color rgb <.5, .25, .15>]

}

}

}

}

This texture will be theland area. Now let’s make the oceans by declaring the follow-
ing.

#declare OceanArea = texture {

pigment {

bozo

turbulence .5

lambda 2

color_map {

[0.00, 0.33 color rgb <0, 0, 1>

color rgb <0, 0, 1>]

[0.33, 0.66 color rgbf <1, 1, 1, 1>

color rgbf <1, 1, 1, 1>]

92 CHAPTER 4. BEGINNING TUTORIAL

[0.66, 1.00 color rgb <0, 0, 1>

color rgb <0, 0, 1>]

}

}

}

}

Note how theoceanis the opaque blue area, and theland is the clear area which will
allow the underlying texture to show through.

Now, let’s declare one more texture to simulate an atmosphere with swirling clouds.

#declare CloudArea = texture {

pigment {

agate

turbulence 1

lambda 2

frequency 2

color_map {

[0.0 color rgbf <1, 1, 1, 1>]

[0.5 color rgbf <1, 1, 1, .35>]

[1.0 color rgbf <1, 1, 1, 1>]

}

}

}

Now apply all of these to our sphere.

sphere { <0,0,0>, 1

texture { LandArea }

texture { OceanArea }

texture { CloudArea }

}

Render this and you’ll have a pretty good rendition of a little planetoid. But it could
be better. We don’t particularly like the appearance of the clouds. There is a way they
could be done that would be much more realistic.

4.8.2.5 Using Pigment Maps

Pigments may be blended together in the same way as the colorsin a color map

using the same pattern keywords that you can use for pigments. Rather than trying to
impress you with the possible implications of this powerfulfeature, let’s just give it a
try.

Add the following declarations, making sure they appear before the other declarations
in the file.

4.8. ADVANCED TEXTURE OPTIONS 93

#declare Clouds1 = pigment {

bozo

turbulence 1

color_map {

[0.0 color White filter 1]

[0.5 color White]

[1.0 color White filter 1]

}

}

#declare Clouds2 = pigment {

agate

turbulence 1

color_map {

[0.0 color White filter 1]

[0.5 color White]

[1.0 color White filter 1]

}

}

#declare Clouds3 = pigment {

marble

turbulence 1

color_map {

[0.0 color White filter 1]

[0.5 color White]

[1.0 color White filter 1]

}

}

#declare Clouds4 = pigment {

granite

turbulence 1

color_map {

[0.0 color White filter 1]

[0.5 color White]

[1.0 color White filter 1]

}

}

Now use these declared pigments in our cloud layer on our planetoid. Replace the
declared cloud layer with.

#declare CloudArea = texture {

pigment {

gradient y

pigment_map {

[0.00 Clouds1]

[0.25 Clouds2]

[0.50 Clouds3]

[0.75 Clouds4]

94 CHAPTER 4. BEGINNING TUTORIAL

[1.00 Clouds1]

}

}

}

Render this and you’ll see a remarkable pattern that looks very much like weather
patterns on the planet earth. They are separated into bands,simulating the different
weather types found at different latitudes.

4.8.3 Normals

Objects in POV-Ray have very smooth surfaces. This is not very realistic so there are
several ways to disturb the smoothness of an object by perturbing the surface normal.
The surface normal is the vector that is perpendicular to theangle of the surface. By
changing this normal the surface can be made to appear bumpy,wrinkled, or any of the
many patterns available. Let’s try a couple of them.

4.8.3.1 Using Basic Normal Modifiers

Comment out the planetoid sphere for now and, at the bottom ofthe file, create a new
sphere with a simple, single color texture.

sphere { <0,0,0>, 1

pigment { Gray75 }

normal { bumps 1 scale .2 }

}

Here we have added anormal block in addition to thepigment block (note that
these do not have to be included in atexture block unless they need to be trans-
formed together or need to be part of a layered texture). Render this to see what it
looks like. Now, one at a time, substitute for the keywordbumps the following key-
owrds: dents, wrinkles, ripples, andwaves (you can also use any of the
patterns listed in 7.6.7 on page 318). Render each to see whatthey look like. Play
around with the float value that follows the keyword. Try experimenting with the scale
value too.

For added interest, change the plane texture to a single color with a normal as follows.

plane { y, -1.5

pigment { color rgb <.65, .45, .35> }

normal { dents .75 scale .25 }

}

4.8. ADVANCED TEXTURE OPTIONS 95

4.8.3.2 Blending Normals

Normals can be layered similar to pigments but the results can be unexpected. Let’s try
that now by editing the sphere as follows.

sphere { <0,0,0>, 1

pigment { Gray75 }

normal { radial frequency 10 }

normal { gradient y scale .2 }

}

As you can see, the resulting pattern is neither a radial nor agradient. It is instead the
result of first calculating a radial pattern and then calculating a gradient pattern. The
results are simply additive. This can be difficult to controlso POV-Ray gives the user
other ways to blend normals.

One way is to use normal maps. A normal map works the same way asthe pigment
map we used earlier. Let’s change our sphere texture as follows.

sphere { <0,0,0>, 1

pigment { Gray75 }

normal {

gradient y

frequency 3

turbulence .5

normal_map {

[0.00 granite]

[0.25 spotted turbulence .35]

[0.50 marble turbulence .5]

[0.75 bozo turbulence .25]

[1.00 granite]

}

}

}

Rendering this we see that the sphere now has a very irregularbumpy surface. The
gradient pattern type separates the normals into bands but they are turbulated, giving
the surface a chaotic appearance. But this give us an idea.

Suppose we use the same pattern for a normal map that we used tocreate the oceans
on our planetoid and applied it to the land areas. Does it follow that if we use the same
pattern and modifiers on a sphere the same size that the shape of the pattern would be
the same? Wouldn’t that make the land areas bumpy while leaving the oceans smooth?
Let’s try it. First, let’s render the two spheres side-by-side so we can see if the pattern
is indeed the same. Un-comment the planetoid sphere and makethe following changes.

96 CHAPTER 4. BEGINNING TUTORIAL

sphere { <0,0,0>, 1

texture { LandArea }

texture { OceanArea }

//texture { CloudArea } // <-comment this out

translate -x // <- add this transformation

}

Now change the gray sphere as follows.

sphere { <0,0,0>, 1

pigment { Gray75 }

normal {

bozo

turbulence .5

lambda 2

normal_map {

[0.4 dents .15 scale .01]

[0.6 agate turbulence 1]

[1.0 dents .15 scale .01]

}

}

translate x // <- add this transformation

}

Now render this to see if the pattern is the same. We see that indeed it is. So let’s
comment out the gray sphere and add thenormal block it contains to the land area
texture of our planetoid. Remove the transformations so that the planetoid is centered
in the scene again.

#declare LandArea = texture {

pigment {

agate

turbulence 1

lambda 1.5

omega .8

octaves 8

color_map {

[0.00 color rgb <.5, .25, .15>]

[0.33 color rgb <.1, .5, .4>]

[0.86 color rgb <.6, .3, .1>]

[1.00 color rgb <.5, .25, .15>]

}

}

normal {

bozo

turbulence .5

lambda 2

4.8. ADVANCED TEXTURE OPTIONS 97

normal_map {

[0.4 dents .15 scale .01]

[0.6 agate turbulence 1]

[1.0 dents .15 scale .01]

}

}

}

Looking at the resulting image we see that indeed our idea works! The land areas are
bumpy while the oceans are smooth. Add the cloud layer back inand our planetoid is
complete.

There is much more that we did not cover here due to space constraints. On your own,
you should take the time to exploreslope map, average, andbump map.

4.8.4 Finishes

The final part of a POV-Ray texture is thefinish. It controls the properties of the sur-
face of an object. It can make it shiny and reflective, or dull and flat. It can also
specify what happens to light that passes through transparent pigments, what hap-
pens to light that is scattered by less-than-perfectly-smooth surfaces, and what hap-
pens to light that is reflected by surfaces with thin-film interference properties. There
are twelve different properties available in POV-Ray to specify the finish of a
given object. These areambient, diffuse, brilliance, phong, specular,
metallic, reflection, refraction, caustics, attenuation, crand,
andiridescence. Let’s design a couple of textures that make use of these parame-
ters.

4.8.4.1 Using Ambient

Since objects in POV-Ray are illuminated by light sources, the portions of those ob-
jects that are in shadow would be completely black were it notfor the first two finish
properties,ambient anddiffuse. Ambient is used to simulate the light that is
scattered around the scene that does not come directly from alight source. Diffuse de-
termines how much of the light that is seen comes directly from a light source. These
two keywords work together to control the simulation of ambient light. Let’s use our
gray sphere to demonstrate this. Let’s also change our planeback to its original green
and white checkered pattern.

plane {y,-1.5

pigment {checker Green, White}

}

sphere { <0,0,0>, 1

pigment {Gray75}

finish {

98 CHAPTER 4. BEGINNING TUTORIAL

ambient .2

diffuse .6

}

In the above example, the default values for ambient and diffuse are used. Render this
to see what the effect is and then make the following change tothe finish.

ambient 0

diffuse 0

The sphere is black because we have specified that none of the light coming from any
light source will be reflected by the sphere. Let’s changediffuse back to the default
of 0.6.

Now we see the gray surface color where the light from the light source falls directly
on the sphere but the shaded side is still absolutely black. Now let’s changediffuse
to 0.3 andambient to 0.3.

The sphere now looks almost flat. This is because we have specified a fairly high degree
of ambient light and only a low amount of the light coming fromthe light source is
diffusely reflected towards the camera. The default values of ambient anddiffuse
are pretty good averages and a good starting point. In most cases, an ambient value of
0.1. . .0.2 is sufficient and a diffuse value of 0.5. . .0.7 will usually do the job. There
are a couple of exceptions. If you have a completely transparent surface with high
refractive and/or reflective values, low values of both ambient and diffuse may be best.
Here is an example.

sphere { <0,0,0>, 1

pigment { White filter 1 }

finish {

ambient 0

diffuse 0

reflection .25

refraction 1

ior 1.33

specular 1

roughness .001

}

}

}

This is glass, obviously. Glass is a material that takes nearly all of its appearance
from its surroundings. Very little of the surface is seen because it transmits or reflects
practically all of the light that shines on it. SeeGLASS.INC for some other examples.

If you ever need an object to be completely illuminated independently of the lighting
situation in a given scene, you can do this artificially by specifying anambient value
of 1 and adiffuse value of 0. This will eliminate all shading and simply give the

4.8. ADVANCED TEXTURE OPTIONS 99

object its fullest and brightest color value at all points. This is good for simulating
objects that emit light like lightbulbs, and for skies in scenes where the sky may not be
adequately lit by any other means.

Let’s try this with our sphere now.

sphere { <0,0,0>, 1

pigment { White }

finish {

ambient 1

diffuse 0

}

}

}

Rendering this we get a blinding white sphere with no visiblehighlights or shaded
parts. It would make a pretty good streetlight.

4.8.4.2 Using Surface Highlights

In the glass example above, we noticed that there were brightlittle hotspotson the
surface. This gave the sphere a hard, shiny appearance. POV-Ray gives you two ways
to specify surface specular highlights. The first is calledPhong highlighting. Usually,
Phong highlights are described using two keywords:phong andphong size. The
float that followsphong determines the brightness of the highlight while the float
following phong size determines its size. Let’s try this.

sphere { <0,0,0>, 1

pigment { Gray50 }

finish {

ambient .2

diffuse .6

phong .75

phong_size 25

}

}

Rendering this we see a fairly broad, soft highlight that gives the sphere a kind of
plastic appearance. Now let’s changephong size to 150. This makes a much smaller
highlight which gives the sphere the appearance of being much harder and shinier.

There is another kind of highlight that is calculated by a different means calledspecu-
lar highlighting. It is specified using the keywordspecular and operates in conjunc-
tion with another keyword calledroughness. These two keywords work together in
much the same way asphong andphong size to create highlights that alter the
apparent shininess of the surface. Let’s try using specularin our sphere.

100 CHAPTER 4. BEGINNING TUTORIAL

sphere { <0,0,0>, 1

pigment { Gray50 }

finish {

ambient .2

diffuse .6

specular .75

roughness .1

}

}

}

Looking at th result we see a broad, soft highlight similar towhat we had when we
usedphong size of 25. Changeroughness to .001 and render again. Now we
see a small, tight highlight similar to what we had when we used phong size of
150. Generally speaking, specular is slightly more accurate and therefore slightly more
realistic than phong but you should try both methods when designing a texture. There
are even times when both phong and specular may be used on a finish.

4.8.4.3 Using Reflection and Metallic

There is another surface parameter that goes hand in hand with highlights,reflection.
Surfaces that are very shiny usually have a degree of reflection to them. Let’s take a
look at an example.

sphere { <0,0,0>, 1

pigment { Gray50 }

finish {

ambient .2

diffuse .6

specular .75

roughness .001

reflection .5

}

}

}

We see that our sphere now reflects the green and white checkered plane and the black
background but the gray color of the sphere seems out of place. This is another time
when a lower diffuse value is needed. Generally, the higherreflection is the lower
diffuse should be. Try lowering the diffuse value to 0.3 and the ambient value to
0.1 and render again. That is much better. Let’s make our sphere as shiny as a polished
gold ball bearing.

sphere { <0,0,0>, 1

pigment { BrightGold }

4.8. ADVANCED TEXTURE OPTIONS 101

finish {

ambient .1

diffuse .1

specular 1

roughness .001

reflection .75

}

}

}

That is very close but there is something wrong with the highlight. To make the sur-
face appear more like metal the keywordmetallic is used. Add it now to see the
difference.

sphere { <0,0,0>, 1

pigment { BrightGold }

finish {

ambient .1

diffuse .1

specular 1

roughness .001

reflection .75

metallic

}

}

}

We see that the highlight has taken on the color of the surfacerather than the light
source. This gives the surface a more metallic appearance.

4.8.4.4 Using Refraction

Objects that are transparent allow light to pass through them. With some substances,
the light is bent as it traves from one substance into the other because of the differing
optical densities of the objects. This is calledrefraction. Water and glass both bend
light in this manner so to create water or glass, POV-Ray gives you a way to specify
refraction. This is done with the keywordsrefraction andior. The amount of
light that passes through an object is determined by the value of the filtering and/or
transmittance channel in the pigment. You should use the refraction value only to
switch refraction on or off using vaules of 1 or 0 respectively (or the boolean valueson
andoff). See section 7.6.3.5 on page 299 for a detailed explanationof the reasons.

The degree of refraction, i. e. the amount of bending that occurs, is given by the
keywordior, short forindex of refraction. If you know the index of refraction of the
substance you are trying to create, you may just use that. Forinstance, water is 1.33,
glass is around 1.45 and diamond is 1.75. Let’s return to the example of a glass sphere
we used earlier.

102 CHAPTER 4. BEGINNING TUTORIAL

sphere { <0,0,0>, 1

pigment { White filter 1 }

finish {

ambient 0

diffuse 0

reflection .25

refraction 1

ior 1.45

specular 1

roughness .001

}

}

}

Render this again and notice how the plane that is visible through the sphere is distorted
and turned upside-down. This is because the light passing through the sphere is being
bent or refracted to the degree specified. Try reducingior to 1.25. Try increasing it
to 1.75. Notice how the distortion changes.

4.8.4.5 Light Attenuation and Caustics

Transparent objects can be made to cause the intensity of light passing through them to
be reduced. In reality, this is due to impurities in scattering the light. Two float values
determine the effect:fade distance is the distance the light has to travel to reach
one-half its original intensity andfade power is the degree of falloff. Let’s try an
example of this.

sphere { <0,0,0>, 1

pigment { White filter 1 }

finish {

ambient .1

diffuse .1

reflection .15

refraction 1

ior 1.45

specular 1

roughness .001

fade_distance 5

fade_power 1

}

}

This gives the sphere a slightly clouded look as if not all of the light was able to pass
through it. For interesting variations of this texture, trylowering ior to 1.15 and
raisingreflection to 0.5.

4.8. ADVANCED TEXTURE OPTIONS 103

One thing we do notice is that the shadow of the sphere is stillthe same old flat gray
shadow we have had all along. If there is all this light refraction going on shouldn’t
there be something going on with the shadow as well? That something would be due
to an effect known ascaustics. POV-Ray cannot do caustics but it can fake them to
some degree. This is an easy one. Simply addcaustics 1 to thefinish block
and re-render to see the effect. What we see is a highlight in the shadow that simulates
the effect of light passing through the sphere and being focused because of the curved
surface. Remember that this is not real caustics, so changing other finish parameters
like ior will not affect the caustic highlight. The faked caustic is limited to the area
shadowed by the corresponding object.

4.8.4.6 Using Iridescence

Iridescenceis what you see on the surface of an oil slick when the sun shines on it.
The rainbow effect is created by something calledthin-film interference(read sec-
tion 7.6.3.6 on page 301 for details). For now let’s just try using it. Iridescence
is specified by theirid keyword and three values:amount, thickness and
turbulence. The amount is the contribution to the overall surface color. Usually
0.1 to 0.5 is sufficient here. The thickness affects thebusynessof the effect. Keep this
between 0.25 and 1 for best results. The turbulence is a little different from pigment or
normal turbulence. You cannot setoctaves, lambda or omega but you can specify
an amount which will affect the thickness in a slightly different way from the thickness
value. Values between 0.25 and 1 work best here too. Finally,iridescence will respond
to the surface normal since it depends on the angle of incidence of the light rays striking
the surface. With all of this in mind, let’s add some iridescence our glass sphere.

sphere { <0,0,0>, 1

pigment { White filter 1 }

finish {

ambient .1

diffuse .1

reflection .2

refraction 1

ior 1.5

specular 1

roughness .001

fade_distance 5

fade_power 1

caustics 1

irid {

0.35

thickness .5

turbulence .5

}

}

}

104 CHAPTER 4. BEGINNING TUTORIAL

Try varying the values foramount, thickness and turbulence to see what
changes they make. Try adding anormal block to see what happens.

4.8.5 Halos

Halos are a powerful feature that can be used to create a lot ofdifferent effects like
clouds, fogs, fire, lasers, etc. The name actually comes fromthe ability to render halos
with it, like the ones seen around the moon or the sun.

Due to the complexity of the halo feature and the large amountof parameters provided
it is very difficult to get satisfying results. The followingsections will help you to
create a halo step by step, starting with the basic things andgoing to the more subtle
stuff.

It is also helpful to read the halo reference sections to get abetter understanding of the
halo feature. You should especially read the sections 7.5.1on page 229 and 7.6.4.1 on
page 303 because they are essential for understanding halos.

4.8.5.1 What are Halos?

Halos are a texture feature allowing you to fill the interior of an object with particles.
The distribution of these particles can be modified using several density mappings and
density functions. The particles can emit light to give fire-or laser-like effects or they
can absorb light to create clouds or fog.

A halo is attached to an object, the so called container object, just like a pigment,
normal or finish. This object is completely filled by the halo but you won’t see anything
if you do not make sure that the object is hollow and the surface is translucent. How
this is accomplished will be shown in the next section.

When working with halos you always have to keep in mind that the container object
has to be hollow and translucent.

4.8.5.2 The Emitting Halo

We start with one of the simpler types, the emitting halo. It uses particles that only
emit light. There are no particles that absorb the light coming from other particles.

4.8.5.2.1 Starting with a Basic Halo

A clever approach in designing a nice halo effect is to start with a simple, unit-sized
shape that sits on the coordinate system’s origin.

In the first example (HALO01.POV) we try to create a fiery explosion, which the sphere
is best suited for. We start with a simple scene consisting ofa camera, a light source

4.8. ADVANCED TEXTURE OPTIONS 105

(we don’t care about shadows so we add the shadowless keyword), a checkered plane
and a unit-sized sphere containing the halo.

camera {

location <0, 0, -2.5>

look_at <0, 0, 0>

}

light_source { <10, 10, -10> color rgb 1 shadowless }

plane { z, 2

pigment { checker color rgb 0, color rgb 1 }

finish { ambient 1 diffuse 0 }

scale 0.5

hollow

}

sphere { 0, 1

pigment { color rgbt <1, 1, 1, 1> }

halo {

emitting

spherical_mapping

linear

color_map {

[0 color rgbt <1, 0, 0, 1>]

[1 color rgbt <1, 1, 0, 0>]

}

samples 10

}

hollow

}

You’ll note that the sphere is set to be hollow and has a translucent surface (the trans-
mittance channel in the pigment color is 1), just like it is required for halos. You’ll also
note that the plane has ahollow keyword even though it has no halo. Why is this
necessary?

The reason is quite simple. As described in section 7.5.1 on page 229 there can be no
halo inside any other non-hollow object. Since the camera isinside the plane object,
i.e. it is one the side of the plane that is considered be inside, the halo will never be
visible unless the plane is made hollow (or thenegative keyword is added to bring
the camera on theoutsideside of the plane).

What do all those halo keywords and values mean? At the beginning of the halo the
emitting keyword is used to specify what type of halo we want to use. Theemitting
halo emits light. That’s what’s best suited for our fiery explosion.

Thespherical mapping andlinear keyword need a more detailed explanation
of how a halo work (this is also done in chapter 7.6.4 on page 302 in more detail).

106 CHAPTER 4. BEGINNING TUTORIAL

As noted above the halo is made up of lots of small particles. The distribution of these
particles is described by a density function. In general, a density function tells us how
much particles we’ll find at a given location.

Instead of using an explicitly, mathematical density function, halos rely on a given set
of density mappings and density functions to model a varietyof particle distributions.

The first step in this model is the density mapping function that is used to map three-
dimensional points onto a one-dimensional range of values.In our example we use a
spherical mapping, i.e. we take the distance of a point from the center of the coordinate
system. This is the reason why it is clever to start with a container object sitting on the
coordinate system’s center. Since all density mappings aremade relative to this center
you won’t see anything if you start with an object sitting somewhere else. Moving the
whole object (including textures and halos) to another location is the correct way of
placing a container object.

Now we have a single value in the range from 0 to 1. This value will be transformed
using a density function to get density values instead of distance values. Just using
this single value won’t work because we want to have particledistributions were the
density decreases as we move from themiddlethe container object to the outside.

This is done by the density function. There are several alternatives available as de-
scribed in the halo reference (see section 7.6.4.5 on page 308). We use the simple
linear function that just maps values between 0 and 1 onto a 1 to 0 range. Thus we get
a density value of 1 at the center of our sphere and a value of 0 at its surface.

Now that we have a density function what do we do to see something? This is where
the colour map keyword comes into play. It is used to describe a color map that
actually tells the program what colors have to be used for what density. The relation is
quite simple: colors at the beginning of the color map (with small values) will be used
for low density values and colors at the end of the map (high values) will be used for
high densities. In our example the halo will be yellow at the center of the sphere where
the density is greatest and it will blend to red at the surfaceof the sphere where the
density approaches zero.

The transmittance channel of the colors in the color map is used to model the translu-
cency of the density field. A value of 0 represents no translucency, i. e. that areas with
the corresponding density will be (almost) opaque, while a value of 1 means (almost)
total translucency.

In our example we use

color_map {

[0 color rgbt <1, 0, 0, 1>]

[1 color rgbt <1, 1, 0, 0>]

}

which results in a halo with a very translucent, reddish outer area and a nearly opaque,
yellowish inner areas as you can see after tracing the example image.

4.8. ADVANCED TEXTURE OPTIONS 107

There is one parameter that still needs to be explained: thesamples keyword. This
keyword tells POV-Ray how many samples along any ray travelling through the halo
have to be taken to calculate the halo. Using a low value will result in a high tracing
speed while a high value will lead to a low speed. The sample value has to be increased
if the halo looks somewhatstrange, i. e. if some artifacts of the low sampling rate
appear. For more details see section 7.6.4.7 on page 310.

A good starting value for the number of samples is 10.

4.8.5.2.2 Increasing the Brightness

The colors of the halo in the above image are somewhat dim. There is too much of
the background visible through the halo. That does not look much like fire, does it?
An easy way to fix this is to decrease the transparency of the particles in the areas of
high density. Just use the following color map instead of theold one (the negative
transmittance is correct).

color_map {

[0 color rgbt <1, 0, 0, 1>]

[1 color rgbt <1, 1, 0, -1>]

}

Looking at the result ofHALO02.POV we will see that the halo is indeed much brighter.

4.8.5.2.3 Adding Some Turbulence

What we now have does not look like a fiery explosion. It’s morea glowing ball than
anything else. Somehow we have to make it look morechaotic, we have to add some
turbulence to it.

This is done by using theturbulence keyword together with the amount of turbu-
lence we want to add. Just like in the following example.

sphere { 0, 1

pigment { color rgbt <1, 1, 1, 1> }

halo {

emitting

spherical_mapping

linear

turbulence 1.5

color_map {

[0 color rgbt <1, 0, 0, 1>]

[1 color rgbt <1, 1, 0, -1>]

}

samples 10

}

hollow

}

108 CHAPTER 4. BEGINNING TUTORIAL

Adding turbulence to the halo moves all points inside the halo container in a pseudo-
random manner. This results in a particle distribution thatlooks like there was some
kind of flow in the halo (depending on the amount of turbulence you’ll geta laminar
or turbulent flow). The hight turbulence value is used because an explosion is highly
turbulent.

Looking at the example image (HALO03.POV) you’ll see that this looks more like a
fiery explosion than the glowing ball we got until now.

You’ll notice that the time it took to render the image increased after we added the
turbulence. This is due to the fact that for every sample taken from the halo the slow
turbulence function has to be evaluated.

4.8.5.2.4 Resizing the Halo

There is one strange thing about our fiery explosion though. It still looks like a sphere.
Why does this happen and what can we do to avoid it?

As noted above adding turbulence moves the particles insidethe halo container around.
The problem is that some of the particles are actually moved out of the container object.
This leads to high densities at the surface of the container object revealing the shape of
the object (all particles outside the container are lost andwill not visible resulting in a
large, highly visible density change at the surface).

An easy way of avoiding this is to make sure that the particlesstay inside the container
object even if we add some turbulence. This is done by scalingthe halo to reduce its
size. We donot scale the container object, just the halo.

This is done by adding thescale keyword inside the halo statement.

sphere { 0, 1

pigment { color rgbt <1, 1, 1, 1> }

halo {

emitting

spherical_mapping

linear

turbulence 1.5

color_map {

[0 color rgbt <1, 0, 0, 1>]

[1 color rgbt <1, 1, 0, -1>]

}

samples 10

scale 0.5

}

hollow

scale 1.5

}

4.8. ADVANCED TEXTURE OPTIONS 109

The scale 0.5 command tells POV-Ray to scale all points inside the halo by this
amount. This effectively scales the radius we get after the density mapping to a range
of 0 to 0.5 instead of 0 to 1 (without turbulence). If we now addthe turbulence the
points are allowed to move half a unit in every direction without leaving the container
object. That is excactly what we want.

To compensate for the smaller halo we would get we scale the sphere (and the halo
inside) by 1.5.

Looking at the new example image (HALO04.POV) you will no longer see any signs
of the container sphere. We finally have a nice fiery explosion.

The amount by which to scale the halo depends on the amount of turbulence you use.
The higher the turbulence value the smaller the halo has to bescaled. That is something
to experiment with.

Another way to avoid that points move out of the sphere is to use a larger sphere, i. e. a
sphere with a radius larger than one. It is important to resize the sphere before the halo
is added because otherwise the halo will also be scaled.

You should note that this only works for spherical and box mapping (and a non-constant
density function). All other mapping types are (partially)infinite, i.e. the resulting
particle distribution covers an infinite space (see also 7.6.4.1 on page 303).

4.8.5.2.5 Using Frequency to Improve Realism

Another very good way of improving the realism of our explosion is to use a frequency
value other than one. The way frequency works is explained insection 7.6.4.8.5 on
page 312 in the reference part.

The rather mathematical explanation used there doesn’t help much in understanding
how this feature is used. It is quite simple though. The frequency value just tells the
program how many times the color map will be repeated in the density range from 0 to
1. If a frequency of one (the default) is specified the color map will be visible once in
the density field, e. g. the color at 0 will be used for density 0, color at 0.5 will be used
for density 0.5 and the color at 1 will be used for density 1. Simple, isn’t it?

If you choose a frequency of two, the color at 0 will be used fordensity 0, the color at
0.5 will be used for density 0.25 and the color at 1 will be usedfor density 0.5. What
about the densities above 0.5? Since there are no entries in the color map for values
above 1 we just start at 0 again. Thus the color at 0.1 will be used for density 0.55
((2×0.55) mod 1= 1.1 mod 1= 0.1), the color at 0.5 will be used for density 0.75
and the color at 1 will be used for density 1.

If you are good at mathematics you’ll note that the above example is not quite right
because(1∗2) mod 1= 0 and not 1. Just think that we used a value slightly smaller
than one and everything will be fine.

110 CHAPTER 4. BEGINNING TUTORIAL

You may have noticed that in order to avoid sudden changes in the halo color for fre-
quencies larger than one you’ll have to used a periodic colormap, i.e. a color map
whose entries at 0 and 1 are the same.

We’ll change our example by using a periodic color map and changing the frequency
value to two.

sphere { 0, 1

pigment { color rgbt <1, 1, 1, 1> }

halo {

emitting

spherical_mapping

linear

turbulence 1.5

color_map {

[0.0 color rgbt <1, 0, 0, 1>]

[0.5 color rgbt <1, 1, 0, -1>]

[1.0 color rgbt <1, 0, 0, 1>]

}

frequency 2

samples 20

scale 0.5

}

hollow

scale 1.5

}

Looking at the result of (HALO05.POV) we can be quite satisfied with the explosion
we just have created, can’t we?

There’s one thing left you should be aware of when increasingthe frequency value. It
is often necessary to increase the sample rate in (nearly) the same way as you change
the frequency. If you don’t do this you’ll probably get some severe aliasing artefacts
(like color jumps or strange bands of colors). If this happens just change the samples
value according to the frequency value (twice sampling ratefor a doubled frequency).

4.8.5.2.6 Changing the Halo Color

We have a nice fiery explosion but we want to try to add somescience fictiontouch to
it by using different colors. How about a nice green, less turbulent explosion that gets
red at its borders?

Nothing easier than that!

sphere { 0, 1.5

pigment { color rgbt <1, 1, 1, 1> }

halo {

4.8. ADVANCED TEXTURE OPTIONS 111

emitting

spherical_mapping

linear

turbulence 0.5

color_map {

[0 color rgbt <0, 1, 0, 1>]

[1 color rgbt <1, 0, 0, -1>]

}

samples 10

scale 0.75

}

hollow

scale 1.5

}

This should do the trick. Looking at the result ofHALO06.POV you may be disap-
pointed. Where is the red center of the explosion? The borders are green as expected
but there is a lot of yellow in the center and only a little bit red. What is happening?

We use an emitting halo in our example. According to the corresponding section in
the halo reference chapter (see 7.6.4.3.3 on page 306) this type of halo uses very small
particles that do not attenuate light passing through the halo. Especially particles near
the viewer do not attenuate the light coming from particles far away from the viewer.

During the calculation of the halo’s color near the center ofthe container sphere, the
ray steps through nearly all possible densities of the particle distribution. Thus we get
red and green colors as we march on, depending on the current position in the halo.
The sum of these colors is used which will gives as a yellow color (the sum of red and
green is yellow). This is what is happening here.

How can we still get what we want? The answer is to use a glowinghalo instead of
the emitting halo. The glowing halo is very similar to the emitting one except that
it attenuates the light passing through. Thus the light of particles lying behind other
particles will be attenuated by the particles in front.

For the results of the glowing halo see 4.8.5.3.

4.8.5.3 The Glowing Halo

We have mentioned the glowing halo in the section about the emitting halo as one way
to avoid the color mixing that is happening with emitting halos.

The gowing halo is very similar to the emitting halo except that it also absorbs light.
You can view it as a combination of the emitting and the attenuating halo described in
section 4.8.5.4 on the following page.

By just replacing theemitting keyword in the example in section 4.8.5.2.6 on the
preceding page with theglowing keyword we get the desired effect as shown in the
example image (HALO11.POV).

112 CHAPTER 4. BEGINNING TUTORIAL

Even though the red color of the high density areas is not veryvisible because the green
colored, lower density areas lying in front absorb most of the red light, you don’t get
yellow color where you would have expected a red one.

Due to its similarity with the emitting halo we leave it up to you to make some exper-
iments with this halo type. You just have to keep all those things you learned in the
previous sections in mind to get some satisfying results.

4.8.5.4 The Attenuating Halo

Another simple halo type is the attenuating halo that only absorbs light. It doesn’t
radiate on its own.

A great difference between the attenuating halo and the other halo types is that the color
of the attenuating halo is calculated from the halo’s color map using the total particle
density along a given ray. The other types calculated a (weighted) average of the colors
calculated from the density at each sample.

4.8.5.4.1 Making a Cloud

Attenuating halos are ideal to create clouds and smoke. In the following examples we
will try to make a neat little cloud. We start again by using a unit-sized sphere that is
filled with a basic attenuating halo (HALO21.POV).

camera {

location <0, 0, -2.5>

look_at <0, 0, 0>

}

light_source { <10, 10, -10> color rgb 1 shadowless }

plane { z, 2

pigment { checker color rgb 0, color rgb 1 }

finish { ambient 1 diffuse 0 }

scale 0.5

hollow

}

sphere { 0, 1

pigment { color rgbt <1, 1, 1, 1> }

halo {

attenuating

spherical_mapping

linear

color_map {

[0 color rgbt <1, 0, 0, 1>]

4.8. ADVANCED TEXTURE OPTIONS 113

[1 color rgbt <1, 0, 0, 0>]

}

samples 10

}

hollow

}

Even though clouds normally are not red but white or gray, we use the red color to
make it more visible against the black/white checkerboard background.

The color of an attenuating halo is calculated from the totalaccumulated density after
a ray has marched through the complete particle field. This has to be kept in mind
when creating the color map. We want the areas of the cloud with a low density to have
a high translucency so we use a color of rgbt〈1,0,0,1〉 and we want the high density
areas to be opaque so we choose a color of rgbt〈1,0,0,0〉.

4.8.5.4.2 Scaling the Halo Container

The cloud we have created so far doesn’t look very realistic.It’s just a red, partially
translucent ball. In order to get a better result we use some of the methods we have
already learned in the sections about emitting halos above.We add some turbulence
to get a more realistic shape, we scale the halo to avoid the container object’s surface
to become visible and we decrease the translucency of the areas with a high particle
density.

Another idea is to scale the container object to get an ellipsoid shape that can be used
to model a cloud pretty good. This is done by thescale 〈1.5,0.75,1〉 command at
the end of the sphere. It scales both, the sphere and the halo inside.

sphere { 0, 1

pigment { color rgbt <1, 1, 1, 1> }

halo {

attenuating

spherical_mapping

linear

turbulence 1

color_map {

[0 color rgbt <1, 0, 0, 1>]

[1 color rgbt <1, 0, 0, -1>]

}

samples 10

scale 0.75

}

hollow

scale <1.5, 0.75, 1>

}

114 CHAPTER 4. BEGINNING TUTORIAL

Looking at the results ofHALO22.POV you’ll see that this looks more like a real cloud
(besides the color).

4.8.5.4.3 Adding Additional Halos

Another trick to get some more realism is to use multiple halos. If you look at cumulus
clouds e. g. you’ll notice that they often extend at the top while they are quite flat at
the bottom.

We want to model this appearance by adding two additional halos to our current con-
tainer object (see section 7.6.4.2 on page 304 for more details). This is done in the
following way:

sphere { 0, 1.5

pigment { color rgbt <1, 1, 1, 1> }

halo {

attenuating

spherical_mapping

linear

turbulence 1

color_map {

[0 color rgbt <1, 0, 0, 1>]

[1 color rgbt <1, 0, 0, -1>]

}

samples 10

scale <0.75, 0.5, 1>

translate <-0.4, 0, 0>

}

halo {

attenuating

spherical_mapping

linear

turbulence 1

color_map {

[0 color rgbt <1, 0, 0, 1>]

[1 color rgbt <1, 0, 0, -1>]

}

samples 10

scale <0.75, 0.5, 1>

translate <0.4, 0, 0>

}

halo {

attenuating

spherical_mapping

linear

turbulence 1

color_map {

[0 color rgbt <1, 0, 0, 1>]

4.8. ADVANCED TEXTURE OPTIONS 115

[1 color rgbt <1, 0, 0, -1>]

}

samples 10

scale 0.5

translate <0, 0.2, 0>

}

hollow

}

The three halos used differ only in their location, i. e. in the translation vector we have
used. The first two halos are used to form the base of the cloud while the last sits on top
of the others. The sphere has a different radius than the previous ones because more
space is needed for all three halos.

The result ofHALO23.POV somehwat looks like a cloud, even though it may need
some work.

4.8.5.5 The Dust Halo

The dust halo is a very complex halo type. It allows you to see the interaction of light
coming from light sources with the particles in the halo. Those particles do absorb
light like the attenuating halo. In addition they scatter light coming from light sources
passing through them. This makes beams of light and shadows cast by objects onto the
halo become visible.

4.8.5.5.1 Starting With an Object Lit by a Spotlight

We start with a box shaped object that is lit by a spotlight. Wedon’t use any halo at
this moment because we want to see if the object is completelylit by the light source
(HALO31.POV).

camera {

location <0, 0, -2.5>

look_at <0, 0, 0>

}

background { color rgb <0.2, 0.4, 0.8> }

light_source {

<2.5, 2.5, -2.5>

colour rgb <1, 1, 1>

spotlight

point_at <0, 0, 0>

radius 12

falloff 15

tightness 1

116 CHAPTER 4. BEGINNING TUTORIAL

}

difference {

box { -1, 1 }

box { <-1.1, -0.8, -0.8>, <1.1, 0.8, 0.8> }

box { <-0.8, -1.1, -0.8>, <0.8, 1.1, 0.8> }

box { <-0.8, -0.8, -1.1>, <0.8, 0.8, 1.1> }

pigment { color rgb <1, 0.2, 0.2> }

scale 0.5

rotate 45*y

rotate 45*x

}

As you see the whole object is lit by the light source. Now we can start to add some
dust.

4.8.5.5.2 Adding Some Dust

We use a box to contain the dust halo. Since we use a constant density function it
doesn’t matter what kind of density mapping is used. The density has the value speci-
fied by themax value keyword everywhere inside the halo (the default value is one).
The isotropic scattering is selected withdust type .

box { -1, 1

pigment { colour rgbt <1, 1, 1, 1> }

halo {

dust

dust_type 1

box_mapping

constant

colour_map {

[0 color rgbt <1, 1, 1, 1>]

[1 color rgbt <1, 1, 1, 0>]

}

samples 10

}

hollow

scale 5

}

The result ofHALO32.POV is too bright. The dust is too thick and we can only see
some parts of the object and no background.

4.8.5.5.3 Decreasing the Dust Density

The density inside the halo has the constant value one. This means that only the color
map entry at position one is used to determine the density andcolor of the dust.

4.8. ADVANCED TEXTURE OPTIONS 117

We use a transmittance value of 0.7 to get a much thinner dust.

box { -1, 1

pigment { colour rgbt <1, 1, 1, 1> }

halo {

dust

dust_type 1

box_mapping

constant

colour_map {

[0 color rgbt <1, 1, 1, 1.0>]

[1 color rgbt <1, 1, 1, 0.7>]

}

samples 10

}

hollow

scale 5

}

Beside the ugly aliasing artefacts the image looks much better. We can see the whole
object and even the background is slightly visible (HALO33.POV).

4.8.5.5.4 Making the Shadows Look Good

In order to reduce the aliasing artefacts we use three different techniques: jittering,
super-sampling and an increased overall sampling rate.

The jittering is used to add some randomness to the sampling points making the image
look more noisy. This helps because the regular aliasing artefacts are more annoying
than noise. A lowjitter value is a good choice.

The super-sampling tries to detect fine features by taking additional samples in ar-
eas of high intensity changes. The threshold at which super-sampling is used and the
maximum recursion level can be specified using theaa threshold andaa level

keywords.

The approach that always works is to increase the overall sampling rate. Since this is
also the slowest method you should always try to use the othermethods first. If they
don’t suffice you’ll have to increase the sampling rate.

We use the following halo to reduce the aliasing artefacts (HALO34.POV).

box { -1, 1

pigment { colour rgbt <1, 1, 1, 1> }

halo {

dust

dust_type 1

118 CHAPTER 4. BEGINNING TUTORIAL

box_mapping

constant

colour_map {

[0 color rgbt <1, 1, 1, 1.0>]

[1 color rgbt <1, 1, 1, 0.7>]

}

samples 50

aa_level 3

aa_threshold 0.2

jitter 0.1

}

hollow

scale 5

}

The image looks much better now. There are hardly any aliasing artefacts left.

The same parameters we have used are discussed in the sectionabout the atmosphere
feature (see 4.9.4 on page 131 for further explanations).

4.8.5.5.5 Adding Turbulence

The major difference between the halo’s dust and the atmosphere described in 4.9.4 on
page 131 is the ability to choose a non-uniform particle distribution for the dust. This
includes the fact that the halo is limited to a container object as well as the different
density mappings and functions.

Another interesting way of getting an irregular disribution is to add some turbulence
to the dust. This is done with theturbulence keyword followed by the amount of
turbulence to use, like the following example shows (HALO35.POV).

box { -1, 1

pigment { colour rgbt <1, 1, 1, 1> }

halo {

dust

dust_type 1

box_mapping

linear

turbulence 1

colour_map {

[0 color rgbt <1, 1, 1, 1.0>]

[1 color rgbt <1, 1, 1, 0.5>]

}

samples 50

aa_level 3

aa_threshold 0.2

jitter 0.1

}

4.8. ADVANCED TEXTURE OPTIONS 119

hollow

scale 5

}

The image we now get looks much more interesting due to the shifts in the particle
density.

You should note that we use a linear density function insteadof the previous constant
one. This is necessary because with a constant density function the density has the
same value everywhere. Adding turbulence would have no effect because wherever the
points are moved the density will have this same value. Only anon-constant density
distribution makes sense when turbulence is added.

The fact that the turbulence value is actually a vector can beused to create effects like
waterfalls by using a large turbulence value in on directiononly (e.g. turbulence
〈0.2,1,0.2〉).

4.8.5.5.6 Using a Coloured Dust

If you want to create a colored dust you can easily do this by using a non-white color in
the halo’s color map. In this case you’ll also have to set the filter channels in the color
map to non-zero values to specify the amount of light that will be filtered by the dust’s
color.

Use the following color map to get a partially filtering, red dust for example:

colour_map {

[0 color rgbft <1, 0, 0, 0.5, 1.0>]

[1 color rgbft <1, 0, 0, 0.5, 0.7>]

}

4.8.5.6 Halo Pitfalls

Due to the complexity of the halo feature and the few experiences people have made
so far there are a lot of things still to discover.

Some of the most common problems and pitfalls are described below in order to help
you to avoid the most common problems.

4.8.5.6.1 Where Halos are Allowed

As mentioned above a halo completly fills the interior of an object. Keeping this in
mind it is reasonable that the following example does not make sense.

120 CHAPTER 4. BEGINNING TUTORIAL

sphere { 0, 1

pigment {

checker

texture {

pigment { color Clear }

halo { ... }

}

texture {

pigment { color Red }

}

}

hollow

}

What’s wrong with this example? It’s simply that a halo is used to describe theinterior
of an object and that you cannot describe this interior by describing how the surface of
the object looks like. But that’s what was done in the exampleabove. Can you imagine
what the interior of the sphere will look like? Will it be filled completey with the halo?
Will there be areas filled by the halo and some filled by air? Howwill those areas look
like?

You won’t be able to tell the interior’s properties from looking at the surface. It’s just
not possible. This should always be kept in mind.

If the above example was meant to create a sphere filled with a halo and covered with
a checker board pattern that partially hid the halo you wouldhave used the following
syntax:

sphere { 0, 1

pigment {

checker

texture {

pigment { color Clear }

}

texture {

pigment { color Red }

}

}

halo { ... }

hollow

}

A halo is always applied to an object in the following way:

OBJECT {

texture {

4.8. ADVANCED TEXTURE OPTIONS 121

pigment { ... }

normal { ... }

finish { ... }

halo { ... }

}

hollow

}

There’s no halo allowed inside any pigment statement, colormap, pigment map, texture
map, material map, or whatever. You are not hindered to do this but you will not get
what you want.

You can use a halo with a layered textures as long as you make sure that the halos are
only attached to the lowest layer (this layer has to be partially transparent to see the
halo of course).

4.8.5.6.2 Overlapping Container Objects

POV-Ray is not able to handle overlapping container objectscorrectly. If you create
two overlapping spheres that contain a halo you won’t get correct results where the
spheres overlap. The halo effect is calculated independently for each sphere and the
results are added.

If you want to add different halos you have to put all halos inside a single container
object to make sure the halo is calculated correctly (see also 7.6.4.2 on page 304).

You should also note non-overlapping, stacked halo containers are handled correctly.
If you put a container object in front of another container object the halos are rendered
correctly.

4.8.5.6.3 Multiple Attenuating Halos

It is currently not possible to use mutliple attenuating halos with different color maps.
The color map of the last halo will be used for all halos in the container object.

4.8.5.6.4 Halos and Hollow Objects

In order to correctly render halo effects you have to make sure that all objects the
camera is inside are hollow. This is done by adding thehollow keyword.

For a detailed explanation see 7.5.1 on page 229.

4.8.5.6.5 Scaling a Halo Container

If you scale a halo container object you should keep in mind that it makes a great
difference where you place the scale keyword.

122 CHAPTER 4. BEGINNING TUTORIAL

Scaling the object before the halo statement will only scalethe container object not the
halo. This is useful if you want to avoid that the surface of the container object becomes
visible due to the use of turbulence. As you’ve learned in thesections above particles
may move out of the container object — where they are invisible — if turbulence
is added. This only works for spherical and box mapping because the density fields
described by the other mapping types don’t have finite dimensions.

If the scale keyword is used after the halo statement both, the halo and the container
object, are scaled. This is useful to scale the halo to your needs.

The halo keeps its appearance regardless of the transformations applied to the container
object (after the halo), i.e. the halo’s translucency, color and turbulence characteristics
will not change.

4.8.5.6.6 Choosing a Sampling Rate

Normally you’ll start with a low sampling rate and you’ll only increase it if any aliasing
artefacts turn up (and don’t vanish by using super-samplingand jittering).

The halo’s appearance is independent from the sampling rateas long as there are
enough samples to get a good estimate of what the halo really looks like. This means
that one or two samples are hardly ever enough to determine the halo’s appearance. As
you increase the number of samples the halo will quickly approach its real appearance.

To put it in a nutshell, the halo will not change its appearance with the sample rate as
long as you have a sufficient number of samples and no aliasingartefacts occur.

4.8.5.6.7 Using Turbulence

As noted in one of the above sections turbulence will have no effect if the constant
density function is used (keywordconstant). It doesn’t matter how much or where
you move a point if the density is constant and thus does not depend on the points
location. You’ll get the same density value for all location.

Whenever you add turbulence to a halo do not use the constant density function.

4.9 Using Atmospheric Effects

POV-Ray offers a variety of atmospheric effects, i. e. features that affect the back-
ground of the scene or the air by which everything is surrounded.

It is easy to assign a simple color or a complex color pattern to a virtual sky sphere.
You can create anything from a cloud free, blue summer sky to astormy, heavy clouded
sky. Even starfields can easily be created.

4.9. USING ATMOSPHERIC EFFECTS 123

You can use different kinds of fog to create foggy scenes. Multiple fog layers of differ-
ent colors can add an eerie touch to your scene.

A much more realistic effect can be created by using an atmosphere, a constant fog that
interacts with the light coming from light sources. Beams oflight become visible and
objects will cast shadows into the fog.

Last but not least you can add a rainbow to your scene.

4.9.1 The Background

The background feature is used to assign a color to all rays that don’t hit any object.
This is done in the following way.

camera {

location <0, 0, -10>

look_at <0, 0, 0>

}

background { color rgb <0.2, 0.2, 0.3> }

sphere { 0, 1

pigment { color rgb <0.8, 0.5, 0.2> }

}

The background color will be visible if a sky sphere is used and if some translucency
remains after all sky sphere pigment layers are processed.

4.9.2 The Sky Sphere

The sky sphere can be used to easily create a cloud covered sky, a nightly star sky or
whatever sky you have in mind.

In the following examples we’ll start with a very simple sky sphere that will get more
and more complex as we add new features to it.

4.9.2.1 Creating a Sky with a Color Gradient

Beside the single color sky sphere that is covered with the background feature the
simplest sky sphere is a color gradient.

You may have noticed that the color of the sky varies with the angle to the earth’s
surface normal. If you look straight up the sky normally has amuch deeper blue than
it has at the horizon.

We want to model this effect using the sky sphere as shown in the scene below
(SKYSPH1.POV).

124 CHAPTER 4. BEGINNING TUTORIAL

#include "colors.inc"

camera {

location <0, 1, -4>

look_at <0, 2, 0>

angle 82

}

light_source { <10, 10, -10> White }

sphere { 2*y, 1

pigment { color rgb <1, 1, 1> }

finish { ambient 0.2 diffuse 0 reflection 0.6 }

}

sky_sphere {

pigment {

gradient y

color_map {

[0 color Red]

[1 color Blue]

}

scale 2

translate -1

}

}

The interesting part is the sky sphere statement. It contains a pigment that describe
the look of the sky sphere. We want to create a color gradient along the viewing angle
measured against the earth’s surface normal. Since the ray direction vector is used to
calculate the pigment colors we have to use they-gradient.

The scale and translate transformation are used to map the points derived from the
direction vector to the right range. Without those transformations the pattern would be
repeated twice on the sky sphere. Thescale statement is used to avoid the repetition
and thetranslate -1 statement moves the color at index zero to the bottom of the
sky sphere (that’s the point of the sky sphere you’ll see if you look straight down).

After this transformation the color entry at position 0 willbe at the bottom of the sky
sphere, i. e. below us, and the color at position 1 will be at the top, i. e. above us.

The colors for all other positions are interpolated betweenthose two colors as you can
see in the resulting image.

If you want to start one of the colors at a specific angle you’llfirst have to convert the
angle to a color map index. This is done by using the formula

color mapindex=
1−cos(angle)

2
(4.1)

4.9. USING ATMOSPHERIC EFFECTS 125

where the angle is measured against the negated earth’s surface normal. This is the
surface normal pointing towards the center of the earth. An angle of 0 degrees describes
the point below us while an angle of 180 degrees represents the zenith.

In POV-Ray you first have to convert the degree value to radianvalues as it is shown in
the following example.

sky_sphere {

pigment {

gradient y

color_map {

[(1-cos(radians(30)))/2 color Red]

[(1-cos(radians(120)))/2 color Blue]

}

scale 2

translate -1

}

}

This scene uses a color gradient that starts with a red color at 30 degrees and blends
into the blue color at 120 degrees. Below 30 degrees everything is red while above 120
degrees all is blue.

4.9.2.2 Adding the Sun

In the following example we will create a sky with a red sun surrounded by a red color
halo that blends into the dark blue night sky. We’ll do this using only the sky sphere
feature.

The sky sphere we use is shown below. A ground plane is also added for greater realism
(SKYSPH2.POV).

sky_sphere {

pigment {

gradient y

color_map {

[0.000 0.002 color rgb <1.0, 0.2, 0.0>

color rgb <1.0, 0.2, 0.0>]

[0.002 0.200 color rgb <0.8, 0.1, 0.0>

color rgb <0.2, 0.2, 0.3>]

}

scale 2

translate -1

}

rotate -135*x

}

126 CHAPTER 4. BEGINNING TUTORIAL

plane { y, 0

pigment { color Green }

finish { ambient .3 diffuse .7 }

}

The gradient pattern and the transformation inside the pigment are the same as in the
example in the previous section.

The color map consists of three colors. A bright, slightly yellowish red that is used for
the sun, a darker red for the halo and a dark blue for the night sky. The sun’s color
covers only a very small portion of the sky sphere because we don’t want the sun to
become too big. The color is used at the color map values 0.000and 0.002 to get a
sharp contrast at value 0.002 (we don’t want the sun to blend into the sky). The darker
red color used for the halo blends into the dark blue sky colorfrom value 0.002 to
0.200. All values above 0.200 will reveal the dark blue sky.

Therotate -135*x statement is used to rotate the sun and the complete sky sphere
to its final position. Without this rotation the sun would be at 0 degrees, i.e. right below
us.

Looking at the resulting image you’ll see what impressive effects you can achieve with
the sky sphere.

4.9.2.3 Adding Some Clouds

To further improve our image we want to add some clouds by adding a second pigment.
This new pigment uses the bozo pattern to create some nice clouds. Since it lays on top
of the other pigment it needs some translucent colors in the color map (look at entries
0.5 to 1.0).

sky_sphere {

pigment {

gradient y

color_map {

[0.000 0.002 color rgb <1.0, 0.2, 0.0>

color rgb <1.0, 0.2, 0.0>]

[0.002 0.200 color rgb <0.8, 0.1, 0.0>

color rgb <0.2, 0.2, 0.3>]

}

scale 2

translate -1

}

pigment {

bozo

turbulence 0.65

octaves 6

4.9. USING ATMOSPHERIC EFFECTS 127

omega 0.7

lambda 2

color_map {

[0.0 0.1 color rgb <0.85, 0.85, 0.85>

color rgb <0.75, 0.75, 0.75>]

[0.1 0.5 color rgb <0.75, 0.75, 0.75>

color rgbt <1, 1, 1, 1>]

[0.5 1.0 color rgbt <1, 1, 1, 1>

color rgbt <1, 1, 1, 1>]

}

scale <0.2, 0.5, 0.2>

}

rotate -135*x

}

The sky sphere has one drawback as you might notice when looking at the final image
(SKYSPH3.POV). The sun doesn’t emit any light and the clouds will not cast any
shadows. If you want to have clouds that cast shadows you’ll have to use a real, large
sphere with an appropriate texture and a light source somewhere outside the sphere.

4.9.3 The Fog

You can use the fog feature to add fog of two different types toyour scene: constant fog
and ground fog. The constant fog has a constant density everywhere while the ground
fog’s density decreases as you move upwards.

The usage of both fog types will be described in the next sections in detail.

4.9.3.1 A Constant Fog

The simplest fog type is the constant fog that has a constant density in all locations. It
is specified by adistance keyword which actually describes the fog’s density and a
fog color.

The distance value determines the distance at which 36.8% ofthe background are still
visible (for a more detailed explanation of how the fog is calculated read the reference
section 7.7.3 on page 351).

The fog color can be used to create anything from a pure white to a red, bloodish fog.
You can also use a black fog to simulate the effect of a limitedrange of vision.

The following example will show you how to add fog to a simple scene (FOG1.POV).

#include "colors.inc"

camera {

128 CHAPTER 4. BEGINNING TUTORIAL

location <0, 20, -100>

}

background { colour SkyBlue }

plane { y, -10

pigment {

checker colour Yellow colour Green

scale 20

}

}

sphere { <0, 25, 0>, 40

pigment { Red }

finish { phong 1.0 phong_size 20 }

}

sphere { <-100, 150, 200>, 20

pigment { Green }

finish { phong 1.0 phong_size 20 }

}

sphere { <100, 25, 100>, 30

pigment { Blue }

finish { phong 1.0 phong_size 20 }

}

light_source { <100, 120, 40> colour White}

fog {

distance 150

colour rgb<0.3, 0.5, 0.2>

}

According to their distance the spheres in this scene more orless vanish in the greenish
fog we used, as does the checkerboard plane.

4.9.3.2 Setting a Minimum Translucency

If you want to make sure that the background does not completely vanish in the fog
you can set the transmittance channel of the fog’s color to the amount of background
you always want to be visible.

Using as transmittance value of 0.2 as in

fog {

distance 150

colour rgbt<0.3, 0.5, 0.2, 0.2>

4.9. USING ATMOSPHERIC EFFECTS 129

}

the fog’s translucency never drops below 20% as you can see inthe resulting image
(FOG2.POV).

4.9.3.3 Creating a Filtering Fog

The greenish fog we have used so far doesn’t filter the light passing through it. All it
does is to diminish the light’s intensity. We can change thisby using a non-zero filter
channel in the fog’s color (FOG3.POV).

fog {

distance 150

colour rgbf<0.3, 0.5, 0.2, 1.0>

}

The filter value determines the amount of light that is filtered by the fog. In our example
100% of the light passing through the fog will be filtered by the fog. If we had used a
value of 0.7 only 70% of the light would have been filtered. Theremaining 30% would
have passed unfiltered.

You’ll notice that the intensity of the objects in the fog is not only diminished due to the
fog’s color but that the colors are actually influenced by thefog. The red and especially
the blue sphere got a green hue.

4.9.3.4 Adding Some Turbulence to the Fog

In order to make our somewhat boring fog a little bit more interesting we can add some
turbulence, making it look like it had a non-constant density (FOG4.POV).

fog {

distance 150

colour rgbf<0.3, 0.5, 0.2, 1.0>

turbulence 0.2

turb_depth 0.3

}

Thetubulence keyword is used to specify the amount of turbulence used while the
turb depth value is used to move the point at which the turbulence value is calcu-
lated along the viewing ray. Values near zero move the point to the viewer while values
near one move it to the intersection point (the default valueis 0.5). This parameter can
be used to avoid noise that may appear in the fog due to the turbulence (this normally
happens at very far away intersecion points, especially if no intersection occurs, i. e.

130 CHAPTER 4. BEGINNING TUTORIAL

the background is hit). If this happens just lower theturb depth value until the
noise vanishes.

You should keep in mind that the actual density of the fog doesnot change. Only the
distance-based attenuation value of the fog is modified by the turbulence value at a
point along the viewing ray.

4.9.3.5 Using Ground Fog

The much more interesting and flexible fog type is the ground fog, which is selected
with the fog type statement. It’s appearance is described with thefog offset

andfog alt keywords. Thefog offset specifies the height, i. e.y value, below
which the fog has a constant density of one. Thefog alt keyword determines how
fast the density of the fog will approach zero as one moves along they axis. At a height
of f og o f fset+ f og alt the fog will have a density of 25%.

The following example (FOG5.POV) uses a ground fog which has a constant density
belowy= 25 (the center of the red sphere) and quickly falls off for increasing altitudes.

fog {

distance 150

colour rgbf<0.3, 0.5, 0.2, 1.0>

fog_type 2

fog_offset 25

fog_alt 1

}

4.9.3.6 Using Multiple Layers of Fog

It is possible to use several layers of fog by using more than one fog statement in your
scene file. This is quite useful if you want to get nice effectsusing turbulent ground
fogs. You could add up several, differently colored fogs to create an eerie scene for
example.

Just try the following example (FOG6.POV).

fog {

distance 150

colour rgb<0.3, 0.5, 0.2>

fog_type 2

fog_offset 25

fog_alt 1

turbulence 0.1

turb_depth 0.2

}

4.9. USING ATMOSPHERIC EFFECTS 131

fog {

distance 150

colour rgb<0.5, 0.1, 0.1>

fog_type 2

fog_offset 15

fog_alt 4

turbulence 0.2

turb_depth 0.2

}

fog {

distance 150

colour rgb<0.1, 0.1, 0.6>

fog_type 2

fog_offset 10

fog_alt 2

}

You can combinate constant density fogs, ground fogs, filtering fogs, non-filtering fogs,
fogs with a translucency threshold, etc.

4.9.3.7 Fog and Hollow Objects

Whenever you use the fog feature and the camera is inside a non-hollow object you
won’t get any fog effects. For a detailed explanation why this happens see 7.5.1 on
page 229.

In order to avoid this problem you have to make all those objects hollow by either
making sure the camera is outside these objects (using theinverse keyword) or by
adding thehollow to them (which is much easier).

4.9.4 The Atmosphere

The atmosphere feature can be used to model the interaction of light with particles in
the air. Beams of light will become visible and objects will cast shadowsinto the fog
or dust that’s filling the air.

The atmosphere model used in POV-Ray assumes a constant particle density every-
where except solid objects. If you want to create cloud like fogs or smoke you’ll have
to use the halo texturing feature described in section 4.8.5on page 104.

4.9.4.1 Starting With an Empty Room

We want to create a simple scene to explain how the atmospherefeature works and how
you’ll get good results.

132 CHAPTER 4. BEGINNING TUTORIAL

Imagine a simple room with a window. Light falls through the window and is scattered
by the dust particles in the air. You’ll see beams of light coming from the window and
shining on the floor.

We want to model this scene step by step. The following examples start with the
room, the window and a spotlight somewhere outside the room.Currently there’s no
atmosphere to be able to verify if the lighting is correct (ATMOS1.POV).

camera {

location <-10, 8, -19>

look_at <0, 5, 0>

angle 82

}

background { color rgb <0.2, 0.4, 0.8> }

light_source { <0, 19, 0> color rgb 0.5 atmosphere off }

light_source {

<40, 25, 0> color rgb <1, 1, 1>

spotlight

point_at <0, 5, 0>

radius 20

falloff 20

atmospheric_attenuation on

}

union {

difference {

box { <-21, -1, -21>, <21, 21, 21> }

box { <-20, 0, -20>, <20, 20, 20> }

box { <19.9, 5, -3>, <21.1, 15, 3> }

}

box { <20, 5, -0.25>, <21, 15, 0.25> }

box { <20, 9.775, -3>, <21, 10.25, 3> }

pigment { color red 1 green 1 blue 1 }

finish { ambient 0.2 diffuse 0.5 }

}

The point light source is used to illuminate the room from inside without any interaction
with the atmosphere. This is done by addingatmosphere off . We don’t have to
care about this light when we add the atmosphere later.

The spotlight is used with theatmospheric attenuation keyword. This means
that light coming from the spotlight will be diminished by the atmosphere.

The union object is used to model the room and the window. Since we use the dif-
ference between two boxes to model the room (the first two boxes in the difference
statement) there is no need for setting the union hollow. If we are inside this room we
actually will be outside the object (see also 4.9.4.5.5 on page 137).

4.9. USING ATMOSPHERIC EFFECTS 133

4.9.4.2 Adding Dust to the Room

The next step is to add an atmosphere to the room. This is done by the following few
lines (ATMOS2.POV).

atmosphere {

type 1

samples 10

distance 40

scattering 0.2

}

Thetype keyword selects the type of atmospheric scattering we want to use. In this
case we use the isotropic scattering that equally scatters light in all directions (see 7.7.1
on page 347 for more details about the different scattering types).

Thesamples keyword determines the number of samples used in accumulating the
atmospheric effect. For every ray samples are taken along the ray to determine wether
a sample is lit by a light source or not. If the sample is lit theamount of light scattered
into the direction of the viewer is determined and added to the total intensity.

You can always start with an arbitrary number of samples. If the results do not fit your
ideas you can increase the sampling rate to get better results. The problem of choosing
a good sampling rate is the trade-off between a satisfying image and a fast rendering.
A high sampling rate will almost always work but the rendering will also take a very
long time. That’s something to experiment with.

Thedistance keyword specifies the density of the atmosphere. It works in the same
way as the distance parameter of the fog feature.

Last but not least will thescattering value determine the amount of light that is
scattered by the particles (the remaining light is absorbed). As you’ll later see this
parameter is very useful in adjusting the overall brightness of the atmosphere.

Looking at the image created from the above scene you’ll notice some very ugly anti-
aliasing artefacts known as mach-bands. They are the resultof a low sampling rate.

How this effect can be avoid is described in the following section.

4.9.4.3 Choosing a Good Sampling Rate

As you’ve seen a too low sampling rate can cause some ugly results. There are some
ways of reducing or even avoiding those problems.

The brute force approach is to increase the sampling rate until the artefacts vanish and
you get a satisfying image. Though this will always work it isa bad idea because it
is very time consuming. A better approach is to use jitteringand anti-aliasing first. If
both features don’t help you’ll have to increase the sampling rate.

134 CHAPTER 4. BEGINNING TUTORIAL

Jittering moves each sample point by a small, random amount along the sampling di-
rection. This helps to reduce regular features resulting from aliasing. There is (hardly)
nothing more annyoing to the human visual system than the regular features resulting
from a low sampling rate. It’s much better to add some extra noise to the image by
jittering the sample positions. The human eye is much more forgiving to that.

Use thejitter keyword followed by the amount of jittering you want to use. Good
jittering values are up to 0.5, higher values result in too much noise.

You should be aware that jittering can not fix the artefacts introduced by a too low
sampling rate. It can only make them less visible.

An additional and better way of reducing aliasing artefactsis to use (adaptive) super-
sampling. This method casts additional samples where it is likely that they are needed.
If the intensity between two adjactent samples differs too much additional samples
are taken inbetween. This step is done recursively until a specified recursion level is
reached or the sample get close to each other.

The aa level and aa threshold keywords are used to control the super-
sampling. Theaa level keyword determines the maximum recursion level while
theaa threshold keyword specifies the maximum allowed difference between two
sample before the super-sampling is done.

After all this theory we get back to our sample scene and add the appropriate keywords
to use both jittering and supersamling (ATMOS3.POV).

atmosphere {

type 1

samples 50

distance 40

scattering 0.2

aa_level 4

aa_threshold 0.1

jitter 0.2

}

A very low threshold value was choosen to super-sample even between adjactent points
with a very similar intensity. The maximum recursion level of 4 will lead to a maximum
of fifteen super-samples.

If you are looking at the results that you get after adding jittering and super-sampling
you won’t be satisfied. The only way of reducing the still visible artefacts is to increase
the sampling rate by choosing a higher number of samples.

Doing this you’ll get a good result showing (almost) no artefacts. Btw. the amount of
dust floating around in this room may be a little bit exaggerated but it’s just an example.
And examples tend to be exaggerated.

4.9. USING ATMOSPHERIC EFFECTS 135

4.9.4.4 Using a Coloured Atmosphere

You can assign a color to the atmosphere that gives you more control over the atmo-
sphere’s appearance. First of all the color is used to filter all light passing through it,
wether it comes from light sources, relfected and refractedrays, or the background.
The amount by which the passing light is filtered by the atmosphere’s color is deter-
mined by the color’s filter value. A value of 0 means that the light is not influenced
by the atmosphere’s color while a value of 1 means that all light will be filtered by the
color.

If you want to create a reddish atmosphere for example, you can add the following line
to the atmosphere statement used in the above example.

color rgbf <1, 0, 0, 0.25>

Just usingrgb 〈1,0,0〉 does not work because the color’s filter value will be zero and
thus no light will be filtered by the color, i. e. no light will be multiplied with the color’s
RGB components.

The filter value of 0.25 means that 25% of the light passing through the atmosphere
will be filtered by the red color and 75% will pass unfiltered.

The transmittance channel of the atmosphere’s color is usedto specify a minimum
translucency. By default the transmittance channel is zeroand thus there is no such
minimum translucency. Using a positive value lets you determine the amount of back-
ground light that will always pass through the atmosphere, regardless of its thickness
set by thedistance keyword.

If you use e.g. a color ofrgbt 〈0,0,0,0.3〉 with our room example you can make the
blue background become visible. Until now it was hidden by the atmosphere.

4.9.4.5 Atmosphere Tips

It is very difficult to get satisfying results when using the atmosphere feature. Some of
the more common problems will be discussed in the next sections to help you to solve
them (see also the FAQ section about the atmosphere in G.3 on page 396).

4.9.4.5.1 Choosing the Distance and Scattering Parameters

The first difficult step is to choose a good distance and scattering value. You need to be
able to control the visibility of the objects in the scene andthe atmospheric effects.

The best approach is to choose the distance value first. This value determines the
visibility of the objects in the scene regardless of atmospheric light scattering. It works
in the same way as the distance value of the fog feature.

136 CHAPTER 4. BEGINNING TUTORIAL

Since fog is very similar to the unlit atmosphere you can use afog instead of an at-
mosphere to quickly choose a working distance value. If you do this with room scene
we used earlier you would use the following fog statement instead of the atmosphere
(ATMOS4.POV).

fog {

distance 40

color rgb <0, 0, 0>

}

The black color is used to simulate the attenuation you’ll get in those parts of the
atmosphere scene lying in shadow.

If you want to use a colored atmosphere you’ll have to use the same color for the fog
as you want to use for the atmosphere, including the filter andtransmittance channel
values (see 4.9.4.4 on the page before and 7.7.1 on page 347 for an explanation of the
atmosphere’s color).

If you (roughly) want to simulate the appearance of those parts lit by a light source you
can use the color of the atmosphere inside the fog statement instead.

After you are satisfied with the distance value you’ll have tochoose a scattering value.
This value lets you fit the atmosphere’s intensity to your needs. Starting with a value of
one you have to increase the value if the atmosphere effects are hardly visible. If you
don’t see anything in the lit parts of the atmosphere you’ll have to decrease the value.

You should be aware that you may have to use very small or very large values to get
the desired results.

4.9.4.5.2 Atmosphere and Light Sources

The best results are generated with spotlights and cylindrical light sources. They create
nice beams of light and are fast to render because the atmospheric sampling takes only
place inside the light cone of the spotlight or light cylinder of the cylindrical light.

If you want to add a light source that does not interact with the atmosphere you can use
theatmosphere keyword inside the light source statement (see 7.5.6.8 on page 272).
Just addatmosphere off.

By default the light coming from any light source will not be diminished by the at-
mosphere. Thus the highlights in your scene will normally betoo bright. This can be
changed withatmospheric attenuation on.

4.9.4.5.3 Atmosphere Scattering Types

The different scattering types listed in 7.7.1 on page 347 can be used to model different
types of particles. This is something for you to experiment with.

4.9. USING ATMOSPHERIC EFFECTS 137

The Rayleigh scattering is used for small particles like dust and smoke while the Mie
scattering is used for fog.

If you ever saw the lighthouse scene in the movieCasperyou’ll know what effect the
scattering type has. In this scene the beam of light coming from the lighthouse becomes
visible while it points nearly towards the viewer. As it starts to point away from the
viewer it vanishes. This behaviour is typical for minisculewater droplets as modeled
by the Mie scattering.

4.9.4.5.4 Increasing the Image Resolution

You have to be aware that you may have to increase the atmosphere sampling rate if
you increase the resolution of the image. Otherwise some aliasing artefacts that were
no visible at the lower resolution may become visible.

4.9.4.5.5 Using Hollow Objects and Atmosphere

Whenever you use the atmosphere feature you have to make surethat all objects that
ought to be filled with atmosphere are set to hollow using thehollow keyword.

Even though this is not obvious this holds for infinite and patch objects like quadrics,
quartics, triangles, polygons, etc. Whenever you add one ofthose objects you should
add the hollow keyword as long as you are not absolutely sure you don’t need it. You
also have to make sure that all objects the camera is inside are set to be hollow.

Whenever you get unexpected results you should check for solid objects and set them
to be hollow.

4.9.5 The Rainbow

The rainbow feature can be used to create rainbows and maybe other more strange
effects. The rainbow is a fog like effect that is restricted to a cone-like volume.

4.9.5.1 Starting With a Simple Rainbow

The rainbow is specified with a lot of parameters: the angle under which it is visible,
the width of the color band, the direction of the incoming light, the fog-like distance
based particle density and last not least the color map to be used.

The size and shape of the rainbow are determined by theangle andwidth key-
words. Thedirection keyword is used to set the direction of the incoming light,
thus setting the rainbow’s position. The rainbow is visiblewhen the angle between
the direction vector and the incident light direction is larger thanangle−width/2 and
smaller thanangle+width/2.

138 CHAPTER 4. BEGINNING TUTORIAL

The incoming light is the virtual light source that is responsible for the rainbow. There
needn’t be a real light source to create the rainbow effect.

The rainbow is a fog-like effect, i.e. the rainbow’s color ismixed with the background
color based on the distance to the intersection point. If youchoose small distance
values the rainbow will be visible on objects, not just in thebackground. You can
avoid this by using a very large distance value.

The color map is the crucial part of the rainbow since it contains all the colors that
normally can be seen in a rainbow. The color of the innermost color band is taken from
the color map entry 0 while the outermost band is take from entry 1. You should note
that due to the limited color range any monitor can display itis impossible to create a
real rainbow. There are just some colors that you cannot display.

The filter channel of the rainbow’s color map is used in the same way as with fogs. It
determines how much of the light passing through the rainbowis filtered by the color.

The following example shows a simple scene with a ground plane, three spheres and a
somewhat exaggerated rainbow (RAINBOW1.POV).

#include "colors.inc"

camera {

location <0, 20, -100>

look_at <0, 25, 0>

angle 82

}

background { color SkyBlue }

plane { y, -10 pigment { colour Green } }

light_source {<100, 120, 40> colour White}

// declare rainbow’s colours

#declare r_violet1 = colour rgbf<1.0, 0.5, 1.0, 1.0>

#declare r_violet2 = colour rgbf<1.0, 0.5, 1.0, 0.8>

#declare r_indigo = colour rgbf<0.5, 0.5, 1.0, 0.8>

#declare r_blue = colour rgbf<0.2, 0.2, 1.0, 0.8>

#declare r_cyan = colour rgbf<0.2, 1.0, 1.0, 0.8>

#declare r_green = colour rgbf<0.2, 1.0, 0.2, 0.8>

#declare r_yellow = colour rgbf<1.0, 1.0, 0.2, 0.8>

#declare r_orange = colour rgbf<1.0, 0.5, 0.2, 0.8>

#declare r_red1 = colour rgbf<1.0, 0.2, 0.2, 0.8>

#declare r_red2 = colour rgbf<1.0, 0.2, 0.2, 1.0>

// create the rainbow

rainbow {

4.9. USING ATMOSPHERIC EFFECTS 139

angle 42.5

width 5

distance 1.0e7

direction <-0.2, -0.2, 1>

jitter 0.01

colour_map {

[0.000 colour r_violet1]

[0.100 colour r_violet2]

[0.214 colour r_indigo]

[0.328 colour r_blue]

[0.442 colour r_cyan]

[0.556 colour r_green]

[0.670 colour r_yellow]

[0.784 colour r_orange]

[0.900 colour r_red1]

}

}

Some irregularity is added to the color bands using thejitter keyword.

The rainbow in our sample is much too bright. You’ll never seea rainbow like this in
reality. You can decrease the rainbow’s colors by decreasing the RGB values in the
color map.

4.9.5.2 Increasing the Rainbow’s Translucency

The result we have so far looks much too bright. Just reducingthe rainbow’s color
helps but it’s much better to increase the translucency of the rainbow because it is more
realistic if the background is visible through the rainbow.

We can use the transmittance channel of the colors in the color map to specify a
minimum translucency, just like we did with the fog. To get realistic results we
have to use very large transmittance values as you can see in the following example
(RAINBOW2.POV).

rainbow {

angle 42.5

width 5

distance 1.0e7

direction <-0.2, -0.2, 1>

jitter 0.01

colour_map {

[0.000 colour r_violet1 transmit 0.98]

[0.100 colour r_violet2 transmit 0.96]

[0.214 colour r_indigo transmit 0.94]

[0.328 colour r_blue transmit 0.92]

[0.442 colour r_cyan transmit 0.90]

140 CHAPTER 4. BEGINNING TUTORIAL

[0.556 colour r_green transmit 0.92]

[0.670 colour r_yellow transmit 0.94]

[0.784 colour r_orange transmit 0.96]

[0.900 colour r_red1 transmit 0.98]

}

}

The transmittance values increase at the outer bands of the rainbow to make it softly
blend into the background.

The resulting image looks much more realistic than our first rainbow.

4.9.5.3 Using a Rainbow Arc

Currently our rainbow has a circular shape, even though mostof it is hidden below the
ground plane. You can easily create a rainbow arc by using thearc angle keyword
with an angle below 360 degrees.

If you usearc angle 120 for example you’ll get a rainbow arc that abruptly van-
ishes at the arc’s ends. This does not look good. To avoid thisthefalloff angle

keyword can be used to specify a region where the arc smoothlyblends into the back-
ground.

As explained in the rainbow’s reference section (see 7.7.5 on page 353) the arc extends
from−arc angle/2 to arc angle/2 while the blending takes place from−arc angle/2
to − f allo f f angle/2 and f allo f f angle/2 to arc angle/2. This is the reason why
thefalloff angle has to be smaller or equal to thearc angle.

In the following examples we use an 120 degrees arc with a 45 degree falloff region on
both sides of the arc (RAINBOW3.POV).

rainbow {

angle 42.5

width 5

arc_angle 120

falloff_angle 30

distance 1.0e7

direction <-0.2, -0.2, 1>

jitter 0.01

colour_map {

[0.000 colour r_violet1 transmit 0.98]

[0.100 colour r_violet2 transmit 0.96]

[0.214 colour r_indigo transmit 0.94]

[0.328 colour r_blue transmit 0.92]

[0.442 colour r_cyan transmit 0.90]

[0.556 colour r_green transmit 0.92]

[0.670 colour r_yellow transmit 0.94]

[0.784 colour r_orange transmit 0.96]

4.9. USING ATMOSPHERIC EFFECTS 141

[0.900 colour r_red1 transmit 0.98]

}

}

The arc angles are measured against the rainbows up direction which can be specified
using theup keyword. By default the up direction is they-axis.

We finally have a realistic looking rainbow arc.

142 CHAPTER 4. BEGINNING TUTORIAL

Part III

Reference Guide

143

Chapter 5

POV-Ray Reference

The reference section describes all command line options and INI file switches, the
scene description language and all other features that are part of POV-Ray. It is sup-
posed to be used as a reference for looking up things. It does not contain detailed
explanations on how scenes are written or how POV-Ray is used. It just explains all
features, their syntax, applications, limits, drawbacks,etc.

145

146 CHAPTER 5. POV-RAY REFERENCE

Chapter 6

POV-Ray Options

POV-Ray was originally created as a command-line program for operating systems
without graphical interfaces, dialog boxes and pull-down menus. Most versions of
POV-Ray still use command-line switches to tell it what to do. This documentation
assumes you are using the command-line version. If you are using Macintosh, MS-
Windows or other GUI versions, there will be dialog boxes or menus which do the
same thing. There is system-specific documentation for eachsystem describing the
specific commands.

6.1 Setting POV-Ray Options

There are two distinct ways of setting POV-Ray options: command line switches and
INI file keywords. Both are explained in detail in the following sections.

6.1.1 Command Line Switches

Command line switches consist of a+ (plus) or – (minus) sign, followed by one or
more alphabetic characters and possibly a numeric value. Here is a typical command
line with switches.

POVRAY +ISIMPLE.POV +V +W80+H60

POVRAY is the name of the program and it is followed by several switches. Each switch
begins with a plus or minus sign. The+I switch with the filename tells POV-Ray what
scene file it should use as input and+V tells the program to output its status to the text
screen as it’s working. The+W and+H switches set the width and height of the image
in pixels. This image will be 80 pixels wide by 60 pixels high.

147

148 CHAPTER 6. POV-RAY OPTIONS

In switches which toggle a feature, the plus turns it on and minus turns it off. For
example+P turns on thepause for keypress when finishedoption while–P turns it off.
Other switches are used to specify values and do not toggle a feature. Either plus or
minus may be used in that instance. For example+W320 sets the width to 320 pixels.
You could also use–W320 and get the same results.

Switches may be specified in upper or lower case. They are readleft to right but in
general may be specified in any order. If you specify a switch more than once, the
previous value is generally overwritten with the last specification. The only exception
is the+L switch for setting library paths. Up to ten unique paths may be specified.

Almost all +/– switches have an equivalent option which can be used in an INIfile
which is described in the next section. A detailed description of each switch is given in
the option reference section.

6.1.2 Using INI Files

Because it is difficult to set more than a few options on a command line, you have the
ability to put multiple options in one or more text files. These initialization filesor INI
files have .INI as their default extension. Previous versions of POV-Ray called them
default filesor DEF files. You may still use existing DEF files with this version of
POV-Ray.

The majority of options you use will be stored in INI files. Thecommand line switches
are recommended for options which you will turn off or on frequently as you perform
test renderings of a scene you are developing. The filePOVRAY.INI is automatically
read if present. You may specify additional INI files on the command-line by simply
typing the file name on the command line. For example:

POVRAY MYOPTS.INI

If no extension is given, then. INI is assumed. POV-Ray knows this is not a switch
because it is not preceded by a plus or minus. In fact a common error among new users
is that they forget to put the+I switch before the input file name. Without the switch,
POV-Ray thinks that the scene fileSIMPLE.POV is an INI file. Don’t forget! If no plus
or minus precedes a command line switch, it is assumed to be anINI file name.

You may have multiple INI files on the command line along with switches. For exam-
ple:

POVRAY MYOPTS +V OTHER

This reads options fromMYOPTS.INI, then sets the+V switch, then reads options from
OTHER. INI.

An INI file is a plain ASCII text file with options of the form. . .

6.1. SETTING POV-RAY OPTIONS 149

Option_Keyword=VALUE ; Text after semicolon is a comment

For example the INI equivalent of the switch+ISIMPLE.POV is . . .

Input_File_Name=simple.pov

Options are read top to bottom in the file but in general may be specified in any order.
If you specify an option more than once, the previous values are generally overwritten
with the last specification. The only exception is theLibrary Path=PATH options. Up
to ten unique paths may be specified.

Almost all INI-style options have equivalent+/– switches. The option reference section
gives a detailed description of all POV-Ray options. It includes both the INI-style
settings and the+/– switches.

The INI keywords are not case sensitive. Only one INI option is permitted per line of
text. You may also include switches in your INI file if they areeasier for you. You may
have multiple switches per line but you should not mix switches and INI options on the
same line. You may nest INI files by simply putting the file nameon a line by itself
with no equals sign after it. Nesting may occur up to ten levels deep.

For example:

; This is a sample INI file. This entire line is a comment.

; Blank lines are permitted.

Input_File_Name=simple.pov ; This sets the input file name

+W80 +H60 ; Traditional +/- switches are permitted too

MOREOPT ; Read MOREOPT.INI and continue with next line

+V ; Another switch

; That’s all folks!

INI files may have labeled sections so that more than one set ofoptions may be stored
in a single file. Each section begins with a label in [] brackets. For example:

; RES.INI

; This sample INI file is used to set resolution.

+W120 +H100 ; This section has no label.

; Select it with "RES"

[Low]

150 CHAPTER 6. POV-RAY OPTIONS

+W80 +H60 ; This section has a label.

; Select it with "RES[Low]"

[Med]

+W320 +H200 ; This section has a label.

; Select it with "RES[Med]"

[High]

+W640 +H480 ; Labels are not case sensitive.

; "RES[high]" works

[Really High]

+W800 +H600 ; Labels may contain blanks

When you specify the INI file you should follow it with the section label in brackets.
For example. . .

POVRAY RES[Med] +IMYFILE.POV

POV-Ray readsRES.INI and skips all options until it finds the labelMed. It processes
options after that label until it finds another label and thenit skips. If no label is
specified on the command line then only the unlabeled area at the top of the file is read.
If a label is specified, the unlabeled area is ignored.

6.1.3 Using the POVINI Environment Variable

The environment variable POVINI is used to specify the location and name of a default
INI file that is read every time POV-Ray is executed. If POVINIis not specified a
default INI file may be read depending on the platform used. Ifthe specified file does
not exist a warning message is printed.

To set the environment variable under MS-Dos you might put the following line in your
AUTOEXEC.BAT file . . .

set POVINI=C:\POVRAY3\DEFAULT.INI

On most operating systems the sequence of reading options isas follows:

1. Read options from default INI file specified by the POVINI environ-
ment variable or platform specific INI file.

2. Read switches from command line (this includes reading any speci-
fied INI/DEF files).

The POVRAYOPT environment variable supported by previous POV-Ray versions is
no longer available.

6.2. OPTIONS REFERENCE 151

6.2 Options Reference

As explained in the previous section, options may be specified by switches or INI-style
options. Almost all INI-style options have equivalent+/– switches and most switches
have equivalent INI-style option. The following sections give a detailed description of
each POV-Ray option. It includes both the INI-style settings and the+/– switches.

The notation and terminology used is described in the tablesbelow.

Keyword=bool turnKeyword on if bool equalstrue, yes, on or 1 and turn
it off if it is any other value.

Keyword=true do this option iftrue, yes, on or 1 is specified.
Keyword=false do this option iffalse, no, off or 0 is specified.
Keyword=file any valid file name. Note: some options prohibit the use of

any of the abovetrue or falsevalues as a file name. They
are noted in later sections.

n any integer such as in +W320
n.n any float such as in Clock=3.45
0.n any float< 1.0 even if it has no leading 0
s any string of text
x or y any single character
path any directory name, drive optional, no final path separator (”\” or

”/”, depending on the operating system)

Unless otherwise specifically noted, you may assume that either a plus or minus sign
before a switch will produce the same results.

6.2.1 Animation Options

POV-Ray 3.0 greatly improved its animation capability withthe addition of an internal
animation loop, automatic output file name numbering and theability to shell out to
the operating system to external utilities which can assemble individual frames into
an animation. The internal animation loop is simple yet flexible. You may still use
external programs or batch files to create animations without the internal loop as you
may have done in POV-Ray 2.

6.2.1.1 External Animation Loop

Clock=n.n Setsclockfloat identifier to n.n
+Kn.n Same asClock=n.n

The Clock=n.n option or the+Kn.n switch may be used to pass a single float value to
the program for basic animation. The value is stored in the float identifierclock. If an

152 CHAPTER 6. POV-RAY OPTIONS

object had a rotate〈0,clock,0〉 attached then you could rotate the object by different
amounts over different frames by setting+K10.0,+K20.0 . . . etc. on successive ren-
derings. It is up to the user to repeatedly invoke POV-Ray with a differentClock value
and a differentOutput File Name for each frame.

6.2.1.2 Internal Animation Loop

Initial Frame=n Sets initial frame number to n
Final Frame=n Sets final frame number
Initial Clock=n.n Sets initial clock value
Final Clock=n.n Sets final clock value
+KFIn Same asInitial Frame=n
+KFFn Same asFinal Frame=n
+KIn.n Same asInitial Clock=n.n
+KFn.n Same asFinal Clock=n.n

The internal animation loop new to POV-Ray 3.0 relieves the user of the task of gener-
ating complicated sets of batch files to invoke POV-Ray multiple times with different
settings. While the multitude of options may look intimidating, the clever set of de-
fault values means that you will probably only need to specify theFinal Frame=n or
the +KFFn option to specify the number of frames. All other values mayremain at
their defaults.

Any Final Frame setting other than−1 will trigger POV-Ray’s internal animation
loop. For exampleFinal Frame=10 or+KFF10 causes POV-Ray to render your scene
10 times. If you specifiedOutput File Name=FILE.TGA then each frame would be
output asFILE01.TGA, FILE02.TGA, FILE03.TGA etc. The number of zero-padded
digits in the file name depends upon the final frame number. Forexample+KFF100
would generateFILE001.TGA through FILE100.TGA. The frame number may en-
croach upon the file name. On MS-Dos with an eight character limit, MYSCENE.POV

would render toMYSCE001.TGA throughMYSCE100.TGA.

The defaultInitial Frame=1 will probably never have to be changed. You would only
change it if you were assembling a long animation sequence inpieces. One scene might
run from frame 1 to 50 and the next from 51 to 100. TheInitial Frame=n or +KFIn
option is for this purpose.

Note that if you wish to render a subset of frames such as 30 through 40 out of a 1
to 100 animation, you should not changeFrame Initial or Frame Final. Instead you
should use the subset commands described in section 6.2.1.3on the facing page.

Unlike some animation packages, the action in POV-Ray animated scenes does not
depend upon the integer frame numbers. Rather you should design your scenes based
upon the float identifierclock. By default, the clock value is 0.0 for the initial frame
and 1.0 for the final frame. All other frames are interpolatedbetween these values.
For example if your object is supposed to rotate one full turnover the course of the

6.2. OPTIONS REFERENCE 153

animation, you could specifyrotate 360*clock*y. Then as clock runs from 0.0
to 1.0, the object rotates about they-axis from 0 to 360 degrees.

The major advantage of this system is that you can render a 10 frame animation or a
100 frame or 500 frame or 329 frame animation yet you still getone full 360 degree
rotation. Test renders of a few frames work exactly like finalrenders of many frames.

In effect you define the motion over a continuous float valued parameter (the clock)
and you take discrete samples at some fixed intervals (the frames). If you take a movie
or video tape of a real scene it works the same way. An object’sactual motion depends
only on time. It does not depend on the frame rate of your camera.

Many users have already created scenes for POV-Ray 2 that expect clock values over a
range other than the default 0.0 to 1.0. For this reason we provide theInitial Clock=n.n
or +KIn.n andFinal Clock=n.n or+KFn.n options. For example to run the clock from
25.0 to 75.0 you would specifyInitial Clock=25.0 andFinal Clock=75.0. Then the
clock would be set to 25.0 for the initial frame and 75.0 for the final frame. Inbetween
frames would have clock values interpolated from 25.0 through 75.0 proportionally.

Users who are accustomed to using frame numbers rather than clock values could spec-
ify Initial Clock=1.0 andFinal Clock=10.0 andFrame Final=10 for a 10 frame ani-
mation.

For new scenes, we recommend you do not change theInitial Clock or Final Clock
from their default 0.0 to 1.0 values. If you want the clock to vary over a different range
than the default 0.0 to 1.0, we recommend you handle this inside your scene file as
follows . . .

#declare Start = 25.0

#declare End = 75.0

#declare My_Clock = Start+(End-Start)*clock

Then useMy Clock in the scene description. This keeps the critical values 25.0 and
75.0 in your.POV file.

Note that more details concerning the inner workings of the animation loop are in the
section on shell-out operating system commands in section 6.2.4 on page 168.

6.2.1.3 Subsets of Animation Frames

Subset Start Frame=n Set subset starting frame to n
Subset Start Frame=0.n Set subset starting frame to n percent
Subset End Frame=n Set subset ending frame to n
Subset End Frame=0.n Set subset ending frame to n percent
+SFn or +SF0.n Same asSubset Start Frame
+EFn or +EF0.n Same asSubset End Frame

154 CHAPTER 6. POV-RAY OPTIONS

When creating a long animation, it may be handy to render onlya portion of the ani-
mation to see what it looks like. Suppose you have 100 frames but only want to render
frames 30 through 40. If you setInitial Frame=30 andFinal Frame=40 then the clock
would vary from 0.0 to 1.0 from frames 30 through 40 rather than 0.30 through 0.40
as it should. Therefore you should leaveInitial Frame=1 andFinal Frame=100 and
useSubset Start Frame=30 andSubset End Frame=40 to selectively render part
of the scene. POV-Ray will then properly compute the clock values.

Usually you will specify the subset using the actual integerframe numbers how-
ever an alternate form of the subset commands takes a float value in the range
0.0≤ n.nnn≤ 1.0 which is interpreted as a fraction of the whole animation. For ex-
ample,Subset Start Frame=0.333 andSubset End Frame=0.667 would render the
middle 1/3rd of a sequence regardless of the number of frames.

6.2.1.4 Cyclic Animation

Cyclic Animation=bool Turn cyclic animation on/off
+KC Turn cyclic animation on
–KC Turn cyclic animation off

Many computer animation sequences are designed to be run in acontinuous loop. Sup-
pose you have an object that rotates exactly 360 degrees overthe course of your ani-
mation and you didrotate 360*clock*y to do so. Both the first and last frames
would be identical. Upon playback there would be a brief one frame jerkiness. To elim-
inate this problem you need to adjust the clock so that the last frame does not match
the first. For example a ten frame cyclic animation should notuse clock 0.0 to 1.0. It
should run from 0.0 to 0.9 in 0.1 increments. However if you change to 20 frames it
should run from 0.0 to 0.95 in 0.05 increments. This complicates things because you
would have to change the final clock value every time you changedFinal Frame. Set-
ting Cyclic Animation=on or using+KC will cause POV-Ray to automatically adjust
the final clock value for cyclic animation regardless of how many total frames. The
default value for this setting is off.

6.2.1.5 Field Rendering

Field Render=bool Turn field rendering on/off
Odd Field=bool Set odd field flag
+UF Turn field rendering on
–UF Turn field rendering off
+UO Set odd field flag on
–UO Set odd field flag off

Field rendering is sometimes used for animations when the animation is being output
for television. TVs only display alternate scan lines on each vertical refresh. When

6.2. OPTIONS REFERENCE 155

each frame is being displayed the fields are interlaced to give the impression of a higher
resolution image. The even scan lines make up the even field, and are drawn first (i. e.
scan lines 0, 2, 4, etc.), followed by the odd field, made up of the odd numbered scan
lines are drawn afterwards. If objects in an animation are moving quickly, their position
can change noticably from one field to the next. As a result, itmay be desirable in these
cases to have POV-Ray render alternate fields at the actual field rate (which is twice the
frame rate), rather than rendering full frames at the normalframe rate. This would save
a great deal of time compared to rendering the entire animation at twice the frame rate,
and then only using half of each frame.

By default, field rendering is not used. SettingField Render=on or using+UF will
cause alternate frames in an animation to be only the even or odd fields of an animation.
By default, the first frame is the even field, followed by the odd field. You can have
POV-Ray render the odd field first by specifyingOdd Field=on, or by using the+UO
switch.

6.2.2 Output Options

6.2.2.1 General Output Options

6.2.2.1.1 Height and Width of Output

Height=n Set screen height to n
Width=n Sets screen width to n pixels
+Hn Same asHeight=n (when n> 8)
+Wn Same asWidth=n

These switches set the height and width of the image in pixels. This specifies the image
size for file output. The preview display, if on, will generally attempt to pick a video
mode to accommodate this size but the display settings do notin any way affect the
resulting file output.

6.2.2.1.2 Partial Output Options

Start Column=n Set first column to n
Start Column=0.n Set first column to n percent of width
+SCn or +SC0.n Same asStart Column

Start Row=n Set first row to n pixels
Start Row=0.n Set first row to n percent of height
+SRn or +Sn Same asStart Row=n
+SR0.n or+S0.n Same asStart Row=0.n

156 CHAPTER 6. POV-RAY OPTIONS

End Column=n Set last column to n pixels
End Column=0.n Set last column to n percent of width
+ECn or +EC0.n Same asEnd Column

End Row=n Set last row to n pixels
End Row=0.n Set last row to n percent of height
+ERn or +En Same asEnd Row=n
+ER0.n or+E0.n Same asEnd Row=0.n

When doing test rendering it is often convenient to define a small, rectangular sub-
section of the whole screen so you can quickly check out one area of the image. The
Start Row, End Row, Start Column andEnd Column options allow you to define
the subset area to be rendered. The default values are the full size of the image from
(1,1) which is the upper left to (w,h) on the lower right wherew and h are theWidth=n
andHeight=n values you have set.

Note if the number specified is greater than 1 then it is interpreted as an absolute
row or column number in pixels. If it is a decimal value between 0.0 and 1.0 then
it is interpreted as a percent of the total width or height of the image. For example:
Start Row=0.75 andStart Column=0.75 starts on a row 75% down from the top at
a column 75% from the left. Thus it renders only the lower-right 25% of the image
regardless of the specified width and height.

The +SR, +ER, +SC and+EC switches work in the same way as the corresponding
INI-style settings for both absolute settings or percentages. Early versions of POV-Ray
allowed only start and end rows to be specified with+Sn and+En so they are still
supported in addition to+SR and+ER.

6.2.2.1.3 Interrupting Options

Test Abort=bool Turn test for user abort on/off
+X Turn test abort on
–X Turn test abort off

Test Abort Count=n Set to test for abort every n pixels
+Xn Set to test for abort every n pixels on
–Xn Set to test for abort off (in future test every n pixels)

On some operating systems once you start a rendering you mustlet it finish. The
Test Abort=on option or+X switch causes POV-Ray to test the keyboard for keypress.
If you have pressed a key, it will generate a controlled user abort. Files will be flushed
and closed but only data through the last full row of pixels issaved. POV-Ray exits
with an error code 2 (normally POV-Ray returns 0 for a successful run or 1 for a fatal
error).

6.2. OPTIONS REFERENCE 157

When this option is on, the keyboard is polled on every line while parsing the scene file
and on every pixel while rendering. Because polling the keyboard can slow down a ren-
dering, theTest Abort Count=n option or+Xn switch causes the test to be performed
only every n pixels rendered or scene lines parsed.

6.2.2.1.4 Resuming Options

Continue Trace=bool Sets continued trace on/off
+C Sets continued trace on
–C Sets continued trace off

Create Ini=FILE Generate an INI file namedFILE

Create Ini=true GenerateFILE.INI where file is the scene name.
Create Ini=false Turn off generation of previously setFILE.INI

+GIFILE Same as CreateIni=FILE

If you abort a render while it’s in progress or if you used theEnd Row option to end
the render prematurely, you can useContinue Trace=on or+C option to continue the
render later at the point where you left off. This option reads in the previously gener-
ated output file, displays the partial image rendered so far,then proceeds with the ray-
tracing. This option cannot be used if file output is disabledwith Output to file=off or
–F.

The Continue Trace option may not work if theStart Row option has been set to
anything but the top of the file, depending on the output format being used.

POV-Ray tries to figure out where to resume an interrupted trace by reading any previ-
ously generated data in the specified output file. All file formats contain the image size,
so this will override any image size settings specified. Somefile formats (namely TGA
and PNG) also store information about where the file started (i. e. +SCn and+SRn
options), alpha output+UA, and bit-depth+FNn, which will override these settings.
It is up to the user to make sure that all other options are set the same as the original
render.

TheCreate Ini option or+GI switch provides an easy way to create an INI file with all
of the rendering options, so you can re-run files with the sameoptions, or ensure you
have all the same options when resuming. This option createsan INI file with every
option set at the value used for that rendering. This includes default values which you
have not specified. For example if you run POV-Ray with. . .

POVRAY +ISIMPLE.POV MYOPTS +GIRERUN. INI MOREOPTS

POV-Ray will create a file calledRERUN.INI with all of the options used to generate
this scene. The file is not written until all options have beenprocessed. This means
that in the above example, the file will include options from both MYOPTS.INI and
MOREOPTS.INI despite the fact that the+GI switch is specified between them. You
may now re-run the scene with. . .

158 CHAPTER 6. POV-RAY OPTIONS

POVRAY RERUN

or resume an interrupted trace with

POVRAY RERUN +C

If you add other switches with theRERUN.INI reference, they will be included in future
re-runs because the file is re-written every time you use it.

The Create Ini option is also useful for documenting how a scene was rendered. If
you renderWAYCOOL.POV with Create Ini=on then it will create a fileWAYCOOL.INI

that you could distribute along with your scene file so other users can exactly re-create
your image.

6.2.2.2 Display Output Options

6.2.2.2.1 Display Hardware Settings

Display=bool Turns graphic display on/off
+D Turns graphic display on
–D Turns graphic display off

Video Mode=x Set video mode tox; does not affect on/off
+Dx Set display on; Set mode tox
–Dx Set display off; but for future use modex

Palette=y Set display palette toy; d oes not affect on/off
+Dxy Set display on; Set modex; Set palettey
–Dxy Set display off; use modex, palettey in future
Display Gamma=n.n Sets the display gamma to n.n

The Display=on or+D switch will turn on the graphics display of the image while it
is being rendered. Even on some non-graphics systems, POV-Ray may display an 80
by 24 characterASCII-Art version of your image. Where available, the display may
be full, 24-bit true color. SettingDisplay=off or using the–D switch will turn off the
graphics display which is the default.

TheVideo Mode=x option sets the display mode or hardware type chosen wherex is
a single digit or letter that is machine dependent (see section 3.2.5 on page 27 for a de-
scription of the modes supported by the MS-Dos version). Generally Video Mode=0
means the default or an auto-detected setting should be used. When using switches,
this character immediately follows the switch. For examplethe+D0 switch will turn
on the graphics display in the default mode.

6.2. OPTIONS REFERENCE 159

The Palette=y option selects the palette to be used. Typically the single character
parametery is a digit which selects one of several fixed palettes or a letter suchG for
gray scale,H for 15-bit or 16-bit high color orT for 24-bit true color. When using
switches, this character is the 2nd character after the switch. For example the+D0T
switch will turn on the graphics display in the default mode with a true color palette.

The Display Gamma=n.n setting is new with POV-Ray 3.0, and is not available as a
command-line switch. TheDisplay Gamma setting overcomes the problem of images
(whether ray-traced or not) having different brightness when being displayed on differ-
ent monitors, different video cards, and under different operating systems. Note that the
Display Gamma is a setting based on your computer’s display hardware, and should
be set correctly once and not changed. TheDisplay Gamma INI setting works in
conjunction with the newassumed gamma global setting to ensure that POV scenes
and the images they create look the same on all systems. See section 7.8.3 on page 357
which describes theassumed gamma global setting and describes gamma more thor-
oughly.

While theDisplay Gamma can be different for each system, there are a few general
rules that can be used for settingDisplay Gamma if you don’t know it exactly. If
the Display Gamma keyword does not appear in the INI file, POV-Ray assumes that
the display gamma is 2.2. This is because most PC monitors have a gamma value
in the range 1.6 to 2.6 (newer models seem to have a lower gammavalue). MacOS
has the ability to do gamma correction inside the system software (based on a user
setting in the gamma control panel). If the gamma control panel is turned off, or is
not available, the default Macintosh system gamma is 1.8. Some high-end PC graphics
cards can do hardware gamma correction and should use the current DisplayGamma
setting, usually 1.0. A gamma test image is also available tohelp users to set their
Display Gamma accurately.

For scene files that do not have anassumed gamma global setting theDis-
play Gamma will not have any affect on the preview output of POV-Ray or for most
output file formats. However, theDisplay Gamma value is used when creating PNG
format output files, and also when rendering the POV-Ray example files (because they
have anassumed gamma), so it should still be correctly set for your system to ensure
proper results.

6.2.2.2.2 Display Related Settings

Pause When Done=bool Sets pause when done on/off
+P Sets pause when done on
–P Sets pause when done off

Verbose=bool Set verbose messages on/off
+V Set verbose messages on
–V Set verbose messages off

160 CHAPTER 6. POV-RAY OPTIONS

Draw Vistas=bool Turn draw vistas on/off
+UD Turn draw vistas on
–UD Turn draw vistas off

On some systems, when the image is complete, the graphics display is cleared and
POV-Ray switches back into text mode to print the final statistics and to exit. Normally
when the graphics display is on, you want to look at the image awhile before continu-
ing. UsingPause When Done=on or+P causes POV-Ray to pause in graphics mode
until you to press a key to continue. The default is not to pause (–P).

When the graphics display is not used, it is often desirable to monitor progress of
the rendering. UsingVerbose=on or+V turns on verbose reporting of your rendering
progress. This reports the number of the line currently being rendered, the elapsed time
for the current frame and other information. On some systems, this textual information
can conflict with the graphics display. You may need to turn this off when the display
is on. The default setting is off (–V).

The optionDraw Vistas=on or+UD was originally a debugging help for POV-Ray’s
vista buffer feature but it was such fun we decided to keep it.Vista buffering is a spatial
sub-division method that projects the 2-D extents of bounding boxes onto the viewing
window. POV-Ray tests the 2-Dx, y pixel location against these rectangular areas to
determine quickly which objects, if any, the viewing ray will hit. This option shows
you the 2-D rectangles used. The default setting is off (–UD) because the drawing of
the rectangles can take considerable time on complex scenesand it serves no critical
purpose. See section 6.2.6.3 on page 177 for more details.

6.2.2.2.3 Mosaic Preview

Preview Start Size=n Set mosaic preview start size to n
+SPn Same asPreview Start Size=n

Preview End Size=n Set mosaic preview end size to n
+EPn Same asPreview End Size=n

Typically, while you are developing a scene, you will do manylow resolution test
renders to see if objects are placed properly. Often this lowresolution version doesn’t
give you sufficient detail and you have to render the scene again at a higher resolution.
A feature calledmosaic previewsolves this problem by automatically rendering your
image in several passes.

The early passes paint a rough overview of the entire image using large blocks of
pixels that look like mosaic tiles. The image is then refined using higher resolutions
on subsequent passes. This display method very quickly displays the entire image at a
low resolution, letting you look for any major problems withthe scene. As it refines
the image, you can concentrate on more details, like shadowsand textures. You don’t
have to wait for a full resolution render to find problems, since you can interrupt the

6.2. OPTIONS REFERENCE 161

rendering early and fix the scene, or if things look good, you can let it continue and
render the scene at high quality and resolution.

To use this feature you should first select awidth andheightvalue that is the highest
resolution you will need. Mosaic preview is enabled by specifying how big the mosaic
blocks will be on the first pass usingPreview Start Size=n or +SPn. The value n
should be a number greater than zero that is a power of two (1, 2, 4, 8, 16, 32, etc.) If
it is not a power of two, the nearest power of two less than n is substituted. This sets
the size of the squares, measured in pixels. A value of 16 willdraw every 16th pixel as
a 16×16 pixel square on the first pass. Subsequent passes will use half the previous
value (such as 8×8, 4×4 and so on.)

The process continues until it reaches 1×1 pixels or until it reaches the size you set
with Preview End Size=n or +EPn. Again the value n should be a number greater
than zero that is a power of two and less than or equal toPreview Start Size. If it
is not a power of two, the nearest power of two less than n is substituted. The default
ending value is 1. If you setPreview End Size to a value greater than 1 the mosaic
passes will end before reaching 1×1, but POV-Ray will always finish with a 1×1. For
example, if you want a single 8×8 mosaic pass before rendering the final image, set
Preview Start Size=8 andPreview End Size=8.

No file output is performed until the final 1×1 pass is reached. Although the prelimi-
nary passes render only as many pixels as needed, the 1×1 pass re-renders every pixel
so that anti-aliasing and file output streams work properly.This makes the scene take
up to 25% longer than the regular 1×1 pass to render, so it is suggested that mosaic
preview not be used for final rendering. Also, the lack of file output until the final pass
means that renderings which are interrupted before the 1×1 pass can not be resumed
without starting over from the beginning.

Future versions of POV-Ray will include some system of temporary files or buffers
which will eliminate these inefficiencies and limitations.Mosaic preview is still a very
useful feature for test renderings.

6.2.2.3 File Output Options

Output to File=bool Sets file output on/off
+F Sets file output on (use default type)
–F Sets file output off

By default, POV-Ray writes an image file to disk. When you are developing a scene
and doing test renders, the graphic preview may be sufficient. To save time and disk
activity you may turn file output off withOutput to File=off or –F.

6.2.2.3.1 Output File Type

Output File Type=x Sets file output format tox

162 CHAPTER 6. POV-RAY OPTIONS

+Fxn Sets file output on; sets formatx, depthn
–Fxn Sets file output off; but in future use formatx, depth

n

Output Alpha=bool Sets alpha output on/off
+UA Sets alpha output on
–UA Sets alpha output off

Bits Per Color=n Sets file output bits/color ton

The default type of image file depends on which platform you are using. MS-Dos and
most others default to 24-bit uncompressed Targa. See your platform-specific docu-
mentation to see what your default file type is. You may selectone of several different
file types usingOutput File Type=x or +Fx where x is one of the following. . .

+FC Compressed Targa-24 format (RLE, run length encoded)
+FN New PNG (portable network graphics) format
+FP Unix PPM format
+FS System-specific such as Mac Pict or Windows BMP
+FT Uncompressed Targa-24 format

Note that the obsolete+FD dump format and+FR raw format have been dropped from
POV-Ray 3.0 because they were rarely used and no longer necessary. PPM, PNG, and
system specific formats have been added. PPM format images are uncompressed, and
have a simple text header, which makes it a widely portable image format. PNG is
a new image format designed not only to replace GIF, but to improve on its short-
comings. PNG offers the highest compression available without loss for high quality
applications, such as ray-tracing. The system specific format depends on the platform
used and is covered in the appropriate system specififc documentation.

Most of these formats output 24 bits per pixel with 8 bits for each of red, green and blue
data. PNG allows you to optionally specify the output bit depth from 5 to 16 bits for
each of the red, green, and blue colors, giving from 15 to 48 bits of color information
per pixel. The default output depth for all formats is 8 bits/color (16 million possible
colors), but this may be changed for PNG format files by setting Bits Per Color=n or
by specifying+FNn, where n is the desired bit depth.

Specifying a smaller color depth like 5 bits/color (32768 colors) may be enough for
people with 8- or 16-bit (256 or 65536 color) displays, and will improve compression
of the PNG file. Higher bit depths like 10 or 12 may be useful forvideo or pub-
lishing applications, and 16 bits/color is good for grayscale height field output (See
section 7.5.2.5 on page 236 for details on height fields).

Targa format also allows 8 bits of alpha transparency data tobe output, while PNG
format allows 5 to 16 bits of alpha transparency data, depending on the color bit depth
as specified above. You may turn this option on withOutput Alpha=on or+UA. The

6.2. OPTIONS REFERENCE 163

default is off or–UA. See section 7.6.1.5.4 on page 285 for further details on trans-
parency.

In addition to support for variable bit-depths, alpha channel, and grayscale formats,
PNG files also store theDisplay Gamma value so the image displays properly on
all systems (see section 6.2.2.2.1 on page 158). Thehf gray 16 global setting, as
described in section 7.8.4 on page 359 will also affect the type of data written to the
output file.

6.2.2.3.2 Output File Name

Output File Name=FILE Sets output file to file
+OFILE Same asOutput File Name=FILE

The default output filename is created from the scene name andneed not be speci-
fied. The scene name is the input name with all drive, path, andextension information
stripped. For example if the input file name isC:\POVRAY3\MYSTUFF\MYFILE.POV

the scene name isMYFILE. The proper extension is appended to the scene name based
on the file type. For exampleMYFILE.TGA or MYFILE.PNG might be used.

You may override the default output name usingOutput File Name=FILE or +OFILE.
For example:

Input File Name=MYINPUT.POV

Output File Name=MYOUTPUT.TGA

If an output file name of ”–” is specified (a single minus sign),then the image will
be written to standard output, usually the screen. The output can then be piped into
another program or to a GUI if desired.

6.2.2.3.3 Output File Buffer

Buffer Output=bool Turn output buffering on/off
+B Turn output buffering on
–B Turn output buffering off

Buffer Size=n Set output buffer size ton kilobytes. Ifn is zero, no
buffering occurs. Ifn is smaller than the default, the
system default is used.

+Bn Turn buffer on, set sizen
–Bn Turn buffer off, but for future set sizen

The Buffer Output andBuffer Size options and the+B switch allows you to assign
large buffers to the output file. This reduces the amount of time spent writing to the

164 CHAPTER 6. POV-RAY OPTIONS

disk. If this parameter is not specified, then as each row of pixels is finished, the line is
written to the file and the file is flushed. On most systems, thisoperation ensures that
the file is written to the disk so that in the event of a system crash or other catastrophic
event, at least a part of the picture has been stored properlyand retrievable on disk. The
default is not to use any buffer.

6.2.2.4 CPU Utilization Histogram

The CPU utilization histogram is a way of finding out where POV-Ray is spending its
rendering time, as well as an interesting way of generating heightfields. The histogram
splits up the screen into a rectangular grid of blocks. As POV-Ray renders the image,
it calculates the amount of time it spends rendering each pixel and then adds this time
to the total rendering time for each grid block. When the rendering is complete, the
histogram is a file which represents how much time was spent computing the pixels in
each grid block.

Not all versions of POV-Ray allow the creation of histograms. The histogram output is
dependent on the file type and the system that POV-Ray is beingrun on.

6.2.2.4.1 File Type

Histogram Type=x Set histogram type tox (turn off if type isX)
+HTx Same asHistogram Type=x

The histogram output file type is nearly the same as that used for the image output file
types in 6.2.2.3.1 on page 161. The available histogram file types are as follows.

+HTC Comma separated values (CSV) often used in spreadsheets
+HTN New PNG (portable network graphics) format grayscale
+HTP Unix PPM format
+HTS System-specific such as Mac Pict or Windows BMP
+HTT Uncompressed Targa-24 format (TGA)
+HTX No histogram file output is generated

Note that+HTC does not generate a compressed Targa-24 format output file but rather
a text file with a comma-separated list of the time spent in each grid block, in left-
to-right and top-to bottom order. The units of time output tothe CSV file are system
dependent. See the system specific documentation for further details on the time units
in CSV files.

The Targa and PPM format files are in the POV heightfield format(see 7.5.2.5 on
page 236), so the histogram information is stored in both thered and green parts of
the image, which makes it unsuitable for viewing. When used as a height field, lower
values indicate less time spent calculating the pixels in that block, while higher indicate
more time spent in that block.

6.2. OPTIONS REFERENCE 165

PNG format images are stored as grayscale images and are useful for both viewing the
histogram data as well as for use as a heightfield. In PNG files,the darker (lower) areas
indicate less time spent in that grid block, while the brighter (higher) areas indicate
more time spent in that grid block.

6.2.2.4.2 File Name

Histogram Name=FILE Set histogram name toFILE

+HNFILE Same asHistogram Name=FILE

The histogram file name is the name of the file in which to write the histogram data. If
the file name is not specified it will default toHISTGRAM.EXT, where ext is based on
the file type specified previously. Note that if the histogramname is specified the file
name extension should match the file type.

6.2.2.4.3 Grid Size

Histogram Grid Size=x.y Set histogram grid tox by y
+HSx.y Same asHistogram Grid Size=x.y

The histogram grid size gives the number of times the image issplit up in both the
horizontal and vertical directions. For example

POVRAY +ISAMPLE +W640+H480
+HTN +HS160.120+HNHISTOGRM.PNG

will split the image into 160×120 grid blocks, each of size 4×4 pixels, and output
a PNG file, suitable for viewing or for use as a heightfield. Smaller numbers for the
grid size mean more pixels are put into the same grid block. With CSV output, the
number of values output is the same as the number of grid blocks specified. For the
other formats the image size is identical to the rendered image rather than the specified
grid size, to allow easy comparison between the histogram and the rendered image. If
the histogram grid size is not specified, it will default to the same size as the image, so
there will be one grid block per pixel.

Note that on systems that do task-switching or multi-tasking the histogram may not
exactly represent the amount of time POV-Ray spent in a givengrid block since the
histogram is based on real time rather than CPU time. As a result, time may be spent
for operating system overhead or on other tasks running at the same time. This will
cause the histogram to have speckling, noise or large spikes. This can be reduced by
decreasing the grid size so that more pixels are averaged into a given grid block.

166 CHAPTER 6. POV-RAY OPTIONS

6.2.3 Scene Parsing Options

POV-Ray reads in your scene file and processes it to create an internal model of your
scene. The process is calledparsing. As your file is parsed other files may be read
along the way. This section covers options concerning what to parse, where to find it
and what version specific assumptions it should make while parsing it.

6.2.3.1 Input File Name

Input File Name=FILE Sets input file name toFILE

+IFILE Same asInput File Name=FILE

You will probably always set this option but if you do not the default input filename is
OBJECT.POV. If you do not have an extension then.POV is assumed. On case-sensitive
operating systems both.POV and.POV are tried. A full path specification may be used
(on MS-Dos systems+IC:\POVRAY3\MYSTUFF\MYFILE.POV is allowed for exam-
ple). In addition to specifying the input file name this also establishes thescene name.

The scene name is the input name with drive, path and extension stripped. In the above
example the scene name isMYFILE. This name is used to create a default output file
name and it is referenced other places.

If you use ”–” as the input file name the input will be read from standard input. Thus
you can pipe a scene created by a program to POV-Ray and renderit without having a
scene file.

Under MS-Dos you can try this feature by typing.

type ANYSCENE.POV — POVRAY +I–

6.2.3.2 Library Paths

Library Path=PATH Add path to list of library paths
+LPATH Same asLibrary Path=PATH

POV-Ray looks for files in the current directory. If it does not find a file it needs it looks
in various other library directories which you specify. POV-Ray does not search your
operating system path. It only searches the current directory and directories which you
specify with this option. For example the standard include files are usually kept in one
special directory. You tell POV-Ray to look there with. . .

Library_Path=c:\povray3\include

You must not specify any final path seperators (”\” or ”/”) at the end.

Multiple uses of this option switch do not override previoussettings. Up to ten unique
paths may be specified. If you specify the exact same path twice it is only counts once.
The current directory will be searched first followed by the indicated library directories
in the order in which you specified them.

6.2. OPTIONS REFERENCE 167

6.2.3.3 Language Version

Version=n.n Set initial language compatibility to versionn.n
+MVn.n Same asVersion=n.n

While many language changes have been made for POV-Ray 3.0, all of version 2.0
syntax and most of version 1.0 syntax still works. Whenever possible we try to maintain
backwards compatibility. One feature introduced in 2.0 that was incompatible with any
1.0 scene files is the parsing of float expressions. SettingVersion=1.0 or using+MV1.0
turns off expression parsing as well as many warning messages so that nearly all 1.0
files will still work. The changes between 2.0 and 3.0 are not as extensive. Setting
Version=2.0 is only necessary to eliminate some warning messages. Naturally the
default setting for this option isVersion=3.0.

The #version language directive can also be used to change modes several times
within scene files. The above options affect only the initialsetting. See 7.2.4 on
page 208 for more details about the language version directive.

6.2.3.4 Removing User Bounding

Remove Bounds=bool Turn unnecessary bounds removal on/off
+UR Turn unnecessary bounds removal on
–UR Turn unnecessary bounds removal off

Split Unions=bool Turn split bounded unions on/off
+SU Turn split bounded unions on
–SU Turn split bounded unions off

Early versions of POV-Ray had no system of automatic bounding or spatial sub-
division to speed up ray-object intersection tests. Users had to manually create bound-
ing boxes to speed up the rendering. POV-Ray 3.0 has more sophisticated automatic
bounding than any previous version. In many cases the manualbounding on older
scenes is slower than the new automatic systems. Therefore POV-Ray removes manual
bounding when it knows it will help. In rare instances you maywant to keep man-
ual bounding. Some older scenes incorrectly used bounding when they should have
used clipping. If POV-Ray removes the bounds in these scenesthe image will not
look right. To turn off the automatic removal of manual bounds you should specify
Remove Bounds=off or use–UR. The default isRemove Bounds=on.

One area where the jury is still out is the splitting of manually bounded unions. Un-
bounded unions are always split into their component parts so that automatic bounding
works better. Most users do not bound unions because they know that doing so is usu-
ally slower. If you do manually bound a union we presume you really want it bound.
For safety sake we do not presume to remove such bounds. If youwant to remove man-
ual bounds from unions you should specifySplit Unions=on or use+SU. The default
is Split Unions=off.

168 CHAPTER 6. POV-RAY OPTIONS

6.2.4 Shell-out to Operating System

Pre Scene Command=s Set command before entire scene
Pre Frame Command=s Set command before each frame
Post Scene Command=s Set command after entire scene
Post Frame Command=s Set command after each frame
User Abort Command=s Set command when user aborts POV-Ray
Fatal Error Command=s Set command when POV-Ray has fatal error

Note that no+/– switches are available for these options. They cannot be used from
the command line. They may only be used from INI files.

POV-Ray offers you the opportunity to shell-out to the operating system at several key
points to execute another program or batch file. Usually thisis used to manage files
created by the internal animation loop however the shell commands are available for
any scene. The CMD is a single line of text which is passed to the operating system to
execute a program. For example

Post_Scene_Command=tga2gif -d -m myfile

would use the utilityTGA2GIF with the–d and–m parameters to convertMYFILE.TGA

to MYFILE.GIF after the scene had finished rendering.

6.2.4.1 String Substitution in Shell Commands

It could get cumbersome to change thePost Scene Command every time you
changed scene names. POV-Ray can substitute various valuesinto a CMD string for
you. For example:

Post_Scene_Command=tga2gif -d -m %s

POV-Ray will substitute the%swith the scene name in the command. Thescene name
is the Input File Name or +I setting with any drive, directory or extension removed.
For example:

Input_File_Name=c:\povray3\scenes\waycool.pov

is stripped down to the scene nameWAYCOOL which results in. . .

Post_Scene_Command=tga2gif -d -m waycool

In an animation it may be necessary to have the exact output file name with the frame
number included. The string%owill substitute the output file name. Suppose you want
to save your output files in a zip archive usingPKZIP. You could do. . .

6.2. OPTIONS REFERENCE 169

Post_Frame_Command=pkzip -m %s %o

After rendering frame 12 ofMYSCENE.POV POV-Ray would shell to the operating
system with ”PKZIP –m MYSCENE MYSCE012.TGA”. The –m switch in PKZIP

movesMYSCE012.TGA to MYSCENE.ZIP and removes it from the directory. Note
that %o includes frame numbers only when in an animation loop. During the
Pre Scene Command and Post Scene Command there is no frame number so
the original, unnumberedOutput File Name is used. AnyUser Abort Command
or Fatal Error Command not inside the loop will similarly give an unnumbered%o
substitution.

Here is the complete list of substitutions available for a common string.

%o Output file name with extension and embedded frame number if any.
%s Scene name derived by stripping path and ext from input name.
%n Frame number of this frame.
%k Clock value of this frame.
%h Height of image in pixels.
%w Width of image in pixels.
%% A single % sign.

6.2.4.2 Shell Command Sequencing

Here is the sequence of events in an animation loop. Non-animated scenes work the
exact same way except there is no loop.

1. Process all INI file keywords and command line switches just once.

2. Open any text output streams and doCreate INI if any.

3. ExecutePre Scene Command if any.

4. Loop through frames (or just do once on non-animation).

(a) ExecutePre Frame Command if any.

(b) Parse entire scene file, open output file and read settings, turn on
display, render the frame, destroy all objects, textures etc., close
output file, close display.

(c) ExecutePost Frame Command if any.

(d) Go back to 4 until all frames done.

5. ExecutePost Scene Command if any.

6. Exit POV-Ray.

If the user interrupts processing theUser Abort Command, if any, is executed. User
aborts can only occur during the parsing and rendering partsof step 4a above.

If a fatal error occurs that POV-Ray notices theFatal Error Command, if any, is
executed. Sometimes an unforeseen bug or memory error couldcause a total crash of

170 CHAPTER 6. POV-RAY OPTIONS

the program in which case there is no chance to shell out. Fatal errors can occur just
about anywhere including during the processing of switchesor INI files. If a fatal error
occurs before POV-Ray has read theFatal Error Command string then obviously no
shell can occur.

Note that the entire scene is re-parsed for every frame. Future versions of POV-Ray
may allow you to hold over parts of a scene from one frame to thenext but for now
it starts from scratch every time. Note also that thePre Frame Command occurs
before the scene is parsed. You might use this to call some custom scene generation
utility before each frame. This utility could rewrite your.POV or . INC files if needed.
Perhaps you will want to generate new.GIF or .TGA files for image maps or height
fields on each frame.

6.2.4.3 Shell Command Return Actions

Pre Scene Return=s Set pre scene return actions
Pre Frame Return=s Set pre frame return actions
Post Scene Return=s Set post scene return actions
Post Frame Return=s Set post frame return actions
User Abort Return=s Set user abort return actions
Fatal Error Return=s Set fatal return actions

Note that no+/– switches are available for these options. They cannot be used from
the command line. They may only be used from INI files.

Most operating systems allow application programs to return an error code if something
goes wrong. When POV-Ray executes a shell command it can makeuse of this error
code returned from the shell process and take some appropriate action if the code is
zero or non-zero. POV-Ray itself returns such codes. It returns 0 for success, 1 for fatal
error and 2 for user abort.

The actions are designated by a single letter in the different . . . Return=s options.
The possible actions are:

I ignore the code
S skip one step
A all steps skipped
Q quit POV-Ray immediately
U generate a user abort in POV-Ray
F generate a fatal error in POV-Ray

For example if yourPre Frame Command calls a program which generates your
height field data and that utility fails then it will return a non-zero code. We would
probably want POV-Ray to abort as well. The optionPre Frame Return=F will cause
POV-Ray to do a fatal abort if thePre Frame Command returns a non-zero code.

6.2. OPTIONS REFERENCE 171

Sometimes a non-zero code from the external process is a goodthing. Suppose you
want to test if a frame has already been rendered. You could use theS action to skip
this frame if the file is already rendered. Most utilities report an error if the file is not
found. For example the commandPKZIP –v MYSCENE MYSCE012.TGA tells pkzip
you want to view the catalog ofMYSCENE.ZIP for the fileMYSCE012.TGA. If the file
isn’t in the archivePKZIP returns a non-zero code.

However we want to skip if the file is found. Therefore we need to reverse the action
so it skips on zero and doesn’t skip on non-zero. To reverse the zero vs. non-zero
triggering of an action precede it with a ”-” sign (note a ”!” will also work since it is
used in many programming languages as a negate operator).

Pre Frame Return=S will skip if the code shows error (non-zero) and will proceed
normally on no error (zero).Pre Frame Return=–S will skip if there is no error (zero)
and will proceed normally if there is an error (non-zero).

The default for all shells isI which means that the return action is ignored no matter
what. POV-Ray simply proceeds with whatever it was doing before the shell com-
mand. The other actions depend upon the context. You may wantto refer back to the
animation loop sequence chart in the previous section. The action for each shell is as
follows.

On return from anyUser Abort Command if there is an action triggered and you
have specified. . .

F then turn this user abort into a fatal error. Do theFa-
tal Error Command if any. Exit POV-Ray with error code
1.

S, A, Q, or U then proceed with the user abort. Exit POV-Ray with error
code 2.

On return from anyFatal Error Command proceed with the fatal error no matter
what. Exit POV-Ray with error code 1. On return from anyPre Scene Command,
Pre Frame Command, Post Frame Command or Post Scene Commands if
there is an action triggered and you have specified. . .

F then generate a fatal error. Do theFatal Error Command if any. Exit
POV-Ray with an error code 1.

U then generate a user abort. Do theUser Abort Command if any. Exit
POV-Ray with an error code 2.

Q then quit POV-Ray immediately. Acts as though POV-Ray never really
ran. Do no further shells (not evenPost Scene Command and exit
POV-Ray with an error code 0.

On return from aPre Scene Command if there is an action triggered and you have
specified. . .

172 CHAPTER 6. POV-RAY OPTIONS

S then skip rendering all frames. Acts as though the scene com-
pleted all frames normally. Do not do anyPre Frame Command or
Post Frame Commands. Do thePost Scene Command if any. Exit
POV-Ray with error code 0. On the earlier chart this means skip step 4
on page 169.

A
then skip all scene activity. Works exactly likeQ quit. On the earlier
chart this means skip to step 6 on page 169.

On return from aPre Frame Command if there is an action triggered and you have
specified. . .

S then skip only this frame. Acts as though this frame never existed. Do
not do thePost Frame Command. Proceed with the next frame. On
the earlier chart this means skip steps 4b on page 169 and 4c onpage 169
but loop back as needed in 4d on page 169.

A then skip rendering this frame and all remaining frames. Acts as
though the scene completed all frames normally. Do not do anyfur-
ther Post Frame Command. Do thePost Scene Command if any.
Exit POV-Ray with error code 0. On the earlier chart this means skip the
rest of step 4 on page 169 and proceed at step 5 on page 169.

On return from aPost Frame Command if there is an action triggered and you have
specified. . .

S then skip rendering all remaining frames. Acts as though the scene com-
pleted all frames normally. Do thePost Scene Command if any. Exit
POV-Ray with error code 0. On the earlier chart this means skip the rest
of step 4 on page 169 and proceed at step 5 on page 169.

A same asS for this shell command.

On return from anyPost Scene Command if there is an action triggered and you
have specified. . .

S or A same asI for this shell command.

6.2.5 Text Output

Text output is an important way that POV-Ray keeps you informed about what it is
going to do, what it is doing and what it did. New to POV-Ray 3.0, the program splits
its text messages into 7 separate streams. Some versions of POV-Ray color codes the
various types of text. Some versions allow you to scroll backseveral pages of messages.
All versions allow you to turn some of these text streams off/on or to direct a copy of
the text output to one or several files. This section details the options which give you
control over text output.

6.2. OPTIONS REFERENCE 173

6.2.5.1 Text Streams

There are seven distinct text streams that POV-Ray uses for output. On some versions
each stream is designated by a particular color. Text from these streams are displayed
whenever it is appropriate so there is often an intermixing of the text. The distinction
is only important if you choose to turn some of the streams offor to direct some of the
streams to text files. On some systems you may be able to reviewthe streams separately
in their own scroll-back buffer.

Here is a description of each stream.

BANNER: This stream displays the program’s sign-on banner, copyright, contribu-
tor’s list, and some help screens. It cannot be turned off or directed to a file because
most of this text is displayed before any options or switchesare read. Therefore you
cannot use an option or switch to control it. There are switches which display the help
screens. They are covered in section 6.2.5.4 on page 176.

DEBUG: This stream displays debugging messages. It was primarily designed for
developers but this and other streams may also be used by the user to display messages
from within their scene files. See 7.2.6.1 on page 212 for details on this feature. This
stream may be turned off and/or directed to a text file.

FATAL: This stream displays fatal error messages. After displaying this text, POV-
Ray will terminate. When the error is a scene parsing error, you may be shown several
lines of scene text that leads up to the error. This stream maybe turned off and/or
directed to a text file.

RENDER: This stream displays information about what options you have specified to
render the scene. It includes feedback on all of the major options such as scene name,
resolution, animation settings, anti-aliasing and others. This stream may be turned off
and/or directed to a text file.

STATISTICS: This stream displays statistics after a frame is rendered. It includes
information about the number of rays traced, the length of time of the processing and
other information. This stream may be turned off and/or directed to a text file.

STATUS: This stream displays one-line status messages that explainwhat POV-Ray
is doing at the moment. On some systems this stream is displayed on a status line at the
bottom of the screen. This stream cannot be directed to a file because there is generally
no need to. The text displayed by theVerbose option or+V switch is output to this
stream so that part of the status stream may be turned off.

WARNING: This stream displays warning messages during the parsing ofscene files
and other warnings. Despite the warning, POV-Ray can continue to render the scene.
You will be informed if POV-Ray has made any assumptions about your scene so that
it can proceed. In general any time you see a warning, you should also assume that this
means that future versions of POV-Ray will not allow the warned action. Therefore
you should attempt to eliminate warning messages so your scene will be able to run in
future versions of POV-Ray. This stream may be turned off and/or directed to a text
file.

174 CHAPTER 6. POV-RAY OPTIONS

6.2.5.2 Console Text Output

Debug Console=bool Turn console display of debug info text on/off
+GD Same asDebug Console=on
–GD Same asDebug Console=off

Fatal Console=bool Turn console display of fatal error text on/off
+GF Same asFatal Console=on
–GF Same asFatal Console=off

Render Console=boo Turn console display of render info text on/off
+GR Same asRender Console=on
–GR Same asRender Console=off

Statistic Console=bool Turn console display of statistic text on/off
+GS Same asStatistic Console=on
–GS Same asStatistic Console=off

Warning Console=bool Turn console display of warning text on/off
+GW Same asWarning Console=on
–GW Same asWarning Console=off

All Console=bool Turn on/off all debug, fatal, render, statistic and
warning text to console.

+GA Same asAll Console=on
–GA Same asAll Console=off

You may suppress the output to the console of theDebug, Fatal, Render, Statistic
or Warning text streams. For example theStatistic Console=off option or the–GS
switch can turn off theStatisticstream. Usingon or +GS you may turn it on again.
You may also turn all five of these streams on or off at once using theAll Console
option or+GA switch.

Note that these options take effect immediately when specified. Obviously anyError
or Warningmessages that might occur before the option is read are not beaffected.

6.2.5.3 Directing Text Streams to Files

Debug File=true Echo debug info text toDEBUG.OUT

Debug File=false Turn off file output of debug info
Debug File=FILE Echo debug info text toFILE

+GDFILE Both Debug Console=on,Debug File=FILE

–GDFILE Both Debug Console=off, Debug File=FILE

Fatal FILE=true Echo fatal text toFATAL.OUT

6.2. OPTIONS REFERENCE 175

Fatal File=false Turn off file output of fatal
Fatal File=FILE Echo fatal info text toFILE

+GFFILE Both Fatal Console=on,Fatal File=FILE

–GFFILE Both Fatal Console=off, Fatal File=FILE

Render File=true Echo render info text toRENDER.OUT

Render File=false Turn off file output of render info
Render File=FILE Echo render info text toFILE

+GRFILE Both Render Console=on,Render File=FILE

–GRFILE Both Render Console=off, Render File=FILE

Statistic File=true Echo statistic text toSTATS.OUT

Statistic File=false Turn off file output of statistics
Statistic File=FILE Echo statistic text toFILE

+GSFILE Both Statistic Console=on,Statistic File=FILE

–GSFile BothStatistic Console=off, Statistic File=FILE

Warning File=true Echo warning info text toWARNING.OUT

Warning File=false Turn off file output of warning info
Warning File=FILE Echo warning info text toFILE

+GWFILE Both Warning Console=on,Warning File=FILE

–GWFILE Both Warning Console=off, Warning File=FILE

All File=true Echo all debug, fatal, render, statistic and and warning
text toALLTEXT.OUT

All File=false Turn off file output of all debug, fatal, render, statistic
and warning text

All File=FILE Echo all debug, fatal, render, statistic and warning text
to file

+GAFILE Both All Console=on,All File=FILE

–GAFILE Both All Console=off, All File=FILE

You may direct a copy of the text streams to a text file for theDebug, Fatal, Render,
Statisticor Warningtext streams. For example theStatistic File=s option or the+GSs
switch. If the strings is true or any of the other validtrue strings then that stream is
redirected to a file with a default name. Validtrue values aretrue, yes, on or 1. If the
value isfalsethe direction to a text file is turned off. Validfalsevalues arefalse, no, off
or 0. Any other string specified turns on file output and the stringis interpreted as the
output file name.

Similarly you may specify such a true, false or file name string after a switch such as
+GSfile. You may also direct all five streams to the same file using theAll File option
or +GA switch. You may not specify the same file for two or more streams because
POV-Ray will fail when it tries to open or close the same file twice.

Note that these options take effect immediately when specified. Obviously anyError
or Warningmessages that might occur before the option is read will not be affected.

176 CHAPTER 6. POV-RAY OPTIONS

6.2.5.4 Help Screen Switches

+H or +? Show help screen 0 if this is the only switch
+H0 to+H8 Show help screen 0 to 8 if this is the only switch
+?0 to +?8 Same as+H0 to +H8

Note that there are no INI style equivalents to these options.

Graphical interface versions of POV-Ray such as Mac or Windows have extensive on-
line help. Other versions of POV-Ray have only a few quick-reference help screens.
The +? switch, optionally followed by a single digit from 0 to 8, will display these
help screens to theBanner text stream. After displaying the help screens, POV-Ray
terminates. Because some operating systems do not permit a question mark as a com-
mand line switch you may also use the+H switch. Note however that this switch is
also used to specify the height of the image in pixels. Therefore the+H switch is only
interpreted as a help switch if it is the only switch on the command line and if the value
after the switch is less than or equal to 8.

6.2.6 Tracing Options

There is more than one way to trace a ray. Sometimes there is a trade-off between
quality and speed. Sometimes options designed to make tracing faster can slow things
down. This section covers options that tell POV-Ray how to trace rays with the appro-
priate speed and quality settings.

6.2.6.1 Quality Settings

Quality=n Set quality value ton= 0. . .9
+Qn Same asQuality=n

TheQuality=n option or+Qn switch allows you to specify the image rendering quality.
You may choose to lower the quality for test rendering and raise it for final renders. The
quality adjustments are made by eliminating some of the calculations that are normally
performed. For example settings below 4 do not render shadows. Settings below 8 do
not use reflection or refraction. The values correspond to the following quality levels:

0, 1 Use ambient lighting and quick colors only. Quick colorsare used only
at 5 or below.

2, 3 Show specified diffuse and ambient lighting.
4 Render shadows but no extended lights.
5 Render shadows including extended lights.
6, 7 Compute texture patterns.
8 Compute reflected, refracted and transmitted rays.
9 Compute halos.

The default is 9 if not specified.

6.2. OPTIONS REFERENCE 177

6.2.6.2 Radiosity Setting

Radiosity=bool Turns radiosity on/off
+QR Turns radiosity on
–QR Turns radiosity on

Radiosity is an additional calculation which computes diffuse inter-reflection. It is an
extremely slow calculation that is somewhat experimental.The parameters which con-
trol how radiosity calculations are performed are specifiedin theglobal settings

{ radiosity { . . . } } statement. See 7.8.9 on page 362 for further details.

6.2.6.3 Automatic Bounding Control

Bounding=bool Turn bounding on/off
+MB Turn bounding on; threshold 25 or previous

amount
–MB Turn bounding off

Bounding Threshold=n Set bound threshold to n
+MBn Turn bounding on; set future threshold to n
–MBn Turn bounding off; set future threshold to n

Light Buffer=bool Turn light buffer on/off
+UL Turn light buffer on
–UL Turn light buffer off

Vista Buffer=bool Turn vista buffer on/off
+UV Turn vista buffer on
–UV Turn vista buffer off

POV-Ray uses a variety of spatial sub-division systems to speed up ray-object intersec-
tion tests. The primary system uses a hierarchy of nested bounding boxes. This system
compartmentalizes all finite objects in a scene into invisible rectangular boxes that are
arranged in a tree-like hierarchy. Before testing the objects within the bounding boxes
the tree is descended and only those objects are tested whosebounds are hit by a ray.
This can greatly improve rendering speed. However for scenes with only a few objects
the overhead of using a bounding system is not worth the effort. The Bounding=off
option or–MB switch allows you to force bounding off. The default value ison.

TheBounding Threshold=n or+MBn switch allows you to set the minimum number
of objects necessary before bounding is used. The default is+MB25 which means that
if your scene has fewer than 25 objects POV-Ray will automatically turn bounding off
because the overhead isn’t worth it. Generally it’s a good idea to use a much lower
threshold like+MB5.

178 CHAPTER 6. POV-RAY OPTIONS

Additionally POV-Ray uses systems known asvista buffersand light buffersto further
speed things up. These systems only work when bounding is on and when there are
a sufficient number of objects to meet the bounding threshold. The vista buffer is
created by projecting the bounding box hierarchy onto the screen and determining the
rectangular areas that are covered by each of the elements inthe hierarchy. Only those
objects whose rectangles enclose a given pixel are tested bythe primary viewing ray.
The vista buffer can only be used with perspective and orthographic cameras because
they rely on a fixed viewpoint and areasonableprojection (i. e. straight lines have to
stay straight lines after the projection).

The light buffer is created by enclosing each light source inan imaginary box and
projecting the bounding box hierarchy onto each of its six sides. Since this relies on a
fixed light source, light buffers will not be used for area lights.

Reflected and transmitted rays do not take advantage of the light and vista buffer.

The default settings areVista Buffer=on or +UV and Light Buffer=on or +UL. The
option to turn these features off is available to demonstrate their usefulness and as
protection against unforeseen bugs which might exist in anyof these bounding systems.

In general, any finite object and many types of CSG of finite objects will properly re-
spond to this bounding system. In addition blobs and meshes use an additional internal
bounding system. These systems are not affected by the aboveswitch. They can be
switched off using the appropriate syntax in the scene file (see 7.5.2.1 on page 231
and 7.5.3.3 on page 254 for details). Text objects are split into individual letters that
are bounded using the bounding box hierarchy. Some CSG combinations of finite and
infinite objects are also automatically bound. The end result is that you will rarely need
to add manual bounding objects as was necessary in earlier versions of POV-Ray unless
you use many infinite objects.

6.2.6.4 Anti-Aliasing Options

Antialias=bool Turns anti-aliasing on/off
+A Turns anti-aliasing on with threshold 0.3 or pre-

vious amount
–A Turns anti-aliasing off

Sampling Method=n Sets anti-aliasing sampling method (1 or 2)
+AMn Same asSampling Method=n

Antialias Threshold=n.n Sets anti-aliasing threshold
+An.n Sets anti-aliasing on with threshold atn.n
–An.n Sets anti-aliasing off (thresholdn.n in future)

Jitter=bool Sets jitter on/off
+J Sets jitter on with 1.0 or previous amount
–J Sets jitter off

6.2. OPTIONS REFERENCE 179

Jitter Amount=n.n Sets jitter amount ton.n. If n.n≤ 0 jitter is set
off

+Jn.n Sets jitter on; jitter amount ton.n. If n.n ≤ 0
jitter is set off

–Jn.n Sets jitter off (jitter amountn.n in future)

Antialias Depth=n Sets anti-aliasing depth (n= 1. . .9)
+Rn Same asAntialias Depth=n

The ray-tracing process is in effect a discrete, digital sampling of the image with typ-
ically one sample per pixel. Such sampling can introduce a variety of errors. This
includes a jagged, stair-step appearance in sloping or curved lines, a broken look for
thin lines, moire patterns of interference and lost detail or missing objects, which are
so small they reside between adjacent pixels. The effect that is responsible for those
errors is calledaliasing.

Anti-aliasing is any technique used to help eliminate such errors or to reduce the neg-
ative impact they have on the image. In general, anti-aliasing makes the ray-traced
image looksmoother. TheAntialias=on option or+A switch turns on POV-Ray’s anti-
aliasing system.

When anti-aliasing is turned on, POV-Ray attempts to reducethe errors by shooting
more than one viewing ray into each pixel and averaging the results to determine the
pixel’s apparent color. This technique is called super-sampling and can improve the
appearance of the final image but it drastically increases the time required to render a
scene since many more calculations have to be done.

POV-Ray gives you the option to use one of two alternate super-sampling methods. The
Sampling Method=n option or+AMn switch selects non-adaptive super-sampling
(method 1) or adaptive super-sampling (method 2). Selecting one of those methods
does not turn anti-aliasing on. This has to be done by using the +A command line
switch orAntialias=on option.

In the default, non-adaptive method (+AM1), POV-Ray initially traces one ray per
pixel. If the color of a pixel differs from its neighbors (to the left or above) by more
than a threshold value then the pixel is super-sampled by shooting a given, fixed num-
ber of additional rays. The default threshold is 0.3 but it may be changed using the
Antialias Threshold=n.n option. When the switches are used, the threshold may op-
tionally follow the+A. For example+A0.1 turns anti-aliasing on and sets the threshold
to 0.1.

The threshold comparison is computed as follows. Ifr1, g1, b1 and r2, g2, b2 are the
rgb components of two pixels then the difference between pixels is computed by

di f f = |r2− r1|+ |g2−g1|+ |b2−b1|. (6.1)

If this difference is greater than the threshold both pixelsare super-sampled. The rgb
values are in the range from 0.0 to 1.0 thus the most two pixels can differ is 3.0. If the

180 CHAPTER 6. POV-RAY OPTIONS

anti-aliasing threshold is 0.0 then every pixel is super-sampled. If the threshold is 3.0
then no anti-aliasing is done. Lower threshold means more anti-aliasing and less speed.
Use anti-aliasing for your final version of a picture, not therough draft. The lower the
contrast, the lower the threshold should be. Higher contrast pictures can get away with
higher tolerance values. Good values seem to be around 0.2 to 0.4.

When using the non-adaptive method, the default number of super-samples is nine per
pixel, located on a 3×3 grid. TheAntialias Depth=n option or+Rn switch controls
the number of rows and columns of samples taken for a super-sampled pixel. For
example+R4 would give 4×4= 16 samples per pixel.

The second, adaptive super-sampling method starts by tracing four rays at the corners
of each pixel. If the resulting colors differ more than the threshold amount additional
samples will be taken. This is done recursively, i. e. the pixel is divided into four
sub-pixels that are separately traced and tested for further subdivision. The advantage
of this method is the reduced number of rays that have to be traced. Samples that
are common among adjacent pixels and sub-pixels are stored and reused to avoid re-
tracing of rays. The recursive character of this method makes it adaptive, i. e. the
super-sampling concentrates on those parts of the pixel that are more likely to need
super-sampling (see figure 6.1).

level 1initial samples

level 2 level 3

new samples

one pixel

pixel corners

reused samples

Figure 6.1: Example of how the adpative super-sampling works.

The maximum number of subdivisions is specified by theAntialias Depth=n option
or +Rn switch. This is different from the non-adaptive method were the total num-
ber of super-samples is specified. A maximum number ofn subdivisions results in a
maximum number of samples per pixel that is given by table 6.1on the facing page.

You should note that the maximum number of samples in the adaptive case is hardly
ever reached for a given pixel. If the adaptive method is usedwith no anti-aliasing each
pixel will be the average of the rays traced at its corners. Inmost cases a recursion level
of three is sufficient.

6.2. OPTIONS REFERENCE 181

+Rn non-adaptive method the adaptive method
1 1 9
2 4 25
3 9 81
4 16 289
5 25 1089
6 36 4225
7 49 16641
8 64 66049
9 81 263169

Table 6.1: Number of samples for the non-adaptive and adaptive super-
sampling methods.

Another way to reduce aliasing artifacts is to introduce noise into the sampling process.
This is calledjittering and works because the human visual system is much more for-
giving to noise than it is to regular patterns. The location of the super-samples is jittered
or wiggled a tiny amount when anti-aliasing is used. Jittering is used by default but it
may be turned off with theJitter=off option or–J switch. The amount of jittering can
be set with theJitter Amount=n.n option. When using switches the jitter scale may be
specified after the+J switch. For example+J0.5 uses half the normal jitter. The default
amount of 1.0 is the maximum jitter which will insure that allsuper-samples remain
inside the original pixel. Note that the jitteringnoiseis random and non-repeatable so
you should avoid using jitter in animation sequences as the anti-aliased pixels will vary
and flicker annoyingly from frame to frame.

If anti-aliasing is not used one sample per pixel is taken regardless of the super-
sampling method specified.

182 CHAPTER 6. POV-RAY OPTIONS

Chapter 7

Scene Description Language

The Scene Description Language allows you to describe the world in a readable and
convenient way. Files are created in plain ASCII text using an editor of your choice.
The input file name is specified using theInput File Name=FILE option or +IFILE

switch. By default the files have the extension.pov . POV-Ray reads the file, processes
it by creating an internal model of the scene and then rendersthe scene.

The overall syntax of a scene is a file that contains any numberof the following items
in any order.

LANGUAGE_DIRECTIVES

camera{ CAMERA_ITEMS }

OBJECT_STATEMENTS

ATMOSPHERE_STATEMENTS

global_settings { GLOBAL_ITEMS }

See 7.2 on page 204, 7.5 on page 228, 7.4 on page 219, 7.7 on page347 and 7.8 on
page 355 for details.

7.1 Language Basics

The POV-Ray language consists of identifiers, reserved keywords, floating point ex-
pressions, strings, special symbols and comments. The textof a POV-Ray scene file
is free format. You may put statements on separate lines or onthe same line as you
desire. You may add blank lines, spaces or indentations as long as you do not split any
keywords or identifiers.

7.1.1 Identifiers and Keywords

POV-Ray allows you to define identifiers for later use in the scene file. An identifier
may be 1 to 40 characters long. It may consist of upper or lowercase letters, the digits

183

184 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

0 through 9 or an underscore character (””). The first character must be an alphabetic
character. The declaration of identifiers is covered later.

POV-Ray has a number of reserved keywords which are listed below.

aa level fog offset reciprocal

aa threshold fog type recursion limit

abs frequency red

acos gif reflection

acosh global settings refraction

adaptive glowing render

adc bailout gradient repeat

agate granite rgb

agate turb gray threshold rgbf

all green rgbft

alpha halo rgbt

ambient height field right

ambient light hexagon ripples

angle hf gray 16 rotate

aperture hierarchy roughness

arc angle hollow samples

area light hypercomplex scale

asc if scallop wave

asin ifdef scattering

asinh iff seed

assumed gamma image map shadowless

atan incidence sin

atan2 include sine wave

atanh int sinh

atmosphere interpolate sky

atmospheric attenuation intersection sky sphere

attenuating inverse slice

average ior slope map

background irid smooth

bicubic patch irid wavelength smooth triangle

black hole jitter sor

blob julia fractal specular

blue lambda sphere

blur samples lathe spherical mapping

bounded by leopard spiral

box light source spiral1

box mapping linear spiral2

bozo linear spline spotlight

break linear sweep spotted

brick location sqr

brick size log sqrt

brightness looks like statistics

brilliance look at str

bumps low error factor strcmp

bumpy1 mandel strength

7.1. LANGUAGE BASICS 185

bumpy2 map type strlen

bumpy3 marble strlwr

bump map material map strupr

bump size matrix sturm

camera max substr

case max intersections superellipsoid

caustics max iteration switch

ceil max trace level sys

checker max value t

chr merge tan

clipped by mesh tanh

clock metallic test camera 1

color min test camera 2

color map minimum reuse test camera 3

colour mod test camera 4

colour map mortar text

component nearest count texture

composite no texture map

concat normal tga

cone normal map thickness

confidence no shadow threshold

conic sweep number of waves tightness

constant object tile2

control0 octaves tiles

control1 off torus

cos offset track

cosh omega transform

count omnimax translate

crackle on transmit

crand once triangle

cube onion triangle wave

cubic open true

cubic spline orthographic ttf

cylinder panoramic turbulence

cylindrical mapping pattern1 turb depth

debug pattern2 type

declare pattern3 u

default perspective ultra wide angle

degrees pgm union

dents phase up

difference phong use color

diffuse phong size use colour

direction pi use index

disc pigment u steps

distance pigment map v

distance maximum planar mapping val

div plane variance

dust png vaxis rotate

dust type point at vcross

eccentricity poly vdot

186 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

else polygon version

emitting pot vlength

end pow vnormalize

error ppm volume object

error bound precision volume rendered

exp prism vol with light

exponent pwr vrotate

fade distance quadratic spline v steps

fade power quadric warning

falloff quartic warp

falloff angle quaternion water level

false quick color waves

file exists quick colour while

filter quilted width

finish radial wood

fisheye radians wrinkles

flatness radiosity x

flip radius y

floor rainbow yes

focal point ramp wave z

fog rand

fog alt range

All reserved words are fully lower case. Therefore it is recommended that your identi-
fiers contain at least one upper case character so it is sure toavoid conflict with reserved
words.

The following keywords are in the above list of reserved keywords but are not currently
used by POV-Ray however they remain reserved.

bumpy1 test camera 1

bumpy2 test camera 2

bumpy3 test camera 3

incidence test camera 4

pattern1 track

pattern2 volume object

pattern3 volume rendered

spiral vol with light

7.1.2 Comments

Comments are text in the scene file included to make the scene file easier to read or
understand. They are ignored by the ray-tracer and are therefor your information.
There are two types of comments in POV-Ray.

Two slashes are used for single line comments. Anything on a line after a double slash
(//) is ignored by the ray-tracer. For example:

7.1. LANGUAGE BASICS 187

// This line is ignored

You can have scene file information on the line in front of the comment as in:

object { FooBar } // this is an object

The other type of comment is used for multiple lines. It starts with ”/*” and ends with
”*/”. Everything in-between is ignored. For example:

/* These lines

are ignored

by the

ray-tracer */

This can be useful if you want to temporarily remove elementsfrom a scene file./*
. . . */ comments cancomment outlines containing other// comments and thus can
be used to temporarily or permanently comment out parts of a scene. /* . . . */
comments can be nested, the following is legal:

/* This is a comment

// This too

/* This also */

*/

Use comments liberally and generously. Well used, they really improve the readability
of scene files.

7.1.3 Float Expressions

Many parts of the POV-Ray language require you to specify oneor more floating point
numbers. A floating point number is a number with a decimal point. Floats may be
specified using literals, identifiers or functions which return float values. You may also
create very complex float expressions from combinations of any of these using various
familiar operators.

Where POV-Ray needs an integer value it allows you to specifya float value and it
truncates it to an integer. When POV-Ray needs a logical or boolean value it interprets
any non-zero float as true and zero as false. Because float comparisons are subject to
rounding errors POV-Ray accepts values extremely close to zero as being false when
doing boolean functions. Typically values whose absolute values are less than a preset
value epsilon are considered false for logical expressions. The value ofepsilon is
system dependent but is generally about 1.0e−10. Two floatsa andb are considered
to be euqal if|a−b| < epsilon.

188 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.1.3.1 Float Literals

Float literals are represented by an optional sign (”+” or ”–”) digits, an optional decimal
point and more digits. If the number is an integer you may omitthe decimal point and
trailing zero. If it is all fractional you may omit the leading zero. POV-Ray supports
scientific notation for very large or very small numbers. Thefollowing are all valid
float literals:

-2.0 -4 34 3.4e6 2e-5 .3 0.6

7.1.3.2 Float Identifiers

Float identifiers may be declared to make scene files more readable and to parameterize
scenes so that changing a single declaration changes many values. An identifier is
declared as follows.

#declare IDENTIFIER = EXPRESSION

Where IDENTIFIER is the name of the identifier up to 40 characters long and
EXPRESSION is any valid expression which evaluates to a float value. Hereare some
examples.

#declare Count = 0

#declare Rows = 5.3

#declare Cols = 6.15

#declare Number = Rows*Cols

#declare Count = Count+1

As the last example shows, you can re-declare a float identifier and may use previously
declared values in that re-declaration. There are several built-in identifiers which POV-
Ray declares for you. See 7.1.7 on page 197 for details.

7.1.3.3 Float Operators

Arithmetic float expressions can be created from float literals, identifiers or functions
using the following operators in this order of precedence. . .

() expressions in parentheses first
+A unary plus
-A unary minus
!A logical not
A*B multiplication

7.1. LANGUAGE BASICS 189

A/B division
A+B addition
A-B subtraction

Relational, logical and conditional expressions may also be created. However there is
a restriction that these types of expressions must be enclosed in parentheses first. This
restriction, which is not imposed by most computer languages, is necessary because
POV-Ray allows mixing of float and vector expressions. Without the parentheses there
is an ambiguity problem. Parentheses are not required for the unary logical not operator
”!” as shown above. The operators and their precedence are shown here.

Relational expressions:The operands are arithmetic expressions and the result is al-
ways boolean with 1 for true and 0 for false. All relational operators have the same
precedence.

(A < B) A is less than B
(A <= B) A is less than or equal to B
(A = B) A is equal to B (actually|A−B| < epsilon)
(A != B) A is not equal to B (actually|A−B| ≥ epsilon)
(A >= B) A is greater than or equal to B
(A > B) A is greater than B

Logical expressions:The operands are converted to boolean values of 0 for false and 1
for true. The result is always boolean. All logical operators have the same precedence.
Note that these are not bitwise operations, they are logical.

(A & B) true only if both A and B are true, false otherwise
(A | B) true if either A or B or both are true

Conditional expressions:The operand C is boolean while operands A and B are any
expressions. The result is of the same type as A and B.

(C ? A : B) if C then A else B

Assuming the various identifiers have been declared, the following are examples of
valid expressions. . .

1+2+3 2*5 1/3 Row*3 Col*5

(Offset-5)/2 This/That+Other*Thing

((This<That) & (Other>=Thing)?Foo:Bar)

Expressions are evaluated left to right with innermost parentheses evaluated first, then
unary+, − or !, then multiply or divide, then add or subtract, then relational, then
logical, then conditional.

190 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.1.4 Vector Expressions

POV-Ray often requires you to specify avector. A vector is a set of related float values.
Vectors may be specified using literals, identifiers or functions which return vector
values. You may also create very complex vector expressionsfrom combinations of
any of these using various familiar operators.

POV-Ray vectors may have from two to five components but the vast majority of vec-
tors have three components. Unless specified otherwise, youshould assume that the
word vectormeans a three component vector. POV-Ray operates in a 3Dx, y, z coor-
dinate system and you will use three component vectors to specify x, y andzvalues. In
some places POV-Ray needs only two coordinates. These are often specified by a 2D
vector called anUV vector. Fractal objects use 4D vectors. Color expressions use 5D
vectors but allow you to specify 3, 4 or 5 components and use default values for the
unspecified components. Unless otherwise noted, all 2, 4 or 5component vectors work
just like 3D vectors but they have a different number of components.

7.1.4.1 Vector Literals

Vectors consist of two to five float expressions that are bracketed by angle brackets
〈 and 〉. The terms are separated by commas. For example here is a typical three
component vector:

< 1.0, 3.2, -5.4578 >

The commas between components are necessary to keep the program from thinking
that the 2nd term is the single float expression 3.2− 5.4578 and that there is no 3rd
term. If you see an error message such asFloat expected but ’〉’ found insteadyou
probably have missed a comma.

Sometimes POV-Ray requires you to specify floats and vectorsside-by-side. The rules
for vector expressions allow for mixing of vectors with vectors or vectors with floats
so commas are required separators whenever an ambiguity might arise. For example
〈1,2,3〉−4 evaluates as a mixed float and vector expression where 4 is subtracted from
each component resulting in〈−3,−2,−1〉. However the comma in〈1,2,3〉,−4 means
this is a vector followed by a float.

Each component may be a full float expression. For example〈This+ 3,That/3,5∗
Other Thing〉 is a valid vector.

7.1.4.2 Vector Identifiers

Vector identifiers may be declared to make scene files more readable and to parameter-
ize scenes so that changing a single declaration changes many values. An identifier is
declared as follows. . .

7.1. LANGUAGE BASICS 191

#declare IDENTIFIER = EXPRESSION

Where IDENTIFIER is the name of the identifier up to 40 characters long and
EXPRESSION is any valid expression which evaluates to a vector value. Here are
some examples. . .

#declare Here = <1,2,3>

#declare There = <3,4,5>

#declare Jump = <Foo*2,Bar-1,Bob/3>

#declare Route = There-Here

#declare Jump = Jump+<1,2,3>

Note that you invoke a vector identifier by using its name without any angle brackets.
As the last example shows, you can re-declare a vector identifier and may use previ-
ously declared values in that re-declaration. There are several built-in identifiers which
POV-Ray declares for you. See 7.1.7 on page 197 for details.

7.1.4.3 Vector Operators

Vector literals, identifiers and functions may also be combined in expressions the
same as float values. Operations are performed on a component-by-component basis.
For example〈1,2,3〉+ 〈4,5,6〉 evaluates the same as〈1+4,2+5,3+6〉 or 〈5,7,9〉.
Other operations are done on a similar component-by-component basis. For example
(〈1,2,3〉 = 〈3,2,1〉) evaluates to〈0,1,0〉 because the middle components are equal but
the others are not. Admittedly this isn’t very useful but itsconsistent with other vector
operations.

Conditional expressions such as(C ? A : B) require that C is a float expression but
A and B may be vector expressions. The result is that the entire conditional evaluates
as a valid vector. For example ifFoo andBar are floats then

Foo < Bar ? <1,2,3> : <5,6,7>

evaluates as the vector〈1,2,3〉 if Foo is less thanBar and evaluates as〈5,6,7〉 other-
wise.

You may use the dot operator to extract a single component from a vector. Suppose the
identifierSpot was previously defined as a vector. ThenSpot.x is a float value that
is the first component of thisx, y, z vector. SimilarlySpot.y andSpot.z reference
the 2nd and 3rd components. IfSpot was a two component UV vector you could use
Spot.u andSpot.v to extract the first and second component. For a 4D vector use
.x, .y, .z and.t to extract each float component. The dot operator is also usedin
color expressions which are covered later.

192 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.1.4.4 Operator Promotion

You may use a lone float expression to define a vector whose components are all the
same. POV-Ray knows when it needs a vector of a particular type and will promote a
float into a vector if need be. For example the POV-Rayscale statement requires a
three component vector. If you specify scale 5 then POV-Ray interprets this as scale
〈5,5,5〉 which means you want to scale by 5 in every direction.

Versions of POV-Ray prior to 3.0 only allowed such use of a float as a vector in various
limited places such asscale andturbulence. However you may now use this
trick anywhere. For example. . .

box { 0, 1 } // This is the same as box { <0,0,0>, <1,1,1> }

sphere { 0, 1 } // This is the same as sphere { <0,0,0>, 1 }

When promoting a float into a vector of 2, 3, 4 or 5 components, all components are set
to the float value, however when promoting a vector of a lower number of components
into a higher order vector, all remaining components are setto zero. For example if
POV-Ray expects a 4D vector and you specify 9 the result is〈9,9,9,9〉 but if you
specify〈7,6〉 the result is〈7,6,0,0〉.

7.1.5 Specifying Colors

POV-Ray often requires you to specify a color. Colors consist of five values or color
components. The first three are calledred, green andblue. They specify the
intensity of the primary colors red, green and blue using an additive color system like
the one used by the red, green and blue color phosphors on a color monitor.

The 4th component, calledfilter, specifies the amount of filtered transparency of
a substance. Some real-world examples of filtered transparency are stained glass win-
dows or tinted cellophane. The light passing through such objects is tinted by the
appropriate color as the material selectively absorbs somefrequencies of light while
allowing others to pass through. The color of the object is subtracted from the light
passing through so this is called subtractive transparency.

The 5th component, calledtransmit, specifies the amount of non-filtered light that is
transmitted through a surface. Some real-world examples ofnon-filtered transparency
are thin see-through cloth, fine mesh netting and dust on a surface. In these examples,
all frequencies of light are allowed to pass through tiny holes in the surface. Although
the amount of light passing through is diminished, the colorof the light passing through
is unchanged. The color of the object is added to the light passing through so this is
called additive transparency.

Note that early versions of POV-Ray used the keywordalpha to specify filtered trans-
parency. However that word is often used to describe non-filtered transparency. For this
reasonalpha is no longer used.

7.1. LANGUAGE BASICS 193

Each of the five components of a color are float values which arenormally in the range
between 0.0 and 1.0. However any values, even negatives may be used.

Colors may be specified using vectors, keywords with floats oridentifiers. You may
also create very complex color expressions from combinations of any of these using
various familiar operators. The syntax for specifying a color has evolved since POV-
Ray was first released. We have maintained the original keyword-based syntax and
added a short-cut vector notation. Either the old or new syntax is acceptable however
the vector syntax is easier to use when creating color expressions.

7.1.5.1 Color Vectors

The syntax for a color vector is any of the following. . .

color rgb VECTOR3

color rgbf VECTOR4

color rgbt VECTOR4

color rgbft VECTOR5

whereVECTOR3, VECTOR4 or VECTOR5 are any valid vector expressions of 3, 4 or
5 components. For example

color rgb <1.0, 0.5, 0.2>

This specifies a color whose red component is 1.0 or 100% of full intensity. The green
component is 0.5 or 50% of full intensity and the blue component is 0.2 or 20% of full
intensity. Although the filter and transmit components are not explicitly specified, they
exist and are set to their default values of 0 or no transparency.

Thergbf keyword requires a four component vector. The 4th componentis the filter
component and the transmit component defaults to zero. Similarly thergbt keyword
requires four components where the 4th value is moved to the 5th component which is
transmit and then the filter component is set to zero.

Thergbft keyword allows you to specify all five components. Internally in expres-
sions all five are always used.

Under most circumstances the keywordcolor is optional and may be omitted. We
also support the British or Canadian spellingcolour. Under some circumstances, if
the vector expression is a 5 component expression or there isa color identifier in the
expression then thergbtf keyword is optional.

7.1.5.2 Color Keywords

The older keyword method of specifying a color is still useful and many users prefer it.
Like a color vector, you begin with the optional keywordcolor. This is followed by

194 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

any of five additional keywordsred, green, blue, filter or transmit. Each
of these component keywords is followed by a float expression. For example

color red 1.0 green 0.5

This specifies a color whose red component is 1.0 or 100% of full intensity and the
green component is 0.5 or 50% of full intensity. Although theblue, filter and transmit
components are not explicitly specified, they exist and are set to their default values
of 0. The component keywords may be given in any order and if any component is
unspecified its value defaults to zero.

7.1.5.3 Color Identifiers

Color identifiers may be declared to make scene files more readable and to parameterize
scenes so that changing a single declaration changes many values. A color identifier is
declared as either of the following. . .

#declare IDENTIFIER = COLOR_VECTOR

#declare IDENTIFIER = COLOR_KEYWORDS...

Where IDENTIFIER is the name of the identifier up to 40 characters long and
COLOR VECTOR orCOLOR KEYWORDS are any valid color specifications as described
in the two previous sections of this document. Here are some examples. . .

#declare White = rgb <1,1,1>

#declare Cyan = color blue 1.0 green 1.0

#declare Weird = rgb <Foo*2,Bar-1,Bob/3>

#declare LightGray = White*0.8

#declare LightCyan = Cyan red 0.6

As theLightGray example shows you do not need any color keywords when creating
color expressions based on previously declared colors. Thelast example shows you
may use a color identifier with the keyword style syntax. Makesure that the identifier
comes first before any other component keywords.

Like floats and vectors, you may re-define colors throughout ascene but the need to do
so is rare.

7.1.5.4 Color Operators

Color vectors may be combined in expressions the same as floator vector val-
ues. Operations are performed on a component-by-componentbasis. For example
rgb 〈1.0,0.50.2〉 * 0.9 evaluates the same asrgb 〈1.0,0.50.2〉 * 〈0.9,0.9,0.9〉
or rgb 〈0.9,0.45,0.18〉. Other operations are done on a similar component-by-
component basis.

7.1. LANGUAGE BASICS 195

You may use the dot operator to extract a single component from a color. Suppose
the identifierShade was previously defined as a color. ThenShade.red is the float
value of the red component ofShade. Similarly Shade.green, Shade.blue,
Shade.filter andShade.transmit extract the float value of the other color
components.

7.1.5.5 Common Color Pitfalls

The variety and complexity of color specification methods can lead to some common
mistakes. Here are some things to consider when specifying acolor.

When using filter transparency, the colors which come through are multiplied by the
primary color components. For example if grey light such asrgb 〈0.9,0.9,0.9〉 passes
through a filter such asrgbf 〈1.0,0.5,0.0,1.0〉 the result isrgb 〈0.9,0.45,0.0〉 with
the red let through 100%, the green cut in half from 0.9 to 0.45and the blue totally
blocked. Often users mistakenly specify a clear object by

color filter 1.0

but this has implied red, green and blue values of zero. You’ve just specified a totally
black filter so no light passes through. The correct way is either

color red 1.0 green 1.0 blue 1.0 filter 1.0

or

color transmit 1.0

In the 2nd example it doesn’t matter what the rgb values are. All of the light passes
through untouched.

Another pitfall is the use of color identifiers and expressions with color keywords. For
example. . .

color My_Color red 0.5

this substitutes whatever was the red component ofMy Color with a red component
of 0.5 however. . .

color My_Color + red 0.5

adds 0.5 to the red component of MyColor and even less obvious. . .

196 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

color My_Color * red 0.5

that cuts the red component in half as you would expect but it also multiplies the green,
blue, filter and transmit components by zero! The part of the expression after the
multiply operator evaluates torgbft 〈0.5,0,0,0,0〉 as a full 5 component color.

The following example results in no change toMy Color.

color red 0.5 My_Color

This is because the identifier fully overwrites the previousvalue. When using identifiers
with color keywords, the identifier should be first.

One final issue, some POV-Ray syntax allows full color specifications but only uses the
rgb part. In these cases it is legal to use a float where a color is needed. For example:

finish { ambient 1 }

The ambient keyword expects a color so the value 1 is promotedto 〈1,1,1,1,1〉 which
is no problem. However

pigment { color 0.4 }

is legal but it may or may not be what you intended. The 0.4 is promoted to
〈0.4,0.4,0.4,0.4,0.〉 with the filter and transmit set to 0.4 as well. It is more likely
you wanted. . .

pigment { color rgb 0.4 }

in which case a 3 component vector is expected. Therefore the0.4 is promoted to
〈0.4,0.4,0.4,0.0,0.0〉 with default zero for filter and transmit.

7.1.6 Strings

The POV-Ray language requires you to specify a string of characters to be used as a file
name, text for messages or text for a text object. Strings maybe specified using literals,
identifiers or functions which return string values. Although you cannot build string
expressions from symbolic operators such as are used with floats, vectors or colors,
you may perform various string operations using string functions. Some applications
of strings in POV-Ray allow for non-printing formatting characters such as newline or
form-feed.

7.1.6.1 String Literals

String literals begin with a double quote mark ’”’ which is followed by up to 256
printable ASCII characters and are terminated by another double quote mark. The
following are all valid string literals:

"Here" "There" "myfile.gif" "textures.inc"

7.1. LANGUAGE BASICS 197

7.1.6.2 String Identifiers

String identifiers may be declared to make scene files more readable and to parameter-
ize scenes so that changing a single declaration changes many values. An identifier is
declared as follows. . .

#declare IDENTIFIER = STRING

Where IDENTIFIER is the name of the identifier up to 40 characters long and
STRING is a string literal, string identifier or function which returns a string value.
Here are some examples. . .

#declare Font_Name = "ariel.ttf"

#declare Inc_File = "myfile.inc"

#declare Name = "John"

#declare Name = concat(Name," Doe")

As the last example shows, you can re-declare a string identifier and may use previously
declared values in that re-declaration.

7.1.7 Built-in Identifiers

There are several built-in float and vector identifiers. You can use them to specify
values or to create expressions but you cannot re-declare them to change their values.

7.1.7.1 Constant Built-in Identifiers

Most built-in identifiers never change value. They are defined as though the following
lines were at the start of every scene.

#declare pi = 3.1415926535897932384626

#declare true = 1

#declare yes = 1

#declare on = 1

#declare false = 0

#declare no = 0

#declare off = 0

#declare u = <1,0>

#declare v = <0,1>

#declare x = <1,0,0>

#declare y = <0,1,0>

#declare z = <0,0,1>

#declare t = <0,0,0,1>

198 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The built-in float identifierpi is obviously useful in math expressions involving circles.

The built-in float identifierson,off, yes, no, true andfalse are designed for use
as boolean constants.

The built-in vector identifiersx, y andz provide much greater readability for your
scene files when used in vector expressions. For example. . . .

plane { y, 1} // The normal vector is obviously "y".

plane { <0,1,0>, 1} // This is harder to read.

translate 5*x // Move 5 units in the "x" direction.

translate <5,0,0> // This is less obvious.

An expression like5*x evaluates to 5〈1,0,0〉 or 〈5,0,0〉.

Similarly u andv may be used in 2D vectors. When using 4D vectors you should use
x, y, z, andt and POV-Ray will promotex, y andz to 4D when used where 4D is
required.

7.1.7.2 Built-in Identifier clock

The built-in float identifierclock is used to control animations in POV-Ray. Unlike
some animation packages, the action in POV-Ray animated scenes does not depend
upon the integer frame numbers. Rather you should design your scenes based upon the
float identifierclock. For non-animated scenes its default value is 0 but you can set
it to any float value using the INI file optionClock=n.n or the command-line switch
+Kn.n to pass a single float value your scene file.

Other INI options and switches may be used to animate scenes by automatically loop-
ing through the rendering of frames using various values forclock. By default, the
clock value is 0 for the initial frame and 1 for the final frame.All other frames are
interpolated between these values. For example if your object is supposed to rotate one
full turn over the course of the animation you could specifyrotate 360*clock*y.
Then as clock runs from 0 to 1, the object rotates about they-axis from 0 to 360 degrees.

Although the value ofclock will change from frame-to-frame, it will never change
throughout the parsing of a scene.

See 6.2.1 on page 151 for more details.

7.1.7.3 Built-in Identifier version

The built-in float identifierversion contains the current setting of the version com-
patibility option. Although this value defaults to 3 which is the current POV-Ray ver-
sion number, the initial value ofversion may be set by the INI file optionVer-
sion=n.n or by the+MVn.n command-line switch. This tells POV-Ray to parse the
scene file using syntax from an earlier version of POV-Ray.

7.1. LANGUAGE BASICS 199

The INI option or switch only affects the initial setting. Unlike other built-in identi-
fiers, you may change the value ofversion throughout a scene file. You do not use
#declare to change it though. The#version language directive is used to change
modes. Such changes may occur several times within scene files.

Together with the built-inversion identifier the#version directive allows you to
save and restore the previous values of this compatibility setting. For example suppose
MYSTUFF. INC is in version 1 format. At the top of the file you could put:

#declare Temp_Vers = version // Save previous value

#version 1.0 // Change to 1.0 mode

... // Version 1.0 stuff goes here...

#version Temp_Vers // Restore previous version

7.1.8 Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and
strings. The functions are listed grouped according to their usage and not by the type
of value they return. For examplevdot computes the dot product of two vectors and
is listed as a vector function even though it returns a singlefloat value.

Function calls consist of a keyword which specifies the name of the function followed
by a parameter list enclosed in parentheses. Parameters areseparated by commas. For
example:

keyword(param1,param2)

Functions evaluate to values that are floats, vectors or strings and may be used in ex-
pressions or statements anywhere that literals or identifiers of that type may be used.

7.1.8.1 Float Functions

The following are the functions which take one or more float parameters and return
float values. Assume thatA andB are any valid expression that evaluates to a float.
See 7.1.8.2 on page 201 and 7.1.8.3 on page 202 for other functions which return float
values but whose primary purpose is more closely related to vectors and strings.

abs(A): Absolute value ofA. If A is negative, returns--A otherwise re-
turnsA.

acos(A): Arc-cosine ofA. Returns the angle, measured in radians, whose
cosine isA.

200 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

asin(A): Arc-sine ofA. Returns the angle, measured in radians, whose
sine isA.

atan2(A,B): Arc-tangent of(A/B). Returns the angle, measured in ra-
dians, whose tangent is(A/B). Returns appropriate value even ifB is
zero. Useatan2(A,1) to compute usualatan(A) function.

ceil(A): Ceiling ofA. Returns the smallest integer greater thanA. Rounds
up to the next higher integer.

cos(A): Cosine ofA. Returns the cosine of the angleA, whereA is mea-
sured in radians.

degrees(A): Convert radians to degrees. Returns the angle measured in
degrees whose value in radians isA. The formula is

Adegrees=
180
π

Aradians. (7.1)

div(A,B): Integer division. The integer part of(A/B).

exp(A): Exponential of A. Returns the value ofe raised to theA
power wheree is the non-repeating value approximately equal to
2.71828182846 the base of natural logarithms.

floor(A): Floor of A. Returns the largest integer less thanA. Rounds
down to the next lower integer.

int(A): Integer part ofA. Returns the truncated integer part ofA. Rounds
towards zero.

log(A): Natural logarithm ofA. Returns the natural logarithm basee of
the valueA wheree is the non-repeating value approximately equal to
2.71828182846.

max(A,B): Maximum ofA andB. ReturnsA if A larger thanB. Otherwise
returnsB.

min(A,B): Minimum ofA andB. ReturnsA if A smaller thanB. Otherwise
returnsB.

mod(A,B): Value ofA moduloA. Returns the remainder after the integer
division ofA/B. The Formula is1

mod(A,B) =

(

A
B
−

⌊

A
B

⌋)

B. (7.2)

pow(A,B): Exponentiation. Returns the value ofA raised to the powerB.

radians(A): Convert degrees to radians. Returns the angle measured in
radians whose value in degrees isA. The formula is

Aradians=
π

180
Adegree. (7.3)

1⌊x⌋ is the smallest integer number larger thanx.

7.1. LANGUAGE BASICS 201

rand(A): Returns the next pseudo-random number from the stream speci-
fied by the positive integer A. You must call seed() to initialize a random
stream before calling rand(). The numbers are uniformly distributed,
and have values between 0.0 and 1.0, inclusively. The numbers gener-
ated by separate streams are independent random variables.

seed(A): Initializes a new pseudo-random stream with the initial seed
value A. The number corresponding to this random stream is returned.
Any number of pseudo-random streams may be used as shown in the
example below:

#declare R1 = seed(0)

#declare R2 = seed(12345)

#sphere {

<rand(R1), rand(R1), rand(R1)>,

rand(R2)

}

Multiple random generators are very useful in situations where you use
rand() to place a group of objects, and then decide to use rand() in an-
other location earlier in the file to set some colors or place another group
of objects. Without separate rand() streams, all of your objects would
move when you added more calls to rand(). This is very annoying.

sin(A): Sine ofA. Returns the sine of the angleA, whereA is measured
in radians.

sqrt(A): Square root ofA. Returns the value whose square isA.

tan(A): Tangent ofA. Returns the tangent of the angleA, whereA is
measured in radians.

7.1.8.2 Vector Functions

The following are the functions which take one or more vectorand float parameters and
return vector or float values. All of these functions supportonly three component vec-
tors. Assume thatA andB are any valid expression that evaluates to a three component
vector and thatF is any valid expression that evaluates to a float.

vaxis rotate(A,B,F): RotateA aboutB by A. Given thex, y, z coor-
dinates of a point in space designated by the vectorA, rotate that point
about an arbitrary axis defined by the vectorB. Rotate it through an
angle specified in degrees by the float valueF. The result is a vector
containing the newx, y, z coordinates of the point.

vcross(A,B): Cross product ofA andB. Returns a vector that is the vec-
tor cross product of the two vectors. The resulting vector isperpen-
dicular to the two original vectors and its length is proportional to the
angle between them. See the animated demo sceneVECT2.POV for an
illustration.

202 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

vdot(A,B): Dot product ofA andB. Returns a float value that is the dot
product (sometimes called scaler product ofA with B). The formula is

vdot= AxBx+AyBy+AzBz. (7.4)

See the animated demo sceneVECT2.POV for an illustration.

vlength(A): Length ofA. Returns a float value that is the length of vec-
tor A. Can be used to compute the distance between two points. The
formula is

vlength=
√

vdot(A,A). (7.5)

vnormalize(A): Normalize vectorA. Returns a unit length vector that is
the same direction asA. The formula isvnormalize= A/vlength(A).

vrotate(A,B): RotateA about origin byB. Given thex, y, z coordinates
of a point in space designated by the vectorA, rotate that point about
the origin by an amount specified by the vectorB. Rotate it about thex-
axis by an angle specified in degrees by the float valueB.x. Similarly
B.y andB.z specify the amount to rotate in degrees about they-axis
andz-axis. The result is a vector containing the newx,y,z coordinates
of the point.

7.1.8.3 String Functions

The following are the functions which take one or more stringand float parameters and
return string or float values. Assume thatS1 andS2 are any valid strings and thatA, L
andP are any valid expressions that evaluate to floats.

asc(S1): ASCII value ofS1. Returns an integer value in the range 0 to
255 that is the ASCII value of the first character ofS1. For example
asc("ABC") is 65 because that is the value of the character ”A”.

chr(A): Character whose ASCII value isA. Returns a single character
string. The ASCII value of the character is specified by an integerA
which must be in the range 0 to 255. For examplechr(70) is the
string ”F”. If you use chr() when rendering text objects you should be
aware that the characters rendered for values of A> 127 are dependent
on the (TTF) font being used. Many (TTF) fonts use the Latin-1(ISO
8859-1) character set, but not all do.

concat(S1,S2,[S3 . . .]): Concatenate stringsS1 andS2. Returns
a string that is the concatenation of all parameter strings.Must have at
least 2 parameters but may have more. For example:

concat("Value is ", str(A,3,1), " inches")

7.1. LANGUAGE BASICS 203

If the float valueAwas 12.34 the result is ”Value is 12.3 inches”, which
is a string.

file exists(S1): Search for file specified byS1. Attempts to open the
file whose name is specified the stringS1. The current directory and
all directories specified in anyLibrary Path INI options or+L com-
mand line switches are searched. File is immediately closed. Returns a
boolean value 1 on success and 0 on failure.

str(A,L,P): Convert floatA to formatted string. Returns a formatted
string representation of float valueA. The float parameterL specifies
the minimum length of the string and the type of left padding used if
the string’s representation is shorter than the minimum. IfL is positive
then the padding is with blanks. IfL is negative then the padding is
with zeros. The overall minimum length of the formatted string is
abs(L). If the string needs to be longer, it will be made as long as
necessary to represent the value.

The float parameterP specifies the number of digits after the decimal
point. If P is negative then a compiler-specific default precision is use.
Here are some examples:

str(123.456,0,3) "123.456"

str(123.456,4,3) "123.456"

str(123.456,9,3) " 123.456"

str(123.456,-9,3) "00123.456"

str(123.456,0,2) "123.46"

str(123.456,0,0) "123"

str(123.456,5,0) " 123"

str(123.000,7,2) " 123.00"

str(123.456,0,-1) "123.456000" (platform specific)

strcmp(S1,S2): Compare stringS1 to S2. Returns a float value zero
if the strings are equal, a positive number ifS1 comes afterS2 in the
ASCII collating sequence, else a negative number.

strlen(S1): Length ofS1. Returns an integer value that is the number
of characters in the stringS1.

strlwr(S1): Lower case ofS1. Returns a new string in which all upper
case letters in the stringS1 are converted to lower case. The original
string is not affected. For examplestrlwr("Hello There!")

results in ”hello there!”.

substr(S1,P,L): Sub-string fromS1. Returns a string that is a subset
of the characters in parameterS1 starting at the position specified by
the integer valueP for a length specified by the integer valueL. For ex-
amplesubstr("ABCDEFGHI",4,2) evaluates to the string ”‘EF”.
If P+L > strlen(S1) an error occurs.

204 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

strupr(S1): Upper case ofS1. Returns a new string in which all lower
case letters in the stringS1 are converted to upper case. The original
string is not affected. For examplestrupr("Hello There!")

results in ”HELLO THERE!”.

val(S1): Convert stringS1 to float. Returns a float value that is repre-
sented by the text inS1. For exampleval("123.45") is 123.45 as
a float.

7.2 Language Directives

The POV Scene Language contains several statements calledlanguage directiveswhich
tell the file parser how to do its job. These directives can appear in almost any place in
the scene file — even in the middle of some other statements. They are used to include
other text files in the stream of commands, to declare identifiers, to define conditional
or looped parsing and to control other important aspects of scene file processing.

Each directive begins with the hash character# (often called a number sign or pound
sign). It is followed by a keyword and optionally other parameters.

In versions of POV-Ray prior to 3.0, the use of this# character was optional. Language
directives could only be used between objects, camera or light source statements and
could not appear within those statements. The exception wasthe#include which
could appear anywhere. Now that all language directives canbe used almost anywhere,
the# character is mandatory.

The following keywords introduce language directives.

#break #default #statistics
#case #else #switch
#debug #end #version
#declare #render #warning

Earlier versions of POV-Ray considered#max intersections and
#max trace level to be language directives but they have been moved to
the global settings statement. Their use as a directive still works but it
generates a warning and may be discontinued in the future.

7.2.1 Include Files

The language allows include files to be specified by placing the line

#include "filename.inc"

7.2. LANGUAGE DIRECTIVES 205

at any point in the input file. The filename may be specified by any valid string ex-
pression but it usually is a literal string enclosed in double quotes. It may be up to 40
characters long (or your computer’s limit), including the two double-quote characters.

The include file is read in as if it were inserted at that point in the file. Using include is
the same as actually cutting and pasting the entire contentsof this file into your scene.

Include files may be nested. You may have at most 10 nested include files. There is no
limit on un-nested include files.

Generally, include files have data for scenes but are not scenes in themselves. By
convention scene files end in.POV and include files end with. INC.

It is legal to specify drive and directory information in thefile specification however it
is discouraged because it makes scene files less portable between various platforms.

It is typical to put standard include files in a special sub-directory. POV-Ray can only
read files in the current directory or one referenced by theLibrary Path option (See
section 6.2.3.2 on page 166).

7.2.2 Declare

Identifiers may be declared and later referenced to make scene files more readable and
to parametrize scenes so that changing a single declarationchanges many values. There
are several built-in identifiers which POV-Ray declares foryou. See 7.1.7 on page 197
for details.

7.2.2.1 Declaring identifiers

An identifier is declared as follows.

#declare IDENTIFIER = ITEM

WhereIDENTIFIER is the name of the identifier up to 40 characters long andITEM

is any of the following

float, vector, color or string expressions
objects (all kinds)
texture, pigment, normal, finish or halo
color map, pigmentmap, slopemap, normalmap
camera, lightsource
atmosphere
fog
rainbow
sky sphere
transform

206 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Here are some examples.

#declare Rows = 5

#declare Count = Count+1

#declare Here = <1,2,3>

#declare White = rgb <1,1,1>

#declare Cyan = color blue 1.0 green 1.0

#declare Font_Name = "ariel.ttf"

#declare Ring = torus {5,1}

#declare Checks = pigment{ checker White, Cyan }

object{ Rod scale y*5 } // not "cylinder { Rod } "

object {

Ring

pigment { Checks scale 0.5 }

transform Skew

}

Declarations, like most language directives, can appear anywhere in the file — even
within other statements. For example:

#declare Here=<1,2,3>

#declare Count=0 // initialize Count

union {

object { Rod translate Here*Count }

#declare Count=Count+1 // re-declare inside union

object { Rod translate Here*Count }

#declare Count=Count+1 // re-declare inside union

object { Rod translate Here*Count }

}

As this example shows, you can re-declare an identifier and may use previously de-
clared values in that re-declaration. However if you attempt to re-declare an identifier
as anything other than its original type, it will generate a warning message.

Declarations may be nested inside each other within limits.In the example in the
previous section you could declare the entire union as a object. However for technical
reasons you may not use any language directive inside the declaration of floats, vectors
or color expressions.

7.2.3 Default Directive

POV-Ray creates a default texture when it begins processing. You may change those
defaults as described below. Every time you specify atexture { . . . } statement,

7.2. LANGUAGE DIRECTIVES 207

POV-Ray creates a copy of the default texture. Anything you put in the texture state-
ment overrides the default settings. If you attach apigment, normal or finish
to an object without any texture statement then POV-Ray checks to see if a texture has
already been attached. If it has a texture then the pigment, normal or finish will modify
the existing texture. If no texture has yet been attached to the object then the default
texture is copied and the pigment, normal or finish will modify that texture.

You may change the default texture, pigment, normal or finishusing the language di-
rective#default { . . . } as follows:

#default {

texture {

pigment {...}

normal {...}

finish {...}

}

}

Or you may change just part of it like this:

#default {

pigment {...}

}

This still changes the pigment of the default texture. At anytime there is only one
default texture made from the default pigment, normal and finish. The example above
does not make a separate default for pigments alone. Note that the special textures
tiles andmaterial map or a texture with atexture map may not be used as
defaults.

You may change the defaults several times throughout a sceneas you wish. Subse-
quent#default statements begin with the defaults that were in effect at thetime. If
you wish to reset to the original POV-Ray defaults then you should first save them as
follows:

//At top of file

#declare Original_Default = texture {}

later after changing defaults you may restore it with. . .

#default {texture {Original_Default}}

If you do not specify a texture for an object then the default texture is attached when the
object appears in the scene. It is not attached when an objectis declared. For example:

208 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

#declare My_Object=

sphere{ <0,0,0>, 1 } // Default texture not applied

object { My_Object } // Default texture added here

You may force a default texture to be added by using an empty texture statement as
follows:

#declare My_Thing =

sphere { <0,0,0>, 1 texture {} } // Default texture applied

The original POV-Ray defaults for all items are given throughout the documentation
under each appropriate section.

7.2.4 Version Directive

While many language changes have been made for POV-Ray 3.0, all of version 2.0
syntax and most of version 1.0 syntax still works. Whenever possible we try to maintain
backwards compatibility. One feature introduced in 2.0 that was incompatible with any
1.0 scene files is the parsing of float expressions. Setting+MV1.0 command line switch
or theVersion=1.0 INI option turns off expression parsing as well as many warning
messages so that nearly all 1.0 files will still work. The changes between 2.0 and 3.0
are not as extensive. SettingVersion=2.0 is only necessary to eliminate some warning
messages. Naturally the default setting for this option isVersion=3.0.

The#version language directive is used to change modes within scene files. This
switch or INI options only affects the initial setting.

Together with the built-inversion identifier the#version directive allows you to
save and restore the previous values of this compatibility setting. For example suppose
MYSTUFF.INC is in version 1.0 format. At the top of the file you could put:

#declare Temp_Vers = version // Save previous value

#version 1.0 // Change to 1.0 mode

... // Version 1.0 stuff goes here ...

#version Temp_Vers // Restore previous version

Previous versions of POV-Ray would not allow you to change versions inside an object
or declaration but that restriction has been lifted for POV-Ray 3.0.

Future versions of POV-Ray may not continue to maintain fullbackward compatibility
even with the#version directive. We strongly encourage you to phase in 3.0 syntax
as much as possible.

7.2. LANGUAGE DIRECTIVES 209

7.2.5 Conditional Directives

POV-Ray 3.0 allows a variety of new language directives to implement conditional
parsing of various sections of your scene file. This is especially useful in describing
the motion for animations but it has other uses as well. Also available is a#while
loop directive. You may nest conditional directives 200 levels deep.

7.2.5.1 IF ELSE Directives

The simplest conditional directive is a traditional#if directive. It is of the form. . .

#if (COND)

// This section is

// parsed if COND is true

#else

// This section is

// parsed if COND is false

#end // End of conditional part

where(COND) is a float expression that evaluates to a boolean value. A value of 0.0 is
false and any non-zero value is true. Note that extremely small values of about 1e−10
are considered zero in case of round off errors. The parentheses around the condition
are required. The#else directive is optional. The#end directive is required.

7.2.5.2 IFDEF Directives

The#ifdef directive is similar to the#if directive however it is used to determine
if an identifier has been previously declared. After the#ifdef directive instead of a
boolean expression you put a lone identifier enclosed in parentheses. For example:

#ifdef (User_Thing)

// This section is parsed if the

// identifier "User_Thing" was

// previously declared

object{User_Thing} // invoke identifier

#else

// This section is parsed if the

// identifier "User_Thing" was not

// previously declared

box{<0,0,0>,<1,1,1>} // use a default

#end

// End of conditional part

The#else directive is optional. The#end directive is required.

210 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.2.5.3 IFNDEF Directives

The#ifndef directive is similar to the#ifdef directive however it is used to deter-
mine if the given identifier isn’t declared yet. For example:

#ifndef (User_Thing)

// This section is parsed if the

// identifier "User_Thing" was not

// previously declared

box{<0,0,0>,<1,1,1>} // use a default

#else

// This section is parsed if the

// identifier "User_Thing" was

// previously declared

object{User_Thing} // invoke identifier

#end

// End of conditional part

The#else directive is optional. The#end directive is required.

7.2.5.4 SWITCH CASE and RANGE Directives

A more powerful conditional is the#switch directive. The syntax is as follows. . .

#switch (VALUE)

#case (TEST_1)

// This section is parsed if VALUE=TEST_1

#break //First case ends

#case (TEST_2)

// This section is parsed if VALUE=TEST_2

#break //Second case ends

#range (LOW_1,HIGH_1)

// This section is parsed if

// (VALUE >= LOW_1) and (VALUE <= HIGH_1)

#break //Third case ends

#range (LOW_2,HIGH_2)

// This section is parsed if

// (VALUE >= LOW_2) and (VALUE <= HIGH_2)

#break //Fourth case ends

#else

// This section is parsed if no other case or

// range is true.

#end // End of conditional part

7.2. LANGUAGE DIRECTIVES 211

The float expressionVALUE following the#switch directive is evaluated and com-
pared to the values in the#case or #range directives. When using#case, it is
followed by a float expressionTEST 1 in parentheses. It is compared to theVALUE.
As usual in POV-Ray, float comparisons are considered equal if their difference is under
1e−10. If the values are equal, parsing continues normally until a#break, #else or
#end directive is reached. If the comparison fails POV-Ray skipsuntil another#case
or #range is found.

If you use the#range directive it is followed by two float expressionsLOW 1 and
HIGH 1 which are enclosed in parentheses and separated by a comma. If the switch
VALUE is in the range specified then parsing continues normally until a #break,
#else or#end directive is reached. If theVALUE is outside the range the comparison
fails and POV-Ray skips until another#case or #range is found.

If no #case or #range succeeds the#else section is parsed. The#else directive
is optional. If no#else is specified and no match succeeds then parsing resumes after
the#end directive.

There may be any number of#case or #range directives in any order you want.
If a segment evaluates true but no#break is specified, the parsing will fall through
to the next#case or #range and will continue until a#break, #else or #end.
Hitting a#break while parsing a successful section causes an immediate jumpto the
#end without processing subsequent sections, even if a subsequent condition would
also have been satisfied.

7.2.5.5 WHILE Directive

The#while directive is a looping feature that makes it easy to place multiple objects
in a pattern or other uses. The#while directive is followed by a float expression that
evaluates to a boolean value. A value of 0.0 is false and any non-zero value is true.
Note that extremely small values of about 1e−10 are considered zero in case of round
off errors. The parentheses around the expression are required. If the condition is
true parsing continues normally until an#end directive is reached. At the end, POV-
Ray loops back to the#while directive and the condition is re-evaluated. Looping
continues until the condition fails. When it fails, parsingcontinues after the#end
directive. For example:

#declare Count=0

#while (Count < 5)

object{MyObject translate x*3*Count}

#declare Count=Count+1

#end

This example places five copies ofMyObject in a row spaced three units apart in the
x-direction.

212 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.2.6 User Message Directives

With the addition of conditional and loop directives, the POV-Ray language has the
potential to be more like an actual programming language. This means that it will be
necessary to have some way to see what is going on when trying to debug loops and
conditionals. To fulfill this need we have added the ability to print text messages to the
screen. You have a choice of five different text streams to useincluding the ability to
generate a fatal error if you find it necessary. Limited formatting is available for strings
output by this method.

7.2.6.1 Text Message Streams

The syntax for a text message is any of the following:

#debug STRING

#error STRING

#error STRING

#render STRING

#statistics STRING

#warning STRING

WhereSTRING is any valid string of text including string identifiers or functions which
return strings. For example:

#switch (clock*360)

#range (0,180)

#render "Clock in 0 to 180 range\n"

#break

#range (180,360)

#render "Clock in 180 to 360 range\n"

#break

#else

#warning "Clock outside expected range\n"

#warning concat("Value is:",str(clock*360,5,0),"\n")

#end

There are seven distinct text streams that POV-Ray uses for output. You may output
only to five of them. On some versions of POV-Ray, each stream is designated by a
particular color. Text from these streams are displayed whenever it is appropriate so
there is often an intermixing of the text. The distinction isonly important if you choose
to turn some of the streams off or to direct some of the streamsto text files. On some
systems you may be able to review the streams separately in their own scroll-back
buffer. See 6.2.5.2 on page 174 for details on re-directing the streams to a text file.

7.2. LANGUAGE DIRECTIVES 213

Here is a description of how POV-Ray uses each stream. You mayuse them for what-
ever purpose you want except note that use of the#error stream causes a fatal error
after the text is displayed.

DEBUG: This stream displays debugging messages. It was primarily de-
signed for developers but this and other streams may also be used by
the user to display messages from within their scene files.

FATAL: This stream displays fatal error messages. After displaying this
text, POV-Ray will terminate. When the error is a scene parsing error,
you may be shown several lines of scene text that leads up to the error.

RENDER: This stream displays information about what options you have
specified to render the scene. It includes feedback on all of the ma-
jor options such as scene name, resolution, animation settings, anti-
aliasing and others.

STATISTICS: This stream displays statistics after a frame is rendered. It
includes information about the number of rays traced, the length of
time of the processing and other information.

WARNING: This stream displays warning messages during the parsing of
scene files and other warnings. Despite the warning, POV-Raycan con-
tinue to render the scene.

TheBANNERandSTATUSstreams can not be accessed by the user.

7.2.6.2 Text Formatting

Some escape sequences are available to include non-printing control characters in your
text. These sequences are similar to those used in string literals in the C programming
language. Note that these control characters only apply in text message directives.
They are not implemented for other string usage in POV-Ray such as text objects or file
names. Depending on what platform you are using, they may notbe fully supported
for console output. However they will appear in any text file if you re-direct a stream
to a file. The sequences are:

”\a” Bell or alarm, 0x07
”\b” Backspace, 0x08
”\f” Form feed, 0x0C
”\n” New line (line feed) 0x0A
”\r” Carriage return 0x0D
”\t” Horizontal tab 0x09
”\v” Vertical tab 0x0B
”\0” Null 0x00
”\\” Backslash 0x5C
”\’” Single quote 0x27

214 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

”\”” Double quote 0x22

For example:

#debug "This is one line.\nBut this is another"

7.3 POV-Ray Coordinate System

Objects, lights and the camera are positioned using a typical 3D coordinate system. The
usual coordinate system for POV-Ray has the positivey-axis pointing up, the positive
x-axis pointing to the right and the positivez-axis pointing into the screen. The negative
values of the axes point the other direction as shown in the images in section 4.1.1 on
page 33.

Locations within that coordinate system are usually specified by a three component
vector. The three values correspond to thex, y andz directions respectively. For ex-
ample, the vector〈1,2,3〉 means the point that’s one unit to the right, two units up and
three units in front of the center of theuniverseat 〈0,0,0〉.

Vectors are not always points though. They can also refer to an amount to size, move
or rotate a scene element or to modify the texture pattern applied to an object.

The supported transformations arerotate, scale andtranslate. They are used
to turn, size and translate an object or texture. A transformation matrix may also be
used to specify complex transformations directly.

7.3.1 Transformations

The supported transformations are rotate, scale and translate. They are used to turn,
size and translate an object or texture.

rotate <VECTOR>

scale <VECTOR>

translate <VECTOR>

7.3.1.1 Translate

An object or texture pattern may be moved by adding atranslateparameter. It consists
of the keywordtranslate followed by a vector expression. The terms of the vector
specify the number of units to move in each of thex, y and z directions. Translate
moves the element relative to it’s current position. For example

7.3. POV-RAY COORDINATE SYSTEM 215

sphere { <10, 10, 10>, 1

pigment { Green }

translate <-5, 2, 1>

}

will move the sphere from〈10,10,10〉 to 〈5,12,11〉. It does not move it to the absolute
location〈−5,2,1〉. Translating by zero will leave the element unchanged on that axis.
For example:

sphere { <10, 10, 10>, 1

pigment { Green }

translate 3*x // evaluates to <3,0,0> so move 3 units

// in the x direction and none along y or z

}

7.3.1.2 Scale

You may change the size of an object or texture pattern by adding ascaleparameter.
It consists of the keywordscale followed by a vector expression. The 3 terms of the
vector specify the amount of scaling in each of thex, y andz directions.

Scale is used tostretchor squishan element. Values larger than one stretch the element
on that axis while values smaller than one are used to squish it. Scale is relative to the
current element size. If the element has been previously re-sized using scale then scale
will size relative to the new size. Multiple scale values mayused.

For example

sphere { <0,0,0>, 1

scale <2,1,0.5>

}

will stretch and smash the sphere into an ellipsoid shape that is twice the original size
along thex-direction, remains the same size in they-direction and is half the original
size in thez-direction.

If a lone float expression is specified it is promoted to a threecomponent vector whose
terms are all the same. Thus the item is uniformly scaled by the same amount in all
directions. For example:

object {

MyObject

scale 5 // Evaluates as <5,5,5> so uniformly scale

// by 5 in every direction.

}

216 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.3.1.3 Rotate

You may change the orientation of an object or texture pattern by adding arotate pa-
rameter. It consists of the keywordrotate followed by a vector expression. The
three terms of the vector specify the number of degrees to rotate about each of thex-,
y- andz-axes.

Note that the order of the rotations does matter. Rotations occur about thex-axis first,
then they-axis, then thez-axis. If you are not sure if this is what you want then you
should only rotate on one axis at a time using multiple rotation statements to get a
correct rotation. As in

rotate <0, 30, 0> // 30 degrees around Y axis then,

rotate <-20, 0, 0> // -20 degrees around X axis then,

rotate <0, 0, 10> // 10 degrees around Z axis.

Rotation is always performed relative to the axis. Thus if anobject is some distance
from the axis of rotation it will not only rotate but it willorbit about the axis as though
it was swinging around on an invisible string.

To work out the rotation directions you must perform the famous Computer Graphics
Aerobicsexercise as explained in the section 4.1.1 on page 33.

7.3.1.4 Matrix Keyword

Thematrix keyword can be used to explicitly specify the transformation matrix to
be used for objects or textures. Its syntax is:

matrix < m00, m01, m02,

m10, m11, m12,

m20, m21, m22,

m30, m31, m32 >

Wherem00 throughm32 are float expressions that specify the elements of a 4×4
matrix with the fourth column implicitly set to〈0,0,0,1〉. A point P, P= 〈px, py, pz〉,
is transformed intoQ, Q= 〈qx,qy,qz〉, by

qx =m0,0px+m1,0py+m2,0 pz+m3,0

qy =m0,1px+m1,1py+m2,1 pz+m3,1

qz=m0,2px+m1,2py+m2,2 pz+m3,2

(7.6)

Normally you won’t use the matrix keyword because it’s less descriptive than the trans-
formation commands and harder to visualize. There is an intersecting aspect of the
matrix command though. It allows more general transformation like shearing. The
following matrix causes an object to be sheared along they-axis.

7.3. POV-RAY COORDINATE SYSTEM 217

object {

MyObject

matrix < 1, 1, 0,

0, 1, 0,

0, 0, 1,

0, 0, 0 >

}

7.3.2 Transformation Order

Because rotations are always relative to the axis and scaling is relative to the origin,
you will generally want to create an object at the origin and scale and rotate it first.
Then you may translate it into its proper position. It is a common mistake to carefully
position an object and then to decide to rotate it because a rotation of an object causes
it to orbit about the axis, the position of the object may change so much that it orbits
out of the field of view of the camera!

Similarly scaling after translation also moves an object unexpectedly. If you scale after
you translate the scale will multiply the translate amount.For example

translate <5, 6, 7>

scale 4

will translate to〈20,24,28〉 instead of〈5,6,7〉. Be careful when transforming to get
the order correct for your purposes.

7.3.3 Transform Identifiers

At times it is useful to combine together several transformations and apply them in
multiple places. Atransform identifier may be used for this purpose. Transform
identifiers are declared as follows:

#declare IDENT = transform { TRANSFORMATION... }

WhereIDENT is the identifier to be declared andTRANSFORMATION is one or more
translate, rotate, scale or matrix specifications or a previously declared
transform identifier. A transform identifier is invoked by the transform keyword
without any brackets as shown here:

object {

MyObject // Get a copy of MyObject

transform MyTrans // Apply the transformation

218 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

translate -x*5 // Then move it 5 units left

}

object {

MyObject // Get another copy of MyObject

transform MyTrans // Apply the same transformation

translate -x*5 // Then move this one 5 units right

}

On extremely complex CSG objects with lots of components it may speed up parsing if
you apply a declared transformation rather than the individualtranslate,rotate,
scale or matrix specifications. Thetransform is attached just once to each
component. Applying each individualtranslate, rotate, scale or matrix
specifications takes long. This only affects parsing — rendering works the same either
way.

7.3.4 Transforming Textures and Objects

When an object is transformed all textures attached to the object at that time are trans-
formed as well. This means that if you have atranslate, rotate, scale or
matrix in an objectbefore a texture the texture will not be transformed. If the trans-
formation isafter the texture then the texture will be transformed with the object. If
the transformation isinside thetexture { . . . } statement thenonly the texture
is affected. The shape remains the same. For example:

sphere { 0, 1

texture { Jade } // texture identifier from TEXTURES.INC

scale 3 // this scale affects both the

// shape and texture

}

sphere { 0, 1

scale 3 // this scale affects the shape only

texture { Jade }

}

sphere { 0, 1

texture {

Jade

scale 3 // this scale affects the texture only

}

}

Transformations may also be independently applied to pigment patterns and surface
normal patterns. Note that scaling a normal pattern affectsonly the width and spacing.
It does not affect the apparent height or depth of the bumps. For example:

7.4. CAMERA 219

box { <0, 0, 0>, <1, 1, 1>

texture {

pigment {

checker Red, White

scale 0.25 // This affects only the color pattern

}

normal {

bumps 0.3 // This specifies apparent height of bumps

scale 0.2 // Scales diameter and space between bumps

// but not the height. Has no effect on

// color pattern.

}

rotate y*45 // This affects the entire texture but

} // not the object.

}

7.4 Camera

The camera definition describes the position, projection type and properties of the cam-
era viewing the scene. Its syntax is:

camera {

[perspective | orthographic | fisheye |

ultra_wide_angle | omnimax | panoramic |

cylinder FLOAT]

location <VECTOR>

look_at <VECTOR>

right <VECTOR>

up <VECTOR>

direction <VECTOR>

sky <VECTOR>

right <VECTOR>

angle FLOAT

blur_samples FLOAT

aperture FLOAT

focal_point <VECTOR>

normal { NORMAL }

}

Depending on the projection type some of the parameters are required, some are op-
tional and some aren’t used. If no projection type is given the perspective camera will
be used (pinhole camera). If no camera is specified a default camera is used.

Regardless of the projection type all cameras use thelocation, look at, right,
up, direction andsky keywords to determine the location and orientation of the

220 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

camera. Their meaning differs with the projection type used. A more detailed explana-
tion of the camera placement follows later.

7.4.1 Type of Projection

The following list explains the different projection typesthat can be used with the
camera. The most common types are the perspective and orthographic projections.

angle

location
direction

look_atimage plane

up

right

+0.5

-0.5

+0.5

-0.5

Figure 7.1: The perspective camera.

Perspective projection: This projection represents the classic pinhole cam-
era. The (horizontal) viewing angle is either determined bythe ratio
between the length of the direction vector and the length of the right
vector or by the optional keywordangle, which is the preferred way.
The viewing angle has to be larger than 0 degrees and smaller than 180
degrees. See figure 7.1 for an overview of the perspective camera’s
geometry.

Orthographic projection: This projection uses parallel camera rays to cre-
ate an image of the scene. The size of the image is determined by the
lengths of the right and up vectors.
If you add the orthographic keyword after all other parameters of a per-
spective camera you’ll get an orthographic view with the same image
area, i. e. the size of the image is the same. In this case you needn’t
specify the lengths of the right and up vector because they’ll be calcu-
lated automatically. You should be aware though that the visible parts
of the scene change when switching from perspective to orthographic
view. As long as all objects of interest are near the lookat location
they’ll be still visible if the orthographic camera is used.Objects farer
away may get out of view while nearer objects will stay in view.

7.4. CAMERA 221

Fisheye projection: This is a spherical projection. The viewing angle is
specified by theangle keyword. An angle of 180 degrees creates the
standard fisheyewhile an angle of 360 degrees creates asuper-fisheye
(I-see-everything-view). If you use this projection you should get a
circular image. If this isn’t the case, i. e. you get an elliptical image,
you should read 7.4.4.5.1 on page 225.

Ultra wide angle projection: This projection is somewhat similar to the
fisheye but it projects the image onto a rectangle instead of acircle.
The viewing angle can be specified using theangle keyword.

Omnimax projection: The omnimax projection is a 180 degrees fisheye
that has a reduced viewing angle in the vertical direction. In reality
this projection is used to make movies that can be viewed in the dome-
like Omnimax theaters. The image will look somewhat elliptical. The
angle keyword isn’t used with this projection.

Panoramic projection: This projection is calledcylindrical equirectangu-
lar projection. It overcomes the degeneration problem of the perspec-
tive projection if the viewing angle approaches 180 degrees. It uses a
type of cylindrical projection to be able to use viewing angles larger
than 180 degrees with a tolerable lateral-stretching distortion. The
angle keyword is used to determine the viewing angle.

Cylindrical projection: Using this projection the scene is projected onto a
cylinder. There are four different types of cylindrical projections de-
pending on the orientation of the cylinder and the position of the view-
point. The viewing angle and the length of the up or right vector deter-
mine the dimensions of the camera and the visible image. The camera
to use is specified by a number. The types are:

1 vertical cylinder, fixed viewpoint
2 horizontal cylinder, fixed viewpoint
3 vertical cylinder, viewpoint moves along the cylinder’s

axis
4 horizontal cylinder, viewpoint moves along the cylinder’s

axis

If the perspective camera is used theangle keyword overrides the viewing angle
specified by thedirection keyword and vice versa. Each timeangle is used the
length of the direction vector is adjusted to fit the new viewing angle.

There is no limitation to the viewing angle except for the perspective projection. If you
choose viewing angles larger than 360 degrees you’ll see repeated images of the scene
(the way the repetition takes place depends on the camera). This might be useful for
special effects.

You should note that the vista buffer can only be used with theperspective and ortho-
graphic camera.

222 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.4.2 Focal Blur

Simulates focal depth-of-field by shooting a number of sample rays from jittered points
within each pixel and averaging the results.

The aperture setting determines the depth of the sharpness zone. Large apertures give
a lot of blurring, while narrow apertures will give a wide zone of sharpness. Note that,
while this behaves as a real camera does, the values for aperture are purely arbitrary
and are not related to f-stops.

The center of thezone of sharpnessis the focal point vector (the default
focal point is 〈0,0,0〉).

The blur samplesvalue controls the maximum number of rays to use for each pixel.
More rays give a smoother appearance but is slower, althoughthis is controlled some-
what by an adaptive mechanism that stops shooting rays when acertain degree of confi-
dence has been reached that shooting more rays would not result in a significant change.

Theconfidence andvariance keywords control the adaptive function. The con-
fidence value is used to determine when the samples seem to beclose enoughto the
correct color. The variance value specifies an acceptable tolerance on the variance of
the samples taken so far. In other words, the process of shooting sample rays is ter-
minated when the estimated color value is very likely (as controlled by the confidence
probability) near the real color value.

Since the confidence is a probability its values can range from 0 to 1 (the default is 0.9,
i. e. 90%). The value for the variance should be in the range ofthe smallest displayable
color difference (the default is 1/128).

Larger confidence values will lead to more samples, slower traces and better images.
The same holds for smaller variance thresholds.

By default no focal blur is used, i. e. the default aperture is0 and the default number
of samples is 0.

7.4.3 Camera Ray Perturbation

The optional keywordnormal may be used to assign a normal pattern to the camera.
All camera rays will be perturbed using this pattern. This lets you create special effects.
See the animated sceneCAMERA2.POV for an example.

7.4.4 Placing the Camera

In the following sections the placing of the camera will be further explained.

7.4. CAMERA 223

7.4.4.1 Location and LookAt

Under many circumstances just two vectors in the camera statement are all you need to
position the camera:location andlook at. For example:

camera {

location <3,5,-10>

look_at <0,2,1>

}

The location is simply thex, y, z coordinates of the camera. The camera can be located
anywhere in the ray-tracing universe. The default locationis 〈0,0,0〉. Thelook at

vector tells POV-Ray to pan and tilt the camera until it is looking at the specifiedx, y, z
coordinates. By default the camera looks at a point one unit in thez-direction from the
location.

Thelook at specification should almost always be the last item in the camera state-
ment. If other camera items are placed after thelook at vector then the camera may
not continue to look at the specified point.

7.4.4.2 The Sky Vector

Normally POV-Ray pans left or right by rotating about they-axis until it lines up with
the look at point and then tilts straight up or down until the point is metexactly.
However you may want to slant the camera sideways like an airplane making a banked
turn. You may change the tilt of the camera using thesky vector. For example:

camera {

location <3,5,-10>

sky <1,1,0>

look_at <0,2,1>

}

This tells POV-Ray to roll the camera until the top of the camera is in line with the sky
vector. Imagine that the sky vector is an antenna pointing out of the top of the camera.
Then it uses thesky vector as the axis of rotation left or right and then to tilt upor
down in line with thesky vector. In effect you’re telling POV-Ray to assume that the
sky isn’t straight up. Note that the sky vector must appear before thelook at vector.

Thesky vector does nothing on its own. It only modifies the way thelook at vector
turns the camera. The default value for sky is〈0,1,0〉.

7.4.4.3 The Direction Vector

Thedirection vector tells POV-Ray the initial direction to point the camera before
moving it withlook at orrotate vectors (the default isdirection 〈0,0,1〉). It

224 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

may also be used to control the (horizontal) field of view withsome types of projection.
This should be done using the easier to useangle keyword though.

If you are using the ultra wide angle, panoramic or cylindrical projection you should
use a unit length direction vector to avoid strange results.

The length of the direction vector doesn’t matter if one of the following projection
types is used: orthographic, fisheye or omnimax.

7.4.4.4 Angle

Theangle keyword specifies the (horizontal) viewing angle in degressof the camera
used. Even though it is possible to use the direction vector to determine the viewing
angle for the perspective camera it is much easier to use the angle keyword.

The necessary calculations to convert from one method to theother are described be-
low. These calculations are used to determine the length of the direction vector when-
ever theangle keyword is encountered.

The viewing angle is converted to a direction vector length and vice versa using the
formula The viewing angleα is given by the formula

α = 2tan−1 lr
2ld

(7.7)

wherelr andld are the lengths of the right and direction vector respectively.

From this the length of the direction vector can be calculated for a given viewing angle
and right vector. From this the length of the directionld vector can be calculated for a
given viewing angle∠ and right vector.

ld=
lr

2tan
(α

2

) . (7.8)

7.4.4.5 Up and Right Vectors

The direction of theup andright vectors (together with the direction vector) deter-
mine the orientation of the camera in the scene. They are set implicitly by their default
values of

right 4/3*x

up y

or thelook at parameter (in combination withlocation). The directions of an
explicitly specified right and up vector will be overridden by any followinglook at

parameter.

7.4. CAMERA 225

While some camera types ignore the length of these vectors others use it to extract
valuable information about the camera settings. The following list will explain the
meaning of the right and up vector for each camera type. Sincethe direction the vectors
is always used to describe the orientation of the camera it will not be explained again.

Perspective projection: The lengths of the up and right vectors are used to
set the size of the viewing window and the aspect ratio as described
in detail in section 7.4.4.5.1. Since the field of view depends on the
length of the direction vector (implicitly set by theangle keyword or
explicitly set by thedirection keyword) and the lengths of the right
and up vectors you should carefully choose them in order to get the
desired results.

Orthographic projection: The lengths of the right and up vector set the
size of the viewing window regardless of the direction vector length,
which is not used by the orthographic camera. Again the relation of the
lengths is used to set the aspect ratio.

Fisheye projection: The right and up vectors are used to set the aspect ratio.

Ultra wide angle projection: The up and right vectors work in a similar
way as for the perspective camera.

Omnimax projection: The Omnimax projection is quite similar to the fish-
eye and thus the right and up vectors are also used to determine the
aspect ratio of the resulting image.

Panoramic projection: The up and right vectors work in a similar way as
for the perspective camera.

Cylindrical projection: In cylinder type one and three the axis of the cylin-
der lies along theup vector and the width is determined by the length
of right vector or it may be overridden with theangle vector. In
type three theup vector determines how many units high the image is.
For example if you haveup 4*y on a camera at the origin only points
from y=−2 to y= 2 are visible. All viewing rays are perpendicular
to they-axis. For type two and four, the cylinder lies along theright

vector. Viewing rays for type four are perpendicular to theright vec-
tor.

Note that the up, right and direction vectors should always remain perpendicular to
each other or the image will be distorted. If this is not the case a warning message will
be printed. The vista buffer will not work for non-perpendicular camera vectors.

7.4.4.5.1 Aspect Ratio

Together the right and up vectors define theaspect ratio(height to width ratio) of the
resulting image. The default valuesup 〈0,1,0rangle andright 〈1.33,0,0〉 result
in an aspect ratio of 4 to 3. This is the aspect ratio of a typical computer monitor. If

226 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

you wanted a tall skinny image or a short wide panoramic imageor a perfectly square
image you should adjust the up and right vectors to the appropriate proportions.

Most computer video modes and graphics printers use perfectly square pixels. For
example Macintosh displays and IBM S-VGA modes 640x480, 800x600 and 1024x768
all use square pixels. When your intended viewing method uses square pixels then the
width and height you set with the+W and+H switches should also have the same ratio
as the right and up vectors. Note that 640/480 = 4/3 so the ratio is proper for this square
pixel mode.

Not all display modes use square pixels however. For exampleIBM VGA mode
320x200 and Amiga 320x400 modes do not use square pixels. These two modes still
produce a 4/3 aspect ratio image. Therefore images intendedto be viewed on such
hardware should still use 4/3 ratio on their up and right vectors but the+W and+H
settings will not be 4/3.

For example:

camera {

location <3,5,-10>

up <0,1,0>

right <1,0,0>

look_at <0,2,1>

}

This specifies a perfectly square image. On a square pixel display like SVGA you
would use+W and+H settings such as+W480+H480 or+W600+H600. However on
the non-square pixel Amiga 320x400 mode you would want to usevalues of+W240
+H400 to render a square image.

7.4.4.5.2 Handedness

Theright vector also describes the direction to the right of the camera. It tells POV-
Ray where the right side of your screen is. The sign of the right vector can be used to
determine the handedness of the coordinate system in use. The default right statement
is:

right <1.33, 0, 0>

This means that the+x-direction is to the right. It is called aleft-handedsystem be-
cause you can use your left hand to keep track of the axes. Holdout your left hand with
your palm facing to your right. Stick your thumb up. Point straight ahead with your
index finger. Point your other fingers to the right. Your bent fingers are pointing to the
+x-direction. Your thumb now points into+y-direction. Your index finger points into
the+z-direction.

7.4. CAMERA 227

To use a right-handed coordinate system, as is popular in some CAD programs and
other ray-tracers, make the same shape using your right hand. Your thumb still points
up in the+y-direction and your index finger still points forward in the+z-direction but
your other fingers now say the+x-direction is to the left. That means that theright
side of your screen is now in the−x-direction. To tell POV-Ray to act like this this you
can use a negativex value in theright vector like this:

right <-1.33, 0, 0>

Sincex increasing to the left doesn’t make much sense on a 2D screen you now ro-
tate the whole thing 180 degrees around by using a positivez value in your camera’s
location. You end up with something like this.

camera {

location <0,0,10>

up <0,1,0>

right <-1.33,0,0>

look_at <0,0,0>

}

Now when you do your ray-tracer’s aerobics, as explained in the section 4.1.1 on
page 33, you use your right hand to determine the direction ofrotations.

In a two dimensional grid,x is always to the right andy is up. The two versions of
handedness arise from the question of whetherz points into the screen or out of it and
which axis in your computer model relates to up in the real world.

Architectural CAD systems, like AutoCAD, tend to use theGod’s Eyeorientation that
thez-axis is the elevation and is the model’s up direction. This approach makes sense
if you’re an architect looking at a building blueprint on a computer screen.z means up,
and it increases towards you, withx andy still across and up the screen. This is the
basic right handed system.

Stand alone rendering systems, like POV-Ray, tend to consider you as a participant.
You’re looking at the screen as if you were a photographer standing in the scene. Up in
the model is nowy, the same as up in the real world andx is still to the right, soz must
be depth, which increases away from you into the screen. Thisis the basic left handed
system.

7.4.4.6 Transforming the Camera

The translate androtate commands can re-position the camera once you’ve
defined it. For example:

228 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

camera {

location < 0, 0, 0>

direction < 0, 0, 1>

up < 0, 1, 0>

right < 1, 0, 0>

rotate <30, 60, 30>

translate < 5, 3, 4>

}

In this example, the camera is created, then rotated by 30 degrees about thex-axis,
60 degrees about they-axis and 30 degrees about thez-axis, then translated to another
point in space.

7.4.5 Camera Identifiers

You may declare several camera identifiers if you wish. This makes it easy to quickly
change cameras. For example:

#declare Long_Lens =

camera {

location -z*100

angle 3

}

#declare Short_Lens =

camera {

location -z*50

angle 15

}

camera {

Long_Lens // edit this line to change lenses

look_at Here

}

7.5 Objects

Objects are the building blocks of your scene. There are a lotof different types of
objects supported by POV-Ray: finite solid primitives, finite patch primitives, infinite
solid polynomial primitives and light sources. Constructive Solid Geometry (CSG) is
also supported.

The basic syntax of an object is a keyword describing its type, some floats, vectors
or other parameters which further define its location and/orshape and some optional

7.5. OBJECTS 229

object modifiers such as texture, pigment, normal, finish, bounding, clipping or trans-
formations.

The texture describes what the object looks like, i. e. its material. Textures are com-
binations of pigments, normals, finishes and halos. Pigmentis the color or pattern
of colors inherent in the material. Normal is a method of simulating various patterns
of bumps, dents, ripples or waves by modifying the surface normal vector. Finish de-
scribes the reflective and refractive properties of a material. The halo is used to describe
the interior of the object.

Bounding shapes are finite, invisible shapes which wrap around complex, slow render-
ing shapes in order to speed up rendering time. Clipping shapes are used to cut away
parts of shapes to expose a hollow interior. Transformations tell the ray-tracer how to
move, size or rotate the shape and/or the texture in the scene.

7.5.1 Empty and Solid Objects

It is very important that you know the basic concept behind empty and solid objects in
POV-Ray to fully understand how features like halos and translucency are used.

Objects in POV-Ray can either be solid, empty or filled with (small) particles.

A solid object is made from the material specified by its pigment and finish statements
(and to some degree its normal statement). By default all objects are assumed to be
solid. If you assign a stone texture to a sphere you’ll get a ball made completely of
stone. It’s like you had cut this ball from a block of stone. A glass ball is a massive
sphere made of glass.

You should be aware that solid objects are conceptual things. If you e. g. clip away
parts of the sphere you’ll see that the sphere is empty, i. e. you’ll clearly see that the
interior is empty and it just has a very thin surface.

This is not contrary to the concept of a solid object used in POV-Ray. It is assumed that
all space inside the sphere is covered by the sphere’s material. Thus there is no room
for any other particles like those used by fog or halos.

Empty objects are created by adding thehollow keyword (see 7.5.7.3 on page 276) to
the object statement. An empty (or hollow) object is assumedto be made of a very thin
surface which is of the material specified by the pigment, finish and normal statements.
The object’s interior is empty, i. e. it normally contains air molecules.

An empty object can be filled with particles by adding fog or atmosphere to the scene
or by adding a halo to the object. It is very important to understand that in order to fill
an object with any kind of particles it first has to be made hollow.

7.5.1.1 Halo Pitfall

There is a piftall in the current empty/solid object implementation that you have to be
aware of.

230 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

In order to be able to put solid objects inside a halo (this also holds for fog and atmo-
sphere) a test has to be made for every ray that passes throughthe halo. If this ray
travels through a solid object the halo will not be calculated. This is what anyone will
expect.

The problem arises when the camera ray is inside any non-hollow object. In this case
the ray is already travelling through a solid object and evenif the halo’s container
object is hit and it is hollow, the halo will not be calculated. There is no way of telling
between these two cases.

POV-Ray has to determine wether the camera is inside any object prior to tracing a
camera ray in order to be able to correctly render halos when the camera is inside the
container object. There’s no way around doing this.

The solution to this problem (that will often happen with infinite objects like planes) is
to make those objects hollow too. Thus the ray will travel through a hollow object, will
hit the container object and the halo will be calculated.

Note that the above is also true for atmosphere and fog.

7.5.1.2 Refraction Pitfall

There is a pitfall in the way refractive (and non-refractivetranslucent) objects are han-
dled.

Imagine you want to create an object that’s partially made ofglass and stone. You’d use
something like the following merge because you don’t want tosee any inside surfaces.

merge {

sphere { <-1,0,0>, 2 texture { Stone } }

sphere { <+1,0,0>, 2 texture { Glass } }

}

What’s wrong with this, you may ask? The problem is that thereis no way of telling
what the interior of the actual object will look like. This isnot a problem of POV-Ray,
it’s a general problem. You can’t define the interior of any object in a surface based
model. You would have to create some (complex) rules to decide what the interior will
look like. Is it made of stone? Is it made of glass? Is it made ofsome bizarre mixture
between glass and stone? Is it half stone and half glass? Where is the boundary between
the two materials and what does it look like?

You will not be able to answer any of the above questions by just looking at the above
object. You need more informations.

If you wanted to create an object made half of stone and half ofglass you would have
used the following statements.

7.5. OBJECTS 231

union {

intersection {

sphere { <-1,0,0>, 2 }

plane { x, 0 }

texture { Stone }

}

intersection {

sphere { <+1,0,0>, 2 }

plane { x, 0 inverse }

texture { Glass }

}

}

This example is correct because there is one object made onlyof stone and one made
only of glass.

You should never use objects whose interior is not well defined, i. e. there must not be
different textures for the object having different refractive (and translucent) properties.
You should be aware that this holds only for the lowest layer if you use layered textures.

See also 7.5.1.1 on page 229 for a similar problem with halos.

7.5.2 Finite Solid Primitives

There are twelve different solid finite primitive shapes: blob, box, cone, cylinder, frac-
tal, height field, lathe, sphere, superellipsoid, surface of revolution, text object and
torus. These have a well-definedinsideand can be used in CSG (see section 7.5.5 on
page 261). They are finite and respond to automatic bounding.As with all shapes they
can be translated, rotated and scaled.

7.5.2.1 Blob

Blobs are an interesting and flexible object type. Mathematically they are iso-surfaces
of scalar fields, i. e. their surface is defined by the strengthof the field in each point. If
this strength is equal to a threshold value you’re on the surface otherwise you’re not.

Picture each blob component as an object floating in space. This object isfilled with
a field that has its maximum at the center of the object and drops off to zero at the
object’s surface. The field strength of all those componentsare added together to form
the field of the blob. Now POV-Ray looks for points where this field has a given value,
the thresholdvalue. All these points form the surface of the blob object. Points with
a greater field value than the threshold value are consideredto be inside while points
with a smaller field value are outside.

There’s another, simpler way of looking at blobs. They can beseen as a union of
flexiblecomponents that attract or repel each other to form ablobbyorganic looking

232 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

shape. The components’ surfaces actually stretch out smoothly and connect as if they
were made of honey or something like that.

A blob is made up of spherical and cylindrical components andis defined as follows:

blob {

threshold THRESHOLD_VALUE

cylinder { <END1>, <END2>, RADIUS, [strength] STRENGTH }

sphere { <CENTER>, RADIUS, [strength] STRENGTH }

[component STRENGTH, RADIUS, <CENTER>]

[hierarchy FLAG]

[sturm]

}

The threshold keyword determines the total field strength value that POV-Ray is
looking for. By following the ray out into space and looking at how each blob compo-
nent affects the ray, POV-Ray will find the points in space where the field strength is
equal to the threshold value. The following list shows some things you should know
about the threshold value.

1. The threshold value must be positive.
2. A component disappears if the threshold value is greater than its

strength.
3. As the threshold value gets larger the surface you see getscloser to

the centers of the components.
4. As the threshold value gets smaller the surface you see gets closer to

the surface of the components.

Cylindrical components are specified by the keywordcylinder giving a cylinder
formed by the base〈END1〉, the apex〈END2〉 and theradius. The cylinder has hemi-
spherical caps at the base and apex. Spherical components are specified by the keyword
sphere forming a sphere at〈CENTER〉 with the given radius. Each component can
be individually translated, rotated, scaled and textured.The complete syntax for the
cylindrical and spherical components is:

sphere { <CENTER>, RADIUS, [strength] STRENGTH

[translate <VECTOR>]

[rotate <VECTOR>]

[scale <VECTOR>]

TEXTURE_MODIFIERS

}

cylinder { <END1>, <END2>, RADIUS, [strength] STRENGTH

[translate <VECTOR>]

[rotate <VECTOR>]

[scale <VECTOR>]

TEXTURE_MODIFIERS

}

7.5. OBJECTS 233

By unevenly scaling a spherical component you can create ellipsoidal components. The
component keyword gives a spherical component and is only used for compatibility
with earlier POV-Ray versions.

Thestrength parameter is a float value specifying the field strength at thecenter of
the object. The strength may be positive or negative. A positive value will make that
component attract other components while a negative value will make it repel other
components. Components in different, separate blob shapesdo not affect each other.

You should keep the following things in mind.

1. The strength value may be positive or negative. Zero is a bad value,
as the net result is that no field was added — you might just as well
have not used this component.

2. If strength is positive POV-Ray will add the component’s field to the
space around the center of the component. If this adds enoughfield
strength to be greater than thethreshold value you will see a sur-
face.

3. If the strength value is negative POV-Ray will subtract the compo-
nent’s field from the space around the center of the component. This
will only do something if there happen to be positive components
nearby. What happens is that the surface around any nearby posi-
tive components will be dented away from the center of the negative
component.

The components of each blob object are internally bounded bya spherical bounding
hierarchy to speed up blob intersection tests and other operations. By using the optional
keywordhierarchy you can switch this hierarchy off.

An example of a three component blob is:

blob {

threshold 0.6

sphere { <.75, 0, 0>, 1, 1 }

sphere { <-.375, .64952, 0>, 1, 1 }

sphere { <-.375, -.64952, 0>, 1, 1 }

scale 2

}

If you have a single blob component then the surface you see will just look like the
object used, i. e. a sphere or a cylinder, with the surface being somewhere inside the
surface specified for the component. The exact surface location can be determined
from the blob equation listed below (you will probably neverneed to know this, blobs
are more for visual appeal than for exact modeling).

For the more mathematically minded, here’s the formula usedinternally by POV-Ray
to create blobs. You don’t need to understand this to use blobs. The formula used for a

234 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

single blob component is:

density= strength
(

1− radius2)2 (7.9)

This formula has the nice property that it is exactly equal tothestrengthparameter at
the center of the component and drops off to exactly 0 at a distance from the center of
the component that is equal to theradiusvalue. The density formula for more than one
blob component is just the sum of the individual component densities:

density=∑
i

densityi . (7.10)

The calculations for blobs must be very accurate. If this shape renders improperly you
may add the keywordsturm after the last component to use POV-Ray’s slower-yet-
more-accurate Sturmian root solver.

7.5.2.2 Box

A simple box can be defined by listing two corners of the box like this:

box { <CORNER1>, <CORNER2> }

corner 1

corner 2

Figure 7.2: The geometry of a box.

Where〈CORNER1〉 and〈CORNER2〉 are vectors defining thex, y, z coordinates of
the opposite corners of the box. See figure 7.2 for details about the box geometry.

Note that all boxes are defined with their faces parallel to the coordinate axes. They
may later be rotated to any orientation using therotate keyword.

7.5. OBJECTS 235

Each element of〈CORNER1〉 should always be less than the corresponding element
in 〈CORNER2〉. If any elements of〈CORNER1〉 are larger than〈CORNER2〉 the box
will not appear in the scene.

Boxes are calculated efficiently and make good bounding shapes (if manually bounding
seems to be necessary).

7.5.2.3 Cone

A finite length cone or afrustum(a cone with the point cut off) may be defined by.

cone {

<BASE_POINT>, BASE_RADIUS, <CAP_POINT>, CAP_RADIUS

[open]

}

cap radius

base radius

cap point

base point

Figure 7.3: The geometry of a cone.

Where〈BASEPOINT〉 and〈CAP POINT〉 are vectors defining thex, y, z coordinates
of the center of the cone’s base and cap and BASERADIUS and CAPRADIUS are
float values for the corresponding radii. See figure 7.3 for details about the cone geom-
etry.

Normally the ends of a cone are closed by flat planes which are parallel to each other
and perpendicular to the length of the cone. Adding the optional keywordopen after
CAP RADIUS will remove the end caps and results in a tapered hollow tube like a
megaphone or funnel.

7.5.2.4 Cylinder

A finite length cylinder with parallel end caps may be defined by.

236 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

cylinder {

<BASE_POINT>, <CAP_POINT>, RADIUS

[open]

}

base point

radius

cap point

Figure 7.4: The geometry of a cylinder.

Where〈BASEPOINT〉 and〈CAP POINT〉 are vectors defining thex, y, z coordinates
of the cylinder’s base and cap and RADIUS is a float value for the radius. See figure 7.4
for details about the cylinder geometry.

Normally the ends of a cylinder are closed by flat planes whichare parallel to each
other and perpendicular to the length of the cylinder. Adding the optional keyword
open after the radius will remove the end caps and results in a hollow tube.

7.5.2.5 Height Field

Height fields are fast, efficient objects that are generally used to create mountains or
other raised surfaces out of hundreds of triangles in a mesh.The height field syntax is:

height_field {

FILE_TYPE "FILENAME"

[hierarchy BOOL]

[smooth BOOL]

[water_level FLOAT]

}

A height field is essentially a one unit wide by one unit long square with a mountainous
surface on top. The height of the mountain at each point is taken from the color number

7.5. OBJECTS 237

or palette index of the pixels in a graphic image file. The maximum height is one, which
corresponds to the maximum possible color or palette index value in the image file. See
figure 7.5 for details about the height field geometry.

z

1

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

heightcolor

1

1
x

y

Figure 7.5: The size and orientation of an un-scaled height field.

The mesh of triangles corresponds directly to the pixels in the image file. Each square
formed by four neighboring pixels is divided into two triangles. An image with a
resolution ofN×M pixels has(N−1)×(M−1) squares that are divided into 2×(N−
1)× (M−1) triangles.

The resolution of the height field is influenced by two factors: the resolution of the
image and the resolution of the color/index values. The sizeof the image determines
the resolution in thex- andz-direction. A larger image uses more triangles and looks
smoother. The resolution of the color/index value determines the resolution along the
y-axis. A height field made from an 8 bit image can have 256 different height levels
while one made from a 16 bit image can have up to 65536 different height levels. Thus
the second height field will look much smoother in they-direction if the height field is
created appropriately.

The size/resolution of the image does not affect the size of the height field. The un-
scaled height field size will always be 1×1. Higher resolution image files will create
smaller triangles, not larger height fields.

There are six or possibly seven types of files which can define aheightfield, as follows:

height_field { gif "filename.gif" }

height_field { pgm "filename.pgm" }

height_field { png "filename.png" }

height_field { pot "filename.pot" }

height_field { ppm "filename.ppm" }

height_field { sys "filename.???" }

height_field { tga "filename.tga" }

238 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The image file used to create a height field can be a GIF, TGA, POT, PNG, PGM, PPM
and possibly a system specific (e. g. Windows BMP or MacintoshPict) format file.
The GIF, PNG, PGM and possibly system format files are the onlyones that can be
created using a standard paint program. Though there are paint programs for creating
TGA image files they won’t be of much use for creating the special 16 bit TGA files
used by POV-Ray (see below and 7.8.4 on page 359 for more details).

In an image file like GIF that uses a color palette the color number is the palette index at
a given pixel. Use a paint program to look at the palette of a GIF image. The first color
is palette index zero, the second is index one, the third is index two and so on. The last
palette entry is index 255. Portions of the image that use lowpalette entries will result
in lower parts of the height field. Portions of the image that use higher palette entries
will result in higher parts of the height field.

Height fields created from GIF files can only have 256 different height levels because
the maximum number of colors in a GIF file is 256.

The color of the palette entry does not affect the height of the pixel. Color entry 0
could be red, blue, black or orange but the height of any pixelthat uses color entry 0
will always be 0. Color entry 255 could be indigo, hot pink, white or sky blue but the
height of any pixel that uses color entry 255 will always be 1.

You can create height field GIF images with a paint program or afractal program like
FRACTINT. You can usually getFRACTINT from most of the same sources as POV-
Ray.

A POT file is essentially a GIF file with a 16 bit palette. The maximum number of
colors in a POT file is 65536. This means a POT height field can have up to 65536
possible height values. This makes it possible to have much smoother height fields.
Note that the maximum height of the field is still 1 even thoughmore intermediate
values are possible.

At the time of this writing the only program that created POT files was a freeware
IBM-PC program calledFRACTINT. POT files generated with this fractal program
create fantastic landscapes.

The TGA and PPM file formats may be used as a storage device for 16 bit numbers
rather than an image file. These formats use the red and green bytes of each pixel to
store the high and low bytes of a height value. These files are as smooth as POT files
but they must be generated with special custom-made programs. Several programs can
create TGA heightfields in the format POV uses, such asGFORGE andTerrain Maker.

PNG format heightfields are usually stored in the form of a grayscale image with black
corresponding to lower and white to higher parts of the height field. Because PNG
files can store up to 16 bits in grayscale images they will be assmooth as TGA and
PPM images. Since they are grayscale images you will be able to view them with a
regular image viewer.GFORGE can create 16-bit heightfields in PNG format. Color
PNG images will be used in the same way as TGA and PPM images.

SYS format is a platform specific file format. See your platform specific documentation
for details.

7.5. OBJECTS 239

An optionalwater level parameter may be added after the file name. It consists
of the keywordwater level followed by a float value telling the program to ignore
parts of the height field below that value. The default value is zero and legal values
are between zero and one. For examplewater level .5 tells POV-Ray to only
render the top half of the height field. The other half isbelow the waterand couldn’t
be seen anyway. This term comes from the popular use of heightfields to render
landscapes. A height field would be used to create islands andanother shape would be
used to simulate water around the islands. A large portion ofthe height field would be
obscured by thewater so thewater level parameter was introduced to allow the
ray-tracer to ignore the unseen parts of the height field.water level is also used to
cut away unwanted lower values in a height field. For example if you have an image
of a fractal on a solid colored background, where the background color is palette entry
0, you can remove the background in the height field by specifying, water level

.001.

Normally height fields have a rough, jagged look because theyare made of lots of flat
triangles. Adding the keywordsmooth causes POV-Ray to modify the surface normal
vectors of the triangles in such a way that the lighting and shading of the triangles will
give a smooth look. This may allow you to use a lower resolution file for your height
field than would otherwise be needed. However, smooth triangles will take longer to
render.

In order to speed up the intersection tests an one-level bounding hierarchy is avail-
able. By default it is always used but it can be switched off toeventually improve the
rendering speed for small height fields (i. e. low resolutionimages).

7.5.2.6 Julia Fractal

A julia fractal object is a 3-D slice of a 4-D object created bygeneralizing the process
used to create the classic Julia sets. You can make a wide variety of strange objects
usingjulia fractal, including some that look like bizarre blobs of twisted taffy.

Thejulia fractal syntax (with default values listed in comments) is:

julia_fractal {

4DJULIA_PARAMETER // default is <1,0,0,0>

[quaternion | hypercomplex] // default is quaternion

[sqr | cube | exp |

reciprocal | sin | asin |

sinh | asinh | cos | acos |

cosh | acosh | tan | atan |

tanh | atanh | log | pwr(X,Y)] // default is sqr

[max_iteration MAX_ITERATION] // default value 20

[precision PRECISION] // default value 20

[slice 4DNORMAL, DISTANCE] // default <0,0,0,1>,0

}

240 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The 4-D vector4DJULIA PARAMETERis the classic Julia parameterp in the iterated
formula f (h)+ p.

The julia fractal object is calculated by using an algorithmthat determines whether an
arbitrary pointh(0) in 4-D space is inside or outside the object. The algorithm requires
generating the sequence of vectorsh(0), h(1), . . . by iterating the formula

h(n+1) = f (h(n))+ p, n= 0,1, . . . ,max iteration−1, (7.11)

where p is the fixed 4-D vector parameter of the julia fractal andf () is one of the
functions sqr, cube,. . . specified by the presence of the corresponding keyword. The
point h(0) that begins the sequence is considered inside the julia fractal object if none
of the vectors in the sequence escapes a hypersphere of radius 4 about the origin before
the iteration number reaches themax iteration value. As you increasemax iteration,
some points escape that did not previously escape, forming the julia fractal. Depending
on theJULIA PARAMETER, the julia fractal object is not necessarily connected; it may
be scattered fractaldust. Using a lowmax iteration can fuse together the dust to make
a solid object. A highmax iteration is more accurate but slows rendering. Even though
it is not accurate, the solid shapes you get with alow maximumiteration value can be
quite interesting.

Since the mathematical object described by this algorithm is four-dimensional and
POV-Ray renders three dimensional objects, there must be a way to reduce the number
of dimensions of the object from four dimensions to three. This is accomplished by
intersecting the 4-D fractal with a 3-Dplanedefined by theslice field and then pro-
jecting the intersection to 3-D space. The slice plane is the3-D space that is perpendic-
ular toNORMAL4Dand isDISTANCEunits from the origin. Zero lengthNORMAL4D
vectors or aNORMAL4Dvector with a zero fourth component are illegal.

You can get a good feel for the four dimensional nature of a julia fractal by using POV-
Ray’s animation feature to vary a slice’sDISTANCEparameter. You can make the julia
fractal appear from nothing, grow, then shrink to nothing asDISTANCEchanges, much
as the cross section of a 3-D object changes as it passes through a plane.

Theprecision parameter is a tolerance used in the determination of whether points
are inside or outside the fractal object. Larger values givemore accurate results but
slower rendering. Use as low a value as you can without visibly degrading the fractal
object’s appearance.

The presence of the keywordsquaternion or hypercomplex determine which
4-D algebra is used to calculate the fractal. Both are 4-D generalizations of the com-
plex numbers but neither satisfies all the field properties (all the properties of real and
complex numbers that many of us slept through in high school). Quaternions have
non-commutative multiplication and hypercomplex numberscan fail to have a multi-
plicative inverse for some non-zero elements (it has been proved that you cannot suc-
cessfully generalize complex numbers to four dimensions with all the field properties
intact, so something has to break). Both of these algebras were discovered in the 19th
century. Of the two, the quaternions are much better known, but one can argue that

7.5. OBJECTS 241

hypercomplex numbers are more useful for our purposes, since complex valued func-
tions such as sin, cos, etc. can be generalized to work for hypercomplex numbers in a
uniform way.

For the mathematically curious, the algebraic properties of these two algebras can be
derived from the multiplication properties of the unit basis vectors 1= 〈1,0,0,0〉, i =
〈0,1,0,0〉, j = 〈0,0,1,0〉 andk= 〈0,0,0,1〉. In both algebras 1x= x1= x for anyx (1
is the multiplicative identity). The basis vectors 1 andi behave exactly like the familiar
complex numbers 1 andi in both algebras.

Quaternion basis vector multiplication rules:

i j = k jk= i ki = j (7.12)

ji =−k k j=−i ik =− j (7.13)

ii = j j = kk=−1 i jk =−1 (7.14)

Hypercomplex basis vector multiplication rules:

i j = k jk=−i ki =− j (7.15)

ji = k k j=−i ik =− j (7.16)

ii = j j = kk=−1 i jk = 1 (7.17)

A distance estimation calculation is used with the quaternion calculations to speed them
up. The proof that this distance estimation formula works does not generalize from two
to four dimensions but the formula seems to work well anyway,the absence of proof
notwithstanding!

The presence of one of the function keywordssqr, cube, etc. determines which
function is used forf (h) in the iteration formulah(n+ 1) = f (h(n))+ p. Most of
the function keywords work only if the hypercomplex keywordis present. Only sqr
and cube work with quaternions. The functions are all familiar complex functions
generalized to four dimensions. See table 7.1 on the following page for a list of the
available functions.

A simple example of a julia fractal object is:

julia_fractal {

<-0.083,0.0,-0.83,-0.025>

quaternion

sqr

max_iteration 8

precision 15

}

The first renderings of julia fractals using quaternions were done by Alan Norton and
later by John Hart in the ’80’s. This new POV-Ray implementation follows FRACTINT

in pushing beyond what is known in the literature by using hypercomplex numbers

242 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Function Keyword Maps 4-D valueh to
sqr h2

cube h3

exp e raised to the powerh
reciprocal 1/h
sin sine ofh
asin arcsine ofh
sinh hyperbolic sine ofh
asinh inverse hyperbolic sine ofh
cos cosine ofh
acos arccosine ofh
cosh hyperbolic cos ofh
acosh inverse hyperbolic cosine ofh
tan tangent ofh
atan arctangent ofh
tanh hyperbolic tangent ofh
atanh inverse hyperbolic tangent ofh
log natural logarithm ofh
pwr(x,y) h raised to the complex powerx+ ıy

Table 7.1: All available julia fractal functions.

and by generalizing the iterating formula to use a variety oftranscendental functions
instead of just the classic Mandelbrotz2+ c formula. With an extra two dimensions
and eighteen functions to work with, intrepid explorers should be able to locate some
new fractal beasties in hyperspace, so have at it!

7.5.2.7 Lathe

The lathe is an object generated from rotating a two-dimensional curve about an axis.
This curve is defined by a set of points which are connected by linear, quadratic or
cubic spline curves. The syntax is:

lathe {

[linear_spline | quadratic_spline | cubic_spline]

NUMBER_OF_POINTS,

<POINT_1>, <POINT_2>, ..., <POINT_n>

[sturm]

}

The parameterNUMBEROF POINTSdetermines how many two-dimensional points
are forming the curve. These points are connected by linear,quadratic or cubic splines
as specified by an optional keyword (the default islinear spline). Since the curve

7.5. OBJECTS 243

is not automatically closed, i. e. the first and last points are not automatically connected,
you’ll have to do this by your own if you want a closed curve. The curve thus defined
is rotated about they-axis to form the lathe object which is centered at the origin.

The following examples creates a simple lathe object that looks like athick cylinder,
i. e. a cylinder with a thick wall:

lathe {

linear_spline

5,

<2, 0>, <3, 0>, <3, 5>, <2, 5>, <2, 0>

pigment {Red}

}

The cylinder has an inner radius of 2 and an outer radius of 3, giving a wall width of
1. It’s height is 5 and it’s located at the origin pointing up,i. e. the rotation axis is the
y-axis. Note that the first and last point are equal to get a closed curve.

The splines that are used by the lathe and prism objects are a little bit difficult to un-
derstand. The basic concept of splines is to draw a curve through a given set of points
in a determined way. The linear spline is the simplest splinebecause it’s nothing more
than connecting consecutive points with a line. This means that the curve that is drawn
between two points only depends on those two points. No additional information is
taken into account. Quadratic and cubic splines are different in that they do not only
take other points into account when connecting two points but they also look smoother
and — in the case of the cubic spline — produce smoother transitions at each point.

Quadratic splines are made of quadratic curves. Each of themconnects two consecutive
points. Since those two points (call them second and third point) aren’t enough to
describe a quadratic curve the predecessor of the third point is taken into account when
the curve is drawn. Mathematically the relationship (theirlocation on the 2-D plane)
between the third and fourth point determines the slope of the curve at the third point.
The slope of the curve at the second point is out of control. Thus quadratic splines look
much smootherthan linear splines but the transitions at each point are generally not
smooth because the slopes onboth sidesof the point are different.

Cubic splines overcome the transition problem of quadraticsplines because they also
take the first point into account when drawing the curve between the second and third
point. The slope at the second point is under control now and allows a smooth transition
at each point. Thus cubic splines produce the most flexible and smooth curves.

You should note that the number of spline segments, i. e. curves between two points,
depends on the spline type used. For linear splines you getn−1 segments connecting
the pointsPi, i = 1, . . . ,n. A quadratic spline gives youn−2 segments because the
last point is only used for determining the slope as explained above (thus you’ll need at
least three points to define a quadratic spline). The same holds for cubic splines where
you getn− 3 segments with the first and last point used only for slope calculations
(thus needing at least four points).

244 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

If you want to get a closed quadratic and cubic spline with smooth transitions at the end
points you have to make sure that in the cubic casePn−1 = P2 (to get a closed curve),
Pn= P3 andPn−2= P1 (to smooth the transition). In the quadratic casePn−1 = P1 (to
close the curve) andPn= P2 (for a smooth transition).

The slower but more accurate Sturmian root solver may be usedwith the quadratic
spline lathe if the shape does not render properly. Since a quadratic polynomal has to
be solved for the linear spline lathe the Sturmian root solver is not needed. In case of
cubic splines the Sturmian root solver is always used because a 6th order polynomal
has to be solved.

7.5.2.8 Prism

The prism is an object generated from sweeping one or more two-dimensional, closed
curves along an axis. These curves are defined by a set of points which are connected
by linear, quadratic or cubic splines.

The syntax for the prism is:

prism {

[linear_sweep | conic_sweep]

[linear_spline | quadratic_spline | cubic_spline]

HEIGHT1,

HEIGHT2,

TOTAL_NUMBER_OF_POINTS,

<POINT_1>, <POINT_2>, ..., <POINT_n>

[open]

[sturm]

}

The prism object allows you to use any number of sub-prisms inside one prism state-
ment (they are of the same spline and sweep type). Wherever aneven number of
sub-prisms overlaps a whole appears.

The syntax of the prism object depends on the type of spline curve used. Below the
syntax of the linear spline prism is given.

prism {

linear_spline

HEIGHT1,

HEIGHT2,

TOTAL_NUMBER_OF_POINTS,

<A_1>, <A_2>, ..., <A_na>, <A_1>,

<B_1>, <B_2>, ..., <B_nb>, <B_1>,

<C_1>, <C_2>, ..., <C_nc>, <C_1>,

...

}

7.5. OBJECTS 245

Each of the sub-prisms has to be closed by repeating the first point of a sub-prism at
the end of the sub-prism’s point sequence. If this is not the case a warning is issued
and the prism is ignored (with linear splines automatic closing is used). This implies
that all points of a prism are different (except the first and last of course). This applies
to all spline types though the control points of the quadratic and cubic splines can be
arbitrarily chosen.

The last sub-prism of a linear spline prism is automaticallyclosed — just like the last
sub-polygon in the polygon statement — if the first and last point of the sub-polygon’s
point sequence are not the same. This make it very easy to convert between polygons
and prisms. Quadratic and cubic splines are never automatically closed.

The syntax for quadratic spline prisms is:

prism {

quadratic_spline

HEIGHT1,

HEIGHT2,

TOTAL_NUMBER_OF_POINTS,

<CL_A>, <A_1>, <A_2>, ..., <A_na>, <A_1>,

<CL_B>, <B_1>, <B_2>, ..., <B_nb>, <B_1>,

<CL_C>, <C_1>, <C_2>, ..., <C_nc>, <C_1>,

...

}

Quadratic spline sub-prisms need an additional control point at the beginning of each
sub-prisms’ point sequence to determine the slope at the start of the curve.

Last but not least the syntax for the cubic spline prism.

prism {

cubic_spline

HEIGHT1,

HEIGHT2,

TOTAL_NUMBER_OF_POINTS,

<CL_A1>, <A_1>, <A_2>, ..., <A_na>, <A_1>, <CL_A2>,

<CL_B1>, <B_1>, <B_2>, ..., <B_nb>, <B_1>, <CL_B2>,

<CL_C1>, <C_1>, <C_2>, ..., <C_nc>, <C_1>, <CL_C2>,

...

}

In addition to the closed point sequence each cubic spline sub-prism needs two control
points to determine the slopes at the start and end of the curve.

The parameter TOTALNUMBER OF POINTS determines how many two-
dimensional points (lying in thex-z-plane) form the curves (this includes all
control points needed for quadratic and cubic splines). Thecurves are swept along
the y-axis from HEIGHT1 to HEIGHT2 to form the prism object. By default linear

246 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

sweeping is used to create the prism, i. e. the prism’s walls are perpendicular to the
x-z-plane (the size of the curve does not change during the sweep). You can also use
conic sweeping /conic sweep that leads to a prism withcone-likewalls by scaling
the curve down during the sweep.

Like cylinders the prism is normally closed. You can remove the caps on the prism
by using theopen keyword. If you do so you shouldn’t use it with CSG because the
results may get wrong.

The following example creates a simple prism object that looks like a piece of cake:

prism {

linear_sweep

linear_spline

0, 1,

4,

<-1, 0>, <1, 0>, <0, 5>, <-1, 0>

pigment {Red}

}

For an explanation of the spline concept read the description of the lathe object.

The slower but more accurate Sturmian root solver may be usedwith the cubic spline
prisms if the shape does not render properly. The linear and quadratic spline prisms do
not need the Sturmian root solver.

7.5.2.9 Sphere

The syntax of the sphere object is:

sphere {

<CENTER>, RADIUS

}

Where〈CENTER〉 is a vector specifying thex, y, z coordinates of the center of the
sphere and RADIUS is a float value specifying the radius. Spheres may be scaled
unevenly giving an ellipsoid shape. See figure 7.6 on the nextpage for details about
the sphere geometry.

Because spheres are highly optimized they make good bounding shapes (if manal
bounding seems to be necessary).

7.5.2.10 Superquadric Ellipsoid

The superquadric ellipsoid is an extension of the quadric ellipsoid. It can be used to
create boxes and cylinders with round edges and other interesting shapes. Mathemati-

7.5. OBJECTS 247

radius

center

Figure 7.6: The geometry of a sphere.

cally it is given by the equation:

f (x,y,z)=
(

|x|2/e+ |y|2/e
)e/n
+ |z|2/n−1= 0 (7.18)

The values ofe andn, called theeast-westand north-southexponent, determine the
shape of the superquadric ellipsoid. Both have to be greaterthan zero. The sphere is
e. g. given bye= 1 andn= 1.

The syntax of the superquadric ellipsoid, which is located at the origin, is:

superellipsoid { <e, n> }

Two useful objects are the rounded box and the rounded cylinder. These are declared
in the following way.

#declare Rounded_Box = superellipsoid { <r, r> }

#declare Rounded_Cylinder = superellipsoid { <1, r> }

The roundednessr determines the roundedness of the edges and has to be greaterthan
zero and smaller than one. The smaller you choose the values of r the smaller and
sharper the edges will get.

Very small values ofeandn might cause problems with the root solver (the Sturmian
root solver cannot be used).

7.5.2.11 Surface of Revolution

The surface of revolution (SOR) object is generated by rotating the graph of a function
about an axis. This function describes the dependence of theradius from the position
on the rotation axis. The syntax of the SOR object is:

248 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

sor {

NUMBER_OF_POINTS,

<POINT0>, <POINT1>, ..., <POINTn-1>

[open]

[sturm]

}

The points〈POINT0〉 through〈POINT n−1〉 are two-dimensional vectors consisting
of the radius and the corresponding height, i. e. the position on the rotation axis. These
points are smoothly connected (the curve is passing throughthe specified points) and
rotated about the y-axis to form the SOR object. The first and last points are only used
to determine the slopes of the function at the start and end point. The function used for
the SOR object is similar to the splines used for the lathe object. The difference is that
the SOR object is less flexible because it underlies the restrictions of any mathematical
function, i. e. to any given pointy on the rotation axis belongs at most one function
value, i. e. one radius value. You can’t rotate closed curveswith the SOR object.

The optional keywordopen allows you to remove the caps on the SOR object. If you
do this you shouldn’t use it with CSG anymore because the results may be wrong.

The SOR object is useful for creating bottles, vases, and things like that. A simple vase
could look like this:

#declare Vase = sor {

7,

<0.000000, 0.000000>

<0.118143, 0.000000>

<0.620253, 0.540084>

<0.210970, 0.827004>

<0.194093, 0.962025>

<0.286920, 1.000000>

<0.468354, 1.033755>

open

}

One might ask why there is any need for a SOR object if there is already a lathe ob-
ject which is much more flexible. The reason is quite simple. The intersection test
with a SOR object involves solving a cubic polynomial while the test with a lathe ob-
ject requires to solve of a 6th order polynomial (you need a cubic spline for the same
smoothness). Since most SOR and lathe objects will have several segments this will
make a great difference in speed. The roots of the 3rd order polynomial will also be
more accurate and easier to find.

The slower but more accurate Sturmian root solver may be usedwith the surface of
revolution object if the shape does not render properly.

The following explanations are for the mathematically interested reader who wants to
know how the surface of revolution is calculated. Though it is not necessary to read on
it might help in understanding the SOR object.

7.5. OBJECTS 249

The function that is rotated about the y-axis to get the final SOR object is given by

r2= f (h) = Ah3+Bh2+Ch+D (7.19)

with radiusr and heighth. Since this is a cubic function inh it has enough flexibility
to allow smooth curves.

The curve itself is defined by a set ofn pointsPi, i = 0. . .n−1, which are interpolated
using one function for every segment of the curve. A segmentj , j = 1. . .n−3, goes
from point Pj to point Pj+1 and uses pointsPj−1 andPj+2 to determine the slopes at
the endpoints. If there aren points we will haven−3 segments. This means that we
need at least four points to get a proper curve.

The coefficientsA j, B j , Cj andD j are calculated for every segment using the equation

b=M x (7.20)

that is

r2
j

r2
j+1

2r j
r j+1− r j−1
hj+1−hj−1

2r j+1
r j+2− r j
hj+2−h j

=

h3
j h2

j hj 1
h3

j+1 h2
j+1 hj+1 1

3h2
j 2hj 1 0

3h2
j+1 2hj+1 1 0

A j

B j
Cj

D j

(7.21)

wherer j is the radius andhj is the height of pointPj .

Figure 7.7 on the following page shows the configuration of the pointsPi, the location
of segmentj and the curve that is defined by this segment.

7.5.2.12 Text

A text object creates 3-D text as an extruded block letter. Currently only TrueType
fonts are supported but the syntax allows for other font types to be added in the future.
The syntax is:

text {

ttf "FONTNAME.TTF",

"STRING_OF_TEXT",

THICKNESS_FLOAT, OFFSET_VECTOR

}

WhereFONTNAME.TTF is the name of the TrueType font file. It is a quoted string
literal or string expression. The string expression which follows is the actual text of
the string object. It too may be a quoted string literal or string expression. See 7.1.6 on
page 196 for more on string expressions.

250 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

−4.0 −2.0 0.0 2.0 4.0
Radius r

0.0

2.0

4.0

6.0

8.0

H
ei

gh
t h

P0

Pj−1

Pj

Pj+1

Pj+2

Pn−1

Segment j

P1

Figure 7.7: Segmentj of n−3 segments in a point configuration ofn points. The points
describe the curve of a surface of revolution

.

The text will start with the origin at the lower left, front ofthe first character and will
extend in the+x-direction. The baseline of the text follows thex-axis and decenders
drop into the−y-direction. The front of the character sits in thex-y-plane and the text
is extruded in the+z-direction. The front-to-back thickness is specified by therequired
value THICKNESSFLOAT.

Characters are generally sized so that 1 unit of vertical spacing is correct. The charac-
ters are about 0.5 to 0.75 units tall.

The horizontal spacing is handled by POV-Ray internally including any kerning infor-
mation stored in the font. The required vector OFFSETVECTOR defines any extra
translation between each character. Normally you should specify a zero for this value.
Specifing0.1*x would put additional 0.1 units of space between each character.

Only printable characters are allowed in text objects. Characters such as return, line
feed, tabs, backspace etc. are not supported.

7.5.2.13 Torus

A torus is a 4th order quartic polynomial shape that looks like a donut or inner tube.
Because this shape is so useful and quartics are difficult to define, POV-Ray lets you
take a short-cut and define a torus by:

torus {

MAJOR, MINOR

[sturm]

}

7.5. OBJECTS 251

where MAJOR is a float value giving the major radius and MINOR is a float specifying
the minor radius. The major radius extends from the center ofthe hole to the mid-line
of the rim while the minor radius is the radius of the cross-section of the rim. The torus
is centered at the origin and lies in thex-z-plane with they-axis sticking through the
hole. See fihure 7.8 for details about the torus geometry.

major radius

minor radius

x

z

center line

Figure 7.8: Major and minor radius of a torus.

The torus is internally bounded by two cylinders and two rings forming athickcylinder.
With this bounding cylinder the performance of the torus intersection test is vastly
increased. The test for a valid torus intersection, i. e. solving a 4th order polynomial,
is only performed if the bounding cylinder is hit. Thus a lot of slow root solving
calculations are avoided.

Calculations for all higher order polynomials must be very accurate. If the torus renders
improperly you may add the keywordsturmafter the MINOR value to use POV-Ray’s
slower-yet-more-accurate Sturmian root solver.

7.5.3 Finite Patch Primitives

There are six totally thin, finite objects which have no well-defined inside. They are
bicubic patch, disc, smooth triangle, triangle, polygon and mesh. They may be com-
bined in CSG union but cannot be use in other types of CSG (or inside aclipped by

statement). Because these types are finite POV-Ray can use automatic bounding on
them to speed up rendering time. As with all shapes they can betranslated, rotated and
scaled.

252 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.5.3.1 Bicubic Patch

A bicubic patch is a 3D curved surface created from a mesh of triangles. POV-Ray
supports a type of bicubic patch called a Bezier patch. A bicubic patch is defined as
follows:

bicubic_patch {

type PATCH_TYPE

flatness FLATNESS_VALUE

u_steps NUM_U_STEPS

v_steps NUM_V_STEPS

<CP1>, <CP2>, <CP3>, <CP4>,

<CP5>, <CP6>, <CP7>, <CP8>,

<CP9>, <CP10>, <CP11>, <CP12>,

<CP13>, <CP14>, <CP15>, <CP16>

}

The keywordtype is followed by a float PATCHTYPE which currently must be either
0 or 1. For type 0 only the control points are retained within POV-Ray. This means that
a minimal amount of memory is needed but POV-Ray will need to perform many extra
calculations when trying to render the patch. Type 1 preprocesses the patch into many
subpatches. This results in a significant speedup in rendering at the cost of memory.

The four parameterstype, flatness, u steps andv steps may appear in any
order. They are followed by 16 vectors that define thex, y, z coordinates of the 16
control points which define the patch. The patch touches the four corner points〈CP1〉,
〈CP4〉, 〈CP13〉 and〈CP16〉 while the other 12 points pull and stretch the patch into
shape. The Bezier surface is enclosed by the convex hull formed by the 16 control
points, this is known as theconvex hull property.

The keywordsu steps andv steps are each followed by float values which tell
how many rows and columns of triangles are the minimum to use to create the surface.
The maximum number of individual pieces of the patch that aretested by POV-Ray can
be calculated from the following:

pieces= 2u steps2v steps (7.22)

This means that you really should keepu steps andv steps under 4. Most patches
look just fine withu steps 3 andv steps 3, which translates to 64 subpatches
(128 smooth triangles).

As POV-Ray processes the Bezier patch it makes a test of the current piece of the patch
to see if it is flat enough to just pretend it is a rectangle. Thestatement that controls this
test isflatness. Typical flatness values range from 0 to 1 (the lower the slower).

If the value for flatness is 0 POV-Ray will always subdivide the patch to the extend
specified byu steps andv steps. If flatness is greater than 0 then every time the
patch is split, POV-Ray will check to see if there is any need to split further.

7.5. OBJECTS 253

There are both advantages and disadvantages to using a non-zero flatness. The advan-
tages include:

• If the patch isn’t very curved, then this will be detected andPOV-Ray
won’t waste a lot of time looking at the wrong pieces.

• If the patch is only highly curved in a couple of places, POV-Ray will
keep subdividing there and concentrate it’s efforts on the hard part.

The biggest disadvantage is that if POV-Ray stops subdividing at a particular level on
one part of the patch and at a different level on an adjacent part of the patch there is the
potential forcracking. This is typically visible as spots within the patch where you can
see through. How bad this appears depends very highly on the angle at which you are
viewing the patch.

Like triangles, the bicubic patch is not meant to be generated by hand. These shapes
should be created by a special utility. You may be able to acquire utilities to generate
these shapes from the same source from which you obtained POV-Ray.

bicubic_patch {

type 1

flatness 0.01

u_steps 4

v_steps 4

<0, 0, 2>, <1, 0, 0>, <2, 0, 0>, <3, 0,-2>,

<0, 1 0>, <1, 1, 0>, <2, 1, 0>, <3, 1, 0>,

<0, 2, 0>, <1, 2, 0>, <2, 2, 0>, <3, 2, 0>,

<0, 3, 2>, <1, 3, 0>, <2, 3, 0>, <3, 3, -2>

}

The triangles in a POV-Raybicubic patch are automatically smoothed using nor-
mal interpolation but it is up to the user (or the user’s utility program) to create control
points which smoothly stitch together groups of patches.

7.5.3.2 Disc

One other flat, finite object available with POV-Ray is the disc. The disc is infinitely
thin, it has no thickness. If you want a disc with true thickness you should use a very
short cylinder. A disc shape may be defined by:

disc {

<CENTER>, <NORMAL>, RADIUS [, HOLE_RADIUS]

}

The vector〈CENTER〉 defines thex, y, z coordinates of the center of the disc. The
〈NORMAL〉 vector describes its orientation by describing its surfacenormal vector.
This is followed by a float specifying the RADIUS. This may be optionally followed
by another float specifying the radius of a hole to be cut from the center of the disc.

254 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.5.3.3 Mesh

The mesh object can be used to efficiently store large numbersof triangles. Its syntax
is:

mesh {

triangle {

<CORNER1>, <CORNER2>, <CORNER3>

[texture { STRING }]

}

smooth_triangle {

<CORNER1>, <NORMAL1>,

<CORNER2>, <NORMAL2>,

<CORNER3>, <NORMAL3>

[texture { STRING }]

}

[hierarchy FLAG]

}

Any number of triangles and/or smooth triangles can be used and each of those triangles
can be individually textured by assigning a texture name to it. The texture has to be
declared before the mesh is parsed. It is not possible to use texture definitions inside
the triangle or smooth triangle statements. This is a restriction that is necessary for an
efficient storage of the assigned textures.

The mesh’s components are internally bounded by a bounding box hierarchy to speed
up intersection testing. The bounding hierarchy can be turned off with thehierarchy
keyword. This should only be done if memory is short or the mesh consists of only a
few triangles.

Copies of a mesh object refer to the same triangle data and thus consume very lit-
tle memory. You can easily trace hundred copies of an 10000 triangle mesh without
running out of memory (assuming the first mesh fits into memory).

The mesh object has two advantages over a union of triangles:it needs less memory and
it is transformed faster. The memory requierements are reduced by efficiently storing
the triangles vertices and normals. The parsing time for transformed meshes is reduced
because only the mesh object has to be transformed and not every single triangle as it
is necessary for unions.

The mesh object can currently only include triangle and smooth triangle components.
That restriction is liable to change, allowing polygonal components, at some point in
the future.

7.5.3.4 Polygon

Polygons are useful for creating rectangles, squares and other planar shapes with more
than three edges. Their syntax is:

7.5. OBJECTS 255

polygon {

TOTAL_NUMBER_OF_POINTS,

<A_1>, <A_2>, ..., <A_na>, <A_1>,

<B_1>, <B_2>, ..., <B_nb>, <B_1>,

<C_1>, <C_2>, ..., <C_nc>, <C_1>,

...

}

The points〈A 1〉 through 〈A na〉 describe the first sub-polygon, the points〈B 1〉
through〈B nb〉 describe the second sub-polygon, and so on. A polygon can contain
any number of sub-polygons, either overlapping or not. In places where an even num-
ber of polygons overlaps a whole appears. You only have to be sure that each of these
polygons is closed. This is insured by repeating the first point of a sub-polygon at the
end of the sub-polygon’s point sequence. This implies that all points of a sub-polygon
are different.

If the (last) sub-polygon is not closed a warning is issued and the program automatically
closes the polygon. This is useful because polygons imported from other programs may
not be closed, i. e. their first and last point are not the same.

All points of a polygon are three-dimensional vectors that have to lay on one plane.
If this is not the case an error occurs. You can also use two-dimensional vectors to
describe the polygon. POV-Ray assumes that thez value is zero in this case.

A square polygon that matches the default planar imagemap issimply:

polygon {

4,

<0, 0>, <0, 1>, <1, 1>, <1, 0>

texture {

finish { ambient 1 diffuse 0 }

pigment { image_map { gif "test.gif" } }

}

//scale and rotate as needed here

}

The sub-polygon feature can be used to generate complex shapes like the letter ”P”,
where a whole is cut into another polygon:

#declare P = polygon {

12,

<0, 0>, <0, 6>, <4, 6>, <4, 3>, <1, 3>, <1, 0>, <0, 0>,

<1, 4>, <1, 5>, <3, 5>, <3, 4>, <1, 4>

}

The first sub-polygon (on the first line) describes the outer shape of the letter ”P”. The
second sub-polygon (on the second line) describes the rectangular hole that is cut in

256 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

the top of the letter ”P”. Both rectangles are closed, i. e. their first and last points are
the same.

The feature of cutting holes into a polygon is based on the polygon inside/outside test
used. A point is considerd to be inside a polygon if a straightline drawn from this point
in an arbitrary direction crosses an odd number of edges (this is known asJordan’s
curve theorem).

Another very complex example showing one large triangle with three small holes and
three seperate, small triangles is given below:

polygon {

28,

<0,0> <1,0> <0,1> <0,0> // large outer tri.

<.3,.7> <.4,.7> <.3,.8> <.3,.7> // small outer tri. #1

<.5,.5> <.6,.5> <.5,.6> <.5,.5> // small outer tri. #2

<.7,.3> <.8,.3> <.7,.4> <.7,.3> // small outer tri. #3

<.5,.2> <.6,.2> <.5,.3> <.5,.2> // inner tri. #1

<.2,.5> <.3,.5> <.2,.6> <.2,.5> // inner tri. #2

<.1,.1> <.2,.1> <.1,.2> <.1,.1> // inner tri. #3

}

7.5.3.5 Triangle and Smooth Triangle

The triangle primitive is available in order to make more complex objects than the
built-in shapes will permit. Triangles are usually not created by hand but are converted
from other files or generated by utilities. A triangle is defined by

triangle {

<CORNER1>, <CORNER2>, <CORNER3>

}

where〈CORNERn〉 is a vector defining thex, y, z coordinates of each corner of the
triangle.

Because triangles are perfectly flat surfaces it would require extremely large numbers
of very small triangles to approximate a smooth, curved surface. However much of our
perception of smooth surfaces is dependent upon the way light and shading is done. By
artificially modifying the surface normals we can simulate as smooth surface and hide
the sharp-edged seams between individual triangles.

The smooth triangle primitive is used for just such purposes. The smooth triangles use
a formula called Phong normal interpolation to calculate the surface normal for any
point on the triangle based on normal vectors which you definefor the three corners.
This makes the triangle appear to be a smooth curved surface.A smooth triangle is
defined by

7.5. OBJECTS 257

smooth_triangle {

<CORNER1>, <NORMAL1>,

<CORNER2>, <NORMAL2>,

<CORNER3>, <NORMAL3>

}

where the corners are defined as in regular triangles and〈NORMALn〉 is a vector de-
scribing the direction of the surface normal at each corner.

These normal vectors are prohibitively difficult to computeby hand. Therefore smooth
triangles are almost always generated by utility programs.To achieve smooth results,
any triangles which share a common vertex should have the same normal vector at that
vertex. Generally the smoothed normal should be the averageof all the actual normals
of the triangles which share that point.

7.5.4 Infinite Solid Primitives

There are five polynomial primitive shapes that are possiblyinfinite and do not respond
to automatic bounding. They are plane, cubic, poly, quadricand quartic. They do have
a well defined inside and may be used in CSG and inside aclipped by statement.
As with all shapes they can be translated, rotated and scaled..

7.5.4.1 Plane

The plane primitive is a simple way to define an infinite flat surface. The plane is
specified as follows:

plane { <NORMAL>, DISTANCE }

The 〈NORMAL〉 vector defines the surface normal of the plane. A surface normal is
a vector which points up from the surface at a 90 degree angle.This is followed by
a float value that gives the distance along the normal that theplane is from the origin
(that is only true if the normal vector has unit length; see below). For example:

plane { <0, 1, 0>, 4 }

This is a plane wherestraight upis defined in the positivey-direction. The plane is
4 units in that direction away from the origin. Because most planes are defined with
surface normals in the direction of an axis you will often seeplanes defined using the
x, y or z built-in vector identifiers. The example above could be specified as:

plane { y, 4 }

258 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The plane extends infinitely in thex- andz-directions. It effectively divides the world
into two pieces. By definition the normal vector points to theoutside of the plane while
any points away from the vector are defined as inside. This inside/outside distinction
is only important when using planes in CSG andclipped by.

A plane is called apolynomialshape because it is defined by a first order polynomial
equation. Given a plane:

plane { <A, B, C>, D }

it can be represented by the equation

Ax+By+Cz−D
√

A2+B2+C2 = 0. (7.23)

Therefore our exampleplane { y,4 } is actually the polynomial equationy= 4.
You can think of this as a set of allx, y, z points where all havey values equal to 4,
regardless of thex or z values.

This equation is afirst orderpolynomial because each term contains only single powers
of x, y or z. A second order equation has terms likex2, y2, z2, xy, xzandyz. Another
name for a 2nd order equation is a quadric equation. Third order polys are called
cubics. A 4th order equation is a quartic. Such shapes are described in the sections
below.

7.5.4.2 Poly, Cubic and Quartic

Higher order polynomial surfaces may be defined by the use of apoly shape. The
syntax is

poly { ORDER, <T1, T2, T3, Tm> }

where ORDER is a whole number from 2 to 7 inclusively that specifies the order of the
equation.T1, T2, . . . Tmare float values for the coefficients of the equation. There are
msuch terms where

m=
((ORDER+1)(ORDER+2)(ORDER+3))

6
. (7.24)

An alternate way to specify 3rd order polys is:

cubic { <T1, T2,... T20> }

Also 4th order equations may be specified with:

7.5. OBJECTS 259

quartic { <T1, T2,... T35> }

Here’s a more mathematical description of quartics for those who are interested. Quar-
tic surfaces are 4th order surfaces and can be used to describe a large class of shapes
including the torus, the lemniscate, etc. The general equation for a quartic equation in
three variables is (hold onto your hat):

a00x
4+a01x

3y+a02x
3z+a03x3+a04x2y2+

a05x
2yz+a06x2y+a07x2z2+a08x

2z+a09x2+

a10xy3+a11xy2z+a12xy2+a13xyz2+a14xyz+

a15xy+a16xz3+a17xz2+a18xz+a19x+

a20y
4+a21y

3z+a22y3+a23y2z2+a24y2z+

a25y
2+a26yz3+a27yz2+a28yz+a29y+

a30z
4+a31z

3+a32z2+a33z+a34= 0 (7.25)

To declare a quartic surface requires that each of the coefficientsa00 . . .a34 be placed
in order into a single long vector of 35 terms.

As an example let’s define a torus the hard way. A Torus can be represented by the
equation:

x4+y4+z4+2x2y2+2x2z2+2y2z2−

2(r2
0+ r2

1)x
2+2(r2

0− r2
1)y

2−2(r2
0+ r2

1)z
2+(r2

0− r2
1)

2= 0 (7.26)

Wherer0 is themajor radius of the torus, the distance from the hole of the donut tothe
middle of the ring of the donut, andr1 is theminor radius of the torus, the distance from
the middle of the ring of the donut to the outer surface. The following object declaration
is for a torus having major radius 6.3 minor radius 3.5 (Making the maximum width
just under 20).

// Torus having major radius sqrt(40), minor radius sqrt(12)

quartic {

< 1, 0, 0, 0, 2, 0, 0, 2, 0,

-104, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 2, 0, 56, 0,

0, 0, 0, 1, 0, -104, 0, 784 >

sturm

bounded_by { // bounded_by speeds up the render,

// see bounded_by

// explanation later

// in docs for more info.

sphere { <0, 0, 0>, 10 }

}

}

260 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Poly, cubic and quartics are just like quadrics in that you don’t have to understand what
one is to use one. The fileSHAPESQ.INC has plenty of pre-defined quartics for you to
play with. The syntax for using a pre-defined quartic is:

object { Quartic_Name }

Polys use highly complex computations and will not always render perfectly. If the sur-
face is not smooth, has dropouts, or extra random pixels, tryusing the optional keyword
sturm in the definition. This will cause a slower but more accurate calculation method
to be used. Usually, but not always, this will solve the problem. If sturm doesn’t work,
try rotating or translating the shape by some small amount. See the sub-directoryMATH

in the scene files directory for examples of polys in scenes.

There are really so many different quartic shapes, we can’t even begin to list or describe
them all. If you are interested and mathematically inclined, an excellent reference book
for curves and surfaces where you’ll find more quartic shape formulas is:

The CRC Handbook of Mathematical Curves and Surfaces
David von Seggern
CRC Press, 1990

7.5.4.3 Quadric

Quadric surfaces can produce shapes like ellipsoids, spheres, cones, cylinders,
paraboloids (dish shapes) and hyperboloids (saddle or hourglass shapes). Note that
you do not confusequaDRicwith quaRTic. A quadric is a 2nd order polynomial while
a quartic is 4th order. Quadrics render much faster and are less error-prone.

A quadric is defined in POV-Ray by

quadric { <A,B,C>, <D,E,F>, <G,H,I>, J }

whereA throughJ are float expressions that define a surface ofx, y, z points which
satisfy the equation

Ax2 + By2 + Cz2 + Dxy + Exz+ Fyz + Gx + Hy + Iz + J = 0 (7.27)

Different values ofA, B, C, . . . J will give different shapes. If you take any three
dimensional point and use itsx, y andz coordinates in the above equation the answer
will be 0 if the point is on the surface of the object. The answer will be negative if the
point is inside the object and positive if the point is outside the object. Here are some
examples:

X2+Y2+Z2−1= 0 Sphere (7.28)

X2+Y2−1= 0 Infinite cylinder along the z-axis (7.29)

X2+Y2−Z2 = 0 Infinite cone along the z-axis (7.30)

7.5. OBJECTS 261

The easiest way to use these shapes is to include the standardfile SHAPES.INC into
your program. It contains several pre-defined quadrics and you can transform these
pre-defined shapes (using translate, rotate and scale) intothe ones you want. You can
invoke them by using the syntax:

object { Quadric_Name }

The pre-defined quadrics are centered about the origin〈0,0,0〉 and have a radius of 1.
Don’t confuse radius with width. The radius is half the diameter or width making the
standard quadrics 2 units wide.

Some of the pre-defined quadrics are,

Ellipsoid

Cylinder_X, Cylinder_Y, Cylinder_Z

QCone_X, QCone_Y, QCone_Z

Paraboloid_X, Paraboloid_Y, Paraboloid_Z

For a complete list, see the fileSHAPES. INC.

7.5.5 Constructive Solid Geometry

POV-Ray supportsConstructive Solid Geometry(CSG) with five different operations:
difference, intersection, merge, union and negation (inversion). While the first four
operations represent binary operators, i. e. they need two arguments, the negation is a
unary operator, it takes only one argument.

7.5.5.1 About CSG

Constructive Solid Geometry is a technique for combining two or more objects to create
a new object using the three boolean set operatorsunion, intersection, and
negation. It only works with solid objects, i. e. objects that have a well-defined
interior. This is the case for all objects described in the sections 7.5.2 on page 231
and 7.5.4 on page 257.

CSG shapes may be used anywhere a standard shape can be used, even inside other
CSG shapes. They can be translated, rotated or scaled in the same way as any other
shape. The shapes making up the CSG shape may be individuallytranslated, rotated
and scaled as well.

7.5.5.2 Inside and Outside

Most shape primitives, like spheres, boxes and blobs dividethe world into two regions.
One region is inside the object and one is outside.

262 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Given any point in space you can say it’s either inside or outside any particular primitive
object. Well, it could be exactly on the surface but this caseis rather hard to determine
due to numerical problems.

Even planes have an inside and an outside. By definition, the surface normal of the
plane points towards the outside of the plane. You should note that triangles and
triangle-based shapes cannot be used as solid objects in CSGsince they have no well
defined inside and outside.

CSG uses the concepts of inside and outside to combine shapestogether as explained
in the following sections.

Imagine you have to objects that partially overlap like shown in figure 7.9. Four dif-
ferent areas of points can be distinguished: points that areneither in object A nor in
object B, points that are in object A but not in object B, points that are not in object A
but in object B and last not least points that are in object A and object B.

A B

Figure 7.9: Two overlapping objects.

Keeping this in mind it will be quite easy to understand how the CSG operations work.

7.5.5.3 Inverse

When using CSG it is often useful to invert an object so that it’ll be inside-out. The
appearance of the object is not changed, just the way that POV-Ray perceives it. When
theinverse keyword is used theinsideof the shape is flipped to become theoutside
and vice versa.

Note that the difference operation is performed by intersecting the first object with the
negation of the second object.

7.5.5.4 Union

Unions are simplyglue used to bind two or more shapes into a single entity that can
be manipulated as a single object. Figure 7.10 on the facing page shows the union of

7.5. OBJECTS 263

BA

Figure 7.10: The union of two objects.

A and B. The new object created by the union operation can be scaled, translated and
rotated as a single shape. The entire union can share a singletexture but each object
contained in the union may also have its own texture, which will override any matching
texture statements in the parent object.

You should be aware that the surfaces inside the union will not be removed. As you
can see from the figure this may be a problem for transparent unions. If you want those
surfaces to be removed you’ll have to use the merge operations explained in a later
section.

The following union will contain a box and a sphere.

union {

box { <-1.5, -1, -1>, <0.5, 1, 1> }

cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 }

}

Earlier versions of POV-Ray placed restrictions on unions so you often had to combine
objects withcomposite statements. Those earlier restrictions have been lifted so
composite is no longer needed. Composite is still supportedfor backwards compatibil-
ity but it is recommended that union is now used in it’s place since future support for
the composite keyword is not guaranteed.

7.5.5.5 Intersection

A point is inside an intersection if it is inside both objects, A and B, as show in fig-
ure 7.11 on the next page.

For example:

intersection {

264 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

A B

Figure 7.11: The intersection between two objects.

box { <-1.5, -1, -1>, <0.5, 1, 1> }

cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 }

}

7.5.5.6 Difference

The CSG difference operation takes the intersection between the first object and the
negation of the second object. Thus only points inside object A and outside object B
belong to the difference of both objects.

The results is asubtractionof the 2nd shape from the first shape as shown in figure 7.12.

A B

Figure 7.12: The difference between two objects.

For example:

difference {

box { <-1.5, -1, -1>, <0.5, 1, 1> }

7.5. OBJECTS 265

cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 }

}

7.5.5.7 Merge

The union operation just glues objects together, it does notremove the objects’ surfaces
inside the union. If a transparent union is used those surface will get visible.

The merge operations can be used to avoid this problem. It works just like union but it
eliminates the inner surfaces like shown in figure 7.13.

A B

Figure 7.13: Merge removes inner surfaces.

7.5.6 Light Sources

The last object covered is the light source. Light sources have no visible shape of their
own. They are just points or areas which emit light. Their full syntax is:

light_source {

<LOCATION>

color <COLOUR>

[spotlight]

[point_at <POINT_AT>]

[radius RADIUS]

[falloff FALLOFF]

[tightness TIGHTNESS]

[area_light <AXIS1>, <AXIS2>, SIZE1, SIZE2]

[adaptive ADAPTIVE]

[jitter JITTER]

[looks_like { OBJECT }]

[fade_distance FADE_DISTANCE]

[fade_power FADE_POWER]

[atmospheric_attenuation BOOL]

}

266 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The different types of light sources and the optional modifiers are described in the
following sections.

7.5.6.1 Point Lights

A point light source sends light of the specified color uniformly in all directions. Its
location is described by thelocation keyword and its color is given by thecolor
keyword. The complete syntax is:

light_source {

<LOCATION>

color <COLOUR>

[looks_like { OBJECT }]

[fade_distance FADE_DISTANCE]

[fade_power FADE_POWER]

[atmospheric_attenuation BOOL]

}

The other keywords will be explained later.

7.5.6.2 Spotlights

A spotlight is a point light source where the rays of light areconstrained by a cone.
The light is bright in the center of this cone and falls off or darkens at the edges of the
cone. The syntax is:

light_source {

<LOCATION>

color <COLOUR>

spotlight

point_at <POINT_AT>

radius RADIUS

falloff FALLOFF

tightness TIGHTNESS

[looks_like { OBJECT }]

[fade_distance FADE_DISTANCE]

[fade_power FADE_POWER]

[atmospheric_attenuation BOOL]

}

The spotlight is identified by thespotlight keyword. It is located at LOCATION
and points at POINTAT.

The spotlight’s other parameters areradius, falloff andtightness.

7.5. OBJECTS 267

falloff angle

center line

radius angle

location

point_at

Figure 7.14: The geometry of a spotlight.

Think of a spotlight as two nested cones as shown in the figure.The inner cone is
specified by the radius parameter and is fully lit. The outer cone is the falloff cone
beyond which there is no light. The values for these two parameters are half the opening
angles of the corresponding cones, both angles have to be smaller than 90 degrees. The
light smoothly falls off between the radius and the falloff angle like shown in the figures
in 7.15 on the following page (as long as the radius angle is not negative).

The tightness value specifies how quickly the light dims, or falls off, from the spot-
light’s center line to the the falloff cone (full darkness outside). The default value for
tightness is 10. Lower tightness values will make the spotlight brighter, making the
spotwider and the edges sharper. Higher values will dim the spotlight,making the spot
tighter and the edges softer. Values from 1 to 100 are acceptable.

You should note from the figures that the radius and falloff angles interact with the
tightness parameter. Only negative radius angles will givethe tightness value full con-
trol over the spotlight’s appearance as you can see from the figure in 7.15 on the next
page. In that case the falloff angle has no effect and the lit area is only determined by
the tightness parameter.

Spotlights may be used anyplace that a normal light source isused. Like any light
sources, they are invisible. They are treated as shapes and may be included in CSG
shapes. They may also be used in conjunction with area lights.

268 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
Angle between light ray and spotlight’s centerline

0.0

0.5

1.0

Li
gh

t i
nt

en
si

ty
 m

ul
tip

lie
r

radius = 0
radius = 15
radius = 30
radius = 45

(a)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
Angle between light ray and spotlight’s centerline

0.0

0.5

1.0

Li
gh

t i
nt

en
si

ty
 m

ul
tip

lie
r

falloff = 45
falloff = 60
falloff = 75
falloff = 90

(b)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
Angle between light ray and spotlight’s centerline

0.0

0.5

1.0

Li
gh

t i
nt

en
si

ty
 m

ul
tip

lie
r

0

1

2

5
10

20
50

100

(c)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
Angle between light ray and spotlight’s centerline

0.0

0.5

1.0

Li
gh

t i
nt

en
si

ty
 m

ul
tip

lie
r

1

2

5
10

20
50

100

0

(d)

Figure 7.15: Different light intensity multiplier curves:(a) fixed falloff angle of 45
degrees; (b) fixed radius angle of 45 degrees; (c) fixed angle and falloff angles of 30
and 60 degrees respectively and different tightness values; (d) negative radius angle
and different tightness values
.

7.5.6.3 Cylindrical Lights

Cylindrical light sources work pretty much like spotlightsexcept that the light rays are
constraint by a cylinder and not a cone. The syntax is:

light_source {

<LOCATION>

color <COLOUR>

cylinder

point_at <POINT_AT>

radius RADIUS

falloff FALLOFF

tightness TIGHTNESS

[looks_like { OBJECT }]

7.5. OBJECTS 269

[fade_distance FADE_DISTANCE]

[fade_power FADE_POWER]

[atmospheric_attenuation BOOL]

}

Theradius,falloff andtightness keywords control the same features as with
the spotlight.

You should keep in mind that the cylindrical light source is still a point light source.
The rays are emitted from one point and are only constraint bya cylinder. The light
rays are not parallel.

7.5.6.4 Area Lights

Area light sources occupy a finite, one- or two-dimensional area of space. They can
cast soft shadows because they can partially block light.

The area lights used in POV-Ray are rectangular in shape, sort of like a flat panel light.
Rather than performing the complex calculations that wouldbe required to model a
true area light, it is approximated as an array of point lightsources spread out over the
area occupied by the light. The intensity of each individualpoint light in the array is
dimmed so that the total amount of light emitted by the light is equal to the light color
specified in the declaration. The syntax is:

light_source {

<LOCATION>

color <COLOUR>

area_light <AXIS1>, <AXIS2>, SIZE1, SIZE2

adaptive ADAPTIVE

jitter JITTER

[spotlight]

[point_at <POINT_AT>]

[radius RADIUS]

[falloff FALLOFF]

[tightness TIGHTNESS]

[looks_like { OBJECT }]

[fade_distance FADE_DISTANCE]

[fade_power FADE_POWER]

[atmosphere BOOL]

[atmospheric_attenuation BOOL]

}

The light’s location and color are specified in the same way asa for a regular light
source.

Thearea light command defines the size and orientation of the area light as well
as the number of lights in the light source array. The vectorsAXIS1 and AXIS2 specify

270 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

the lengths and directions of the edges of the light. Since the area lights are rectangular
in shape these vectors should be perpendicular to each other. The larger the size of the
light the thicker the soft part of shadows will be. The numbers SIZE1 and SIZE2 spec-
ify the dimensions of the array of point lights. The more lights you use the smoother
your shadows will be but the longer they will take to render.

The jitter command is optional. When used it causes the positions of thepoint
lights in the array to be randomly jittered to eliminate any shadow banding that may
occur. The jittering is completely random from render to render and should not be used
when generating animations.

Note that it is possible to specify spotlight parameters along with the area light param-
eters to createarea spotlights. Using area spotlights is a good way to speed up scenes
that use area lights since you can confine the lengthy soft shadow calculations to only
the parts of your scene that need them.

An interesting effect can be created using a linear light source. Rather than having
a rectangular shape, a linear light stretches along a line sort of like a thin fluorescent
tube. To create a linear light just create an area light with one of the array dimensions
set to 1.

Theadaptive command is used to enable adaptive sampling of the light source. By
default POV-Ray calculates the amount of light that reachesa surface from an area
light by shooting a test ray at every point light within the array. As you can imagine
this is very slow. Adaptive sampling on the other hand attempts to approximate the
same calculation by using a minimum number of test rays. The number specified after
the keyword controls how much adaptive sampling is used. Thehigher the number the
more accurate your shadows will be but the longer they will take to render. If you’re
not sure what value to use a good starting point isadaptive 1. Theadaptive
keyword only accepts integer values and cannot be set lower than 0.

When performing adaptive sampling POV-Ray starts by shooting a test ray at each of
the four corners of the area light. If the amount of light received from all four corners
is approximately the same then the area light is assumed to beeither fully in view or
fully blocked. The light intensity is then calculated as theaverage intensity of the light
received from the four corners. However, if the light intensity from the four corners
differs significantly then the area light is partially blocked. The area light is split into
four quarters and each section is sampled as described above. This allows POV-Ray to
rapidly approximate how much of the area light is in view without having to shoot a
test ray at every light in the array. Visually the sampling goes like shown in 7.16 on the
facing page.

While the adaptive sampling method is fast (relatively speaking) it can sometimes pro-
duces inaccurate shadows. The solution is to reduce the amount of adaptive sampling
without completely turning it off. The number after the adaptive keyword adjusts the
number of times that the area light will be split before the adaptive phase begins. For
example if you useadaptive 0 a minimum of 4 rays will be shot at the light. If you
useadaptive 1 a minimum of 9 rays will be shot (adaptive 2 gives 25 rays,
adaptive 3 gives 81 rays, etc). Obviously the more shadow rays you shootthe

7.5. OBJECTS 271

2x2 rays
level 0 level 1

3x3 rays 5x5 rays
level 2

samples reused from the previous level

new ray samples

Figure 7.16: Area light adaptive sampling.

slower the rendering will be so you should use the lowest value that gives acceptable
results.

The number of rays never exceeds the values you specify for rows and columns of
points. For examplearea light x,y,4,4 specifies a 4 by 4 array of lights. If you
specifyadaptive 3 it would mean that you should start with a 9 by 9 array. In this
case no adaptive sampling is done. The 4 by 4 array is used.

7.5.6.5 Shadowless Lights

Using theshadowless keyword you can stop a light source from casting shadows.

7.5.6.6 Lookslike

Normally the light source itself has no visible shape. The light simply radiates from
an invisible point or area. You may give a light source any shape by adding a
looks like { OBJECT } statement.

There is an impliedno shadow attached to thelooks like object so that light
is not blocked by the object. Without the automaticno shadow the light inside the
object would not escape. The object would, in effect, cast a shadow over everything.

If you want the attached object to block light then you shouldattach it with a union and
not alooks like as follows:

union {

light_source { <100, 200, -300> color White }

object { My_Lamp_Shape }

}

Presumably parts of the lamp shade are translucent to let some light out.

272 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.5.6.7 Light Fading

By default POV-Ray does not diminish light from any light source as it travels through
space. In order to get a more realistic effectfade distance andfade power can
be used to model the distance based falloff in light intensity.

Thefade distance keyword is used to specify the distance at which the full light
intensity arrives, i. e. the intensity which was given by thecolor keyword. The
actual attenuation is described by thefade power keyword, which determines the
falloff rate. E. g. linear or quadratic falloff can be used bysetting FADEPOWER to
1 or 2 respectively. The complete formula to calculate the factor by which the light is
attenuated is

attenuation=
2

1+

(

d
FADE DISTANCE

)FADE POW ER (7.31)

with d being the distance the light has traveled.

0.0 5.0 10.0
Relative distance to light source

0.0

0.5

1.0

1.5

2.0

Li
gh

t i
nt

en
si

ty
 m

ul
tip

lie
r

no fading
fading power 1
fading power 2
fading power 3

Figure 7.17: Light fading functions for different fading powers.

You should note two important facts: First, for FADEDISTANCEs larger than one
the light intensity at distances smaller than FADEDISTANCE actually increases.
This is necessary to get the light source color if the distance traveled equals the
FADE DISTANCE. Second, only light coming directly from light sources is attenu-
ated. Reflected or refracted light is not attenuated by distance.

7.5.6.8 Atmosphere Interaction

By default light sources will interact with an atmosphere added to the scene. This
behaviour can be switched off by using theatmosphere keyword inside the light
source statement.

7.5. OBJECTS 273

light_source {

...

atmosphere off

}

7.5.6.9 Atmospheric Attenuation

Normally light coming from light sources is not influenced byfog or atmosphere. This
can be changed by turning the atmospheric attenuation for a given light source on. All
light coming from this light source will now be diminished asit travels through the fog
or atmosphere. This results in an distance-based, exponential intensity falloff ruled by
the used fog or atmosphere. If there is no fog or atmosphere nochange will be seen.

7.5.7 Object Modifiers

A variety of modifiers may be attached to objects. Transformations such as translate,
rotate and scale have already been discussed. Textures are in a section of their own
below. Here are three other important modifiers:clipped by, bounded by and
no shadow. Although the examples below use object statements and object identi-
fiers, these modifiers may be used on any type of object such as sphere, box etc.

7.5.7.1 ClippedBy

Theclipped by statement is technically an object modifier but it provides atype of
CSG similar to CSG intersection. You attach a clipping object like this:

object {

My_Thing

clipped_by{plane{y,0}}

}

Every part of the objectMy Thing that is inside the plane is retained while the remain-
ing part is clipped off and discarded. In an intersection object the hole is closed off.
With clipped by it leaves an opening. For example the figure in 7.18 on the next
page shows object A being clipped by object B.

clipped by may be used to slice off portions of any shape. In many cases itwill
also result in faster rendering times than other methods of altering a shape.

Often you will want to use theclipped by andbounded by options with the same
object. The following shortcut saves typing and uses less memory.

274 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

BA

Figure 7.18: An object clipped by another object.

object {

My_Thing

bounded_by { box { <0,0,0>, <1,1,1> } }

clipped_by { bounded_by }

}

This tells POV-Ray to use the same box as a clip that was used asa bounds.

7.5.7.2 BoundedBy

The calculations necessary to test if a ray hits an object canbe quite time consuming.
Each ray has to be tested against every object in the scene. POV-Ray attempts so speed
up the process by building a set of invisible boxes, called bounding boxes, which clus-
ter the objects together. This way a ray that travels in one part of the scene doesn’t
have to be tested against objects in another, far away part ofthe scene. When large a
number of objects are present the boxes are nested inside each other. POV-Ray can use
bounding boxes on any finite object and even some clipped or bounded quadrics. How-
ever infinite objects (such as a planes, quartic, cubic and poly) cannot be automatically
bound. CSG objects are automatically bound if they contain finite (and in some cases
even infinite) objects. This works by applying the CSG set operations to the bounding
boxes of all objects used inside the CSG object. For difference and intersection op-
erations this will hardly ever lead to an optimal bounding box. It’s sometimes better
(depending on the complexity of the CSG object) to use abounded by statement
with such shapes.

Normally bounding shapes are not necessary but there are cases where they can be used
to speed up the rendering of complex objects. Bounding shapes tell the ray-tracer that
the object is totally enclosed by a simple shape. When tracing rays, the ray is first tested
against the simple bounding shape. If it strikes the bounding shape the ray is further
tested against the more complicated object inside. Otherwise the entire complex shape
is skipped, which greatly speeds rendering.

7.5. OBJECTS 275

To use bounding shapes, simply include the following lines in the declaration of your
object:

bounded_by {

object { ... }

}

An example of a bounding shape:

intersection {

sphere { <0,0,0>, 2 }

plane { <0,1,0>, 0 }

plane { <1,0,0>, 0 }

bounded_by {sphere { <0,0,0>, 2 } }

}

The best bounding shape is a sphere or a box since these shapesare highly optimized,
although, any shape may be used. If the bounding shape is itself a finite shape which
responds to bounding slabs then the object which it encloseswill also be used in the
slab system.

CSG shapes can benefit from bounding slabs without abounded by statement how-
ever they may do so inefficiently in intersection, difference and merge. In these three
CSG types the automatic bound used covers all of the component objects in their en-
tirety. However the result of these intersections may result in a smaller object. Compare
the sizes of the illustrations for union and intersection inthe CSG section above. It is
possible to draw a much smaller box around the intersection of A and B than the union
of A and B yet the automatic bounds are the size of the union of Aand B regardless of
the kind of CSG specified.

While it is almost always a good idea to manually add abounded by to intersec-
tion, difference and merge, it is often best tonot bound a union. If a union has no
bounded by and noclipped by POV-Ray can internally split apart the compo-
nents of a union and apply automatic bounding slabs to any of its finite parts. Note that
some utilities such asRAW2POV may be able to generate bounds more efficiently than
POV-Ray’s current system. However most unions you create yourself can be easily
bounded by the automatic system. For technical reasons POV-Ray cannot split a merge
object. It is probably best to hand bound a merge, especiallyif it is very complex.

Note that if bounding shape is too small or positioned incorrectly it may clip the ob-
ject in undefined ways or the object may not appear at all. To dotrue clipping, use
clipped by as explained above. Often you will want to use theclipped by and
bounded by options with the same object. The following shortcut saves typing and
uses less memory.

object {

276 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

My_Thing

clipped_by{ box { <0,0,0>,<1,1,1 > }}

bounded_by{ clipped_by }

}

This tells POV-Ray to use the same box as a bounds that was usedas a clip.

7.5.7.3 Hollow

POV-Ray by default assumes that objects are made of a solid material that completely
fills the interior of an object. By adding thehollow keyword to the object you can
make it hollow. That is very useful if you want atmospheric effects to exist inside an
object. It is even required for objects containing a halo (see 7.6.4 on page 302 for
details).

In order to get a hollow CSG object you just have to make the toplevel object hollow.
All children will assume the samehollow state except their state is explicitly set. The
following example will set both spheres inside the union hollow

union {

sphere { -0.5*x, 1 }

sphere { 0.5*x, 1 }

hollow

}

while the next example will only set the second sphere hollowbecause the first sphere
was explicitly set to be not hollow.

union {

sphere { -0.5*x, 1 hollow off }

sphere { 0.5*x, 1 }

hollow

}

7.5.7.4 NoShadow

You may specify theno shadow keyword in an object to make that object cast no
shadow. This is useful for special effects and for creating the illusion that a light source
actually is visible. This keyword was necessary in earlier versions of POV-Ray which
did not have thelooks like statement. Now it is useful for creating things like laser
beams or other unreal effects.

Simply attach the keyword as follows:

7.6. TEXTURES 277

object {

My_Thing

no_shadow

}

7.5.7.5 Sturm

Some of POV-Ray’s objects allow you to choose between a fast but sometimes inaccu-
rate root solver and a slower but more accurate one. This is the case for all objects that
involve the solution of a cubic or quartic polynomial. Thereare analytic mathematical
solutions for those polynomals that can be used.

Lower order polynomals are trivial to solve while higher order polynomials require
iterative algorithms to solve them. One of those algorithmsis the Sturmian root solver.

The following list shows all objects for which the Sturmian root solver can be used.

blob

cubic

lathe (only with quadratic splines)

poly

prism (only with cubic splines)

quartic

sor

7.6 Textures

The texture describes what the object looks like, i. e. its material. Textures are com-
binations of pigments, normals, finishes and halos. Pigmentis the color or pattern of
colors inherent in the material. Normal is a method of simulating various patterns of
bumps, dents, ripples or waves by modifying the surface normal vector. Finish de-
scribes the reflective and refractive properties of a material. Halo simulates effects like
clouds, fog, fire etc. by using a density field defined inside the object.

A plain textureconsists of a single pigment, an optional normal, a single finish and
optionally one or more halos. Aspecial texturecombines two or more textures using a
pattern or blending function. Special textures may be made quite complex by nesting
patterns within patterns. At the innermost levels however,they are made up from plain
textures. Note that allthough we call a plain textureplain it may be a very complex
texture. The termplain only means that it has a single pigment, normal, finish and
halo.

The most complete form for defining a plain texture is as follows:

278 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

texture {

TEXTURE_IDENTIFIER

pigment {..}.

normal {..}.

finish {..}.

halo {..}.

TRANSFORMATIONS

}

Each of the items in a texture are optional but if they are present the identifier
must be first and the transformations must be last. The pigment, normal and fin-
ish parameters modify any pigment, normal and finish alreadyspecified in the TEX-
TURE IDENTIFIER. Any halos are added to the already existing halos. If no texture
identifier is specified the pigment, normal and finish statements modify the current de-
fault values and any halo is added to the default halo, if any.TRANSFORMATIONs
are translate, rotate, scale and matrix statements. They should be specified last.

The sections below describe all of the options available in pigments, normals, finishes
and halos. Special textures are covered later.

7.6.1 Pigment

The color or pattern of colors for an object is defined by apigment statement. All
plain textures must have a pigment. If you do not specify one the default pigment is
used. A pigment statement is part of a texture specification.However it can be tedious
to typetexture { pigment { . . . } } just to add a color to an object. Therefore
you may attach a pigment directly to an object without explicitly specifying that it as
part of a texture. For example:

//this... //can be shortened to this...

object { object {

My_Object My_Object

texture { pigment {color Red}

pigment {color Red} }

}

}

The color you define is the way you want the object to look if fully illuminated. You
pick the basic color inherent in the object and POV-Ray brightens or darkens it de-
pending on the lighting in the scene. The parameter is calledpigmentbecause we are
defining the basic color the object actually is rather than how it looks.

The most complete form for defining a pigment is as follows:

7.6. TEXTURES 279

pigment {

PIGMENT_IDENTIFIER

PATTERN_TYPE

PIGMENT_MODIFIERS...

}

Each of the items in a pigment are optional but if they are present, they should be in
the order shown above to insure that the results are as expected. Any items after the
PIGMENT IDENTIFIER modify or override settings given in the identifier. If no iden-
tifier is specified then the items modify the pigment values inthe current default tex-
ture. Valid PIGMENTMODIFIERS arecolor map, pigment map, image map

andquick color statements as well as any of the generic PATTERNMODIFIERS
such astranslate, rotate, scale, turbulence, wave shape and warp state-
ments. Such modifiers apply only to the pigment and not to other parts of the texture.
Modifiers should be specified last.

The various pattern types fall into roughly four categories. Each category is discussed
below. They are solid color, color list patterns, color mapped patterns and image maps.

7.6.1.1 Solid Color Pigments

The simplest type of pigment is a solid color. To specify a solid color you simply put a
color specification inside a pigment. For example:

pigment {color Orange}

A color specification consists of the option keywordcolor followed by a color iden-
tifier or by a specification of the amount of red, green, blue, filtered and unfiltered
transparency in the surface. See section 7.1.5 on page 192 for more details about col-
ors. Any pattern modifiers used with a solid color are ignoredbecause there is no
pattern to modify.

7.6.1.2 Color List Pigments

There are three color list patterns:checker, hexagon andbrick. The result is a
pattern of solid colors with distinct edges rather than a blending of colors as with color
mapped patterns. Each of these patterns is covered in more detail in a later section.
The syntax for each is:

pigment { brick COLOR1, COLOR2 MODIFIERS ... }

pigment { checker COLOR1, COLOR2 MODIFIERS ... }

pigment { hexagon COLOR1, COLOR2, COLOR3 MODIFIERS ... }

Each COLORn is any valid color specification. There should bea comma between
each color or thecolor keyword should be used as a separator so that POV-Ray can
determine where each color specification starts and ends.

280 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.1.3 Color Maps

Most of the color patterns do not use abrupt color changes of just two or three colors
like those in the brick, checker or hexagon patterns. They instead use smooth transi-
tions of many colors that gradually change from one point to the next. The colors are
defined in a pigment modifier called acolor mapthat describes how the pattern blends
from one color to the next.

Each of the various pattern types available is in fact a mathematical function that takes
any x, y, z location and turns it into a number between 0.0 and 1.0 inclusive. That
number is used to specify what mix of colors to use from the color map.

A color map is specified by. . .

pigment{

PATTERN_TYPE

color_map {

[NUM_1 COLOR_1]

[NUM_2 COLOR_2]

[NUM_3 COLOR_3]

...

}

PIGMENT_MODIFIERS...

}

Where NUM1, NUM 2, . . . are float values between 0.0 and 1.0 inclusive. COLOR1,
COLOR 2, . . . are color specifications. Note that the[] brackets are part of the actual
statement. They are not notational symbols denoting optional parts. The brackets
surround each entry in the color map. There may be from 2 to 256entries in the map.
The alternate spellingcolour map may be used.

For example

sphere {

<0,1,2>, 2

pigment {

gradient x //this is the PATTERN_TYPE

color_map {

[0.1 color Red]

[0.3 color Yellow]

[0.6 color Blue]

[0.6 color Green]

[0.8 color Cyan]

}

}

}

The pattern function is evaluated and the result is a value from 0.0 to 1.0. If the value is
less than the first entry (in this case 0.1) then the first color(red) is used. Values from

7.6. TEXTURES 281

0.1 to 0.3 use a blend of red and yellow using linear interpolation of the two colors.
Similarly values from 0.3 to 0.6 blend from yellow to blue. Note that the 3rd and 4th
entries both have values of 0.6. This causes an immediate abrupt shift of color from
blue to green. Specifically a value that is less than 0.6 will be blue but exactly equal to
0.6 will be green. Moving along, values from 0.6 to 0.8 will bea blend of green and
cyan. Finally any value greater than or equal to 0.8 will be cyan.

If you want areas of unchanging color you simply specify the same color for two adja-
cent entries. For example:

color_map {

[0.1 color Red]

[0.3 color Yellow]

[0.6 color Yellow]

[0.8 color Green]

}

In this case any value from 0.3 to 0.6 will be pure yellow.

The color map keyword may be used with any pattern exceptbrick, checker,
hexagon andimage map. You may declare and usecolor map identifiers. For
example:

#declare Rainbow_Colors=

color_map {

[0.0 color Magenta]

[0.33 color Yellow]

[0.67 color Cyan]

[1.0 color Magenta]

}

object{My_Object

pigment{

gradient x

color_map{Rainbow_Colors}

}

}

7.6.1.4 Pigment Maps

In addition to specifying blended colors with a color map youmay create a blend of
pigments using apigment map. The syntax for a pigment map is identical to a color
map except you specify a pigment in each map entry (and not a color).

A pigment map is specified by. . .

282 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

pigment{

PATTERN_TYPE

pigment_map {

[NUM_1 PIGMENT_BODY_1]

[NUM_2 PIGMENT_BODY_2]

[NUM_3 PIGMENT_BODY_3]

...

}

PIGMENT_MODIFIERS...

}

Where NUM1, NUM 2, . . . are float values between 0.0 and 1.0 inclusive. A PIG-
MENT BODY is anything that would normally appear inside apigment { . . . }
statement but thepigment keyword and{} braces are not needed. Note that the[]

brackets are part of the actual statement. They are not notational symbols denoting
optional parts. The brackets surround each entry in the map.There may be from 2 to
256 entries in the map.

For example

sphere {

<0,1,2>, 2

pigment {

gradient x //this is the PATTERN_TYPE

pigment_map {

[0.3 wood scale 0.2]

[0.3 Jade] //this is a pigment identifier

[0.6 Jade]

[0.9 marble turbulence 1]

}

}

}

When thegradient x function returns values from 0.0 to 0.3 the scaled wood pig-
ment is used. From 0.3 to 0.6 the pigment identifier Jade is used. From 0.6 up to 0.9 a
blend of Jade and a turbulent marble is used. From 0.9 on up only the turbulent marble
is used.

Pigment maps may be nested to any level of complexity you desire. The pigments in
a map may have color maps or pigment maps or any type of pigmentyou want. Any
entry of a pigment map may be a solid color however if all entries are solid colors you
should use a color map which will render slightly faster.

Entire pigments may also be used with the block patterns suchas checker, hexagon and
brick. For example. . .

pigment {

7.6. TEXTURES 283

checker

pigment { Jade scale .8 }

pigment { White_Marble scale .5 }

}

Note that in the case of block patterns thepigment { . . . } wrapping is required
around the pigment information.

A pigment map is also used with theaverage pigment type. See 7.6.7.2 on page 319
for details.

You may not usepigment map or individual pigments with animage map.
See 7.6.5.1 on page 313 for an alternative way to do this.

7.6.1.5 Image Maps

When all else fails and none of the above pigment pattern types meets your needs you
can use an image map to wrap a 2-D bit-mapped image around your3-D objects.

7.6.1.5.1 Specifying an Image Map

The syntax for animage mapis . . .

pigment {

image_map {

FILE_TYPE "filename"

MODIFIERS...

}

}

Where FILETYPE is one of the following keywordsgif, tga,iff, ppm, pgm, png
or sys. This is followed by the name of the file in quotes. Several optional modifiers
may follow the file specification. The modifiers are describedbelow. Note that earlier
versions of POV-Ray allowed some modifiers before the FILETYPE but that syntax is
being phased out in favor of the syntax described here.

Filenames specified in theimage map statements will be searched for in the home
(current) directory first and, if not found, will then be searched for in directories spec-
ified by any–L (library path) options active. This would facilitate keeping all your
image maps files in a separate subdirectory and giving an–L option on the command
line to where your library of image maps are.

By default, the image is mapped onto thex-y-plane. The image isprojectedonto the
object as though there were a slide projector somewhere in the−z-direction. The image
exactly fills the square area from(x,y) coordinates (0,0) to (1,1) regardless of the im-
age’s original size in pixels. If you would like to change this default you may translate,
rotate or scale the pigment or texture to map it onto the object’s surface as desired.

284 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

In section 7.6.7.6 on page 322 the checker pigment pattern isexplained. The checks
are described as solid cubes of colored clay from which objects are carved. With image
maps you should imagine that each pixel is a long, thin, square, colored rod that extends
parallel to thez-axis. The image is made from rows and columns of these rods bundled
together and the object is then carved from the bundle.

If you would like to change this default orientation you may translate, rotate or scale
the pigment or texture to map it onto the object’s surface as desired.

7.6.1.5.2 The maptype Option

The default projection of the image onto thex-y-plane is called aplanar map type.
This option may be changed by adding themap type keyword followed by a number
specifying the way to wrap the image around the object.

A map type 0 gives the default planar mapping already described.

A map type 1 gives a spherical mapping. It assumes that the object is a sphere of any
size sitting at the origin. They-axis is the north/south pole of the spherical mapping.
The top and bottom edges of the image just touch the pole regardless of any scaling.
The left edge of the image begins at the positivex-axis and wraps the image around the
sphere fromwestto eastin a−y-rotation. The image covers the sphere exactly once.
Theonce keyword has no meaning for this mapping type.

With map type 2 you get a cylindrical mapping. It assumes that a cylinder of any
diameter lies along they-axis. The image wraps around the cylinder just like the spher-
ical map but the image remains one unit tall fromy= 0 to y= 1. This band of color is
repeated at all heights unless theonce keyword is applied.

Finally map type 5 is a torus or donut shaped mapping. It assumes that a torus
of major radius one sits at the origin in thex-z-plane. The image is wrapped around
similar to spherical or cylindrical maps. However the top and bottom edges of the map
wrap over and under the torus where they meet each other on theinner rim.

Types 3 and 4 are still under development.

Note that the map type option may also be applied tobump map and
material map statements.

7.6.1.5.3 The Filter and Transmit Bitmap Modifiers

To make all or part of an image map transparent you can specifyfilter and/or transmit
values for the color palette/registers of PNG, GIF or IFF pictures (at least for the modes
that use palettes). You can do this by adding the keywordfilter or transmit
following the filename. The keyword is followed by two numbers. The first number
is the palette number value and the second is the amount of transparency. The values
should be separated by a comma. For example:

7.6. TEXTURES 285

image_map {

gif "mypic.gif"

filter 0, 0.5 // color 0 50% filtered transp.

filter 5, 1.0 // color 5 100% filtered transp.

transmit 8, 0.3 // color 8 30% non-filtered transp.

}

You can give the entire image afilter or transmit value usingfilter all

VALUE or transmit all VALUE. For example:

image_map {

gif "stnglass.gif"

filter all 0.9

}

Note that early versions of POV-Ray used the keywordalpha to specify filtered trans-
parency however that word is often used to describe non-filtered transparency. For this
reasonalpha is no longer used.

See 7.1.5 on page 192 and 7.1.5 on page 192 for details on the differences between
filtered and non-filtered transparency.

7.6.1.5.4 Using the Alpha Channel

Another way to specify non-filtered transmit transparency in an image map is by using
thealpha channel.

PNG allows you to store a different transparency for each color index in the PNG file, if
desired. If your paint programs support this feature of PNG you can do the transparency
editing within your paint program rather than specifying transmit values for each color
in the POV file. Since PNG and TGA image formats can also store full alpha channel
(transparency) information you can generate image maps that have transparency which
isn’t dependent on the color of a pixel but rather its location in the image.

Although POV uses transmit 0.0 to specify no transparency and 1.0 to specify full
transparency, the alpha data ranges from 0 to 255 in the opposite direction. Alpha data
0 means the same as transmit 1.0 and alpha data 255 produces transmit 0.0.

7.6.1.6 Quick Color

When developing POV-Ray scenes its often useful to do low quality test runs that render
faster. The+Q command line switch can be used to turn off some time consuming color
pattern and lighting calculations to speed things up. However all settings of+Q5 or
lower turns off pigment calculations and creates gray objects.

By adding aquick color to a pigment you tell POV-Ray what solid color to use for
quick renders instead of a patterned pigment. For example:

286 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

pigment {

gradient x

color_map{

[0.0 color Yellow]

[0.3 color Cyan]

[0.6 color Magenta]

[1.0 color Cyan]

}

turbulence 0.5

lambda 1.5

omega 0.75

octaves 8

quick_color Neon_Pink

}

This tells POV-Ray to use solidNeonPink for test runs at quality+Q5 or lower but to
use the turbulent gradient pattern for rendering at+Q6 and higher.

Note that solid color pigments such as

pigment {color Magenta}

automatically set thequick color to that value. You may override this if you want.
Suppose you have 10 spheres on the screen and all are yellow. If you want to identify
them individually you could give each a differentquick color like this:

sphere {

<1,2,3>, 4

pigment { color Yellow quick_color Red }

}

sphere {

<-1,-2,-3>, 4

pigment { color Yellow quick_color Blue }

}

and so on. At+Q6 or higher they will all be yellow but at+Q5 or lower each would be
different colors so you could identify them.

7.6.2 Normal

Ray-tracing is known for the dramatic way it depicts reflection, refraction and lighting
effects. Much of our perception depends on the reflective properties of an object. Ray
tracing can exploit this by playing tricks on our perceptionto make us see complex
details that aren’t really there.

7.6. TEXTURES 287

Suppose you wanted a very bumpy surface on the object. It would be very difficult to
mathematically model lots of bumps. We can however simulatethe way bumps look
by altering the way light reflects off of the surface. Reflection calculations depend on
a vector called asurface normalvector. This is a vector which points away from the
surface and is perpendicular to it. By artificially modifying (or perturbing) this normal
vector you can simulate bumps.

Thenormal { . . . } statement is the part of a texture which defines the pattern of
normal perturbations to be applied to an object. Like the pigment statement, you can
omit the surrounding texture block to save typing. Do not forget however that there is
a texture implied. For example. . .

// this... // can be shortened to this...

object { object {

My_Object My_Object

texture { pigment { color Purple }

pigment { color Purple } normal { bumps 0.3 }

normal { bumps 0.3 } }

}

}

Note that attaching a normal pattern does not really modify the surface. It only affects
the way light reflects or refracts at the surface so that it looks bumpy.

The most complete form for defining a normal is as follows:

normal {

NORMAL_IDENTIFIER

PATTERN_TYPE FloatValue

NORMAL_MODIFIERS

TRANSFORMATIONS...

}

Each of the items in a normal are optional but if they are present they should be in the
order shown above to insure that the results are as expected.Any items after the NOR-
MAL IDENTIFIER modify or override settings given in the identifier. If no identifier
is specified then the items modify the normal values in the current default texture. The
PATTERN TYPE may optionally be followed by a float value that controlsthe appar-
ent depth of the bumps. Typical values range from 0.0 to 1.0 but any value may be
used. Negative values invert the pattern. The default valueif none is specified is 0.5.

Valid NORMAL MODIFIERS are slope map, normal map, bump map and
bump size statements as well as any of the generic PATTERNMODIFIERS such
as translate, rotate, scale, turbulence, wave shape and warp statements. Such modifiers
apply only to the normal and not to other parts of the texture.Modifiers should be
specified last.

288 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

There are three basic types of NORMALPATTERN TYPEs. They are pattern nor-
mals, specialized normals and bump maps. They differ in the types of modifiers you
may use with them. Originally POV-Ray had some patterns which were exclusively
used for pigments while others were exclusively used for normals. Since POV-Ray
3.0 you can use any pattern for either pigments or normals. For example it is now
valid to useripples as a pigment orwood as a normal type. The patternsbumps,
dents, ripples, waves, wrinkles andbump map were once exclusively nor-
mal patterns which could not be used as pigments. Because these six types use special-
ized normal modification calculations they cannot haveslope map,normal map or
wave shape modifiers. All other normal pattern types may use them.

7.6.2.1 Slope Maps

A slope mapis a normal pattern modifier which gives the user a great deal of control
over the exact shape of the bumpy features. It is best illustrated with a gradient normal
pattern. Suppose you have. . .

plane{ z, 0

pigment{ White }

normal { gradient x }

}

This gives a ramp wave pattern that looks like small linear ramps that climb from the
points atx= 0 to x= 1 and then abruptly drops to 0 again to repeat the ramp from
x= 1 to x= 2. A slope map turns this simple linear ramp into almost any wave shape
you want. The syntax is as follows. . .

normal{

PATTERN_TYPE Value

slope_map {

[NUM_1 POINT_SLOPE_1]

[NUM_2 POINT_SLOPE_2]

[NUM_3 POINT_SLOPE_3]

...

}

NORMAL_MODIFIERS...

}

Note that the[] brackets are part of the actual statement. They are not notational
symbols denoting optional parts. The brackets surround each entry in the slope map.
There may be from 2 to 256 entries in the map.

The NUM 1, NUM 2, . . . are float values between 0.0 and 1.0 inclusive.
POINT SLOPE1, POINT SLOPE2, . . . are 2 component vectors such as〈0,1〉where

7.6. TEXTURES 289

the first value represents the apparent height of the wave andthe second value repre-
sents the slope of the wave at that point. The height should range between 0.0 and 1.0
but any value could be used.

The slope value is the change in height per unit of distance. For example a slope of
zero means flat, a slope of 1.0 means slope upwards at a 45 degree angle and a slope
of -1 means slope down at 45 degrees. Theoretically a slope straight up would have
infinite slope. In practice, slope values should be kept in the range -3.0 to +3.0. Keep
in mind that this is only the visually apparent slope. A normal does not actually change
the surface.

For example here is how to make the ramp slope up for the first half and back down on
the second half creating a triangle wave with a sharp peak in the center.

normal {

gradient x // this is the PATTERN_TYPE

slope_map {

[0 <0, 1>] // start at bottom and slope up

[0.5 <1, 1>] // halfway through reach top still climbing

[0.5 <1,-1>] // abruptly slope down

[1 <0,-1>] // finish on down slope at bottom

}

}

The pattern function is evaluated and the result is a value from 0.0 to 1.0. The first
entry says that atx= 0 the apparent height is 0 and the slope is 1. Atx= 0.5 we are at
height 1 and slope is still up at 1. The third entry also specifies that atx= 0.5 (actually
at some tiny fraction above 0.5) we have height 1 but slope -1 which is downwards.
Finally atx= 1 we are at height 0 again and still sloping down with slope -1.

Although this example connects the points using straight lines the shape is actually a
cubic spline. This example creates a smooth sine wave.

normal {

gradient x // this is the PATTERN_TYPE

slope_map {

[0 <0.5, 1>] // start in middle and slope up

[0.25 <1.0, 0>] // flat slope at top of wave

[0.5 <0.5,-1>] // slope down at mid point

[0.75 <0.0, 0>] // flat slope at bottom

[1 <0.5, 1>] // finish in middle and slope up

}

}

This example starts at height 0.5 sloping up at slope 1. At a fourth of the way through
we are at the top of the curve at height 1 with slope 0 which is flat. The space between
these two is a gentle curve because the start and end slopes are different. At half way

290 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

we are at half height sloping down to bottom out at 3/4ths. By the end we are climbing
at slope 1 again to complete the cycle. There are more examples in SLOPEMAP.POV in
the sample scenes.

A slope map may be used with any pattern exceptbrick, checker, hexagon,
bumps, dents, ripples, waves, wrinkles andbump map.

You may declare and use slope map identifiers. For example:

#declare Fancy_Wave =

slope_map { // Now let’s get fancy

[0.0 <0, 1>] // Do tiny triangle here

[0.2 <1, 1>] // down

[0.2 <1,-1>] // to

[0.4 <0,-1>] // here.

[0.4 <0, 0>] // Flat area

[0.5 <0, 0>] // through here.

[0.5 <1, 0>] // Square wave leading edge

[0.6 <1, 0>] // trailing edge

[0.6 <0, 0>] // Flat again

[0.7 <0, 0>] // through here.

[0.7 <0, 3>] // Start scallop

[0.8 <1, 0>] // flat on top

[0.9 <0,-3>] // finish here.

[0.9 <0, 0>] // Flat remaining through 1.0

}

object{ My_Object

pigment { White }

normal {

wood

slope_map { Fancy_Wave }

}

}

7.6.2.2 Normal Maps

Most of the time you will apply single normal pattern to an entire surface but you may
also create a pattern or blend of normals using anormal map. The syntax for a normal
map is identical to a pigment map except you specify a normal in each map entry.

A normal map is specified by. . .

normal{

PATTERN_TYPE

normal_map {

[NUM_1 NORMAL_BODY_1]

[NUM_2 NORMAL_BODY_2]

[NUM_3 NORMAL_BODY_3]

7.6. TEXTURES 291

...

}

NORMAL_MODIFIERS...

}

Where NUM1, NUM 2, . . . are float values between 0.0 and 1.0 inclusive. A NOR-
MAL BODY is anything that would normally appear inside anormal { . . . } state-
ment but the normal keyword and{} braces are not needed. Note that the[] brackets
are part of the actual statement. They are not notational symbols denoting optional
parts. The brackets surround each entry in the map. There maybe from 2 to 256
entries in the map.

For example

normal {

gradient x //this is the PATTERN_TYPE

normal_map {

[0.3 bumps scale 2]

[0.3 dents]

[0.6 dents]

[0.9 marble turbulence 1]

}

}

When thegradient x function returns values from 0.0 to 0.3 then the scaled bumps
normal is used. From 0.3 to 0.6 dents are From 0.6 up to 0.9 a blend of dents and a
turbulent marble is used. From 0.9 on up only the turbulent marble is used.

Normal maps may be nested to any level of complexity you desire. The normals in a
map may have slope maps or normal maps or any type of normal youwant.

A normal map is also used with theaverage normal type. See 7.6.7.2 on page 319
for details.

Entire normals may also be used with the block patterns such as checker, hexagon and
brick. For example. . .

normal {

checker

normal { gradient x scale .2 }

normal { gradient y scale .2 }

}

}

Note that in the case of block patterns thenormal { . . . } wrapping is required
around the normal information.

You may not usenormal map or individual normals with abump map. See 7.6.5.1
on page 313 for an alternative way to do this.

292 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.2.3 Bump Maps

When all else fails and none of the above normal pattern typesmeets your needs you
can use a bump map to wrap a 2-D bit-mapped bump pattern aroundyour 3-D objects.

Instead of placing the color of the image on the shape like an image map abump
mapperturbs the surface normal based on the color of the image atthat point. The
result looks like the image has been embossed into the surface. By default, a bump
map uses the brightness of the actual color of the pixel. Colors are converted to gray
scale internally before calculating height. Black is a low spot, white is a high spot.
The image’s index values may be used instead (see section 7.6.2.3.3 on the next page
below).

7.6.2.3.1 Specifying a Bump Map

The syntax for bumpmap is. . .

normal {

bump_map {

FILE_TYPE "filename"

BITMAP_MODIFIERS...

}

NORMAL_MODIFIERS...

}

Where FILETYPE is one of the following keywordsgif, tga, iff, ppm, pgm,
png or sys. This is followed by the name of the file using any valid stringexpres-
sion. Several optional modifiers may follow the file specification. The modifiers are
described below. Note that earlier versions of POV-Ray allowed some modifiers before
the FILE TYPE but that syntax is being phased out in favor of the syntaxdescribed
here.

Filenames specified in thebump map statement will be searched for in the home (cur-
rent) directory first and, if not found, will then be searchedfor in directories specified
by any+L switches orLibrary Path options. This would facilitate keeping all your
bump maps files in a separate subdirectory, and specifying a library path to them. Note
that any operating system default paths are not searched unless you also specify them
as aLibrary Path.

By default, the bump pattern is mapped onto thex-y-plane. The bumps areprojected
onto the object as though there were a slide projector somewhere in the−z-direction.
The bump pattern exactly fills the square area from(x,y) coordinates (0,0) to (1,1)
regardless of the bitmaps’s original size in pixels. If you would like to change this
default, you may translate, rotate or scale the normal or texture to map it onto the
object’s surface as desired.

7.6. TEXTURES 293

The file name is optionally followed by one or more BITMAPMODIFIERS. The
bump size, use color anduse index modifiers are specific to bump maps and
are discussed in the following sections. See 7.6.8.9 on page345 for other general
bitmap modifiers.

After abump map statement but still inside the normal statement you may apply any
legal normal modifiers exceptslope map and pattern wave forms.

7.6.2.3.2 BumpSize

The relative bump size can be scaled using thebump size modifier. The bump size
number can be any number other than 0 but typical values are from about 0.1 to as high
as 4.0 or 5.0.

normal {

bump_map {

gif "stuff.gif"

bump_size 5.0

}

}

Originally bump size could only be used inside a bump map but it can now be used
with any normal. Typically it is used to override a previously defined size. For example:

normal {

My_Normal //this is a previously defined normal identifier

bump_size 2.0

}

7.6.2.3.3 UseIndex and UseColor

Usually the bump map converts the color of the pixel in the mapto a gray scale intensity
value in the range 0.0 to 1.0 and calculates the bumps based onthat value. If you specify
use index, the bump map uses the color’s palette number to compute as the height
of the bump at that point. So, color number 0 would be low and color number 255
would be high (if the image has 256 palette entries). The actual color of the pixels
doesn’t matter when using the index. This option is only available on palette based
formats. Theuse color keyword may be specified to explicitly note that the color
methods should be used instead. The alternate spellinguse colour is also valid.
These modifiers may only be used inside thebump map statement.

294 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.3 Finish

The finish properties of a surface can greatly affect its appearance. How does light
reflect? What happens when light passes through? What kind ofhighlights are visible.
To answer these questions you need a finish statement.

The finish { . . . } statement is the part of a texture which defines the various
finish properties to be applied to an object. Like the pigmentor normal statement you
can omit the surrounding texture block to save typing. Do notforget however that there
is a texture implied. For example. . .

// this... // can be shortened to this...

object { object {

My_Object My_Object

texture { pigment { color Purple }

pigment { color Purple } finish { phong 0.3 }

finish { phong 0.3 } }

}

}

The most complete form for defining a finish is as follows:

finish {

FINISH_IDENTIFIER

[ambient COLOR]

[diffuse FLOAT]

[brilliance FLOAT]

[phong FLOAT]

[phong_size FLOAT]

[specular FLOAT]

[roughness FLOAT]

[metallic [FLOAT]]

[reflection COLOR]

[refraction FLOAT]

[ior FLOAT]

[caustics FLOAT]

[fade_distance FLOAT]

[fade_power FLOAT]

[irid { thickness FLOAT turbulence VECTOR }]

[crand FLOAT]

}

The FINISHIDENTIFIER is optional but should proceed all other items. Any items
after the FINISHIDENTIFIER modify or override settings given in the IDENTIFIER.
If no identifier is specified then the items modify the finish values in the current default
texture. Note that transformations are not allowed inside afinish because finish items
cover the entire surface uniformly.

7.6. TEXTURES 295

7.6.3.1 Ambient

The light you see in dark shadowed areas comes from diffuse reflection off of other
objects. This light cannot be directly modeled using ray-tracing. However we can use
a trick calledambient lightingto simulate the light inside a shadowed area.

Ambient light is light that is scattered everywhere in the room. It bounces all over
the place and manages to light objects up a bit even where no light is directly shining.
Computing real ambient light would take far too much time, sowe simulate ambient
light by adding a small amount of white light to each texture whether or not a light is
actually shining on that texture.

This means that the portions of a shape that are completely inshadow will still have a
little bit of their surface color. It’s almost as if the texture glows, though the ambient
light in a texture only affects the shape it is used on.

Usually a single float value is specified even though the syntax calls for a color. For
example a float value of 0.3 gets promoted to the full color vector 〈0.3,0.3,0.3,0.3,0.3〉
which is acceptible because only the red, green and blue parts are used.

The default value is very little ambient light (0.1). The value can range from 0.0 to
1.0. Ambient light affects both shadowed and non-shadowed areas so if you turn up
the ambient value you may want to turn down the diffuse value.

Note that this method doesn’t account for the color of surrounding objects. If you walk
into a room that has red walls, floor and ceiling then your white clothing will look pink
from the reflected light. POV-Ray’s ambient shortcut doesn’t account for this. There
is also no way to model specular reflected indirect illumination such as the flashlight
shining in a mirror.

You may color the ambient light using one of two methods. You may specify a color
rather than a float after the ambient keyword in each finish statement. For example

finish { ambient rgb <0.3,0.1,0.1> } //a pink ambient

You may also specify the overall ambient light source used when calculating the am-
bient lighting of an object using the globalambient light setting. The formula is
given by

ambient= ambientf inish ambientl ight source (7.32)

See section 7.8.2 on page 356 for details.

7.6.3.2 Diffuse Reflection Items

When light reflects off of a surface the laws of physics say that it should leave the sur-
face at the exact same angle it came in. This is similar to the way a billiard ball bounces

296 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

off a bumper of a pool table. This perfect reflection is calledspecularreflection. How-
ever only very smooth polished surfaces reflect light in thisway. Most of the time,
light reflects and is scattered in all directions by theroughnessof the surface. This
scattering is calleddiffuse reflectionbecause the light diffuses or spreads in a variety of
directions. It accounts for the majority of the reflected light we see.

POV-Ray and most other ray-tracers can only simulate directly one of these three types
of illumination. That is the light which comes directly fromactual light sources. Light
coming from other objects such as mirrors via specular reflection (shine a flashlight
onto a mirror for example). And last not least light coming from other objects via
diffuse reflections (look at some dark area under a desk or in acorner: even though
a lamp may not directly illuminate that spot you can still seea little bit because light
comes from diffuse reflection off of nearby objects).

7.6.3.2.1 Diffuse

The keyworddiffuse is used in afinish statement to control how much of the
light coming directly from any light sources is reflected viadiffuse reflection. For
example

finish {diffuse 0.7}

means that 70% of the light seen comes from direct illumination from light sources.
The default value is diffuse 0.6.

7.6.3.2.2 Brilliance

The amount of direct light that diffuses from an object depends upon the angle at which
it hits the surface. When light hits at a shallow angle it illuminates less. When it is
directly above a surface it illuminates more. Thebrilliance keyword can be used
in a finish statement to vary the way light falls off depending upon the angle of
incidence. This controls the tightness of the basic diffuseillumination on objects and
slightly adjusts the appearance of surface shininess. Objects may appear more metallic
by increasing their brilliance. The default value is 1.0. Higher values from to about
10.0 cause the light to fall off less at medium to low angles. There are no limits to the
brilliance value. Experiment to see what works best for a particular situation. This is
best used in concert with highlighting.

7.6.3.2.3 Crand Graininess

Very rough surfaces, such as concrete or sand, exhibit a darkgraininess in their apparent
color. This is caused by the shadows of the pits or holes in thesurface. Thecrand
keyword can be added to cause a minor random darkening in the diffuse reflection

7.6. TEXTURES 297

of direct illumination. Typical values range fromcrand 0.01 to crand 0.5 or
higher. The default value is 0. For example:

finish { crand 0.05 }

The grain or noise introduced by this feature is applied on a pixel-by-pixel basis. This
means that it will look the same on far away objects as on closeobjects. The effect
also looks different depending upon the resolution you are using for the rendering. For
these reasons it is not a very accurate way to model the rough surface effect but some
objects still look better with a little crand thrown in.

Note that this should not be used when rendering animations.This is the one of a few
truly random features in POV-Ray and will produce an annoying flicker of flying pixels
on any textures animated with acrand value.

7.6.3.3 Highlights

Highlights are the bright spots that appear when a light source reflects off of a smooth
object. They are a blend of specular reflection and diffuse reflection. They are specular-
like because they depend upon viewing angle and illumination angle. However they
are diffuse-like because some scattering occurs. In order to exactly model a highlight
you would have to calculate specular reflection off of thousands of microscopic bumps
called micro facets. The more that micro facets are facing the viewer the shinier the
object appears and the tighter the highlights become. POV-Ray uses two different
models to simulate highlights without calculating micro facets. They are thespecular
andPhongmodels.

Note that specular and Phong highlights arenot mutually exclusive. It is possible to
specify both and they will both take effect. Normally, however, you will only specify
one or the other.

7.6.3.3.1 Phong Highlights

Thephong keyword controls the amount of Phong highlighting on the object. It causes
bright shiny spots on the object that are the color of the light source being reflected.

The Phong method measures the average of the facets facing inthe mirror direction
from the light sources to the viewer.

Phong’s value is typically from 0.0 to 1.0, where 1.0 causes complete saturation to the
light source’s color at the brightest area (center) of the highlight. The default phong
0.0 gives no highlight.

The size of the highlight spot is defined by thephong size value. The larger the
phong size the tighter, or smaller, the highlight and the shinier the appearance. The

298 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

smaller the phong size the looser, or larger, the highlight and the less glossy the ap-
pearance.

Typical values range from 1.0 (very dull) to 250 (highly polished) though any values
may be used. Default phong size is 40 (plastic) ifphong size is not specified. For
example:

finish { phong 0.9 phong_size 60 }

If phong is not specifiedphong size has no effect.

7.6.3.3.2 Specular Highlight

A specular highlight is very similar to Phong highlighting but it uses slightly differ-
ent model. The specular model more closely resembles real specular reflection and
provides a more credible spreading of the highlights occuring near the object horizons.

The specular value is typically from 0.0 to 1.0, where 1.0 causes complete saturation
to the light source’s color at the brightest area (center) ofthe highlight. The default
specular 0.0 gives no highlight.

The size of the spot is defined by the value given forroughness. Typical values range
from 1.0 (very rough — large highlight) to 0.0005 (very smooth — small highlight).
The default value, if roughness is not specified, is 0.05 (plastic).

It is possible to specify wrong values for roughness that will generate an error when
you try to render the file. Don’t use 0 and if you get errors check to see if you are using
a very, very small roughness value that may be causing the error. For example:

finish { specular 0.9 roughness 0.02 }

If specular is not specifiedroughness has no effect.

7.6.3.3.3 Metallic Highlight Modifier

The keywordmetallic may be used with Phong or specular highlights. This key-
word indicates that the color of the highlights will be calculated by an empirical func-
tion that models the reflectivity of metallic surfaces.

White light relfected specularly from a metallic surface takes the color of the surface,
except then the incidence angle approaches 90 degrees, where it becomes white again.

Themetallic keyword may be follow by a numeric value to specify the influence
the above effect has (the default value is one). For example:

7.6. TEXTURES 299

finish {

phong 0.9

phong_size 60

metallic

}

If phong or specular is not specifiedmetallic has no effect.

7.6.3.4 Specular Reflection

When light does not diffuse and itdoes reflect at the same angle as it hits an ob-
ject, it is calledspecular reflection. Such mirror-like reflection is controlled by the
reflection keyword in a finish statement. For example:

finish { reflection 1.0 ambient 0 diffuse 0 }

This gives the object a mirrored finish. It will reflect all other elements in the scene.
Usually a single float value is specified after the keyword even though the syntax calls
for a color. For example a float value of 0.3 gets promoted to the full color vector
〈0.3,0.3,0.3,0.3,0.3〉 which is acceptible because only the red, green and blue parts
are used.

The value can range from 0.0 to 1.0. By default there is no reflection.

Adding reflection to a texture makes it take longer to render because an additional ray
must be traced. The reflected light may be tinted by specifying a color rather than a
float. For example

finish { reflection rgb <1,0,0> }

gives areal red mirror that only reflects red light.

Note that although such reflection is calledspecular it is not controlled by the
specular keyword. That keyword controls aspecular highlight.

7.6.3.5 Refraction

When light passes through a surface either into or out of a dense medium the path of the
ray of light is bent. Such bending is calledrefraction. Normally transparent or semi-
transparent surfaces in POV-Ray do not refract light. Adding refraction 1.0 to
the finish statement turns on refraction.

Note that it is recommended that you only userefraction 0 or refraction
1 (or even betterrefraction off andrefraction on). Values in between

300 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

will darken the refracted light in ways that do not correspond to any physical property.
Many POV-Ray scenes were created with intermediate refraction values before thisbug
was discovered so thefeaturehas been maintained. A more appropriate way to reduce
the brightness of refracted light is to change thefilter or transmit value in the
colors specified in the pigment statement. Note also that refraction does not cause
the object to be transparent. Transparency only occurs if there is a non-zero filter or
transmit value in the color.

The amount of bending or refracting of light depends upon thedensity of the material.
Air, water, crystal and diamonds all have different densities and thus refract differently.
The index of refractionor ior value is used by scientists to describe the relative density
of substances. Theior keyword is used in POV-Ray to specify the value. For example:

texture {

pigment { White filter 0.9 }

finish {

refraction 1

ior 1.5

}

}

The default ior value of 1.0 will give no refraction. The index of refraction for air is
1.0, water is 1.33, glass is 1.5 and diamond is 2.4. The fileCONSTS.INC pre-defines
several useful values for ior.

Note that if a texture has a filter component and no value for refraction and ior are sup-
plied the renderer will simply transmit the ray through the surface with no bending. In
layered textures, the refraction and ior keywordsmust be in the last texture, otherwise
they will not take effect.

7.6.3.5.1 Light Attenuation

Light attenuation is used to model the decrease in light intensity as the light travels
through a translucent object. Its syntax is:

finish {

fade_distance FADE_DISTANCE

fade_power FADE_POWER

}

Thefade distance keyword determines the distance the light has to travel to reach
half intensity while thefade power keyword describes how fast the light will fall
off. For realistic effects a fade power of 1 to 2 should be used.

7.6. TEXTURES 301

The attenuation is calculated by a formula similar to that used for light source attenua-
tion.

attenuation=
1

1+

(

d
FADE DISTANCE

)FADE POW ER (7.33)

7.6.3.5.2 Faked Caustics

The syntax is:

finish {

caustics POWER

}

STILL BEING WRITTEN

7.6.3.6 Iridescence

Iridescence, or Newton’s thin film interference, simulates the effect oflight on surfaces
with a microscopic transparent film overlay. The effect is like an oil slick on a puddle
of water or the rainbow hues of a soap bubble (see also 7.8.5 onpage 360).

The syntax is:

finish {

irid {

AMOUNT

thickness FLOAT

turbulence VECTOR

}

}

This finish modifies the surface color as a function of the angle between the light source
and the surface. Since the effect works in conjunction with the position and angle of
the light sources to the surface it does not behave in the sameways as a procedural
pigment pattern.

The AMOUNT parameter is the contribution of the iridescenceeffect to the overall
surface color. As a rule of thumb keep to around 0.25 (25% contribution) or less, but
experiment. If the surface is coming out toowhite, try lowering the diffuse and possibly
the ambient values of the surface.

Thethickness keyword represents the film’s thickness. This is an awkward param-
eter to set, since the thickness value has no relationship tothe object’s scale. Changing

302 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

it affects the scale orbusy-nessof the effect. A very thin film will have a high frequency
of color changes while a thick film will have large areas of color.

The thickness of the film can be varied with theturbulence keyword. You can only
specify the amount of turbulence with iridescence. The octaves, lambda, and omega
values are internally set and are not adjustable by the user at this time.

In addition, perturbing the object’s surface normal through the use of bump patterns
will affect iridescence.

For the curious, thin film interference occurs because, whenthe ray hits the surface of
the film, part of the light is reflected from that surface, while a portion is transmitted
into the film. Thissubsurfaceray travels through the film and eventually reflects off
the opaque substrate. The light emerges from the film slightly out of phase with the ray
that was reflected from the surface.

This phase shift creates interference, which varies with the wavelength of the compo-
nent colors, resulting in some wavelengths being reinforced, while others are cancelled
out. When these components are recombined, the result is iridescence.

The concept used for this feature came from the bookFundamentals of Three-
Dimensional Computer Graphicsby Alan Watt (Addison-Wesley).

7.6.4 Halo

A halo is used to simulate some of the atmospheric effects that occur when small parti-
cles interact with light or radiate on their own. Those effects include clouds, fogs, fire,
etc.

Halos are attached to an object, the so calledcontainer object, which they completely
fill. If the object is partially or completely translucent and the object is specified to be
hollow (see section 7.5.7.3 on page 276 for more details) thehalo will be visible. Thus
the halo effects are limited to the space that the object covers. This should always be
kept in mind.

What the halo actually will look like depends on a lot of parameters. First of all you
have to specify which kind of effect you want to simulate. After this you need to define
the distribution of the particles. This is basically done intwo steps: a mapping function
is selected and a density function is chosen. The first function maps world coordinates
onto a one-dimensional interval while the later describes how this linear interval is
mapped onto the final density values.

The properties of the particles, such as their color and their translucency, are given
by a color map. The density values calculated by the mapping processes are used to
determine the appropriate color using this color map.

A ray marching process is used to volume sample the halo and toaccumulate the in-
tensities and opacity of each interval.

The following sections will describe all of the halo parameters in more detail. The
complete halo syntax is given by:

7.6. TEXTURES 303

halo {

attenuating | emitting | glowing | dust

[constant | linear | cubic | poly]

[planar_mapping | spherical_mapping |

cylindrical_mapping | box_mapping]

[dust_type DUST_TYPE]

[eccentricity ECCENTRICITY]

[max_value MAX_VALUE]

[exponent EXPONENT]

[samples SAMPLES]

[aa_level AA_LEVEL]

[aa_threshold AA_THRESHOLD]

[jitter JITTER]

[turbulence <TURBULENCE>]

[octaves OCTAVES]

[omega OMEGA]

[lambda LAMBDA]

[colour_map COLOUR_MAP]

[frequency FREQUENCY]

[phase PHASE]

[scale <VECTOR>]

[rotate <VECTOR>]

[translate <VECTOR>]

}

7.6.4.1 Halo Mapping

As described above the actual particle distribution and halo appearance is influenced
by a lot of parameters. The steps that are performed during the halo calculation will be
explained below. It will also be noted where the different halo keywords will have an
effect on the calculations.

1. Depending on the current sampling position along the ray,point
P (coordinatesx, y, z) inside the halo container object is calcu-
lated. The actual location is influenced by thejitter keyword, the
number ofsamples and the use of anti-aliasing (aa level and
aa threshold).

2. PointP is transformed into pointQ using the (current) halo’s trans-
formation. Here all local halo transformations come into play, i. e. all
transformations specified inside the (current) halo statement.

3. Turbulence is added to pointQ. The amount of turbulence is given by
theturbulence keyword. The turbulence calculation is influenced
by theoctaves, omega andlambda keywords.

4. Radius r is calculated depending on the specified den-
sity mapping (planar mapping, spherical mapping,
cylindrical mapping or box mapping). The radius is
clipped to the range from 0 to 1, i. e. 0≤ r ≤ 1.

304 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

5. The densityd is calculated from the radiusr using the specified den-
sity function (constant, linear, cubic or poly) and the max-
imum value given bymax value. The density will be in the range
from 0 tomax value.

6. The densityd is first multiplied by thefrequency value, added to
thephase value and clipped to the range from 0 to 1 before it is used
to get the color from thecolor map. If an attenuating halo is used
the color will be determined by the total density along the ray and not
by the sum of the colors for each sample.

All steps are repeated for each sample point along the ray that is inside the halo con-
tainer object. Steps 2 through 6 are repeated for all halos attached to the halo container
object.

It should be noted that in order to get a finite particle distribution, i. e. a particle
distribution that vanishes outside a finite area, a finite density mapping and a finite
density function has to be used.

A finite density mapping gives the constant value one for all points outside a finite area.
The box and spherical mappings are the only finite mapping types.

A finite density function vanishes for all parameter values above one (there are no
negative parameter values). The only infinte density function is the constant function.

Finite particle distributions are especially useful because they can always be trans-
formed to stay inside the halo container object. If particles leave the container object
they become invisible and the surface of the container will be visible due to the density
discontiniuty at the surface.

7.6.4.2 Multiple Halos

It is possible to put more than one halo inside a container object. This is simply done
by putting more than one halo statement inside the containerobject statement like:

sphere { 0, 1

pigment { Clear }

halo { here comes halo nr. 1 }

halo { here comes halo nr. 2 }

halo { here comes halo nr. 3 }

...

}

The effects of the different halos are added. This is in fact similar to the CSG union
operation.

You should note that currently multiple attenuating halos will use the color map of the
last halo only. It is not possible to use different color mapsfor multiple attenuating
halos.

7.6. TEXTURES 305

7.6.4.3 Halo Type

The type of the halo is defined by one of the following mutuallyexclusive keywords (if
more than one is specified the last will be used). The default isattenuating.

halo {

attenuating | emitting | glowing | dust

}

The halo type determines how the light will interact with theparticles inside the con-
tainer object. There are two basic categories of light interaction: self-illuminated and
illuminated. The first type includes theattenuating, emittingandglowingeffects while
thedusteffect is of the second type.

The four types will be covered in detail in the next sections.

7.6.4.3.1 Attenuating

The attenuating halo that only absorbs light passing through it is rendered by accumu-
lating the particle density along a ray. The total halo coloris determined from the total,
accumulated density and the specified color map (see section7.6.4.6 on page 310 for
details about the color map). The background light, i. e. thelight passing through the
halo, is attenuated by the total density and added to the total halo color to get the final
color of the halo.

This model is suited to render particle distributions with ahighalbedobecause the final
color does not depend on the transparency of single volume elements but only on the
total transparency along the ray. The albedo of a particle isgiven by the amount of light
scattered by this particle in all directions in relation to the amount of incoming light. If
the particle doesn’t absorb any light the albedo is one.

Clouds and steams are two of the effects that can be rendered quite realistic by adding
enough turbulence.

7.6.4.3.2 Dust

The dust halo consists of particles that do not emit any light. They only reflect and
absorb incoming light. Its syntax is:

halo {

dust

[dust_type DUST_TYPE]

[eccentricity ECCENTRICITY]

}

306 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

As the ray marches through the dust all light coming from any light sources is accumu-
lated and scattered according to the dust type and the current dust density. Since this
light accumulation includes a test for occlusion, other objects may cast shadowsinto
the dust.

The same scattering types that are used with the atmosphere in section 7.7.1 on
page 347 can be used with the dust (the default type is isotropic scattering). They
are:

#declare ISOTROPIC_SCATTERING = 1

#declare MIE_HAZY_SCATTERING = 2

#declare MIE_MURKY_SCATTERING = 3

#declare RAYLEIGH_SCATTERING = 4

#declare HENYEY_GREENSTEIN_SCATTERING = 5

The Henyey-Greenstein function needs the additional parametereccentricity that
is described in the section about atmosphere. This keyword only applies to dust type 5,
the Henyey-Greenstein scattering.

7.6.4.3.3 Emitting

Emitting halos only emit light. Every particle is a small light source that emits some
light. This light is not attenuated by the other particles because they are assumed to be
very small.

As the ray travels through the density field of an emitting halo the color of the particles
in each volume element and their differential transparencyis determined from the color
map. These intensities are accumulated to get the total color of the density field. This
total intensity is added to the light passing through the halo. The background light is
attenuated by the total density of the halo.

Since the emitted light is not attenuated it can be used to model effects like fire, ex-
plosions, light beams, etc. By choosing a well suited color map those effects can be
rendered with a high degree of realism.

Fire is best modeled using planar mapping. Spherical mapping and high turbulence
values can be used to create explosions (it’s best to use a periodic color map and fre-
quencies larger than one).

Emitting halos do not cast any light on other objects like light sources do, even though
they are made up of small, light-emitting particles. In order to make them actually emit
light hundreds or thousands of small light sources would have to be used. This would
slow down tracing by a degree that would make it useless.

7.6.4.3.4 Glowing

The glowing halo is similar to the emitting halo. The difference is that the light emitted
by the particles is attenuated by the other particles. This can be seen as a combination

7.6. TEXTURES 307

of the attenuating and the emitting model.

7.6.4.4 Density Mapping

The density mapping is used to map points in space onto a linear, one-dimensional
interval between 0.0 and 1.0, thus describing the appearance of the three-dimensional
particle distribution. The different mapping types are specified by:

halo {

planar_mapping | spherical_mapping |

cylindrical_mapping | box_mapping

}

The default mapping type is planar mapping.

Since the mapping takes place in relation to the origin of theworld coordinate system
the following rule must always be kept in mind:Halo container objects ought to be
unit sized objects centered at the origin. They can be transformed later to suit the
individuals needs.

The different mapping types are explained in more detail in the following sections.

7.6.4.4.1 Box Mapping

The box mapping can be used to create a box-shaped particle distribution. The mapping
is calculated by getting the maximum of the absolute values of each coordinate as given
by the formula:

f (x,y,z)=max(|x|, |y|, |z|) (7.34)

Values larger than one are clipped to one.

7.6.4.4.2 Cylindrical Mapping

The distancer(x,y,z) from they-axis given by

r(x,y,z)=
√

x2+z2 (7.35)

is used to get the interval values. Values larger than one areclipped to one.

7.6.4.4.3 Planar Mapping

The distancer(x,y,z) from thex-z-plane given by

r(x,y,z)= |y| (7.36)

308 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

is used to get the interval values. Values larger than one areclipped to one.

7.6.4.4.4 Spherical Mapping

The distancer(x,y,z) from the origin given by

r(x,y,z)=
√

x2+y2+z2 (7.37)

is used to get the interval values. Values larger than one areclipped to one.

7.6.4.5 Density Function

The density function determines how the actual density values are calculated from the
linear, one-dimensional interval that resulted from the density mapping.

The density function is specified by the following keywords:

halo {

[constant | linear | cubic | poly]

[max_value MAX_VALUE]

[exponent EXPONENT]

}

Theexponent keyword is only used together with thepoly density function.

The individual functionsf (r) are described in the following sections. They all map the
valuer(x,y,z) calculated by the density mapping onto a suitable density range between
0 and MAX VALUE (specified with the keywordmax value).

7.6.4.5.1 Constant

The constant function gives the constant valueMAX VALUE regardless of the interval
value and the type of density mapping. It is calculated by thetrivial formula

f (r)=MAX VALUE. (7.38)

The constant density function can be used to create a constant particle distribution that
is only constrained by the container object. See figure 7.19 on the facing pagea for a
plot of the function.

7.6.4.5.2 Linear

A linear falloff from MAX VALUE at r = 0 to zero atr = 1 is created with the linear
density function. It is given by:

f (r) =MAX VALUE(1− r) (7.39)

7.6. TEXTURES 309

0.0 0.5 1.0
r

0.0

0.5

1.0

f(
r)

(a)

0.0 0.5 1.0
r

0.0

0.5

1.0

f(
r)

(b)

0.0 0.5 1.0
r

0.0

0.5

1.0

f(
r)

(c)

0.0 0.2 0.4 0.6 0.8
r

0.0

0.2

0.4

0.6

0.8
f(

r)

0.1

0.4

1

2.5

10

(d)

Figure 7.19: The different halo density functions: (a) constant, (b) linear, (c) cubic,
and (d) polynomial
.

See figure 7.19b for a plot of the function.

7.6.4.5.3 Cubic

The cubic function gives a smooth blend between the maximum valueMAX VALUE
at r = 0 and 0 atr = 1. It is given by:

f (r)=MAX VALUE (2r3−3r2+1) (7.40)

This is actually a cubic spline. See figure 7.19a for a plot of the function.

7.6.4.5.4 Poly

A polynomial function can be used to get a large variety of density functions. All have
the maximum valueMAX VALUE at r = 0 and the minimum value 0 atr = 1. It is

310 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

given by:

f (r)=MAX VALUE (1− r)EXPONENT (7.41)

The exponent is given by theexponent keyword. In case ofEXPONENT= 0 you’ll
get a linear falloff. See figure 7.19 on the page beforea for a plot of the function.

7.6.4.6 Halo Color Map

The density f (r), which ranges from 0 toMAX VALUE, is mapped onto the color
map to get the color and differential translucency for each volume element as the ray
marches through the density field (the final color of attenuating halos is calculated from
the total density; see section 7.6.4.1 on page 303 and section 7.6.4.3.1 on page 305).
The differential translucency determines for each value off (r) how much the total
opacity has to be increased (or decreased).

The color map is specified by:

halo {

[colour_map COLOUR_MAP]

}

The differential translucency is stored in the transmittance channel of the map’s color
entries. A simple example is given by

colour_map {

[0 rgbt<1, 1, 1, 1>]

[1 rgbt<1, 1, 1, 0>]

}

In this example areas with a low density (smallf (r)) will be translucent (large dif-
ferential translucency of 1= 100%) and areas with a high density (largef (r)) will
be opaque (small differential translucency of 0= 0%). You should note that negative
transmittance values can be used to create very dense fields.

In the case of the dust halo the filter channels of the colors inthe color map are used to
specify the amount of light that will be filtered by the corresponding color map entry.
For all other halo types the filter value is ignored.

There is no default color map.

7.6.4.7 Halo Sampling

The halo effects are calculated by marching through the density field along a ray. At
discrete steps samples are taken from the density field and evaluated according to the

7.6. TEXTURES 311

color map and all other parameters. The effects of all volumeelements are accumulated
to get the total effect.

The following parameters are used to tune the sampling process:

halo {

[samples SAMPLES]

[aa_level AA_LEVEL]

[aa_threshold AA_THRESHOLD]

[jitter JITTER]

}

The individual sampling parameters are described in the sections below.

7.6.4.7.1 Number of Samples

The number of samples that are taken along the ray inside the halo container object
is specified by thesamples keyword. The greater the number of samples the more
denser the density field is sampled and the more accurate but slower the result will be.

The default number of samples is 10. This is sufficient for simple density fields that
don’t use turbulence.

High turbulence values and dust halos normally need a large number of samples to
avoid aliasing artifacts.

7.6.4.7.2 Super-Sampling

The sampling is prone to alias (like the atmosphere samplingin section 7.7.1 on
page 347). One way to reduce possible aliasing artifacts is to use super-sampling. If
two neighboring samples differ too much an additional sampling is taken in-between.
This process recurses until the values of the samples are close too each other or the
maximum recursion level given byAA LEVEL is reached. The threshold to kick super-
sampling in is given byAA THRESHOLD.

By default super-sampling is not used. The default values for AA THRESHOLD and
AA LEVEL are 0.3 and 3 respectively.

7.6.4.7.3 Jitter

Jitter can be used to introduce some noise to the sampling locations. This may help to
reduce aliasing artifacts at the cost of an increased noise level in the image. Since the
human visual system is much more forgiving to noise than it isto regular patterns this
is not much of a problem.

By default jittering is not used. The values should be smaller than 1.0.

Note that jittering is used even if super-sampling is not used.

312 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.4.8 Halo Modifiers

This section covers all general halo modifiers. They are:

halo {

[turbulence <TURBULENCE>]

[octaves OCTAVES]

[omega OMEGA]

[lambda LAMBDA]

[frequency FREQUENCY]

[phase PHASE]

[scale <VECTOR>]

[rotate <VECTOR>]

[translate <VECTOR>]

}

STILL BEING WRITTEN [DB]

7.6.4.8.1 Turbulence Modifier

STILL BEING WRITTEN [DB]

7.6.4.8.2 Octaves Modifier

STILL BEING WRITTEN [DB]

7.6.4.8.3 Omega Modifier

STILL BEING WRITTEN [DB]

7.6.4.8.4 Lambda Modifier

STILL BEING WRITTEN [DB]

7.6.4.8.5 Frequency Modifier

Thefrequencyparameter adjusts the number of times the density interval is mapped
onto itself, i. e. the range from 0.0 to 1.0, before it is mapped onto the color map. The
formula doing this is:

f̂ (r)= (f requency f(r)+ phase) mod 1. (7.42)

7.6. TEXTURES 313

Thus the halo color map will be repeated by the specified frequency.

7.6.4.8.6 Phase Modifier

The phase parameter determines the offset at which the mapping of the density field
onto itself starts. See equation 7.42 on the preceding page for how the phase is used.

Thus the color entry for densityf (r) = 0 can be moved tophasemod 1.

7.6.4.8.7 Transformation Modifiers

Halos can be transformed using the rotate, scale and translate keywords. You have to
be careful that you don’t move the density field out of the container object though.

7.6.5 Special Textures

Special textures are complex textures made up of multiple textures. The component
textures may be plain textures or may be made up of special textures. A plain texture
has just one pigment, normal and finish statement (and maby some halo statements).
Even a pigment with a pigment map is still one pigment and thusconsidered a plain
texture as are normals with normal map statements.

Special textures use either atexture map keyword to specify a blend or pattern of
textures or they use a bitmap similar to an image map called amaterial map(specified
with thematerial map keyword).

There are restrictions on using special textures. A specialtexture may not be used as a
default texture (see section 7.2.3 on page 206). A special texture cannot be used as a
layer in a layered texture however you may use layered textures as any of the textures
contained within a special texture.

7.6.5.1 Texture Maps

In addition to specifying blended color with a color map or a pigment map you may
create a blend of textures usingtexture map. The syntax for a texture map is iden-
tical to the pigment map except you specify a texture in each map entry.

A texture map is specified by. . .

texture{

PATTERN_TYPE

texture_map {

[NUM_1 TEXTURE_BODY_1]

[NUM_2 TEXTURE_BODY_2]

[NUM_3 TEXTURE_BODY_3]

314 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

...

}

TEXTURE_MODIFIERS...

}

Where NUM1, NUM 2, . . . are float values between 0.0 and 1.0 inclusive. A TEX-
TURE BODY is anything that would normally appear inside atexture { . . . }
statement but the texture keyword and{} braces are not needed. Note that the[]

brackets are part of the actual statement. They are not notational symbols denoting
optional parts. The brackets surround each entry in the map.There may be from 2 to
256 entries in the map.

For example:

texture {

gradient x //this is the PATTERN_TYPE

texture_map {

[0.3 pigment{Red} finish{phong 1}]

[0.3 T_Wood11] //this is a texture identifier

[0.6 T_Wood11]

[0.9 pigment{DMFWood4} finish{Shiny}]

}

}

When thegradient x function returns values from 0.0 to 0.3 the red highlighted
texture is used. From 0.3 to 0.6 the texture identifierT Wood11is used. From 0.6 up
to 0.9 a blend ofT Wood11and a shinyDMFWood4is used. From 0.9 on up only the
shiny wood is used.

Texture maps may be nested to any level of complexity you desire. The textures in a
map may have color maps or texture maps or any type of texture you want.

The blended area of a texture map works by fully calculating both contributing textures
in their entirety and then linearly interpolating the apparent colors. This means that
reflection, refraction and lighting calculations are done twice for every point. This
is in contrast to using a pigment map and a normal map in a plaintexture, where
the pigment is computed, then the normal, then reflection, refraction and lighting are
calculated once for that point.

Entire textures may also be used with the block patterns suchas checker, hexagon and
brick. For example. . .

texture {

checker

texture { T_Wood12 scale .8 }

texture { pigment { White_Marble } finish { Shiny } scale .5 }

}

}

7.6. TEXTURES 315

Note that in the case of block patterns thetexture { . . . } wrapping is required
around the texture information. Also note that this syntax prohibits the use of a lay-
ered texture however you can work around this by declaring a texture identifier for the
layered texture and referencing the identifier.

A texture map is also used with theaverage pattern type. See 7.6.7.2 on page 319
for details.

7.6.5.2 Tiles

Earlier versions of POV-Ray had a special texture calledtiles texturethat created a
checkered pattern of textures. Although it is still supported for backwards computabil-
ity you should use a checker block texture pattern describedin section 7.6.5.1 on
page 313 rather than tiles textures.

7.6.5.3 Material Maps

Thematerial mapspecial texture extends the concept of image maps to apply toentire
textures rather than solid colors. A material map allows youto wrap a 2-D bit-mapped
texture pattern around your 3-D objects.

Instead of placing a solid color of the image on the shape likean image map, an entire
texture is specified based on the index or color of the image atthat point. You must
specify a list of textures to be used like atexture paletterather than the usual color
palette.

When used with mapped file types such as GIF, and some PNG and TGA images, the
index of the pixel is used as an index into the list of texturesyou supply. For unmapped
file types such as some PNG and TGA images the 8 bit value of the red component in
the range 0-255 is used as an index.

If the index of a pixel is greater than the number of textures in your list then the index
is taken moduloN whereN is the length of your list of textures.

7.6.5.3.1 Specifying a Material Map

The syntax of a material map is. . .

texture {

material_map {

FILE_TYPE "filename"

BITMAP_MODIFIERS...

texture {..}. // First used for index 0

texture {..}. // Second texture used for index 1

texture {..}. // Third texture used for index 2

316 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

texture {..}. // Fourth texture used for index 3

// and so on for however many used.

}

TRANSFORMATION...

}

Where FILETYPE is one of the following keywordsgif, tga, iff, ppm, pgm,
png or sys. This is followed by the name of the file using any valid stringexpres-
sion. Several optional modifiers may follow the file specification. The modifiers are
described below. Note that earlier versions of POV-Ray allowed some modifiers before
the FILE TYPE but that syntax is being phased out in favor of the syntaxdescribed
here.

Filenames specified in thematerial map statements will be searched for in the
home (current) directory first and, if not found, will then besearched for in directories
specified by any+L switches orLibrary Path options. This would facilitate keeping
all your material map files in a separate subdirectory and specifying a library path to
them. Note that any operating system default paths are not searched unless you also
specify them as aLibrary Path.

By default, the material is mapped onto thex-y-plane. The material isprojectedonto
the object as though there were a slide projector somewhere in the−z-direction. The
material exactly fills the square area from(x,y) coordinates (0,0) to (1,1) regardless of
the bitmap’s original size in pixels. If you would like to change this default you may
translate, rotate or scale the texture to map it onto the object’s surface as desired.

The file name is optionally followed by one or more BITMAPMODIFIERS.
See 7.6.8.9 on page 345 for other details.

After amaterial map statement but still inside the texture statement you may apply
any legal texture modifiers. Note that no other pigment, normal, finish or halo state-
ments may be added to the texture outside the material map. The following is illegal:

texture {

material_map {

gif "matmap.gif"

texture {T1}

texture {T2}

texture {T3}

}

finish {phong 1.0}

}

The finish must be individually added to each texture.

Note that earlier versions of POV-Ray allowed such specifications but they were ig-
nored. The above restrictions on syntax were necessary for various bug fixes. This
means some POV-Ray 1.0 scenes using material maps many need minor modifications
that cannot be done automatically with the version compatibility mode.

7.6. TEXTURES 317

If particular index values are not used in an image then it maybe necessary to supply
dummy textures. It may be necessary to use a paint program or other utility to examine
the map file’s palette to determine how to arrange the texturelist.

The textures within a material map texture may be layered butmaterial map textures
do not work as part of a layered texture. To use a layered texture inside a material map
you must declare it as a texture identifier and invoke it in thetexture list.

7.6.6 Layered Textures

It is possible to create a variety of special effects using layered textures. A layered
texture consists of several textures that are partially transparent and are laid one on top
of the other to create a more complex texture. The different texture layers show through
the transparent portions to create the appearance of one texture that is a combination of
several textures.

You create layered textures by listing two or more textures one right after the other. The
last texture listed will be the top layer, the first one listedwill be the bottom layer. All
textures in a layered texture other than the bottom layer should have some transparency.
For example:

object {

My_Object

texture {T1} // the bottom layer

texture {T2} // a semi-transparent layer

texture {T3} // the top semi-transparent layer

}

In this example T2 shows only where T3 is transparent and T1 shows only where T2
and T3 are transparent.

The color of underlying layers is filtered by upper layers butthe results do not look
exactly like a series of transparent surfaces. If you had a stack of surfaces with the
textures applied to each, the light would be filtered twice: once on the way in as the
lower layers are illuminated by filtered light and once on theway out. Layered textures
do not filter the illumination on the way in. Other parts of thelighting calculations
work differently as well. The results look great and allow for fantastic looking textures
but they are simply different from multiple surfaces. SeeSTONES.INC in the standard
include files directory for some magnificent layered textures.

Note layered textures must use thetexture { . . . } wrapped around any pigment,
normal or finish statements. Do not use multiple pigment, normal or finish statements
without putting them inside the texture statement.

Layered textures may be declared. For example

318 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

#declare Layered_Examp =

texture {T1}

texture {T2}

texture {T3}

may be invoked as follows:

object {

My_Object

texture {

Layer_Examp

// Any pigment, normal or finish here

// modifies the bottom layer only.

}

}

If you wish to use a layered texture in a block pattern, such aschecker, hexagon, or
brick, or in a material map, you must declare it first and then reference it inside a single
texture statement. A special texture cannot be used as a layer in a layered texture
however you may use layered textures as any of the textures contained within a special
texture.

7.6.7 Patterns

POV-Ray uses a method calledthree-dimensional solid texturingto define the color,
bumpiness and other properties of a surface. You specify theway that the texture
varies over a surface by specifying apattern. Patterns are used in pigments, normals
and texture maps.

All patterns in POV-Ray are three dimensional. For every point in space, each pattern
has a unique value. Patterns do not wrap around a surface likeputting wallpaper on an
object. The patterns exist in 3d and the objects are carved from them like carving an
object from a solid block of wood or stone.

Consider a block of wood. It contains light and dark bands that are concentric cylinders
being the growth rings of the wood. On the end of the block you see these concentric
circles. Along its length you see lines that are the veins. However the pattern exists
throughout the entire block. If you cut or carve the wood it reveals the pattern inside.
Similarly an onion consists of concentric spheres that are visible only when you slice
it. Marble stone consists of wavy layers of colored sediments that harden into rock.

These solid patterns can be simulated using mathematical functions. Other random
patterns such as granite or bumps and dents can be generated using a random number
system and a noise function.

In each case, thex, y, z coordinate of a point on a surface is used to compute some
mathematical function that returns a float value. When used with color maps or pigment

7.6. TEXTURES 319

maps, that value looks up the color of the pigment to be used. In normal statements
the pattern function result modifies or perturbs the surfacenormal vector to give a
bumpy appearance. Used with a texture map, the function result determines which
combinations of entire textures to be used.

The following sections describe each pattern. See the sections 7.6.1 on page 278
and 7.6.2 on page 286 for more details on how to use patterns.

7.6.7.1 Agate

Theagate pattern is a banded pattern similar to marble but it uses a specialized built-
in turbulence function that is different from the traditional turbulence. The traditional
turbulence can be used as well but it is generally not necessary because agate is already
very turbulent. You may control the amount of the built-in turbulence by adding the
agate turb keyword followed by a float value. For example:

pigment {

agate

agate_turb 0.5

color_map {

...

}

}

The agate pattern uses theramp wave wave type by default but may use any wave
type. The pattern may be used withcolor map, pigment map, normal map,
slope map andtexture map.

7.6.7.2 Average

Technicallyaverage is not a pattern type but it is listed here because the syntax
is similar to other patterns. Typically a pattern type specifies how colors or normals
are chosen from a pigment map or normal map, howeveraverage tells POV-Ray to
average together all of the patterns you specify. Average was originally designed to be
used in a normal statement with a normal map as a method of specifying more than
one normal pattern on the same surface. However average may be used in a pigment
statement with a pigment map or in a texture statement with a texture map to average
colors too.

When used with pigments, the syntax is:

pigment {

average

pigment_map

320 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

{

[WEIGHT_1 PIGMENT_BODY_1]

[WEIGHT_2 PIGMENT_BODY_2]

...

[WEIGHT_n PIGMENT_BODY_n]

}

PIGMENT_MODIFIER

}

Similarly you may use a texture map in a texture statement. All textures are fully
computed. The resulting colors are then weighted and averaged.

When used with a normal map in a normal statement, multiple copies of the original
surface normal are created and are perturbed by each pattern. The perturbed normals
are then weighted, added and normalized.

See the sections 7.6.1.4 on page 281, 7.6.2.2 on page 290 and 7.6.5.1 on page 313 for
more information.

7.6.7.3 Bozo

The bozo pattern is a very smooth, random noise function that is traditionally used
with some turbulence to create clouds. The spotted pattern is identical to bozo but in
early versions of POV-Ray spotted did not allow turbulence to be added. Turbulence
can now be added to any pattern so these are redundant but bothare retained for back-
wards compatibility. The bumps pattern is also identical tobozo when used anywhere
except in a normal statement. When used as a normal, bumps uses a slightly different
method to perturb the normal with a similar noise function.

The bozo noise function has the following properties:

1. It’s defined over 3D space, i. e. it takes thex, y andz coordinates and
returns the noise value there.

2. If two points are far apart the noise values at those pointsare relatively
random.

3. If two points are close together the noise values at those points are
close to each other.

You can visualize this as having a large room and a thermometer that ranges from
0.0 to 1.0. Each point in the room has a temperature. Points that are far apart have
relatively random temperatures. Points that are close together have close temperatures.
The temperature changes smoothly but randomly as we move through the room.

Now let’s place an object into this room along with an artist.The artist measures the
temperature at each point on the object and paints that pointa different color depending
on the temperature. What do we get? A POV-Ray bozo texture!

Thebozo pattern uses theramp wave wave type by default but may use any wave
type. The pattern may be used withcolor map, pigment map, normal map,
slope map andtexture map.

7.6. TEXTURES 321

7.6.7.4 Brick

Thebrick pattern generates a pattern of bricks. The bricks are offsetby half a brick
length on every other row in thex- andz-directions. A layer of mortar surrounds each
brick. The syntax is given by

pigment {

brick COLOR_1, COLOR_2

brick_size VECTOR

mortar FLOAT

}

where COLOR1 is the color of the mortar and COLOR2 is the color of the brick
itself. If no colors are specified a default deep red and dark gray are used. The default
size of the brick and mortar together is〈8,3,4.5〉 units. The default thickness of the
mortar is 0.5 units. These values may be changed using the optional brick size

andmortar pattern modifiers. You may also use pigment statements in place of the
colors. For example:

pigment {

brick pigment{Jade}, pigment{Black_Marble}

}

When used with normals, the syntax is

normal {

brick BUMP_FLOAT

}

Where BUMPFLOAT is an optional bump size float value. You may also use full
normal statements. For example:

normal {

brick normal { bumps 0.2 }, normal { granite 0.3 }

}

When used with textures, the syntax is

texture {

brick texture { T_Gold_1A }, texture { Stone12 }

}

This is a block pattern which cannot use wave types, color map, or slope map modifiers.

322 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.7.5 Bumps

Thebumps pattern was originally designed only to be used as a normal pattern. It uses
a very smooth, random noise function that creates the look ofrolling hills when scaled
large or a bumpy orange peal when scaled small. Usually the bumps are about 1 unit
apart.

When used as a normal,bumps uses a specialized normal perturbation function. This
means that thebumps pattern cannot be used with normal map, slope map or wave
type modifiers in a normal statement.

When used as a pigment pattern or texture pattern, the bumps pattern is identical to
bozo or spotted and is similar to normal bumps but is not identical as are most normals
when compared to pigments. When used as pigment or texture statements the bumps
pattern uses theramp wave wave type by default but may use any wave type. The
pattern may be used withcolor map, pigment map, andtexture map.

7.6.7.6 Checker

Thechecker pattern produces a checkered pattern consisting of alternating squares
of COLOR 1 and COLOR2. If no colors are specified then default blue and green
colors are used.

pigment { checker COLOR_1, COLOR_2 }

The checker pattern is actually a series of cubes that are oneunit in size. Imagine a
bunch of 1 inch cubes made from two different colors of modeling clay. Now imagine
arranging the cubes in an alternating check pattern and stacking them in layer after
layer so that the colors still alternate in every direction.Eventually you would have a
larger cube. The pattern of checks on each side is what the POV-Ray checker pattern
produces when applied to a box object. Finally imagine cutting away at the cube until
it is carved into a smooth sphere or any other shape. This is what the checker pattern
would look like on an object of any kind.

You may also use pigment statements in place of the colors. For example:

pigment { checker pigment { Jade }, pigment { Black_Marble } }

When used with normals, the syntax is

normal { checker BUMP_FLOAT }

Where BUMPFLOAT is an optional bump size float value. You may also use full
normal statements. For example:

7.6. TEXTURES 323

normal {

checker normal { gradient x scale .2 }, normal { gradient y scale .2 }

}

When used with textures, the syntax is. . .

texture { checker texture { T_Wood_3A }, texture { Stone12 } }

This use of checker as a texture pattern replaces the specialtiles texture in previous
versions of POV-Ray. You may still usetiles but it may be phased out in future
versions so checker textures are best.

This is a block pattern which cannot use wave types, color map, or slope map modifiers.

7.6.7.7 Crackle

Thecrackle pattern is a set of random tiled polygons. With a large scale and no tur-
bulence it makes a pretty good stone wall or floor. With a smallscale and no turbulence
it makes a pretty good crackle ceramic glaze. Using high turbulence it makes a good
marble that avoids the problem of apparent parallel layers in traditional marble.

Mathematically, the setcrackle(p) = 0 is a 3D Voronoi diagram of a field of semi
random points andcrackle(p) < 0 is the distance from the set along the shortest path
(a Voronoi diagram is the locus of points equidistant from their two nearest neighbors
from a set of disjoint points, like the membranes in suds are to the centers of the bub-
bles).

The crackle pattern uses theramp wave wave type by default but may use
any wave type. The pattern may be used withcolor map, pigment map,
normal map, slope map andtexture map.

7.6.7.8 Dents

Thedents pattern was originally designed only to be used as a normal pattern. It is
especially interesting when used with metallic textures. It gives impressions into the
metal surface that look like dents have been beaten into the surface with a hammer.
Usually the dents are about 1 unit apart.

When used as a normal pattern, dents uses a specialized normal perturbation function.
This means that the dents pattern cannot be used with normal map, slope map or wave
type modifiers in a normal statement.

When used as a pigment pattern or texture pattern, thedents pattern is similar to nor-
mal dents but is not identical as are most normals when compared to pigments. When
used in pigment or texture statements thedents pattern uses theramp wave wave
type by default but may use any wave type. The pattern may be used withcolor map,
pigment map andtexture map.

324 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.7.9 Gradient

ne of the simplest patterns is thegradient pattern. It is specified as

pigment {gradient VECTOR}

where VECTOR is a vector pointing in the direction that the colors blend. For example

pigment { gradient x } // bands of color vary as you move

// along the "x" direction.

LATEX-ONLY

\begin{QUOTE}

\begin{CF}

produces a series of smooth bands of color that look like layers of colors next to each
other. Points atx= 0 are the first color in the color map. As thex location increases
it smoothly turns to the last color atx= 1. Then it starts over with the first again and
gradually turns into the last color atx= 2. The pattern reverses for negative values ofx.
Usinggradient y or gradient z makes the colors blend along they- or z-axis.
Any vector may be used butx, y andz are most common.

As a normal pattern, gradient generates a saw-tooth or ramped wave appearance. The
syntax is

normal { gradient VECTOR, BUMP_FLOAT}

where the VECTOR giving the orientation is a required parameter but the
BUMP FLOAT bump size which follows is optional.

The pattern uses theramp wavewave type by default but may use any wave type. The
pattern may be used withcolor map, pigment map, normal map, slope map

andtexture map.

7.6.7.10 Granite

This pattern uses a simple 1/ f fractal noise function to give a good granite pattern.
This pattern is used with creative color maps inSTONES.INC to create some gorgeous
layered stone textures.

As a normal pattern it creates an extremely bumpy surface that looks like a gravel
driveway or rough stone.

The pattern uses theramp wavewave type by default but may use any wave type. The
pattern may be used withcolor map, pigment map, normal map, slope map

andtexture map.

7.6. TEXTURES 325

7.6.7.11 Hexagon

Thehexagon pattern is a block pattern that generates a repeating pattern of hexagons
in thex-y−-plane. In this instance imagine tall rods that are hexagonal in shape and are
parallel to they-axis and grouped in bundles like shown in figure 7.20. Three separate
colors should be specified as follows:

pigment { hexagon COLOR_1, COLOR_2, COLOR_3 }

color 1
color 2
color 3

x

z

Figure 7.20: The hexagon pattern.

The three colors will repeat the hexagonal pattern with hexagon COLOR1 centered at
the origin, COLOR2 in the+z-direction and COLOR3 to either side. Each side of
the hexagon is one unit long. The hexagonalrodsof color extend infinitely in the+y-
and−y-directions. If no colors are specified then default blue, green and red colors are
used.

You may also use pigment statements in place of the colors. For example:

pigment {

hexagon pigment { Jade },

pigment { White_Marble },

pigment { Black_Marble }

}

When used with normals, the syntax is

normal { hexagon BUMP_FLOAT }

Where BUMPFLOAT is an optional bump size float value. You may also use full
normal statements. For example:

326 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

normal {

hexagon

normal { gradient x scale .2 },

normal { gradient y scale .2 },

normal { bumps scale .2 }

}

When used with textures, the syntax is. . .

texture {

hexagon

texture { T_Gold_3A },

texture { T_Wood_3A },

texture { Stone12 }

}

This is a block pattern which cannot use wave types, color map, or slope map modifiers.

7.6.7.12 Leopard

Leopard creates regular geometric pattern of circular spots.

The pattern uses theramp wavewave type by default but may use any wave type. The
pattern may be used withcolor map, pigment map, normal map, slope map

andtexture map.

7.6.7.13 Mandel

Themandel pattern computes the standard Mandelbrot fractal pattern and projects it
onto thex-y-plane. It uses thex andy coordinates to compute the Mandelbrot set. The
pattern is specified with the keywordmandel followed by an integer number. This
number is the maximum number of iterations to be used to compute the set. Typical
values range from 10 up to 256 but any positive integer may be used. For example:

pigment {

mandel 25

color_map {

[0.0 color Cyan]

[0.3 color Yellow]

[0.6 color Magenta]

[1.0 color Cyan]

}

scale .5

}

7.6. TEXTURES 327

The value passed to the color map is computed by the formula:

value=
numbero f iterations

max iterations
(7.43)

When used as a normal pattern, the syntax is. . .

normal {

mandel ITER, BUMP_AMOUNT

}

where the required integer ITER value is optionally followed by a float bump size.

The pattern extends infinitely in thez-direction similar to a planar image map. The
pattern uses theramp wave wave type by default but may use any wave type. The
pattern may be used withcolor map, pigment map, normal map, slope map

andtexture map.

7.6.7.14 Marble

Themarble pattern is very similar to thegradient x pattern. The gradient pattern
uses a defaultramp wave wave type which means it uses colors from the color map
from 0.0 up to 1.0 at locationx = 1 but then jumps back to the first color forx>
1 and repeats the pattern again and again. However themarble pattern uses the
triangle wave wave type in which it uses the color map from 0 to 1 but then it
reverses the map and blends from 1 back to zero. For example:

pigment {

gradient x

color_map {

[0.0 color Yellow]

[1.0 color Cyan]

}

}

This blends from yellow to cyan and then it abruptly changes back to yellow and re-
peats. However replacinggradient x with marble smoothly blends from yellow
to cyan as thex coordinate goes from 0.0 to 0.5 and then smoothly blends backfrom
cyan to yellow byx= 1.0.

Earlier versions of POV-Ray did not allow you to change wave types. Now that
wave types can be changed for most any pattern, the distinction betweenmarble
andgradient x is only a matter of default wave types.

When used with turbulence and an appropriate color map, thispattern looks like veins
of color of real marble, jade or other types of stone. By default, marble has no turbu-
lence.

The pattern may be used withcolor map, pigment map, normal map,
slope map andtexture map.

328 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.7.15 Onion

Onion is a pattern of concentric spheres like the layers of anonion. Each layer is one
unit thick.

The pattern uses theramp wavewave type by default but may use any wave type. The
pattern may be used withcolor map, pigment map, normal map, slope map

andtexture map.

7.6.7.16 Quilted

The quilted pattern was originally designed only to be used as a normal pattern.
The quilted pattern is so named because it can create a pattern somewhat like a quilt or
a tiled surface. The squares are actually 3-D cubes that are 1unit in size.

When used as a normal pattern it uses a specialized normal perturbation function. This
means that the quilted pattern cannot be used with normal map, slope map or wave type
modifiers in a normal statement.

When used as a pigment pattern or texture pattern, the quilted pattern is similar to nor-
mal quilted but is not identical as are most normals when compared to pigments. When
used in pigment or texture statements the quilted pattern uses theramp wave wave
type by default but may use any wave type. The pattern may be used withcolor map,
pigment map andtexture map.

The two parameterscontrol0 andcontrol1 are used to adjust the curvature of
theseamor gougearea between thequilts. The syntax is:

normal {

quilted AMOUNT

control0 C0

control1 C1

}

The values should generally be kept to around the 0.0 to 1.0 range. The default value
is 1.0 if none is specified. Think of thisgougebetween the tiles in cross-section as a
sloped line.

This straight slope can be made to curve by adjusting the two control values. The
control values adjust the slope at the top and bottom of the curve. A control values
of 0 at both ends will give a linear slope, as shown in figure 7.21 on the facing page,
yielding a hard edge. A control value of 1 at both ends will give an ”s” shaped curve,
resulting in a softer, more rounded edge.

7.6.7.17 Radial

The radial pattern is a radial blend that wraps around the+y-axis. The color for
value 0.0 starts at the+x-direction and wraps the color map around from east to west

7.6. TEXTURES 329

−0.5 0.0 0.5
0.0

0.5

1.0

c1
 = 0

c1
 = 0.33

c1
 = 0.67

c1
 = 1

(a)

−0.5 0.0 0.5
0.0

0.5

1.0

c1
 = 0

c1
 = 0.33

c1
 = 0.67

c1
 = 1

(b)

−0.5 0.0 0.5
0.0

0.5

1.0

c1
 = 0

c1
 = 0.33

c1
 = 0.67

c1
 = 1

(c)

−0.5 0.0 0.5
0.0

0.5

1.0

c1
 = 0

c1
 = 0.33

c1
 = 0.67

c1
 = 1

(d)

Figure 7.21: Quilted pattern function for different valuesof c0 andc1: (a) c0 = 0, (b)
c0= 0.33, (c)c0= 0.67, and (d)c0= 1
.

with 0.25 in the−z-direction, 0.5 in−x, 0.75 at+z and back to 1.0 at+x. Typically
the pattern is used with afrequency modifier to create multiple bands that radiate
from they-axis.

The pattern uses theramp wavewave type by default but may use any wave type. The
pattern may be used withcolor map, pigment map, normal map, slope map

andtexture map.

7.6.7.18 Ripples

The ripples pattern was originally designed only to be used as a normal pattern.
It makes the surface look like ripples of water. The ripples radiate from 10 random
locations inside the unit cube area〈0,0,0〉 to 〈1,1,1〉. Scale the pattern to make the
centers closer or farther apart.

Usually the ripples from any given center are about 1 unit apart. Thefrequency

330 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

keyword changes the spacing between ripples. Thephase keyword can be used to
move the ripples outwards for realistic animation.

The number of ripple centers can be changed with the global parameter
global settings { number of waves FLOAT } somewhere in the scene.
This affects the entire scene. You cannot change the number of wave centers on in-
dividual patterns. See 7.8.8 on page 362 for details.

When used as a normal pattern, ripples uses a specialized normal perturbation function.
This means that the ripples pattern cannot be used with normal map, slope map or wave
type modifiers in a normal statement.

When used in pigment or texture statements theripples pattern uses the
ramp wave wave type by default but may use any wave type. The pattern maybe
used withcolor map, pigment map andtexture map.

7.6.7.19 Spiral1

Thespiral1 pattern creates a spiral that winds around they-axis similar to a screw.
Its syntax is:

pigment {

spiral1 NUMBER_OF_ARMS

}

The NUMBEROF ARMS value determins how mayarms are winding around the
y-axis.

The pattern uses thetriangle wave wave type by default but may use any wave
type. The pattern may be used withcolor map, pigment map, normal map,
slope map andtexture map.

7.6.7.20 Spiral2

Thespiral2 pattern is a modification of thespiral1 pattern with an extraordinary
look.

The pattern uses thetriangle wave wave type by default but may use any wave
type. The pattern may be used withcolor map, pigment map, normal map,
slope map andtexture map.

7.6.7.21 Spotted

Thespotted pattern is identical to thebozo pattern. Early versions of POV-Ray did
not allow turbulence to be used with spotted. Now that any pattern can use turbulence
there is no difference between bozo and spotted. See 7.6.7.3on page 320 for details.

7.6. TEXTURES 331

7.6.7.22 Waves

Thewaves pattern was originally designed only to be used as a normal pattern. The
waves pattern looks similar to the ripples pattern except the features are rounder and
broader. The effect is to make waves that look more like deep ocean waves. The waves
radiate from ten random locations inside the unit cube area〈0,0,0〉 to 〈1,1,1〉. Scale
the pattern to make the centers closer or farther apart.

Usually the waves from any given center are about 1 unit apart. The frequency
keyword changes the spacing between waves. Thephase keyword can be used to
move the waves outwards for realistic animation.

The number of ripple centers can be changed with the global parameter
global settings { number of waves FLOAT } somewhere in the scene.
This affects the entire scene. You cannot change the number of wave centers on in-
dividual patterns. See 7.8.8 on page 362 for details.

When used as a normal pattern, waves uses a specialized normal perturbation function.
This means that the waves pattern cannot be used with normal map, slope map or wave
type modifiers in a normal statement.

When used in pigment or texture statements the waves patternuses theramp wave

wave type by default but may use any wave type. The pattern maybe used with
color map, pigment map andtexture map.

7.6.7.23 Wood

The wood pattern consists of concentric cylinders centered on thez-axis. When ap-
propriately colored, the bands look like the growth rings and veins in real wood. Small
amounts of turbulence should be added to make it look more realistic. By default, wood
has no turbulence.

Unlike most patterns, the wood pattern uses thetriangle wave wave type by de-
fault. This means that like marble, wood uses color map values 0.0 to 1.0 then repeats
the colors in reverse order from 1.0 to 0.0. However you may use any wave type. The
pattern may be used withcolor map, pigment map, normal map, slope map

andtexture map.

7.6.7.24 Wrinkles

Thewrinkles pattern was originally designed only to be used as a normal pattern. It
uses a 1/ f noise pattern similar to granite but the features in wrinkles are sharper. The
pattern can be used to simulate wrinkled cellophane or foil.It also makes an excellent
stucco texture.

When used as a normal pattern it uses a specialized normal perturbation function. This
means that the wrinkles pattern cannot be used with normal map, slope map or wave
type modifiers in a normal statement.

332 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

When used as a pigment pattern or texture pattern, thewrinkles pattern is similar
to normal wrinkles but is not identical as are most normals when compared to pig-
ments. When used in pigment or texture statements thewrinkles pattern uses the
ramp wave wave type by default but may use any wave type. The pattern maybe
used withcolor map, pigment map andtexture map.

7.6.8 Pattern Modifiers

Pattern modifiers are statements or parameters which modifyhow a pattern is evaluated
or tells what to do with the pattern. The modifierscolor map andpigment map

apply only to pigments. See section 7.6.1 on page 278. The modifiers bump size,
slope map andnormal map apply only to normals. See section 7.6.2 on page 286.
Thetexture map modifier can only be used with textures. See section 7.6.5.1 on
page 313.

The pattern modifiers in the following section can be used with pigment, normal or
texture patterns.

7.6.8.1 Transforming Patterns

The most common pattern modifiers are the transformation modifiers translate,
rotate,scale andmatrix. For details on these commands see 7.3.1 on page 214.

These modifiers may be placed inside pigment, normal and texture statements to
change the position, size and orientation of the patterns.

In general the order of transformations relative to other pattern modifiers such as
turbulence, color map and other maps is not important. For example scaling
before or after turbulence makes no difference. The turbulence is done first, then the
scaling regardless of which is specified first. However the order in which transforma-
tions are performed relative towarp statements is important. See 7.6.8.8 on page 336
for details.

7.6.8.2 Frequency and Phase

Thefrequency andphase modifiers act as a type of scale and translate modifiers
for color map, pigment map, normal map, slope map andtexture map.
This discussion uses a color map as an example but the same principles apply to pig-
ment maps, normal maps, slope maps and texture maps.

Thefrequency keyword adjusts the number of times that a color map repeats over
one cycle of a pattern. For examplegradient covers color map values 0 to 1 over
the range fromx= 0 to x= 1. By addingfrequency 2.0 the color map repeats
twice over that same range. The same effect can be achieved using scale 0.5*x so
the frequency keyword isn’t that useful for patterns like gradient.

7.6. TEXTURES 333

However the radial pattern wraps the color map around the+y-axis once. If you wanted
two copies of the map (or 3 or 10 or 100) you’d have to build a bigger map. Adding
frequency 2.0 causes the color map to be used twice per revolution. Try this:

pigment {

radial

color_map{[0.5 color Red][0.5 color White]}

frequency 6

}

The result is six sets of red and white radial stripes evenly spaced around the object.

The float afterfrequency can be any value. Values greater than 1.0 causes more
than one copy of the map to be used. Values from 0.0 to 1.0 causea fraction of the map
to be used. Negative values reverses the map.

Thephase value causes the map entries to be shifted so that the map starts and ends
at a different place. In the example above if you render successive frames at phase
0 then phase 0.1, phase 0.2 etc you could create an animation that rotates the stripes.
The same effect can be easily achieved by rotating the radialpigment usingrotate
y*Angle but there are other uses where phase can be handy.

Sometimes you create a great looking gradient or wood color map but you want the
grain slightly adjusted in or out. You could re-order the color map entries but that’s a
pain. A phase adjustment will shift everything but keep the same scale. Try animating
a mandel pigment for a color palette rotation effect.

Frequency and phase have no effect on block patterns checker, brick and hexagon nor
do they effect image maps, bump maps or material maps. They also have no effect
in normal statements when used with bumps, dents, quilted orwrinkles because these
normal patterns cannot usenormal map or slope map.

They can be used with normal patterns ripples and waves even though these two pat-
terns cannot usenormal map or slope map either. When used with ripples or
waves, frequency adjusts the space between features and phase can be adjusted from
0.0 to 1.0 to cause the ripple or waves to move relative to their center for animating the
features.

These values work by applying the following formula

new value= (old value∗ f requency+ phase) mod 1.0. (7.44)

7.6.8.3 Waveform

Most patterns that takecolor map, pigment map, slope map, normal map or
texture map use the entries in the map in order from 0.0 to 1.0. The wood and
marble patterns use the map from 0.0 to 1.0 and then reverses it and runs it from 1.0 to

334 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

0.0. The difference can easily be seen when these patterns are used as normal patterns
with no maps.

Patterns such as gradient or onion generate a grove or slot that looks like a ramp that
drops off sharply. This is called aramp wave wave type. However wood and marble
slope upwards to a peak, then slope down again in atriangle wave. In previous
versions of POV-Ray there was no way to change the wave types.You could simulate a
triangle wave on a ramp wave pattern by duplicating the map entries in reverse, however
there was no way to use a ramp wave on wood or marble.

Now any pattern that takes a map can have the default wave typeoverridden. For
example:

pigment { wood color_map { MyMap } ramp_wave }

Also available aresine wave andscallop wave types. These types are of most
use in normal patterns as a type of built-in slope map. Thesine wave takes the zig-
zag of a ramp wave and turns it into a gentle rolling wave with smooth transitions. The
scallop wave uses the absolute value of the sine wave which looks like corduroy
when scaled small or like a stack of cylinders when scaled larger.

Although any of these wave types can be used for pigments, normals or textures, the
sine wave andscallop wave types are not as noticeable on pigments or textures
as they are for normals.

Wave types have no effect on block patterns checker, brick and hexagon nor do they
effect image maps, bump maps or material maps. They also haveno effect in normal
statements when used with bumps, dents, quilted or wrinklesbecause these normal
patterns cannot usenormal map or slope map.

7.6.8.4 Turbulence

he keywordturbulence followed by a float or vector may be used to stir up any
pigment, normal, texture, irid or halo. A number of optionalparameters may be used
with turbulence to control how it is computed. For example:

pigment {

wood color_map { MyMap }

turbulence TURB_VECTOR

octaves FLOAT

omega FLOAT

lambda FLOAT

}

Typical turbulence values range from the default 0.0, whichis no turbulence, to 1.0 or
more, which is very turbulent. If a vector is specified different amounts of turbulence
are applied in thex-, y- andz-direction. For example

7.6. TEXTURES 335

turbulence <1.0, 0.6, 0.1>

has much turbulence in thex-direction, a moderate amount in they-direction and a
small amount in thez-direction.

Turbulence uses a random noise function calledDNoise. This is similar to the noise
used in the bozo pattern except that instead of giving a single value it gives a direction.
You can think of it as the direction that the wind is blowing atthat spot. Points close
together generate almost the same value but points far apartare randomly different.

In general the order of turbulence parameters relative to other pattern modifiers such
as transformations, color maps and other maps is not important. For example scaling
before or after turbulence makes no difference. The turbulence is done first, then the
scaling regardless of which is specified first. See 7.6.8.8 onthe next page for a way to
work around this behavior.

Turbulence uses DNoise to push a point around in several steps calledoctaves. We
locate the point we want to evaluate, then push it around a bitusing turbulence to get
to a different point then look up the color or pattern of the new point.

It says in effectDon’t give me the color at this spot. . . take a few random steps in
different directions and give me that color. Each step is typically half as long as the
one before.

The magnitude of these steps is controlled by the turbulencevalue. There are three
additional parameters which control how turbulence is computed. They areoctaves,
lambda andomega. Each is optional. Each is followed by a single float value. Each
has no effect when there is no turbulence.

7.6.8.5 Octaves

heoctaves value controls the number of steps of turbulence that are computed. Legal
values range from 1 to 10. The default value of 6 is a fairly high value; you won’t
see much change by setting it to a higher value because the extra steps are too small.
Float values are truncated to integer. Smaller numbers of octaves give a gentler, wavy
turbulence and computes faster. Higher octaves create morejagged or fuzzy turbulence
and takes longer to compute.

7.6.8.6 Lambda

helambda parameter controls how statistically different the randommove of an oc-
tave is compared to its previous octave. The default value is2.0 which is quite random.
Values close to lambda 1.0 will straighten out the randomness of the path in the di-
agram above. The zig-zag steps in the calculation are in nearly the same direction.
Higher values can look moreswirly under some circumstances.

336 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.8.7 Omega

he omega value controls how large each successive octave step is compared to the
previous value. Each successive octave of turbulence is multiplied by the omega value.
The defaultomega 0.5 means that each octave is 1/2 the size of the previous one.
Higher omega values mean that 2nd, 3rd, 4th and up octaves contribute more turbulence
giving a sharper,crinkly look while smaller omegas give a fuzzy kind of turbulence that
gets blurry in places.

7.6.8.8 Warps

The warp statement is a pattern modifier that is similar to turbulence. Turbulence
works by taking the pattern evaluation point and pushing it about in a series of random
steps. However warps push the point in very well-defined, non-random, geometric
ways. The warp statement also overcomes some limitations oftraditional turbulence
and transformations by giving the user more control over theorder in which turbulence,
transformation and warp modifiers are applied to the pattern.

Currently there are three types of warps but the syntax was designed to allow future
expansion. The first two, therepeat warp and theblack hole warp are new fea-
tures for POV-Ray that modify the pattern in geometric ways.The other warp provides
an alternative way to specify turbulence.

The syntax for using awarp statement in a pigment is

pigment {

PATTERN_TYPE

PIGMENT_MODIFIERS...

warp { WARP_ITEMS..}.

OTHER_PIGMENT_MODIFIERS...

}

Similarly warps may be used in normals and textures. You may have as many sepa-
rate warp statements as you like in each pattern. The placement of warp statements
relative to other modifiers such ascolor map or turbulence is not important.
However placement of warp statements relative to each otherand to transformations
is significant. Multiple warps and transformations are evaluated in the order in which
you specify them. For example if you translate, then warp or warp, then translate, the
results can be different.

7.6.8.8.1 Black Hole Warp

A black hole is so named because of its similarity to real black holes. Just like the
real thing, you cannot actually see a black hole. The only wayto detect its presence is
by the effect it has on things that surround it. Unlike the real thing, however, it won’t

7.6. TEXTURES 337

swallow you up and compress your entire body to a volume of, say, 2.010−10 microns
in diameter if you get too close (We’re working on that part).

Take, for example, a woodgrain. Using POV-Ray’s normal turbulence and other texture
modifier functions, you can get a nice, random appearance to the grain. But in its
randomness it is regular — it is regularly random! Adding a black hole allows you
to create a localised disturbance in a woodgrain in either one or multiple locations.
The black hole can have the effect of eithersuckingthe surrounding texture into itself
(like the real thing) orpushingit away. In the latter case, applied to a woodgrain, it
would look to the viewer as if there were a knothole in the wood. In this text we use
a woodgrain regularly as an example, because it is ideally suitable to explaining black
holes. However, black holes may in fact be used with any texture.

The effect that the black hole has on the texture can be specified. By default, itsucks
with the strength calculated expotentially (inverse-square). You can change this if you
like.

Black holes may be used anywhere a Warp is permitted. The syntax is:

warp

{

black_hole <CENTER>, RADIUS

[falloff VALUE]

[strength VALUE]

[repeat <VECTOR>]

[turbulence <VECTOR>]

[inverse]

}

Some examples are given by

warp

{

black_hole <0, 0, 0>, 0.5

}

warp

{

black_hole <0.15, 0.125, 0>, 0.5

falloff 7

strength 1.0

repeat <1.25, 1.25, 0>

turbulence <0.25, 0.25, 0>

inverse

}

warp

{

338 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

black_hole <0, 0, 0>, 1.0

falloff 2

strength 2

inverse

}

In order to fully understand how a black hole works, it is important to know the theory
behind it. A black hole (or any warp) works by taking a point and perturbing it to
another location. The amount of perturbation depends on thestrength of the black hole
at the original point passed in to it. The amount of perturbation directly relates to the
amount of visual movement that you can see occur in a texture.The stronger the black
hole at the input co-ordinate the more that original co-ordinate is moved to another
location (either closer to or further away from the center ofthe black hole.)

Movement always occurs on the vector that exists between theinput point and the
center of the black hole.

Black holes are considered to be spheres. For a point to be affected by a black hole, it
must be within the sphere’s volume.

Suppose you have a black hole at〈1,1,1〉 and a point at〈1,2,1〉. If this point is per-
turbed by a total amount of+1 units its new location is〈1,3,1〉, which is on a direct
line extrapolated from the vector between〈1,1,1〉 and〈1,2,1〉. In this case the point
is pushedaway from the black hole, which is notnormal behaviour but is good for
demonstration purposes.

The internal properties of a black hole are as follows.

Center The center of the black hole.
Radius Its radius.
Falloff The power by which the effect falls off (default 2).
Strength The magnitude of the transformation effect (see below).

Inverted If setpushpoints away instead ofpulling them in.
Repeat If set we have many black holes instead of one.
Turbulence If set each new repeated black hole’s position isuncer-

tain.

RepeatVector The〈x,y,z〉 factor to repeat by.
TurbulenceVector The maximum〈x,y,z〉 factor for turbulence random-

ness.

Each of these are discussed below.

Center: A vector defining the center of the sphere that represents the black hole. If the
black hole hasRepeatset it is the offset within each block.

Radius: A number giving the length, in units, of the radius of the sphere that represents
the black hole.

7.6. TEXTURES 339

If a point is not within radius units of〈center〉 it cannot be affected by the black hole
and will not be perturbed.

Falloff : The power by which the effect of the black hole falls off. Thedefault is two.
The force of the black hole at any given point, before applying theStrengthmodifier,
is as follows.

First, convert the distance from the point to the center to a proportion (0 to 1) that the
point is from the edge of the black hole. A point on the perimeter of the black hole
will be 0.0; a point at the centre will be 1.0; a point exactly halfway will be 0.5, and so
forth.

Mentally you can consider this to be aclosenessfactor. A closeness of 1.0 is as close
as you can get to the center (i. e.at the center), a closeness of 0.0 is as far away as you
can get from the center and still be inside the black hole and acloseness of 0.5 means
the point is exactly halfway between the two.

Call this valuec. Raisec to the power specified inFalloff . By default Falloff is 2, so
this isc2 or c squared. The resulting value is the force of the black hole atthat exact
location and is used, after applying theStrengthscaling factor as described below, to
determine how much the point is perturbed in space.

For example, ifc is 0.5 the force is 0.52 or 0.25. If c is 0.25 the force is 0.125. But ifc
is exactly 1.0 the force is 1.0.

Recall that asc gets smaller the point is farther from the center of the blackhole. Using
the default power of 2, you can see that asc reduces, the force reduces expotentially
in an inverse-square relationship. Put in plain english, itmeans that the force is much
stronger (by a power of two) towards the center than it is at the outside.

By increasingFalloff , you can increase the magnitude of the falloff. A large valuewill
mean points towards the perimeter will hardly be affected atall and points towards the
center will be affected strongly.

A value of 1.0 forFalloff will mean that the effect is linear. A point that is exactly
halfway to the center of the black hole will be affected by a force of exactly 0.5.

A value ofFalloff of less than one but greater than zero means that as you get closer
to the outside, the force increases rather than decreases. This can have some uses but
there is a side effect. Recall that the effect of a black hole ceases outside its perimiter.
This means that points just within the permiter will be affected strongly and those just
outside not at all. This would lead to a visible border, shaped as a sphere.

A value for Falloff of 0 would mean that the force would be 1.0 for all points within
the black hole, since any number larger 0 raised to the power of 0 is 1.0.

The magnitude of the movement of the point is determined basically by the value of
force after scaling. We’ll consider scaling later. Lets take an example.

Suppose we have a black hole of radius 2.0 and a point that is exactly 1.0 units from
the center. That means it is exactly half-way to the center and thatc would be 0.5. If
we use the default falloff of 2 the force at that point is 0.52 or 0.25. What this means

340 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

is that we must move the point by 0.25 of its distance from the center. In this case it is
1.0 units from the center, so we move it by 1.0∗0.25 or 0.25 units. This gives a final
distance of 1.0− (1.0∗0.25) or 0.75 units from the center, on a direct line in 3D space
between the original position and the center.

If the point were part of, say, a wood grain, the wood grain would appear to bend
towards the (invisible) center of the black hole. If theInverseflag were set, however, it
would bepushedaway, meaning its final position would be 1.0+(1.0∗0.25) or 1.25
units from the center.

Strength: TheStrengthgives you a bit more control over how much a point is perturbed
by the black hole. Basically, the force of the black hole (as determined above) is
multipled by the value ofStrength, which defaults to 1.0. If you set Strength to 0.5, for
example, all points within the black hole will be moved by only half as much as they
would have been. If you set it to 2.0 they will be moved twice asmuch.

There is a rider to the latter example, though — the movement is clipped to a maximum
of the original distance from the center. That is to say, a point that is 0.75 units from
the center may only be moved by a maximum of 0.75 units either towards the center or
away from it, regardless of the value ofStrength. The result of this clipping is that you
will have anexclusionarea near the centre of the black hole where all points whose
final force value exceeded or equalled 1.0 were moved by a fixedamount.

Inverted: If Inverted is set points arepushedaway from the center instead of being
pulled in.

Repeat: Repeatallows you to simulate the effect of many black holes withouthaving
to explicitly declare them. Repeat is a vector that tells POV-Ray to use this black hole
at multiple locations.

If you’re not interested in the theory behind all this, just skip the following text and use
the values given in the summary below.

Using Repeatlogically divides your scene up into cubes, the first being located at
〈0,0,0〉 and going to〈repeat〉. Suppose your repeat vector was〈1,5,2〉. The first
cube would be from〈0,0,0〉 to 〈1,5,2〉. This cube repeats, so there would be one at
〈−1,−5,−2〉, 〈1,5,2〉, 〈2,10,4〉 and so forth in all directions, ad infinitum.

When you useRepeat, the center of the black hole does not specify an absolute location
in your scene but an offset into each block. It is only possible to use positive offsets.
Negative values will produce undefined results.

Suppose your center was〈0.5,1,0.25〉 and the repeat vector is〈2,2,2〉. This gives us
a block at〈0,0,0〉 and〈2,2,2〉, etc. The centers of the black hole’s for these blocks
would be〈0,0,0〉+〈0.5,1.0,0.25〉, i. e. 〈0.5,1.0,0.25〉, and〈2,2,2〉+〈0.5,1.0,0.25〉,
i. e. 〈2,5,3.0,2.25〉.

Due to the way repeats are calculated internally, there is a restriction on the values you
specify for the repeat vector. Basically, each black hole must be totally enclosed within
each block (or cube), with no part crossing into a neighbouring one. This means that,
for each of thex, y andz dimensions, the offset of the center may not be less than the

7.6. TEXTURES 341

radius, and the repeat value for that dimension must be≥ the center plus the radius
since any other values would allow the black hole to cross a boundary. Put another
way, for each ofx, y andz

radius≤ offset or center<= repeat− radius. (7.45)

If the repeat vector in any dimension is too small to fit this criteria, it will be increased
and a warning message issued. If the center is less than the radius it will also be moved
but no message will be issued.

Note that none of the above should be read to mean that you can’t overlap black holes.
You most certainly can and in fact this can produce some most useful effects. The
restriction only applies to elements of thesameblack hole which is repeating. You can
declare a second black hole that also repeats and its elements can quite happily overlap
the first and causing the appropriate interactions.

It is legal for the repeat value for any dimension to be 0, meaning that POV-Ray will
not repeat the black hole in that direction.

Turbulence: Turbulencecan only be used withRepeat. It allows an element of ran-
domness to be inserted into the way the black holes repeat, tocause a morenatural
look. A good example would be an array of knotholes in wood — itwould look rather
artificial if each knothole were an exact distance from the previous.

Theturbulence vectoris a measurement that is added to each individual back hole inan
array, after each axis of the vector is multipled by a different random amount ranging
from 0 to 1.

For example, suppose you have a repeating element of a black hole that is supposed to
be at〈2,2,2〉. You have specified a turbulence vector of〈4,5,3〉, meaning you want
the position to be able to vary by no more than 1.0 units in the Xdirection, 3.0 units in
the Y direction and 2.0 in Z. This means that the valid ranges of the new position are
as follows

x can be from 2 to 6.
y can be from 2 to 7.
z can be from 2 to 5.

The resulting actual position of the black hole’s center forthat particular repeat element
is random (but consistent, so renders will be repeatable) and somewhere within the
above co-ordinates.

There is a rider on the use of turbulence, which basically is the same as that of the
repeat vector. Yyou can’t specify a value which would cause ablack hole to potentially
cross outside of its particular block.

Since POV-Ray doesn’t know in advance how much a position will be changed due
to the random nature of the changes, it enforces a rule that issimilar to the one for

342 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Repeat, except it adds the maximum possible variation for each axisto the center. For
example, suppose you had a black hole with a center of〈1.0,1.0,1.0〉, radius of 0.5 and
a turbulence of〈0.5,0.25,0〉— normally, the mimimum repeat would be〈1.5,1.5,1.5〉.
However, now we take into account the turbulence, meaning the minimum repeat vector
is actually〈2.0,1.75,1.5〉.

Repeat summarized: For each ofx, y andz the offset of the center must be≥ radius and
the value of the repeat must be≥ center + radius + turbulence. The exception being
that repeat may be 0 for any dimension, which means do not repeat in that direction.

7.6.8.8.2 Repeat Warp

Therepeatwarp causes a section of the pattern to be repeated over and over. It takes
a slice out of the pattern and makes multiple copies of it side-by-side. The warp has
many uses but was originally designed to make it easy to modelwood veneer textures.
Veneer is made by taking very thin slices from a log and placing them side-by-side on
some other backing material. You see side-by-side nearly identical ring patterns but
each will be a slice perhaps 1/32th of an inch deeper.

The syntax for a repeat warp is

warp { repeat VECTOR offset VECTOR flip VECTOR }

The repeat vector specifies the direction in which the pattern repeats and the width of
the repeated area. This vector must lie entirely along an axis. In other words, two of its
three components must be 0. For example

pigment {

wood

warp { repeat 2*x }

}

which means that fromx= 0 tox= 2 you get whatever the pattern usually is. But from
x= 2 tox= 4 you get the same thing exactly shifted two units over in thex-direction.
To evaluate it you simply take thex-coordinate modulo 2. Unfortunately you get exact
duplicates which isn’t very realistic. The optionaloffset vector tells how much to
translate the pattern each time it repeats. For example

pigment {

wood

warp { repeat 2*x offset 0.05*z }

}

means that we slice the first copy fromx= 0 to x= 2 atz= 0 but atx= 2 tox= 4 we
offset toz= 0.05. In the 4 to 6 interval we slice atz= 0.10. At then-th copy we slice

7.6. TEXTURES 343

at 0.05nz. Thus each copy is slightly different. There are no restrictions on the offset
vector.

Finally theflip vector causes the pattern to be flipped or mirrored every other copy
of the pattern. The first copy of the pattern in the positive direction from the axis is not
flipped. The next farther is, the next is not, etc. The flip vector is a three componentx,
y, z vector but each component is treated as a boolean value that tells if you should or
should not flip along a given axis. For example

pigment {

wood

warp { repeat 2*x flip <1,1,0> }

}

means that every other copy of the pattern will be mirrored about thex- andy- axis but
not thez-axis. A non-zero value means flip and zero means do not flip about that axis.
The magnitude of the values in the flip vector doesn’t matter.

7.6.8.8.3 Turbulence Warp

The POV-Ray language contains an ambiguity and limitation on the way you specify
turbulence and transformations such as translate, rotate,scale and matrix transforms.
Usually the turbulence is done first. Then all translate, rotate, scale and matrix oper-
ations are always done after turbulence regardless of the order in which you specify
them. For example this

pigment {

wood

scale .5

turbulence .2

}

works exactly the same as

pigment {

wood

turbulence .2

scale .5

}

The turbulence is always first. A better example of this limitation is with uneven tur-
bulence and rotations.

344 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

pigment {

wood

turbulence 0.5*y

rotate z*60

}

// as compared to

pigment {

wood

rotate z*60

turbulence 0.5*y

}

The results will be the same either way even though you’d think it should look different.

We cannot change this basic behavior in POV-Ray now because lots of scenes would
potentially render differently if suddenly the order transformation vs turbulence sud-
denly mattered when in the past, it didn’t.

However, by specifying our turbulence inside warp statement you tell POV-Ray that the
order in which turbulence, transformations and other warpsare applied is significant.
Here’s an example of a turbulence warp.

warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

The significance is that this

pigment {

wood

translate <1,2,3> rotate x*45 scale 2

warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

}

producesdifferent results than this. . .

pigment {

wood

warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

translate <1,2,3> rotate x*45 scale 2

}

You may specify turbulence without using a warp statement. However you cannot
control the order in which they are evaluated unless you put them in a warp.

The evaluation rules are as follows:

7.6. TEXTURES 345

• First any turbulence not inside a warp statement is applied regardless of
the order in which it appears relative to warps or transformations.

• Next each warp statement, translate, rotate, scale or matrix one-by-one,
is applied in the order the user specifies. If you want turbulence done in
a specific order, you simply specify it inside a warp in the proper place.

7.6.8.9 Bitmap Modifiers

A bitmap modifier is a modifier used inside an 7.6.1.5 on page 283, 7.6.2.3 on page 292
or 7.6.5.3 on page 315 to specify how the 2-D bitmap is to be applied to the 3-D surface.
Several bitmap modifiers apply to specific kinds of maps and they are covered in the
appropriate sections. The bitmap modifiers discussed in thefollowing sections are
applicable to all three types of bitmaps.

7.6.8.9.1 The once Option

Normally there are an infinite number of repeating image maps, bump maps or material
maps created over every unit square of thex-y-plane like tiles. By adding theonce
keyword after a file name you can eliminate all other copies ofthe map except the one
at (0,0) to (1,1). In image maps, areas outside this unit square are treated asfully
transparent. In bump maps, areas outside this unit square are left flat with no normal
modification. In material maps, areas outside this unit square are textured with the first
texture of the texture list.

For example:

image_map {

gif "mypic.gif"

once

}

7.6.8.9.2 The ”maptype” Option

The default projection of the bump onto thex-y-plane is called aplanar map type.
This option may be changed by adding themap type keyword followed by a number
specifying the way to wrap the bump around the object.

A map type 0 gives the default planar mapping already described.

A map type 1gives a spherical mapping. It assumes that the object is a sphere of any
size sitting at the origin. They-axis is the north/south pole of the spherical mapping.
The top and bottom edges of the bitmap just touch the pole regardless of any scaling.
The left edge of the bitmap begins at the positivex-axis and wraps the pattern around

346 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

the sphere fromwestto east in a−y-rotation. The pattern covers the sphere exactly
once. Theonce keyword has no meaning for this type.

With map type 2 you get a cylindrical mapping. It assumes that a cylinder of any
diameter lies along they-axis. The bump pattern wraps around the cylinder just like the
spherical map but remains one unit tall fromy= 0 toy= 1. This band of the pattern is
repeated at all heights unless theonce keyword is applied.

Finally map type 5 is a torus or donut shaped mapping. It assumes that a torus of
major radius 1 sits at the origin in thex-z-plane. The pattern is wrapped around similar
to spherical or cylindrical maps. However the top and bottomedges of the map wrap
over and under the torus where they meet each other on the inner rim.

Types 3 and 4 are still under development.

For example:

sphere{<0,0,0>,1

pigment{

image_map {

gif "world.gif"

map_type 1

}

}

}

7.6.8.9.3 The interpolate Option

Adding theinterpolate keyword can smooth the jagged look of a bitmap. When
POV-Ray asks an image map color or a bump amount for a bump map,it often asks for
a point that is not directly on top of one pixel but sort of between several differently
colored pixels. Interpolations returns anin-betweenvalue so that the steps between the
pixels in the map will look smoother.

Althoughinterpolate is legal in material maps the color index is interpolated be-
fore the texture is chosen. It does not interpolate the final color as you might hope it
would. In general, interpolation of material maps serves nouseful purpose but this may
be fixed in future versions.

There are currently two types of interpolation:

Bilinear —interpolate 2

Normalized Distance —interpolate 4

For example:

7.7. ATMOSPHERIC EFFECTS 347

image_map {

gif "mypic.gif"

interpolate 2

}

Default is no interpolation. Normalized distance is the slightly faster of the two, bilin-
ear does a better job of picking the between color. Normally bilinear is used.

If your map looks jaggy, try using interpolation instead of going to a higher resolution
image. The results can be very good.

7.7 Atmospheric Effects

Atmospheric effects are a loosely-knit group of features that affect the background
and/or the atmosphere enclosing the scene. POV-Ray includes the ability to render a
number of atmospheric effects, such as fog, haze, mist, rainbows and skies.

7.7.1 Atmosphere

Computer generated images normally assume a vacuum space that does not allow the
rendering of natural phenomena like smoke, light beams, etc. A very simple approach
to add fog to a scene is explained in section 7.7.3 on page 351.This kind of fog does
not interact with any light sources though. It will not show light beams or other effects
and is therefore not very realistic.

The atmosphere effect overcomes some of the fog’s limitations by calculating the inter-
action between light and the particles in the atmosphere using volume sampling. Thus
shaft of light beams will become visible and objects will cast shadowsonto smoke or
fog.

The syntax of the atmosphere is:

atmosphere {

type TYPE

distance DISTANCE

[scattering SCATTERING]

[eccentricity ECCENTRICITY]

[samples SAMPLES]

[jitter JITTER]

[aa_threshold AA_THRESHOLD]

[aa_level AA_LEVEL]

[colour <COLOUR>]

}

348 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The type keyword determines the type of scattering model to be used. There are
five different phase functions representing the different models: isotropic, Rayleigh,
Mie (haze and murky atmosphere) and Henyey-Greenstein. Thedifferent scattering
functions are shown in figure 7.22.

Isotropic scatteringis the simplest form of scattering because it is independentof di-
rection. The amount of light scattered by particles in the atmosphere does not depend
on the angle between the viewing direction and the incoming light.

Rayleigh scatteringmodels the scattering for extremely small particles such as
molecules of the air. The amount of scattered light depends on the incident light angle.
It is largest when the incident light is parallel or anti-parallel to the viewing direction
and smallest when the incident light is perpendicular to theviewing direction. You
should note that the Rayleigh model used in POV-Ray does not take the dependency of
scattering on the wavelength into account.

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

T
he

 li
gh

t i
s

co
m

in
g

fr
om

 h
er

e

(a)

0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

T
he

 li
gh

t i
s

co
m

in
g

fr
om

 h
er

e

(b)

0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

T
he

 li
gh

t i
s

co
m

in
g

fr
om

 h
er

e

(c)

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.50

0.00

0.50

1.00

T
he

 li
gh

t i
s

co
m

in
g

fr
om

 h
er

e

e = −0.6
e = −0.3
e = 0.0
e = 0.3
e = 0.6

(d)

Figure 7.22: The different atmospheric scattering functions: (a) Rayleigh, (b) Mie
”haze”, (c) Mie ”murky”, and (d) Heyney-Greenstein
.

Mie scatteringis used for relatively small particles such as miniscule water droplets of
fog, cloud particles, and particles responsible for the polluted sky. In this model the

7.7. ATMOSPHERIC EFFECTS 349

scattering is extremely directional in the forward direction i. e. the amount of scattered
light is largest when the incident light is anti-parallel tothe viewing direction (the light
goes directly to the viewer). It is smallest when the incident light is parallel to the
viewing direction. The haze and murky atmosphere models differ in their scattering
characteristics. The murky model is much more directional than the haze model.

The Henyey-Greenstein scatteringis based on an analytical function and can be used
to model a large variety of different scattering types. The function models an ellipse
with a given eccentricitye. This eccentricity is specified by the optional keyword
eccentricity which is only used for scattering type five. An eccentricity value of
zero defines isotropic scattering while positive values lead to scattering in the direc-
tion of the light and negative values lead to scattering in the opposite direction of the
light. Larger values ofe(or smaller values in the negative case) increase the directional
property of the scattering.

The easiest way to use the different scattering types will beto declare some constants
and use those in your atmosphere definition:

#declare ISOTROPIC_SCATTERING = 1

#declare MIE_HAZY_SCATTERING = 2

#declare MIE_MURKY_SCATTERING = 3

#declare RAYLEIGH_SCATTERING = 4

#declare HENYEY_GREENSTEIN_SCATTERING = 5

The distance keyword is used to determine the density of the particles in the at-
mosphere. This density is constant for the whole atmosphere. The distance parameter
works in the same way as the fog distance.

With thescattering keyword you can change the amount of light that is scattered
by the atmosphere, thus increasing or decreasing the brightness of the atmosphere.
Smaller scattering values decrease the brightness while larger values increase it.

Thecolour orcolor keyword can be used to create a colored atsosphere, i. e. it can
be used to get particles that filter the light passing through. The default color is black.

The light passing through the atmosphere (either coming from light sources or the back-
ground) is filtered by the atmosphere’s color if the specifiedcolor has a non-zero filter
value. In other words, the amount by which the light is filtered by the atmosphere’s
color is given by the filter value (pretty much in the same way as it is done for the fog).
Using a color ofrgbf 〈1,0,0,0.25〉 will result in a slightly reddish atmosphere be-
cause 25% of the light passing through the atmosphere is filtered by (multiplied with)
the color of the atmosphere, i. e. rgb〈1,0,0〉 (and that’s red).

The transmittance channel of the atmosphere’s color is usedto specify a minimum
translucency. If a value larger than zero is used you’ll always see that amount of the
background through the atmosphere, regardless of how densethe atmosphere is. This
works in the same way as it does for fogs.

Since the atmosphere is calculated by sampling along the viewing ray and looking
for contributions from light sources, it is prone to aliasing (just like any sampling

350 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

technique). There are four parameters to minimize the artifacts that may be visible:
samples, jitter, aa level andaa threshold.

Thesamples keyword determines how many samples are calculated in one interval
along the viewing ray. The length of the interval is either the distance as given by the
distance keyword or the length of thelit part of the viewing ray, whichever is smaller.
This lit part is a section of the ray that ismost likelylit by a light source. In the case of a
spotlight it is the part of the ray that lies in the cone of light. In other cases it becomes
more difficult. The only thing you should keep in mind is that the actual sampling
interval length is variable but there will never be fewer than the specified samples in
the specified distance.

One technique to reduce the visibility of sampling artifacts is to jitter the sample points,
i. e. to add random noise to their location. This can be done with thejitter keyword.

Another technique is super-sampling (an anti-aliasing method). This helps to avoid
missing features by adding additional samples in places were high intensity changes
occur (e. g. the edge of a shadow). The anti-aliasing is turned on by theaa level

keyword. If this is larger than zero super-sampling will be used. The additional samples
will be recursively placed between two samples with a high intensity change. The level
to which subdivision takes places is specified by theaa level keyword. Level one
means one subdivision (one additional sample), level two means two subdivisions (up
to three additional samples), etc.

The threshold for the intensity change is given by theaa threshold keyword. If the
intensity change is greater than this threshold anti-aliasing will be used for those two
samples.

With spotlights you’ll be able to create the best results because their cone of light will
become visible. Pointlights can be used to create effects like street lights in fog. Lights
can be made to not interact with the atmosphere by addingatmosphere off to the
light source. They can be used to increase the overall light level off the scene to make
it look more realistic.

You should note that the atmosphere feature will not work if the camera is inside a
non-hollow object (see 7.5.1 on page 229 for a detailed explanation).

7.7.2 Background

A background color can be specified if desired. Any ray that doesn’t hit an object
will be colored with this color. The default background is black. The syntax for
background is:

background { colour <COLOUR> }

7.7. ATMOSPHERIC EFFECTS 351

7.7.3 Fog

Fog is defined by the following statement:

fog {

fog_type FOG_TYPE

distance DISTANCE

colour <COLOUR>

[turbulence <TURBULENCE>]

[turb_depth TURB_DEPTH]

[omega OMEGA]

[lambda LAMBDA]

[octaves OCTAVES]

[fog_offset FOG_OFFSET]

[fog_alt FOG_ALT]

[up <FOG_UP>]

[TRANSFORMATION]

}

The optionalup vector specifies a direction pointing up, generally the sameas the
camera’s up vector. All calculations done during the groundfog evaluation are done
relative to this up vector, i. e. the actual heights are calculated along this vector.

The up vector can also be modified using any of the known transformations described
in 7.3.1 on page 214. Though it may not be a good idea to scale the up vector — the
results are hardly predictable — it is quite useful to be ableto rotate it. You should also
note that translations do not affect the up direction (and thus don’t affect the fog).

Currently there are two fog types,constant fogandground fog. The constant fog has a
constant density everywhere while the ground fog has a constant density for all heights
below a given point on the up axis and thins out along this axis. The height below
which the fog has constant density is specified by thefog offset keyword. The
fog alt keyword is used to specify the rate by which the fog fades away. At an
altitude of f og o f fset+ f og alt the fog has a density of 25%. The density of the fog
at a given heighty is calculated by the formula:

density=

1
(

1+
y− f og o f f set

f og alt

)2 , y> f og alt

1, y≤ f og alt

(7.46)

The total density along a ray is calculated by integrating from the height of the starting
point to the height of the end point.

Two constants are defined for easy use of the fog types in the file CONST.INC:

// FOG TYPE CONSTANTS

#declare Constant_Fog = 1

#declare Ground_Fog = 2

352 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The color of a pixel with an intersection depthd is calculated by

Colorpixel= e
−d
D Colorob ject+

(

1−e
−d
D

)

Color fog (7.47)

whereD is the fog distance. At depth 0 the final color is the object’s color. If the
intersection depth equals the fog distance the final color consists of 64% of the object’s
color and 36% of the fog’s color.

The fog color that is given by thecolor keyword has three purposes. First it defines
the color to be used in blending the fog and the background. Second it is used to specify
a translucency threshold. By using a transmittance larger than zero one can make sure
that at least that amount of light will be seen through the fog. With a transmittance of
0.3 you’ll see at least 30% of the background. Third it can be used to make a filtering
fog. With a filter value larger than zero the amount of background light given by the
filer value will be multiplied with the fog color. A filter value of 0.7 will lead to a fog
that filters 70% of the background light and leaves 30% unfiltered.

Fogs may belayered. That is, you can apply as many layers of fog as you like. Gen-
erally this is most effective if each layer is a ground fog of different color, altitude and
with different turbulence values. To use multiple layers offogs, just add all of them to
the scene.

You may optionally stir up the fog by adding turbulence. Theturbulence keyword
may be followed by a float or vector to specify an amount of turbulence to be used.
The omega, lambda andoctaves turbulence parameters may also be specified.
See section 7.6.8 on page 332 for details on all of these turbulence parameters.

Additionally the fog turbulence may be scaled along the direction of the viewing ray
using theturb depth amount. Typical values are from 0.0 to 1.0 or more. The
default value is 0.5 but any float value may be used.

You should note that the fog feature will not work if the camera is inside a non-hollow
object (see 7.5.1 on page 229 for a detailed explanation).

7.7.4 Sky Sphere

The sky sphere is used create a realistic sky background without the need of an addi-
tional sphere to simulate the sky. Its syntax is:

sky_sphere {

pigment { PIGMENT1 }

pigment { PIGMENT2 }

pigment { PIGMENT3 }

...

[TRANSFORMATION]

}

7.7. ATMOSPHERIC EFFECTS 353

The sky sphere can contain several pigment layers with the last pigment being at the
top, i. e. it is evaluated last, and the first pigment being at the bottom, i. e. it is evaluated
first. If the upper layers contain filtering and/or transmitting components lower layers
will shine through. If not lower layers will be invisible.

The sky sphere is calculated by using the direction vector asthe parameter for evaluat-
ing the pigment patterns. This leads to results independentfrom the view point which
pretty good models a real sky where the distance to the sky is much larger than the
distances between visible objects.

If you want to add a nice color blend to your background you caneasily do this by
using the following example.

sky_sphere {

pigment {

gradient y

color_map {

[0.5 color CornflowerBlue]

[1.0 color MidnightBlue]

}

scale 2

translate -1

}

}

This gives a soft blend fromCornflowerBlueat the horizon toMidnightBlue at the
zenith. The scale and translate operations are used to map the direction vector values,
which lie in the range from〈−1,−1,−1〉 to 〈1,1,1〉, onto the range from〈0,0,0〉 to
〈1,1,1〉. Thus a repetition of the color blend is avoided for parts of the sky below the
horizon.

In order to easily animate a sky sphere you can transform it using the known transfor-
mations described in 7.3.1 on page 214. Though it may not be a good idea to translate
or scale a sky sphere — the results are hardly predictable — itis quite useful to be able
to rotate it. In an animation the color blendings of the sky can be made to follow the
rising sun for example.

You should note that only one sky sphere can be used in any scene. It also will not
work as you might expect if you use camera types like the orthographic or cylindrical
camera. The orthographic camera uses parallel rays and thusyou’ll only see a very
small part of the sky sphere (you’ll get one color skies in most cases). Reflections in
curved surface will work though, e. g. you will clearly see the sky in a mirrored ball.

7.7.5 Rainbow

The rainbow is a fog-like, circular arc that can be used to create rainbows. The syntax
is:

354 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

rainbow {

direction <DIR>

angle ANGLE

width WIDTH

distance DISTANCE

color_map { COLOUR_MAP }

[jitter JITTER]

[up <UP>]

[arc_angle ARC_ANGLE]

[falloff_angle FALLOFF_ANGLE]

}

Thedirection vector determines the direction of the (virtual) light thatis respon-
sible for the rainbow. Ideally this is an infinitely far away light source like the sun
that emits parallel light rays. The position and size of the rainbow are specified by the
angle andwidth keywords. To understand how they work you should first know
how the rainbow is calculated.

For each ray the angle between the rainbow’s direction vector and the ray’s direction
vector is calculated. If this angle lies in the interval fromANGLE−WIDT H/2 to
ANGLE+WIDTH/2 the rainbow is hit by the ray. The color is then determined by
using the angle as an index into the rainbow’s colormap. After the color has been
determined it will be mixed with the background color in the same way like it is done
for fogs.

Thus the angle and width parameters determine the angles under which the rainbow
will be seen. The optionaljitter keyword can be used to add random noise to the
index. This adds some irregularity to the rainbow that makesit look more realistic.

Thedistance keyword is the same like the one used with fogs. Since the rainbow is
a fog-like effect it’s possible that the rainbow is noticeable on objects. If this effect is
not wanted it can be avoided by using a large distance value. By default a sufficiently
large value is used to make sure that this effect does not occure.

Thecolor map keyword is used to assign a color map that will be mapped onto the
rainbow. To be able to create realistic rainbows it is important to know that the index
into the color map increases with the angle between the ray’sand rainbow’s direction
vector. The index is zero at the innermostring and one at the outermostring. The filter
and transmittance values of the colors in the color map have the same meaning as the
ones used with fogs (see section 7.7.3 on page 351).

The default rainbow is a 360 degree arc that looks like a circle. This is no problem as
long as you have a ground plane that hides the lower, non-visible part of the rainbow. If
this isn’t the case or if you don’t want the full arc to be visible you can use the optional
keywordsup, arc angle andfalloff angle to specify a smaller arc.

The arc angle keyword determines the size of the arc in degrees (from 0 to 360
degrees). A value smaller than 360 degrees results in an arc that abruptly vanishes.
Since this doesn’t look nice you can use thefalloff angle keyword to specify a

7.8. GLOBAL SETTINGS 355

region in which the rainbow will smoothly blend into the background making it vanish
softly. The falloff angle has to be smaller or equal to the arcangle.

Theup keyword determines were thezero angleposition is. By changing this vector
you canrotate the rainbow about its direction. You should note that the arcgoes from
−ARC ANGLE/2 to+ARC ANGLE/2. The soft regions go from−ARC ANGLE/2
to−FALLOFF ANGLE/2 and from+FALLOFF ANGLE/2 to+ARC ANGLE/2.

The following example generates a 120 degrees rainbow arc that has a falloff region of
30 degrees at both ends:

rainbow {

direction <0, 0, 1>

angle 42.5

width 5

distance 1000

jitter 0.01

color_map { Rainbow_Color_Map }

up <0, 1, 0>

arc_angle 120

falloff_angle 60

}

It is possible to use any number of rainbows and to combine them with other atmo-
spheric effects.

7.8 Global Settings

The global settings statement is acatch-all statement that gathers together a
number of global parameters. The statement may appear anywhere in a scene as long
as its not inside any other statement. You may have multipleglobal settings

statements in a scene. Whatever values were specified in the lastglobal settings

statement override any previous settings. Regardless of where you specify the state-
ment, the feature applies to the entire scene.

Note that some items which were language directives in previous versions of POV-
Ray have been moved inside theglobal settings statement so that it is more
obvious to the user that their effect is global. The old syntax is permitted but generates
a warning.

global_settings {

adc_bailout FLOAT

ambient_light COLOR

assumed_gamma FLOAT

hf_gray_16 BOOLEAN

356 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

irid_wavelength COLOR

max_intersections INTEGER

max_trace_level INTEGER

number_of_waves INTEGER

radiosity { RADIOSITY_ITEMS... }

}

Each item is optional and may appear in and order. If an item isspecified more than
once, the last setting overrides previous values. Details on each item are given in the
following sections.

7.8.1 ADC Bailout

In scenes with many reflective and transparent surfaces, POV-Ray can get bogged down
tracing multiple reflections and refractions that contribute very little to the color of a
particular pixel. The program uses a system calledAdaptive Depth Control(ADC)
to stop computing additional reflected or refracted rays when their contribution is in-
significant.

You may use the global settingadc bailout keyword followed by float value to
specify the point at which a ray’s contribution is considered insignificant.

global_settings { adc_bailout FLOAT }

The default value is 1/255, or approximately 0.0039, since achange smaller than that
could not be visible in a 24 bit image. Generally this settingis perfectly adequate and
should be left alone. Settingadc bailout to 0 will disable ADC, relying completely
onmax trace level to set an upper limit on the number of rays spawned.

See 7.8.6 on page 360 for details on how ADC andmax trace level interact.

7.8.2 Ambient Light

Ambient light is used to simulate the effect of interdiffusereflection that is responsible
for lighting areas that partially or completely lie in shadow. POV-Ray provides an
ambient light source to let you easily change the brightnessof the ambient lighting
without changing every ambient value in all finish statements. It also lets you create
interesting effects by changing the color of the ambient light source. The syntax is:

global_settings { ambient_light COLOR }

The default is a white ambient light source set atrgb〈1,1,1〉. The actual ambient used
is:

ambient= ambientf inish ambientlight source (7.48)

See section 7.6.3.1 on page 295 for more information.

7.8. GLOBAL SETTINGS 357

7.8.3 AssumedGamma

Many people may have noticed at one time or another that some images are too bright
or dim when displayed on their system. As a rule, Macintosh users find that images
created on a PC are too bright, while PC users find that images created on a Macintosh
are too dim.

Theassumed gamma global setting works in conjunction with theDisplay Gamma
INI setting (see section 6.2.2.2.1 on page 158) to ensure that scene files render the
same way across the wide variety of hardware platforms that POV-Ray is used on. The
assumed gamma setting is used in a scene file by adding

global_settings { assumed_gamma FLOAT }

where the assumed gamma value is the correction factor to be applied before the pixels
are displayed and/or saved to disk. For scenes created in older versions of POV-Ray, the
assumed gamma value will be the same as the display gamma value of the system the
scene was created on. For PC systems, the most common displaygamma is 2.2, while
for scenes created on Macintosh systems should use a scene gamma of 1.8. Another
gamma value that sometimes occurs in scenes is 1.0.

Scenes that do not have anassumed gamma global setting will not have any gamma
correction performed on them, for compatibility reasons. If you are creating new scenes
or rendering old scenes, it is strongly recommended that youput in an appropriate
assumed gamma global setting. For new scenes, you should use an assumed gamma
value of 1.0 as this models how light appears in the real worldmore realistically.

The following sections explain more thoroughly what gamma is and why it is impor-
tant.

7.8.3.1 Monitor Gamma

The differences in how images are displayed is a result of howa computer actually
takes an image and displays it on the monitor. In the process of rendering an image and
displaying it on the screen, several gamma values are important, including the POV
scene file or image file gamma and the monitor gamma.

Most image files generated by POV-Ray store numbers in the range from 0 to 255 for
each of the red, green and blue components of a pixel. These numbers represent the
intensity of each color component, with 0 being black and 255being the brightest color
(either 100% red, 100% green or 100% blue). When an image is displayed, the graphics
card converts each color component into a voltage which is sent to the monitor to light
up the red, green and blue phosphors on the screen. The voltage is usually proportional
to the value of each color component.

Gamma becomes important when displaying intensities that aren’t the maximum or
minimum possible values. For example, 127 should represent50% of the maximum

358 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

intensity for pixels stored as numbers between 0 and 255. On systems that don’t do
gamma correction, 127 will be converted to 50% of the maximumvoltage, but because
of the way the phosphors and the electron guns in a monitor work, this may be only
22% of the maximum color intensity on a monitor with a gamma of2.2. To display a
pixel which is 50% of the maximum intensity on this monitor, we would need a voltage
of 73% of the maximum voltage, which translates to storing a pixel value of 186.

The relationship between the input pixel value and the displayed intensity can be ap-
proximated by an exponential function

obright= ibrightdisplay gamma (7.49)

whereobright is the output intensity andibright is the input pixel intensity. Both values
are in the range from 0 to 1 (0% to 100%). Most monitors have a fixed gamma value
in the range from 1.8 to 2.6. Using the above formula withdisplay gammavalues
greater than 1 means that the output brightness will be less than the input brightness.
In order to have the output and input brightness be equal an overall system gamma of
1 is needed. To do this, we need to gamma correct the input brightness in the same
manner as above but with a gamma value of 1/display gammabefore it is sent to the
monitor. To correct for a display gamma of 2.2, this pre-monitor gamma correction
uses a gamma value of 1.0/2.2 or approximately 0.45.

How the pre-monitor gamma correction is done depends on whathardware and soft-
ware is being used. On Macintosh systems, the operating system has taken it upon itself
to insulate applications from the differences in display hardware. Through a gamma
control panel the user may be able to set the actual monitor gamma and MacOS will
then convert all pixel intensities so that the monitor will appear to have the specified
gamma value. On Silicon Graphics machines, the display adapter has built-in gamma
correction calibrated to the monitor which gives the desired overall gamma (the default
is 1.7). Unfortunately, on PCs and most UNIX systems, it is upto the application to do
any gamma correction needed.

7.8.3.2 Image File Gamma

Since most PC and UNIX applications and image file formats don’t understand display
gamma, they don’t do anything to correct for it. As a result, users creating images on
these systems adjust the image in such a way that it has the correct brightness when
displayed. This means that the data values stored in the filesare made brighter to com-
pensate for the darkening effect of the monitor. In essence,the 0.45 gamma correction
is built in to the image files created and stored on these systems. When these files are
displayed on a Macintosh system, the gamma correction builtin to the file, in addi-
tion to gamma correction built into MacOS, means that the image will be too bright.
Similarly, files that look correct on Macintosh or SGI systems because of the built-in
gamma correction will be too dark when displayed on a PC.

The new PNG format files generated by POV-Ray 3.0 overcome theproblem of too
much or not enough gamma correction by storing the image file gamma (which is

7.8. GLOBAL SETTINGS 359

1.0/display gamma) inside the PNG file when it is generated by POV-Ray. When
the PNG file is later displayed by a program that has been set upcorrectly, it uses
this gamma value as well as the current display gamma to correct for the potentially
different display gamma used when originally creating the image.

Unfortunately, of all the image file formats POV-Ray supports, PNG is the only one
that has any gamma correction features and is therefore preferred for images that will
be displayed on a wide variety of platforms.

7.8.3.3 Scene File Gamma

The image file gamma problem itself is just a result of how scenes themselves are
generated in POV-Ray. When you start out with a new scene and are placing light
sources and adjusting surface textures and colors, you generally make several attempts
before the lighting is how you like it. How you choose these settings depends upon
the preview image or the image file stored to disk, which in turn is dependent upon the
overall gamma of the display hardware being used.

This means that as the artist you are doing gamma correction in the POV-Ray scene
file for your particular hardware. This scene file will generate an image file that is
also gamma corrected for your hardware and will display correctly on systems similar
to your own. However, when this scene is rendered on another platform, it may be
too bright or too dim, regardless of the output file format used. Rather than have you
change all the scene files to have a single fixed gamma value (heaven forbid!), POV-
Ray 3.0 allows you to specify in the scene file the display gamma of the system that
the scene was created on.

The assumed gamma global setting, in conjunction with theDisplay Gamma INI
setting lets POV-Ray know how to do gamma correction on a given scene so that the
preview and output image files will appear the correct brightness on any system. Since
the gamma correction is done internally to POV-Ray, it will produce output image files
that are the correct brightness for the current display, regardless of what output format
is used. As well, since the gamma correction is performed in the high-precision data
format that POV-Ray uses internally, it produces better results than gamma correction
done after the file is written to disk.

Although you may not notice any difference in the output on your system with and
without anassumed gamma setting, the assumed gamma is important if the scene is
ever rendered on another platform.

7.8.4 HF Gray 16

The hf gray 16 setting is useful when using POV-Ray to generate heightfields for
use in other POV-Ray scenes. The syntax is. . .

global_settings { hf_gray_16 BOOLEAN }

360 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The boolean value turns the option on or off. If the keyword isspecified without the
boolean value then the option is turned on. Ifhf gray 16 is not specified in any
global settings statement in the entire scene then the default is off.

Whenhf gray 16 is on, the output file will be in the form of a heightfield, with the
height at any point being dependent on the brightness of the pixel. The brightness of a
pixel is calculated in the same way that color images are converted to grayscale images:

height= 0.3 red+0.59 green+0.11 blue. (7.50)

Setting thehf gray 16 option will cause the preview display, if used, to be grayscale
rather than color. This is to allow you to see how the heightfield will look because some
file formats store heightfields in a way that is difficult to understand afterwards. See
section 7.5.2.5 on page 236 for a description of how POV-Ray heightfields are stored
for each file type.

7.8.5 Irid Wavelength

Iridescence calculations depend upon the dominant wavelengths of the primary col-
ors of red, green and blue light. You may adjust the values using the global setting
irid wavelength as follows. . .

global_settings { irid_wavelength COLOR }

The default value isrgb〈0.25,0.18,0.14〉 and any filter or transmit values are ignored.
These values are proportional to the wavelength of light butthey represent no real world
units.

In general, the default values should prove adequate but we provide this option as a
means to experiment with other values.

7.8.6 Max Trace Level

In scenes with many reflective and transparent surfaces POV-Ray can get bogged down
tracing multiple reflections and refractions that contribute very little to the color of a
particular pixel. The global settingmax trace level defines the maximum number
of recursive levels that POV-Ray will trace a ray.

global_settings { max_trace_level INTEGER }

This is used when a ray is reflected or is passing through a transparent object and when
shadow rays are cast. When a ray hits a reflective surface, it spawns another ray to
see what that point reflects. That is trace level one. If it hits another reflective surface

7.8. GLOBAL SETTINGS 361

another ray is spawned and it goes to trace level two. The maximum level by default is
five.

One speed enhancement added to POV-Ray in version 3.0 isAdaptive Depth Control
(ADC). Each time a new ray is spawned as a result of reflection or refraction its con-
tribution to the overall color of the pixel is reduced by the amount of reflection or the
filter value of the refractive surface. At some point this contribution can be considered
to be insignificant and there is no point in tracing any more rays. Adaptive depth con-
trol is what tracks this contribution and makes the decisionof when to bail out. On
scenes that use a lot of partially reflective or refractive surfaces this can result in a con-
siderable reduction in the number of rays fired and makes itsafer to use much higher
max trace level values.

This reduction in color contribution is a result of scaling by the reflection amount and/or
the filter values of each surface, so a perfect mirror or perfectly clear surface will not
be optimizable by ADC. You can see the results of ADC by watching theRays Saved
andHighest Trace Leveldisplays on the statistics screen.

The point at which a ray’s contribution is considered insignificant is controlled by the
adc bailout value. The default is 1/255 or approximately 0.0039 since a change
smaller than that could not be visible in a 24 bit image. Generally this setting is per-
fectly adequate and should be left alone. Settingadc bailout to 0 will disable ADC,
relying completely onmax trace level to set an upper limit on the number of rays
spawned.

If max trace level is reached before a non-reflecting surface is found and if ADC
hasn’t allowed an early exit from the ray tree the color is returned as black. Raise
max trace level if you see black areas in a reflective surface where there should
be a color.

The other symptom you could see is with transparent objects.For instance, try making
a union of concentric spheres with a clear texture on them. Make ten of them in the
union with radius’s from 1 to 10 and render the scene. The image will show the first
few spheres correctly, then black. This is because a new level is used every time you
pass through a transparent surface. Raisemax trace level to fix this problem.

Note that raisingmax trace level will use more memory and time and it could
cause the program to crash with a stack overflow error, although ADC will alleviate
this to a large extent. Values formax trace level are not restricted, so it can be
set to any number as long as you have the time and memory. However, increasing its
setting does not necessarily equate to increased image quality unless such depths are
really needed by the scene.

7.8.7 Max Intersections

POV-Ray uses a set of internal stacks to collect ray/object intersection points. The
usual maximum number of entries in theseI-Stacksis 64. Complex scenes may cause
these stacks to overflow. POV-Ray doesn’t stop but it may incorrectly render your

362 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

scene. When POV-Ray finishes rendering, a number of statistics are displayed. If you
seeI-Stack Overflowsreported in the statistics you should increase the stack size. Add
a global setting to your scene as follows:

global_settings { max_intersections INTEGER }

If the I-Stack Overflowsremain increase this value until they stop.

7.8.8 NumberOf Waves

The wave and ripples pattern are generated by summing a series of waves, each with
a slightly different center and size. By default, ten waves are summed but this amount
can be globally controlled by changing thenumber of waves setting.

global_settings { number_of_waves INTEGER }

Changing this value affects both waves and ripples alike on all patterns in the scene.

7.8.9 Radiosity

Radiosity is an extra calculation that more realistically computes the diffuse interreflec-
tion of light. This diffuse interreflection can be seen if youplace a white chair in a room
full of blue carpet, blue walls and blue curtains. The chair will pick up a blue tint from
light reflecting off of other parts of the room. Also notice that the shadowed areas of
your surroundings are not totally dark even if no light source shines directly on the
surface. Diffuse light reflecting off of other objects fills in the shadows. Typically
ray-tracing uses a trick calledambientlight to simulate such effects but it is not very
accurate.

Radiosity is more accurate than simplistic ambient light but it takes much longer to
compute. For this reason, POV-Ray does not use radiosity by default. Radiosity is
turned on using theRadiosity INI file option or the+QR command line switch.

The following sections describes how radiosity works, how to control it with various
global settings and tips on trading quality vs. speed.

7.8.9.1 How Radiosity Works

The problem of ray-tracing is to figure out what the light level is at each point that you
can see in a scene. Traditionally, in ray tracing, this is broken into the sum of these
components:

Diffuse The effect that makes the side of things facing the light brighter.

7.8. GLOBAL SETTINGS 363

Specular The effect that makes shiny things have dings or sparkles on
them.

Reflection The effect that mirrors give.
Ambient The general all-over light level that any scene has,which keeps

things in shadow from being pure black.

POV’s radiosity system, based on a method by Greg Ward, provides a way to replace
the last term — the constant ambient light value — with a lightlevel which is based on
what surfaces are nearby and how bright in turn they are.

The first thing you might notice about this definition is that it is circular: the light of
everything is dependent on everything else and vice versa. This is true in real life but
in the world of ray-tracing, we can make an approximation. The approximation that is
used is: the objects you are looking at have theirambientvalues calculated for you by
checking the other objects nearby. When those objects are checked during this process,
however, a traditional constant ambient term is used.

How does POV-Ray calculate the ambient term for each point? By sending out more
rays, in many different directions, and averaging the results. A typical point might use
200 or more rays to calculate its ambient light level correctly.

Now this sounds like it would make the ray-tracer 200 times slower. This is true,
except that the software takes advantage of the fact that ambient light levels change
quite slowly (remember, shadows are calculated separately, so sharp shadow edges are
not a problem). Therefore, these extra rays are sent out onlyonce in a while(about 1
time in 50), then these calculated values are saved and reused for nearby pixels in the
image when possible.

This process of saving and reusing values is what causes the need for a variety of tuning
parameters, so you can get the scene to look just the way you want.

7.8.9.2 Adjusting Radiosity

As described earlier, radiosity is turned on by using theRadiosity INI file option or the
+QR command line switch. However radiosity has many parametersthat are specified
in a radiosity { . . . } statement inside aglobal settings { . . . } state-
ment as follows:

global_settings {

radiosity {

brightness FLOAT

count INTEGER

distance_maximum FLOAT

error_bound FLOAT

gray_threshold FLOAT

low_error_factor FLOAT

minimum_reuse FLOAT

364 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

nearest_count INTEGER

recursion_limit INTEGER

}

}

Each item is optional and may appear in and order. If an item isspecified more than
once the last setting overrides previous values. Details oneach item is given in the
following sections.

7.8.9.2.1 brightness

This is the degree to which ambient values are brightened before being returned up-
wards to the rest of the system. If an object is red〈1,0,0〉, with an ambient value
of 0.3, in normal situations a red component of 0.3 will be added in. With radiosity
on, assume it was surrounded by an object of gra color〈0.6,0.6,0.6〉. The average
color returned by the gathering process will be the same. This will be multiplied by
the texture’s ambient weight value of 0.3, returning〈0.18,0.18,0.18〉. This is much
darker than the 0.3 which would be added in normally. Therefore, all returned values
are brightened by the inverse of the average of the calculated values, so the average
ambient added in does not change. Some will be higher than specified (higher than
0.3 in this example) and some will be lower but the overall scene brightness will be
unchanged.

The default value is 3.3.

7.8.9.2.2 count

The number of rays that are sent out whenever a new radiosity value has to be calculated
is given bycount. Values of 100 to 150 make most scenes look good. Higher values
might be needed for scenes with high contrast between light levels or small patches
of light causing the illumination. This would be used only for a final rendering on an
image because it is very compute intensive. Since most scenes calculate the ambient
value at 1% to 2% of pixels, as a rough estimate, your rendering will take 1% to 2% of
this number times as long. If you set it to 300 your rendering might take 3 to 6 times
as long to complete (1% to 2% times 300).

When this value is too low, the light level will tend to look a little bit blotchy, as if the
surfaces you’re looking at were slightly warped. If this is not important to your scene
(as in the case that you have a bump map or if you have a strong texture) then by all
means use a lower number.

The default value is 100.

7.8.9.2.3 distancemaximum

Thedistance maximum is the only tuning value that depends upon the size of the
objects in the scene. This onemust be set for scenes to render properly. . . the rest

7.8. GLOBAL SETTINGS 365

can be ignored for a first try. It is difficult to describe the meaning simply but it sets
the distance in model units from a sample at which the error isguaranteed to hit 100%
(radiosity error bound ≥ 1): no samples are reused at a distance larger than
this from their original calculation point.

Imagine an apple at the left edge of a table. The goal is to makesure that samples on
the surface of the table at the right are not used too close to the apple and definitely not
underneath the apple. If you had enough rays there wouldn’t be a problem since one of
them would be guaranteed to hit the apple and set the reuse radius properly for you. In
practice, you must limit this.

We use this technique: find the object in your scene which might have the following
problem: a small object on a larger flatter surface that you want good ambient light
near. Now, how far from this would you have to get to be sure that one of your rays had
a good chance of hitting it? In the apple-on-the-table example, assuming I used one
POV-Ray unit as one inch, I might use 30 inches. A theoretically sound way (when you
are running lots of rays) is the distance at which this object’s top is 5 degrees above the
horizonof the sample point you are considering. This corresponds toabout 11 times
the height of the object. So, for a 3-inch apple, 33 inches makes some sense. For good
behavior under and around a 1/3 inch pea, use 3 inches etc. Another VERY rough
estimate is one third the distance from your eye position to the point you are looking
at. The reasoning is that you are probably no more than 90 inches from the apple on
the table, if you care about the shading underneath it.

The default value is 0.

7.8.9.2.4 errorbound

Theerror bound is one of the two main speed/quality tuning values (the otheris of
course the number of rays shot). In an ideal world, this wouldbe theonly value needed.
It is intended to mean the fraction of error tolerated. For example, if it were set to 1 the
algorithm would not calculate a new value until the error on the last one was estimated
at as high as 100%. Ignoring the error introduced by rotationfor the moment, on flat
surfaces this is equal to the fraction of the reuse distance,which in turn is the distance
to the closest item hit. If you have an old sample on the floor 10inches from a wall,
an error bound of 0.5 will get you a new sample at a distance of about 5 inches from
the wall. 0.5 is a little rough and ready, 0.33 is good for finalrenderings. Values much
lower than 0.3 takeforever.

The default value is 0.4.

7.8.9.2.5 graythreshold

Diffusely interreflected light is a function of the objects around the point in question.
Since this is recursively defined to millions of levels of recursion, in any real life scene,
every point is illuminated at least in part by every other part of the scene. Since we

366 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

can’t afford to compute this, we only do one bounce and the calculated ambient light
is very strongly affected by the colors of the objects near it. This is known as color
bleed and it really happens but not as much as this calculation method would have you
believe. Thegray threshold variable grays it down a little, to make your scene
more believable. A value of .6 means to calculate the ambientvalue as 60% of the
equivalent grey value calculated, plus 40% of the actual value calculated. At 0%, this
feature does nothing. At 100%, you always get white/grey ambient light, with no hue.
Note that this does not change the lightness/darkness, onlythe strength of hue/grayness
(in HLS terms, it changes H only).

The default value is 0.5

7.8.9.2.6 lowerror factor

If you calculate just enough samples, but no more, you will get an image which has
slightly blotchy lighting. What you want is just a few extra interspersed, so that the
blending will be nice and smooth. The solution to this is the mosaic preview: it goes
over the image one or more times beforehand, calculating radiosity values. To ensure
that you get a few extra, the radiosity algorithm lowers the error bound during the
pre-final passes, then sets it back just before the final pass.This tuning value sets the
amount that the error bound is dropped during the preliminary image passes. If your
low error factor is 0.8 and your error bound is set to 0.4 it will really use an error bound
of 0.32 during the first passes and 0.4 on the final pass.

The default value is 0.8.

7.8.9.2.7 minimumreuse

The minimum effective radius ratio is set byminimum reuse. This is the fraction
of the screen width which sets the minimum radius of reuse foreach sample point
(actually, it is the fraction of the distance from the eye butthe two are roughly equal).
For example, if the value is 0.02 the radius of maximum reuse for every sample is set to
whatever ground distance corresponds to 2% of the width of the screen. Imagine you
sent a ray off to the horizon and it hits the ground at a distance of 100 miles from your
eyepoint. The reuse distance for that sample will be set to 2 miles. At a resolution of
300×400 this will correspond to (very roughly) 8 pixels. The theory is that you don’t
want to calculate values for every pixel into every crevice everywhere in the scene, it
will take too long. This sets a minimum bound for the reuse. Ifthis value is too low,
(which is should be in theory) rendering gets slow, and inside corners can get a little
grainy. If it is set too high, you don’t get the natural darkening of illumination near
inside edges, since it reuses. At values higher than 2% you start getting more just plain
errors, like reusing the illumination of the open table underneath the apple.

Remember that this is a unitless ratio.

The default value is 0.015.

7.8. GLOBAL SETTINGS 367

7.8.9.2.8 nearestcount

Thenearest count value is the maximum number of old ambient values blended
together to create a new interpolated value. It will always be then geometrically closest
reusable points that get used. If you go lower than 4, things can get pretty patchy. This
can be good for debugging, though. Must be no more than 10, since that is the size of
the array allocated.

The default value is 6.

7.8.9.2.9 radiosityquality

This feature is not yet implemented.

7.8.9.2.10 recursionlimit

This value determines how many recursion levels are used to calculate the diffuse inter-
reflection. Valid values are one and two.

The default value is 1.

7.8.9.3 Tips on Radiosity

If you want to see where your values are being calculated setradiosity count

down to about 20, setradiosity nearest count to 1 and set
radiosity grey to 0. This will make everything maximally patchy, so you’ll be
able to see the borders between patches. There will have beena radiosity calculation
at the center of most patches. As a bonus, this is quick to run.You can then change
theradiosity error bound up and down to see how it changes things. Likewise
modify radiosity reuse dist min andmax.

One way to get extra smooth results: crank up the sample count(we’ve gone as high as
1300) and drop thelow error factor to something small like 0.6. Bump up the
reuse count to 7 or 8. This will get better values, and more of them, then interpolate
among more of them on the last pass. This is not for people witha lack of patience
since it is like a squared function. If your blotchiness is only in certain corners or near
certain objects try tuning the error bound instead. Never drop it by more than a little at
a time, since the run time will get very long.

If your scene looks good but right near some objects you get spots of the right (usually
darker) color showing on a flat surface of the wrong color (same as far away from the
object), then try droppingreuse dist max. If that still doesn’t work well increase
your ray count by 100 and drop the error bound just a bit. If youstill have problems,
dropreuse nearest count to about 4.

368 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Part IV

Appendix

369

Appendix A

Copyright

The following sections contain the legal information and license for the Persistence of
Vision Ray-Tracer, also called POV-Ray.

Before you use this program you have to read the sections below.

A.1 General License Agreement

THIS NOTICE MUST ACCOMPANY ALL OFFICIAL OR CUSTOM PERSIS-
TENCE OF VISION FILES. IT MAY NOT BE REMOVED OR MODIFIED.
THIS INFORMATION PERTAINS TO ALL USE OF THE PACKAGE WORLD-
WIDE. THIS DOCUMENT SUPERSEDES ALL PREVIOUS GENERAL LI-
CENSES OR DISTRIBUTION POLICIES. ANY INDIVIDUALS, COMPANI ES
OR GROUPS WHO HAVE BEEN GRANTED SPECIAL LICENSES MAY CON-
TINUE TO DISTRIBUTE VERSION 2.x BUT MUST RE-APPLY FOR VER-
SION 3.00 OR LATER.

This document pertains to the use and distribution of the Persistence of Vision Ray-
Tracer a. k. a POV-Ray. It applies to all POV-Ray program source files, executable
(binary) files, scene files, documentation files, help file, bitmaps and INI files contained
in official POV-Ray Team archives. All of these are referred to here asthe software.

All of this software is Copyright 1991,1996 by the POV-Ray Team. Although it is
distributed as freeware, it isNOT Public Domain.

The copyrighted package may ONLY be distributed and/or modified according to the
license granted herein. The spirit of the license is to promote POV-Ray as a standard
ray-tracer, provide the full POV-Ray package freely to as many users as possible, pre-
vent POV-Ray users and developers from being taken advantage of, enhance the life
quality of those who come in contact with POV-Ray. This license was created so these
goals could be realized. You are legally bound to follow these rules, but we hope you
will follow them as a matter of ethics, rather than fear of litigation.

371

372 APPENDIX A. COPYRIGHT

A.2 Usage Provisions

Permission is granted to the user to use the software and associated files in this package
to create and render images. The use of this software for the purpose of creating images
is completely free. The creator of a scene file and the image created from the scene
file, retains all rights to the image and scene file they created and may use them for any
purpose commercial or noncommercial.

The user is also granted the right to use the scenes files, fonts, bitmaps, and include
files distributed in theINCLUDE, TEXSAMPS andPOV3DEMO sub- directories in their
own scenes. Such permission does not extend to files in thePOVSCN sub-directory.
POVSCN files are for your enjoyment and education but may not be the basis of any
derivative works.

A.3 General Rules for All Distributions

The permission to distribute this package under certain very specific conditions is
granted in advance, provided that the following conditionsare met.

These archives must not be re-archived using a different method without the explicit
permission of the POV-Team. You may rename the archives onlyto meet the file name
conventions of your system or to avoid file name duplicationsbut we ask that you try
to keep file names as similar to the originals as possible (forexample:POVSRC.ZIP to
POVSRC30.ZIP)

Ready-to-run unarchived distribution on CD-ROM is also permitted if the files are
arranged in our standard directory or folder structure as though it had been properly
installed on a hard disk.

You must distribute afull packageof files as described in the next section. No portion
of this package may be separated from the package and distributed separately other
than under the conditions specified in the provisions given below.

Non-commercial distribution in which no money or compensation is charged (such as a
user copying the software for a personal friend or colleague) is permitted with no other
restrictions.

Teachers and educational institutions may also distributethe material to students and
may charge minimal copying costs if the software is to be usedin a course.

A.4 Definition of Full Package

POV-Ray is contained in two sets of archives for each hardware platform. Afull pack-
ageconsists of either:

A.5. CONDITIONS FOR SHAREWARE/FREEWARE DISTRIBUTION COMPANIES373

End user executable archives containing an executable program, documenta-
tion, and sample scenes but no source.

or

Programmer archives containing full source code but no executable. Also
you must include an archive containing documentation, and sample scenes.
On some platforms, the documentation and sample scenes are archived sep-
arately from the source. Source alone is not sufficient. You must have docs
and scenes.

POV-Ray is officially distributed for MS-Dos; Windows 32-bit; Linux for Intel x86
series; Apple Macintosh; Apple PowerPC; SunOS; and Amiga. Other systems may be
added in the future.

Distributors need not support all platforms but for each platform you support you must
distribute a full package. For example a Macintosh only BBS need not distribute the
Windows versions.

This software mayonly be bundled with other software packages according to the
conditions specified in the provisions below.

A.5 Conditions for Shareware/Freeware Distribution
Companies

Shareware and freeware distribution companies may distribute the software included
in software-only compilations using media such as, but not limited to, floppy disk,
CD-ROM, tape backup, optical disks, hard disks, or memory cards. This section only
applies to distributors of collected programs. Anyone wishing to bundle the package
with a shareware product must use the commercial bundling rules. Any bundling with
books, magazines or other print media should also use the commercial rules.

You must notify us that you are distributing POV-Ray and mustprovide us with infor-
mation on how to contact you should any support issues arise.

No more than five dollars U.S. ($5) can be charged per disk for the copying of this
software and the media it is provided on. Space on each disk must be used as fully as
possible. You may not spread the files over more disks than arenecessary.

Distribution on high volume media such as backup tape or CD-ROM is permitted if
the total cost to the user is no more than $0.08 U.S. dollars per megabyte of data. For
example a CD-ROM with 600 meg could cost no more than $48.00.

374 APPENDIX A. COPYRIGHT

A.6 Conditions for On-Line Services and BBS’s Includ-
ing Internet

On-line services, BBS’s and internet sites may distribute the POV-Ray software under
the conditions in this section. Sites which allow users to run POV-Ray from remote
locations must use separate provisions in the section below.

The archives must all be easily available on the service and should be grouped together
in a similar on-line area.

It is strongly requested that sites remove prior versions ofPOV-Ray to avoid user con-
fusion and simplify or minimize our support efforts.

The site may only charge standard usage rates for the downloading of this software. A
premium may not be charged for this package. I. e. CompuServeor America On-Line
may make these archives available to their users, but they may only charge regular
usage rates for the time required to download.

A.7 Online or Remote Execution of POV-Ray

Some internet sites have been set up so that remote users can actually run POV-Ray
software on the internet server. Other companies sell CPU time for running POV-Ray
software on workstations or high-speed computers. Such useof POV-Ray software is
permitted under the following conditions.

Fees or charges, if any, for such services must be for connecttime, storage or processor
usage ONLY. No premium charges may be assessed for use of POV-Ray beyond that
charged for use of other software. Users must be clearly notified that they are being
charged for use of the computer and not for use of POV-Ray software.

Users must be prominently informed that they are using POV-Ray software, that such
software is free, and where they can find official POV-Ray software. Any attempt to
obscure the fact that the user is running POV-Ray is expressly prohibited.

All files normally available in a full package distribution,especially a copy of this li-
cense and full documentation must be available for downloador readable online so that
users of an online executable have access to all of the material of a full user package.

If the POV-Ray software has been modified in any way, it must also follow the provi-
sions for custom versions below.

A.8 Conditions for Distribution of Custom Versions

The user is granted the privilege to modify and compile the source code for their own
personal use in any fashion they see fit. What you do with the software in your own
home is your business.

A.8. CONDITIONS FOR DISTRIBUTION OF CUSTOM VERSIONS 375

If the user wishes to distribute a modified version of the software, documentation or
other parts of the package (here after referred to as acustom version) they must follow
the provisions given below. This includes any translation of the documentation into
other languages or other file formats. These license provisions have been established
to promote the growth of POV-Ray and prevent difficulties forusers and developers
alike. Please follow them carefully for the benefit of all concerned when creating a
custom version.

No portion of the POV-Ray source code may be incorporated into another program
unless it is clearly a custom version of POV-Ray that includes all of the basic functions
of POV-Ray.

All executables, documentation, modified files and descriptions of the same must
clearly identify themselves as a modified and unofficial version of POV-Ray. Any
attempt to obscure the fact that the user is running POV-Ray or to obscure that this is
an unofficial version expressly prohibited.

You must provide all POV-Ray support for all users who use your custom version. You
must provide information so that user may contact you for support for your custom
version. The POV-Ray Team is not obligated to provide you or your users any technical
support.

Include contact information in the DISTRIBUTIONMESSAGE macros in the source
file OPTOUT.H and insure that the program prominently displays this information. Dis-
play all copyright notices and credit screens for the official version.

Custom versions may only be distributed as freeware. You must make all of your
modifications to POV-Ray freely and publicly available withfull source codeto the
modified portions of POV-Ray and must freely distribute fullsource to any new parts
of the custom version. The goal is that users must be able to re-compile the program
themselves and to be able to further improve the program withtheir own modifications.

You must provide documentation for any and all modificationsthat you have made to
the program that you are distributing. Include clear and obvious information on how to
obtain the official POV-Ray.

The user is encouraged to send enhancements and bug fixes to the POV-Ray Team,
but the team is in no way required to utilize these enhancements or fixes. By sending
material to the team, the contributor asserts that he owns the materials or has the right
to distribute these materials. He authorizes the team to usethe materials any way they
like. The contributor still retains rights to the donated material, but by donating, grants
unrestricted, irrevocable usage and distribution rights to the POV-Ray Team. The team
doesn’t have to use the material, but if we do, you do not acquire any rights related to
POV-Ray. The team will give you credit as the creator of new code if applicable.

Include a copy of thePOVLEGAL.DOC document.

376 APPENDIX A. COPYRIGHT

A.9 Conditions for Commercial Bundling

Vendors wishing to bundle POV-Ray with commercial software(including shareware)
or with publications must first obtain explicit permission from the POV-Ray Team. This
includes any commercial software or publications, such as,but not limited to, maga-
zines, cover-disk distribution, books, newspapers, or newsletters in print or machine
readable form.

The POV-Ray Team will decide if such distribution will be allowed on a case-by-case
basis and may impose certain restrictions as it sees fit. The minimum terms are given
below. Other conditions may be imposed.

• Purchasers of your product must not be led to believe that they are paying
for POV-Ray. Any mention of the POV-Ray bundle on the box, in adver-
tising or in instruction manuals must be clearly marked witha disclaimer
that POV-Ray is free software and can be obtained for free or nominal
cost from various sources.

• Include clear and obvious information on how to obtain the official POV-
Ray.

• You must provide all POV-Ray support for all users who acquired POV-
Ray through your product. The POV-Ray Development Team is not ob-
ligated to provide you or your customers any technical support.

• Include a credit page or pages in your documentation for POV-Ray.
• If you modify any portion POV-Ray for use with your hardware or soft-

ware, you must follow the custom version rules in addition tothese rules.
• Include contact and support information for your product.
• Include a full user package as described above.

A.10 Other Provisions

The team permits and encourages the creation of programs, including commercial
packages, which import, export or translate files in the POV-Ray Scene Description
Language. There are no restrictions on use of the language itself. We reserve the right
to add or remove or change any part of the language.

”POV-Ray”, ”Persistence of Vision”, ”POV-Ray Team” and ”POV-Help” are trade-
marks of the POV-Ray Team.

While we do not claim any restrictions on the letters ”POV” alone, we humbly request
that you not use POV in the name of your product. Such use tendsto imply it is a
product of the POV-Ray Team. Existing programs which used ”POV” prior to the
publication of this document need not feel guilty for doing so provided that you make
it clear that the program is not the work of the team nor endorsed by us.

A.11. REVOCATION OF LICENSE 377

A.11 Revocation of License

VIOLATION OF THIS LICENSE IS A VIOLATION OF COPYRIGHT LAWS.
IT WILL RESULT IN REVOCATION OF ALL DISTRIBUTION PRIVILEGES
AND MAY RESULT IN CIVIL OR CRIMINAL PENALTY .

Such violators who are prohibited from distribution will beidentified in this document.

In this regard, ”PC Format”, a magazine published by Future Publishing, Ltd. in the
United Kingdom, distributed incomplete versions of POV-Ray 1.0 in violation the li-
cense which was effect at the time. They later attempted to distribute POV-Ray 2.2
without prior permission of the POV-Ray Team in violation the license which was in
effect at the time. There is evidence that other Future Publishing companies have also
violated our terms. Therefore ”PC Format”, and any other magazine, book or CD-ROM
publication owned by Future Publishing is expressly prohibited from any distribution
of POV-Ray software until further notice.

A.12 Disclaimer

This software is provided as is without any guarantees or warranty. Although the au-
thors have attempted to find and correct any bugs in the package, they are not respon-
sible for any damage or losses of any kind caused by the use or misuse of the package.
The authors are under no obligation to provide service, corrections, or upgrades to this
package.

A.13 Technical Support

We sincerely hope you have fun with our program. If you have any problems with the
program, the team would like to hear about them. Also, if you have any comments,
questions or enhancements, please contact the POV-Ray Teamon the CompuServe
Information Service in the GO GRAPHICS forums, GRAPHDEV forum. Also check
us out on the internet athttp://www.povray.org or ftp.povray.org. The
USENET groupcomp.graphics.rendering.raytracing is a great source
of information on POV-Ray and related topics.

License enquiries should be made via email and limited technical support is available
via email to:

Chris Young
POV-Ray Team Coordinator
CIS: 76702,1655
Internet: 76702.1655compuserve.com

378 APPENDIX A. COPYRIGHT

The following postal address is only for official license business and only if email is
impossible.

We do not provide technical support via regular mail, only email. We don’t care if
you don’t have a modem or online access. We will not mail you disks with updated
versions. Do not send money.

Chris Young
3119 Cossell Drive
Indianapolis, IN 46224 U.S.A.

The other authors’ contact information may be found in section B on the next page (see
also D on page 387).

Appendix B

Authors

Following is a list in alphabetic order of all people who haveever worked on the POV-
Ray Team or who have made a note-worthy contribution. If you want to contact or
thank the authors read the sections C on page 385 and D on page 387.

%
Steve Anger
(POV-Ray 2.0/3.0 developer)
CIS: 70714,3113
Internet: sanger@hookup.net

Randy Antler
(IBM-PC display code enhancements)

John Baily
(RLE targa code)

Eric Barish
(Ground fog code)

Dieter Bayer
(POV-Ray 3.0 developer and docs coordinator)
CIS: 100255,3074

Kendall Bennett
(PMODE library support)

Steve Bennett
(GIF support)

379

380 APPENDIX B. AUTHORS

Jeff Bowermaster
(Beta test)

David Buck
(Original author of DKBTrace)
(POV-Ray 1.0 developer)

Chris Cason
(POV-Ray 2.0/3.0 developer, POV-Help, Windows port)
Internet (preferred): Chris.Cason@oaks.com.au or Chris.Cason@povray.org
CIS: 100032,1644

Aaron Collins
(Co-author of DKBTrace 2.12)
(POV-Ray 1.0 developer)

Chris Dailey
(POV-Ray 3.0 developer)
CIS:

Steve Demlow
(POV-Ray 3.0 developer)
CIS:

Andreas Dilger
(POV-Ray 3.0 developer)
Internet: adilger@enel.ucalgary.ca
Http://www-mddsp.enel.ucalgary.ca/People/adilger/

Joris van Drunen Littel
(Mac beta tester)

Alexander Enzmann
(POV-Ray 1.0/2.0/3.0 developer)
CIS: 70323,2461
Internet: xander@mitre.com

Dan Farmer
(POV-Ray 1.0/2.0/3.0 developer)
CIS: 74431,1075

David Harr
(Mac balloon help and palette code)

Jimmy Hoeks
(Help file for Windows user interface)

381

Terry Kanakis
(Camera fix)

Kari Juharvi Kivisalo
(Ground fog code)

Adam Knight
(Mac beta tester, Mac Apple Guide developer)
CIS:

Lutz Kretzschmar
(IBM-PC display code [SS24 truecolor], part of the anti-aliasing code)
CIS: 100023,2006

Charles Marslett
(IBM-PC display code)

Pascal Massimino
(Fractal objects)

Jim McElhiney
(POV-Ray 3.0 developer)
CIS:

Robert A. Mickelsen
(POV-Ray 3.0 docs)
CIS:

Mike Miller
(Artist, scene files, stones.inc)
CIS: 70353,100

Douglas Muir
(Bump maps, height fields)

Joel NewKirk
(Amiga Version)
CIS: 102627,1152

Jim Nitchals
(Mac version, scene files)

Paul Novak
(Texture contributions)

382 APPENDIX B. AUTHORS

Dave Park
(Amiga support, AGA video code)

David Payne
(RLE targa code)

Bill Pulver
(Time code, IBM-PC compile)

Anton Raves
(Beta tester, helping out on several Mac thingies)
CIS: 100022,2603

Dan Richardson
(Docs)
CIS:

Tim Rowley
(PPM and Windows-specific BMP image format support)
Internet: trowley@geom.umn.edu

Robert Schadewald
(Beta tester)
CIS:

Eduard Schwan
(Mac version, mosaic preview, docs)
CIS: 71513,2161

Robert Skinner
(Noise functions)

Erkki Sondergaard
(Scene files)
CIS:

Zsolt Szalavari
(Halo code)
Internet: zsolt@cg.tuwien.ac.at

Scott Taylor
(Leopard and onion textures)

Timothy Wegner
(Fractal objects, PNG support)
CIS: 71320,675

383

Internet: twegner@phoenix.net

Drew Wells
(POV-Ray 1.0 developer, POV-Ray 1.0 team coordinator)

Chris Young
(POV-Ray 1.0/2.0/3.0 developer, POV-Ray 2.0/3.0 team coordinator)
CIS: 76702,1655

384 APPENDIX B. AUTHORS

Appendix C

Contacting the Authors

The POV-Team is a collection of volunteer programmers, designers, animators
and artists meeting via electronic mail on Compuserve’s GRAPHDEV forum (GO
GRAPHDEV).

The POV-Team’s goal is to create freely distributable, highquality rendering and ani-
mation software written in C that can be easily ported to manydifferent computers.

If you have any questions about POV-Ray, please contact

We love to hear about how you’re using and enjoying the program. We also will do our
best try to solve any problems you have with POV-Ray and incorporate good sugges-
tions into the program.

If you have a question regarding commercial use of, distribution of, or anything particu-
larly sticky, please contact Chris Young, the development team coordinator. Otherwise,
spread the mail around. We all love to hear from you!

The best method of contact is e-mail through CompuServe for most of us. America On-
Line and Internet can now send mail to CompuServe, also, justuse the Internet address
and the mail will be sent through to CompuServe where we read our mail daily.

Please do not send large files to us through the e-mail withoutasking first. We pay for
each minute on CompuServe and large files can get expensive. Send a query before
you send the file, thanks!

385

386 APPENDIX C. CONTACTING THE AUTHORS

Appendix D

Postcards for POV-Ray Team
Members

If you want to personally thank some of the POV-Ray Team members you can send
them a postcard from wherever you are. To avoid invalid addresses from floating
around (in case some of us move) the addresses listed below (in alphabetical order)
are only valid until the given date.

Dieter Bayer
Taeublingstr. 26
91058 Erlangen
Germany (until 31. July 1997)

Chris Cason (Windows version)
PO Box 407
Williamstown
Victoria 3016
Australia (until 31. December 1998)

Joel NewKirk
255-9 Echelon Rd
Voorhees, NJ, USA, 08043 (until —)

Eduard Schwan (Macintosh version)
1112 Oceanic Drive
Encinitas, California, USA, 92024-4007 (until 30. June 1998)

You should also be aware that we do not answer any questions asked by regular mail
or phone, we only reply to e-mails. Send any questions you have to the e-mail address
mentioned in section C on page 385.

387

388 APPENDIX D. POSTCARDS FOR POV-RAY TEAM MEMBERS

Appendix E

POV-Ray Output Messages

STILL BEING WRITTEN

E.1 Options in Use

STILL BEING WRITTEN

E.2 Warning Messages

STILL BEING WRITTEN

E.2.1 Warnings during the Parsing Stage

STILL BEING WRITTEN

E.2.2 Other Warnings

STILL BEING WRITTEN

E.3 Error Messages

STILL BEING WRITTEN

389

390 APPENDIX E. POV-RAY OUTPUT MESSAGES

E.3.1 Scene File Errors

STILL BEING WRITTEN

E.3.2 Other Errors

STILL BEING WRITTEN

E.4 Statistics

STILL BEING WRITTEN [DB]

Appendix F

Tips and Hints

F.1 Scene Design Tips

There are a number of excellent shareware CAD style modelersavailable on the DOS
platform now that will create POV-Ray scene files. The onlinesystems mentioned
elsewhere in this document are the best places to find these.

Hundreds of special-purpose utilities have been written for POV-Ray: data conversion
programs, object generators, shell-stylelaunchersand more. It would not be possible
to list them all here, but again, the online systems listed will carry most of them. Most,
following the POV-Ray spirit, are freeware or inexpensive shareware.

Some extremely elaborate scenes have been designed by drafting on graph paper. Ray-
tracer Mike Miller recommends graph paper with a grid divided in tenths, allowing
natural decimal conversions.

Start out with aboilerplate scene file, such as a copy ofBASICVUE.POV, and edit
that. In general, place your objects near and around theorigin with the camera in the
negativez-direction, looking at the origin. Naturally, you will break from this rule
many times, but when starting out, keep things simple.

For basic, boring, but dependable lighting, place a light source at or near the position
of the camera. Objects will look flat, but at least you will seethem. From there, you
can move it slowly into a better position.

F.2 Scene Debugging Tips

To see a quick version of your picture, render it very small. With fewer pixels to
calculate the ray-tracer can finish more quickly.–W160–H100 is a good size.

Use the+Q quality switch when appropriate.

391

392 APPENDIX F. TIPS AND HINTS

If there is a particular area of your picture that you need to see in high resolution,
perhaps with anti-aliasing on (perhaps a fine-grained wood texture), use the+SC, +EC,
+SR and+ER switches to isolate awindow.

If your image contains a lot of inter-reflections, setmax trace level to a low value
such as 1 or 2. Don’t forget to put it back up when you’re finished!

Turn off any unnecessary lights. Comment out extended light keywords when not
needed for debugging. Again, don’t forget to put them back inbefore you retire for the
night with a final render running!

If you’ve run into an error that is eluding you by visual examination it’s time to start
bracketing your file. Use the block comment characters/* . . . */ to disable most of
your scene and try to render again. If you no longer get an error the problem naturally
lies somewhere within the disabled area. Slow and methodical testing like this will
eventually get you to a point where you will either be able to spot the bug, or go quietly
insane. Maybe both.

If you seem to havelost yourself or an object (a common experience for beginners)
there are a few tricks that can sometimes help:

1. Move your camera way back or increase the viewing angle to provide
a long range view. This may not help with very small objects which
tend to be less visible at a distance but it’s a nice trick to keep up your
sleeve.

2. Try setting the ambient value to 1.0 if you suspect that theobject may
simply be hidden from the lights. This will make it self-illuminated
and you’ll be able to see it even with no lights in the scene.

3. Replace the object with a larger, more obviousstand-inobject like
a large sphere or box. Be sure that all the same transformations are
applied to this new shape so that it ends up in the same spot.

F.3 Animation Tips

When animating objects with solid textures, the textures must move with the object,
i. e. apply the same rotate or translate functions to the texture as to the object itself.
This is now done automatically if the transformations are placedafter the texture block
like the following example

shape { ...

pigment { ... }

scale < ... >

}

will scale the shape and pigment texture by the same amount.

F.4. TEXTURE TIPS 393

shape { ...

scale < ... >

pigment { ... }

}

will scale the shape but not the pigment.

Constants can be declared for most of the data types in the program including floats
and vectors. By writing these to include files you can easily separate the parameters
for an animation into a separate file.

Some examples of declared constants would be:

#declare Y_Rotation = 5.0 * clock

#declare ObjectRotation = <0, Y_Rotation, 0>

#declare MySphere = sphere { <0, 0, 0>, 1.1234 }

Other examples can be found scattered throughout the samplescene files.

A tip for MS-Dos users: Get ahold ofDTA.EXE (Dave’s Targa Animator) for creating
.FLI/.FLC animations.AAPLAY.EXE andPLAY.EXE are common viewers for this type
of file.

When moving the camera in an animation (or placing one in a still image, for that
matter) avoid placing the camera directly over the origin. This will cause very strange
errors. Instead, move off center slightly and avoid hovering directly over the scene.

F.4 Texture Tips

Wood is designed like alog with growth rings aligned along thez-axis. Generally these
will look best when scaled down by about a tenth (to a unit-sized object). Start out with
rather small value for the turbulence too (around 0.05 is good for starters).

The marble texture is designed around a pigment primitive that is much like anx-
gradient. When turbulated, the effect is different when viewed from thesideor from
theend. Try rotating it by 90 degrees on they-axis to see the difference.

You cannot get specular highlights on a totally black object. Try using a very dark gray,
sayGray10or Gray15(from COLORS.IN), instead.

F.5 Height Field Tips

Try using POV-Ray itself to create images for height fields:

394 APPENDIX F. TIPS AND HINTS

camera { location <0, 0, -2> }

plane { z, 0

finish { ambient 1 } // needs no light sources

pigment { bozo } // or whatever. Experiment.

}

That’s all you’ll need to create a.TGA file that can then be used as a height field in
another image!

F.6 Converting ”Handedness”

If you are importing images from other systems you may find that the shapes are back-
wards (left-to-right inverted) and no rotation can make them correct.

Often, all you have to do is negate the terms in the right vector of the camera to flip the
camera left-to-right (use theright-hand coordinate system). Some programs seem to
interpret the coordinate systems differently, however, soyou may need to experiment
with other camera transformations if you want they- andz-vectors to work as POV-Ray
does.

Appendix G

Frequently Asked Questions

This is a collection of frequently asked questions and theiranswers taken directly
from messages posted in the Graphic Developer’s Forum on Compuserve and the
comp.graphics.raytracing newsgroup.

This version of the FAQ is heavily biased towards the CompuServe user of the IBM
PC version of POV-Ray. Hopefully later revisions will remove some of this bias, but at
present time, that is the largest audience.

G.1 General Questions

Q: When will POV-Ray 3.0 be released?

A: It is already available.

Q: When will the source code be released?

A: The soruce code available too.

G.2 POV-Ray Option Questions

Q: How can I set mosaic preview to go from 8× straight to final render without going
to 4× and thent× first?
A: Use the+SPn or Preview Start Size option to set the starting resolution and the
+EPn orPreview End Size option to set the ending resolution. With+SP8 and+EP8
it will go from 8×8 down to 8×8 (just one pass) then immediately drop into the final
pass at 1×1.

Q: Should the+MB switch be used in very small scenes, i. e. with a low number of
objects.

395

396 APPENDIX G. FREQUENTLY ASKED QUESTIONS

A: That depends on the number of objects and their type. Normally it doesn’t hurt to
always use the bounding box hierarchy (+MB0). If you have just one or two objects it
may be better to not use automatic bounding.

Q: Does the+MB switch affect the quality of the image?A: No. It only affects the
speed of the intersection tests.

G.3 Atmosphere Questions

Q: Why is the atmosphere I added not visible?
A: The most common error made when adding an atmosphere to a scene is the missing
hollow keyword in all objects the camera currently is in. If you are inside a box that is
used to model a room you’ll have to add the hollow keyword to the box statement. If a
plane is used to model the ground you’ll have to make it hollow(only if you are inside
the plane, but to be sure you can always do it).

If this doesn’t help there may be other problems you’ll have to verify. The distance and
scattering values of the atmosphere have to be larger than zero. Light sources that shall
interact with the atmosphere mustn’t contain anatmosphere off statement.

Q: Why can’t I see any atmosphere through my translucent object?
A: If you have a translucent object you (almost) always have to make it hollow by
adding thehollow keyword. Whenever an intersection is found and the ray is inside
a solid object no atmospheric effects will be calculated.

If you have a partially transparent plane for example the atmosphere on the other side
of the plane will only be visible through the plane if this plane is hollow.

Q: Why do the lit parts of the atmosphere amplify the background?

A: First, they don’t.

Second, whenever parts of the background are visible through the atmosphere and those
areas of the atmosphere are lit by any light source, the scattered light is added to the
light coming from the background. This is the reason why the background seems to be
amplified by the atmosphere. Just imagine the followoing example: you have a blue
background that is attenuated be the atmosphere in a way thatthe color reaching the
viewer is〈0,0,0.2〉. Now some light coming from a light source is attenuated and scat-
tered by the atmosphere and finally reaches the viewer with a color of 〈0.5,0.5,0.5〉.
Since we already have light coming from the background, bothcolors are added to give
〈0.5,0.5,0.7〉. Thus the light gets a blue hue. As a result you think that the background
light is amplified but it isn’t as the following scene clearlyshows.

ersion 3.0

camera {

location <0, 6, -20>

G.3. ATMOSPHERE QUESTIONS 397

look_at <0, 6, 0>

angle 48

}

atmosphere {

type 1

samples 10

distance 20

scattering 0.3

aa_level 3

aa_threshold 0.1

jitter 0.2

}

light_source { <0, 15, 0> color red .7 green .7 blue .7 shadowless }

light_source {

<-5, 15, 0> color rgb <1, 0, 0>

spotlight

point_at <-5, 0, 0>

radius 10

falloff 15

tightness 1

atmospheric_attenuation on

}

light_source {

<0, 15, 0> color rgb <0, 1, 0>

spotlight

point_at <0, 0, 0>

radius 10

falloff 15

tightness 1

atmospheric_attenuation on

}

light_source {

<5, 15, 0> color rgb <0, 0, 1>

spotlight

point_at <5, 0, 0>

radius 10

falloff 15

tightness 1

atmospheric_attenuation on

}

plane { z, 10

pigment { checker color rgb<1, 0, 0> color rgb<0, 1, 0> }

hollow

}

398 APPENDIX G. FREQUENTLY ASKED QUESTIONS

In the background you see a red/green checkered plane. The background color visible
through the atmosphere is added to the light scattered from the spotlights. You’ll notice
that even though the red squares behind the red spotlight’s cone are brighter than those
outside the cone the green ones are not. For the green spotlight the situation is turned
around: the green squares seem to be amplified while the red are not. The blue spotlight
doesn’t show this effect at all.

Appendix H

Suggested Reading

Beside the POV-Ray specific books mentioned in 2.4.6 on page 20 there are several
good books or periodicals that you should be able to locate inyour local computer
book store or your local university library.

An Introduction to Ray-Tracing
Andrew S. Glassner (editor)
ISBN 0-12-286160-4
Academic Press
1989

3D Artist Newsletter
(The Only Newsletter about Affordable PC 3D Tools and Techniques)
Publisher: Bill Allen
P.O. Box 4787
Santa Fe, NM 87502-4787
(505) 982-3532

Image Synthesis: Theory and Practice
Nadia Magnenat-Thalman and Daniel Thalmann
Springer-Verlag
1987

The RenderMan Companion
Steve Upstill
Addison Wesley
1989

Graphics Gems
Andrew S. Glassner (editor)
Academic Press
1990

399

400 APPENDIX H. SUGGESTED READING

Fundamentals of Interactive Computer Graphics
J. D. Foley and A. Van Dam
ISBN 0-201-14468-9
Addison-Wesley
1983

Computer Graphics: Principles and Practice (2nd Ed.)
J. D. Foley, A. van Dam, J. F. Hughes
ISBN 0-201-12110-7
Addison-Wesley
1990

Computers, Pattern, Chaos, and Beauty
Clifford Pickover
St. Martin’s Press

SIGGRAPH Conference Proceedings
Association for Computing Machinery
Special Interest Group on Computer Graphics

IEEE Computer Graphics and Applications
The Computer Society
10662, Los Vaqueros Circle
Los Alamitos, CA 90720

The CRC Handbook of Mathematical Curves and Surfaces
David von Seggern
CRC Press
1990

The CRC Handbook of Standard Mathematical Tables
CRC Press
The Beginning of Time

Index

#break,210
#case,210
#debug,212
#declare, 188, 190, 194, 197, 198,205,

206
#default,206
#else,209
#end, 211
#error,212
#if, 209
#ifdef, 209
#ifndef, 210
#include,204
#max intersections,361
#max trace level,360
#range,210
#render,212
#statistics,212
#switch,210
#version, 167,208
#warning,212
#while,211

aa level, 311, 349, 350
aa threshold, 311, 349, 350
abs,199
acos,199
acosh, 241
adaptive, 270
adaptive sampling,seesampling
adaptive super-sampling,seesampling
adc bailout,356, 361
agate,319
agateturb,319
albedo,305
all, 285
alpha,192

alpha channel, 285
ambient,295
ambientlight, 76,356
angle,221
aperture,222
arc angle, 140,354
area light, 79
arealight, 269
asc,202
asin,200, 241
asinh, 241
assumedgamma,357
atan,200, 241
atan2,200
atanh, 241
atmosphere, 84, 131, 272
atmosphericattenuation,273
attenuating, 112, 305
average,319

background, 123
BANNER, seestreams
bicubic patch, 41,252
bicubic patch, 41,252
black hole,336
blob, 48,231
blue, 36,192
blur samples,222
box, 38,234
box mapping, 307
bozo,320
break,210
brick, 88,321
brick size,321
brilliance,296
bump map, 292,292
bumps,322

401

402 INDEX

bumpy1,186
bumpy2,186
bumpy3,186

camera, 35
case,210
caustics,301
CD, see The Official POV-Ray

CDROM
CD-ROM, seeThe Official POV-Ray

CDROM
CDROM, see The Official POV-Ray

CDROM
ceil, 200
checker,322
chr,202
clock,198
color,192, 279
color map,280
colour,192, 279, 349
colour map, 106,280, 310
component, 232, 233
composite, 263
concat,202
cone, 39,235
confidence,222
conic sweep, 245
constant, 308
constructive solid geometry, 70
control0,328
control1,328
cos,200, 241
cosh, 241
crackle,323
crand,296
CSG, 70
cube, 241
cubic,258, 309
cubic spline, 243
cubic spline, 242, 245
cylinder, 39, 232,235, 268
cylindrical,221, 225
cylindrical light, 79
cylindrical mapping, 307

DEBUG,seestreams

debug,212
default,206
degrees,200
difference, 72
direction,223
disc,253
distance, 349, 351
div, 200
dust, 115, 305
dust type, 305

eccentricity, 305, 349
else,209
emitting, 104, 105, 306
end, 211
error,212
exp,200, 241
exponent, 309

fadedistance, 83,272, 300
fadepower, 83,272
falloff, 77, 270
falloff angle, 140,354
false, 198
FATAL, seestreams
file exists,203
filter, 192, 284
fisheye,221, 225
flatness, 252
flip, 342
floor, 200
focal point,222
fog, 127,351
fog alt, 351
fog offset,351
fog type,351
frequency, 109, 312, 332

gif, 238, 283, 292, 316
global settings,355
glowing, 111, 306
granite,324
green, 36,192

halo, 104, 302
aa level, 311

INDEX 403

aa threshold, 311
attenuating, 112, 305
box mapping, 307
colour map, 310
constant, 308
cubic, 309
cylindrical mapping, 307
dust, 115, 305
dust type, 305
eccentricity, 305
emitting, 104, 105, 306
exponent, 309
frequency, 109, 312
glowing, 111, 306
jitter, 311
lambda, 312
linear, 105, 308
max value, 308
multiple halos, 114, 304
octaves, 312
omega, 312
phase, 313
planarmapping, 307
poly, 309
samples, 106, 311
scale, 108, 113
sphericalmapping, 105, 308
turbulence, 107, 312

height field, 48,236
height field, 48,236
hexagon, 88,325
hf gray 16,359
hierarchy, 233, 239, 254
hollow, 105,276, 302
hypercomplex, 240

if, 209
ifdef, 209
iff, 283, 292, 316
ifndef, 210
imagemap, 283,283, 292, 315
incidence,186
include, 34, 36, 40, 86
INI files, 148
int, 200
interpolate,346

intersection, 72
inverse, 262
ior, 300
irid, 301
irid wavelength,360

jitter, 180, 270, 311, 349, 350
julia fractal, 50,239
julia fractal, 50,239

lambda, 312, 351
lathe, 50,242
leopard,326
light source, 37,265
linear, 105, 308
linear spline, 243
linear spline, 242, 244
linear sweep, 245
location,223
log, 200, 241
look at,223
looks like, 81

mandel,326
map type,345
marble,327
materialmap,315
matrix, 216
max,200
max intersections,361
max iteration, 240
max trace level,360
max value, 308
merge, 74,265
mesh, 50,254
metallic,298
min, 200
mod,200
mortar,321

no, 198
non-adaptive sampling,seesampling
non-adaptive super-sampling,seesam-

pling
normal,286
normal map,290

404 INDEX

numberof waves,362

O, 324
object,228
octaves, 312, 351
off, 198
offset,342
omega, 312, 351
Omnimax, 225
omnimax,221
on, 198
once,345
onion,328
open, 235, 236, 248
orthographic,220, 225

panoramic,221, 225
pattern,323

agate, 319
average, 319
bozo, 320
brick, 321
bumps, 322
checker, 322
crackle, 323
dents, 323
gradient, 324
granite, 324
hexagon, 325
leopard, 326
mandel, 326
marble, 327
onion, 328
quilted, 328
radial, 328
ripples, 329
spiral1, 330
spiral2, 330
spotted, 330
waves, 331
wood, 331
wrinkles, 331

pattern1,186
pattern2,186
pattern3,186
perspective,220, 225

pgm,238, 292, 316
phase, 313, 332
phong,297
phongsize,297
pi, 198
pigment, 87,278
pigmentmap, 92,281
planarmapping, 307
plane, 40,257
png, 238, 283, 292, 316
point at, 77, 270
pointlight, 76
poly, 258, 309
polygon, 52,254
pot,238
pow,200
ppm, 238, 283, 292, 316
precision, 240
prism, 54,244
pwr, 241

quadratic spline, 243
quadraticspline, 242, 245
quadric,260
quartic,258
quaternion, 240
quick color, 285
quick colour,285
quilted,328

radial,328
radians,200
radiosity,362

brightness, 364
count, 364
distancemaximum, 364
error bound, 365
gray threshold, 365
low error factor, 366
minimum reuse, 366
nearestcount, 367
radiosity quality, 367
recursionlimit, 367

radius, 77, 232, 235, 236, 243, 246,
247, 251, 253, 259, 266, 284

rainbow, 137

INDEX 405

ramp wave, 333
rand,201
range,210
ray-tracing, 5
reciprocal, 241
red, 36,192
reflection,299
RENDER,seestreams
render,212
repeat,342
rgb,193
rgbf, 193
rgbft, 193
rgbt,193
right, 34,224, 394
ripples,329
roughness, 296, 298

samples, 106, 311, 349, 350
sampling

adaptive, 180
non-adaptine, 179

scale, 108, 113
scallopwave, 333
scattering, 349
seed,201
shadowless, 82,271
sin,201, 241
sinewave, 333
sinh, 241
sky,223
sky sphere, 123
sky sphere, 123,352
slice, 239, 240
slopemap,288
smooth, 239
smooth triangle,256
smoothtriangle,256
sor, 59,247
specular, 296,298
sphere, 33, 35, 232,246
sphericalmapping, 105, 308
spiral,186
spiral1,330
spiral2,330
spotlight, 77,266, 270

spotted,330
sqr, 241
sqrt,201
STATISTICS,seestreams
statistics,212
STATUS,seestreams
str,203
strcmp,203
streams

BANNER, 173, 213
DEBUG, 173, 213
FATAL, 173, 213
RENDER, 173, 213
STATISTICS, 173, 213
STATUS, 173, 213
WARNING, 173, 213

strength, 233
strlen,203
strlwr, 203
strupr,204
sturm, 234, 244, 246, 248, 251, 260
substr,203
super-sampling,seesampling
superellipsoid,246
superquadric ellipsoid, 54
surface of revolution, 59,247
switch,210
sys, 238, 283, 292, 316

T, 334–336
t, 198
tan,201, 241
tanh, 241
test camera1, 186
test camera2, 186
test camera3, 186
test camera4, 186
text, 60
texture, 36, 37, 40, 84, 86, 229,277,

392
bump map, 292
image map, 283, 315
layered, 317
material map, 315
normal map, 290
pigment map, 281

406 INDEX

slope map, 288
texture map, 313

texturemap,313
tga, 238, 283, 292, 316
The Official POV-Ray CDROM, 20
thickness,301
threshold, 232
tightness, 77, 267, 270
tile2, 315
tiles,315
torus, 64,250
track,186
transform,217
transmit,192, 284
triangle,256
triangle wave, 333
true, 198
ttf, 249
turb depth,351
turbulence, 107, 312, 351
type, 252, 348

u, 198
u steps, 252
ultra wide angle,221, 225
union, 70
up,224, 351
usecolor,293
usecolour,293
useindex,293

v, 198
v steps, 252
val, 204
variance,222
vaxis rotate,201
vcross,201
vdot,202
version,208
vlength,202
vnormalize,202
vol with light, 186
volume object,186
volume rendered,186
vrotate,202

WARNING, seestreams

warning,212
warp,336
water level,238
waves,331
while, 211
width, 354
wood,331
wrinkles,331

x, 198

y, 198
yes, 198

z, 198

