Persistence of Visionl

Ray-Tracer

(POV-Ray0)

User’'s Documentation 3.0.10

Copyright 1996 POV-Teant

Contents

1 Introduction 1
11 Notation o o 1
| Installation Guide 3
2 Program Description 5
21 WhatisRay-Tracing? e 5
22 WhatisPOV-Ray? 6
2.3 Which Version of POV-Ray shouldyouuse? 7
231 IBM-PCandCompatibles 7
23.1.1 MS-DoSs e 7
2312 Windows 8
2313 LinUXo 9
232 AppleMacintosh, 10
233 Commodore Amiga 11
234 SunOS e 12
235 GenericUnix 12
236 AllVersions 13
237 CompilingPOV-Ray 13
2371 Directroy Structure 14
23.7.2 Configuring POV-Ray Source 15
23.7.3 Conclusion 16

2.4 Where to Find POV-RayFiles
2.4.1 Graphics Developer Forum on CompuServe . . .
242 Internet.
243 PC Graphics Area on America On-Line

2.4.4 The Graphics Alternative BBS in El Cerrito, CA

245 PCGNet
246 POV-RayRelated Books and CD-ROMs

3 Quick Start

31 InstallingPOV-Ray

32 BasicUsage
3.2.1 Running Files in Other Directories
322 INIFiles
3.2.3 Alternatives ttOVRAY.INI
324 BatchFiles.
325 DisplayTypes

[l Tutorial Guide

4 Beginning Tutorial

41 YourFirstimage,

4.1.1 Understanding POV-Ray’s Coordinate System

4.1.2 Adding Standard Include Files
413 AddingaCamera
414 DescribinganObject
415 Adding Texturetoan Object
4.1.6 DefiningalightSource
42 UsingtheCamera
421 CameraTypes
422 UsingFocalBlur.

4.2.3 Using Camera Ray Perturbation

CONTENTS

........ 17

CONTENTS iii

43 SimpleShapes e 38
431 BoxObject. 38
432 ConeObject 39
433 CylinderObject 39
434 PlaneObject 40
43,5 Standard Include Objects 40

44 Advanced Shapes 41
4.4.1 Bicubic PatchObject 41
442 BlobObject 48
443 Height FieldObject 48
444 JuliaFractal Object 50
445 LatheObject e 50
446 MeshObject 50
447 PolygonObject 52
448 PrismObject. 54
449 Superquadric Ellipsoid Object 54
4410 Surface of Revolution Object 59
4411 TextObject 60
44,12 TorusObject e 64

45 CSGObjects 70
451 WhatisCSG? 70
452 CSGUNION 70
453 CSGlntersection 72
454 CSGDifference 72
455 CSGMerge e e 74
456 CSGPitfalls 75

456.1 Coincidence Surfaces 75

46 ThelightSource 75
46.1 The Ambient Light Source 76
46.2 ThePointLight Source 76

iv CONTENTS
4.6.3 The Spotlight Source 77
4.6.4 The Cylindrical Light Source 97
46.5 The ArealLightSource 79
4.6.6 Assigning an Objectto a Light Source 81
4.6.7 LightSource Specials 82

46.7.1 Using Shadowless Lights 82
46.7.2 Using Light Fading 83
46.7.3 Light Sources and Atmosphere 84

4.7 Simple Texture Options 4 8
471 Surface Finishes 84
472 Adding Bumpiness 85
473 CreatingColorPatterns 85
474 Pre-defined Textures 86

4.8 Advanced Texture Options i it ii 7 8
4.8.1 Pigmentand Normal Patterns 87
482 Pigments 87

48.2.1 Using Color ListPigments 88
48.2.2 Using Pigment and Patterns 89
4.8.2.3 Using Pattern Modifiers 89
48.2.4 Using Transparent Pigments and Layered Textures 91
4.8.2.5 Using PigmentMaps 92
483 Normals 94
48.3.1 Using Basic Normal Maodifiers 94
48.3.2 BlendingNormals 95
484 Finishes 97
48.4.1 Using Ambient oL 97
48.4.2 Using Surface Highlights 99
48.4.3 Using Reflection and Metallic 100
48.4.4 Using Refraction 101

48.45 Light Attenuation and Caustics 210

CONTENTS \Y
4.8.4.6 Using lridescence 103
485 Halos. e 104
485.1 WhatareHalos?, 104
485.2 The EmittingHalo 104
48521 Starting witha BasicHalo 104
4.8.5.2.2 Increasing the Brightness 107
48.5.2.3 Adding Some Turbulence 107
4.8.5.2.4 ResizingtheHalo 108
4.8.5.2.5 Using Frequency to Improve Realism 109
4.8.5.2.6 Changing theHaloColor 110
485.3 The GlowingHalo 111
485.4 The AttenuatingHalo 112
48.54.1 MakingaCloud 112
4.8.5.4.2 Scaling the Halo Container 113
4.8.5.4.3 Adding Additional Halos 114
4855 TheDustHalo 115
48.55.1 Starting With an Object Lit by a Spotlight 151
4.8.55.2 Adding SomeDust 116
4.8.5.5.3 Decreasing the DustDensity 116
48554 Making the Shadows Look Good 117
4.8.5.5.5 Adding Turbulence 118
4.8.5.5.6 Usinga Coloured Dust 119
4.8.5.6 HaloPitfalls 119
4.8.5.6.1 Where Halos are Allowed 119
4.8.5.6.2 Overlapping Container Objects 121
4.8.5.6.3 Multiple Attenuating Halos 121
4.8.5.6.4 Halos and Hollow Objects 121
48.5.6.5 Scaling a Halo Container 121
4.8.5.6.6 Choosing a SamplingRate 122
4.8.5.6.7 Using Turbulence 122

Vi CONTENTS
4.9 Using AtmosphericEffects 122
49.1 TheBackground 123
49.2 TheSkySphere 123
49.2.1 Creating a Sky with a Color Gradient 312
49.2.2 AddingtheSun oL 125
49.2.3 AddingSomeClouds 126
493 TheFog e 127
493.1 AConstantFog, 127
49.3.2 Setting a Minimum Translucency 128
49.3.3 CreatingaFilteringFog 129
49.34 Adding Some Turbulencetothe Fog 129
49.35 UsingGround Fog 130
4.9.3.6 Using Multiple Layersof Fog 130
49.3.7 Fog and Hollow Objects 131
49.4 The Atmosphere e 131
49.4.1 Starting Withan Empty Room 131
49.4.2 Adding Dusttothe Room 133
49.4.3 Choosing a Good SamplingRate 133
49.4.4 Using a Coloured Atmosphere 135
49.45 Atmosphere Tips 135
49.45.1 Choosing the Distance and Scattering Parameters 135
49.45.2 Atmosphere and Light Sources 136
49.4.5.3 Atmosphere Scattering Types 136
49.454 Increasing the Image Resolution 137
49.455 Using Hollow Objects and Atmosphere 137
495 TheRainbow. 137
4951 Starting Witha Simple Rainbow 137
4952 Increasing the Rainbow’s Translucency 139
4953 UsingaRainbow Arc 140

CONTENTS Vi

Il Reference Guide 143
5 POV-Ray Reference 145
6 POV-Ray Options 147
6.1 Setting POV-RayOptions 471
6.1.1 Command Line Switches 147
6.1.2 UsingINIFiles 148
6.1.3 Using the POVINI Environment Variable 150
6.2 Options Reference 151
6.21 AnimationOptions 151
6.2.1.1 External Animation Loop 151
6.2.1.2 Internal AnimationLoop 152
6.2.1.3 Subsets of Animation Frames 153
6.2.1.4 Cyclic Animation, 154
6.2.1.5 FieldRendering 154
6.2.2 Output Options 155
6.2.2.1 General Output Options 155
6.2.2.1.1 Height and Widthof OQutput 155
6.2.2.1.2 Partial Output Options 155
6.2.2.1.3 Interrupting Options 156
6.2.2.1.4 Resuming Options 157
6.2.2.2 Display Output Options 158
6.2.2.2.1 Display Hardware Settings 158
6.2.2.2.2 Display Related Settings 159
6.2.2.2.3 Mosaic Preview 160
6.2.2.3 File OutputOptions 161
6.2.2.3.1 Output File Type . . . v v v oo e 161
6.2.2.3.2 Output FileName 163
6.2.2.3.3 Output FileBuffer 163

6.2.2.4 CPU Utilization Histogram 164

viii CONTENTS
6.2.2.4.1 File TYPE .« o o oo e e 164
6.2.2.4.2 FileName 165
6.2.2.4.3 GridSize 165
6.2.3 SceneParsingOptions oo 166
6.2.3.1 Input FileName 166
6.2.3.2 Library Paths 166
6.2.3.3 Language Version 167
6.2.3.4 Removing UserBounding 167
6.2.4 Shell-out to Operating System. 168
6.24.1 String Substitution in Shell Commands 168
6.2.4.2 Shell Command Sequencing 169
6.2.4.3 Shell Command Return Actions 170
6.25 TextOutput 172
6.2.5.1 TextStreams 173
6.2.5.2 Console TextOutput 174
6.2.5.3 Directing Text StreamstoFiles 417
6.2.5.4 Help Screen Switches 176
6.26 TracingOptions 176
6.2.6.1 Quality Settings 176
6.2.6.2 Radiosity Setting 177
6.2.6.3 Automatic Bounding Control 177
6.2.6.4 Anti-Aliasing Options 178
7 Scene Description Language 183
7.1 LanguageBasics 183
7.1.1 Identifiersand Keywords 183
7.1.2 CommeNntS e 186
7.1.3 FloatEXpressions e 187
7.1.31 FloatLiterals 188
7.1.32 Float Identifiers 188

7.1.33 FloatOperators 188

CONTENTS iX

7.1.4 Vector EXpressions i 190
7141 Vector Literals L. 190
7.14.2 Vector Identifiers L oo 190
7143 Vector Operators e 191
7144 Operator Promotion 192

7.15 SpecifyingColorso 192
7.151 ColorVectors 193
7.15.2 ColorKeywords 193
7.15.3 Color Identifiers L. 194
7.154 ColorOperators i it 194
7.155 CommonColorPitfalls 195

716 StUNgsS e 196
7.16.1 String Literals o 196
7.16.2 String Identifiers o oo 197

7.1.7 Built-in Identifiers oo a9
7171 Constant Built-in Identifiers 971
7.1.7.2 Built-in Identifierclock oL 198
7.1.7.3 Built-in Identifierversion 198

7.1.8 Functions 199
7.18.1 Float Functions 199
7.1.8.2 Vector Functions 201
7.18.3 String Functionso 202

7.2 Language Directives 420

721 IncludeFiles 204

722 Declare. 205
7221 Declaring identifiers 205

7.2.3 Default Directive 206

7.2.4 \Version Directive 208

7.25 Conditional Directives 092

7.25.1 IF ELSE Directives 209

X CONTENTS

7252 IFDEF Directives o v v i 209
7253 IFNDEF Directives 210
7254 SWITCH CASE and RANGE Directives 210
7255 WHILE Directive 211
7.2.6 UserMessage Directives 212
7.2.6.1 Text Message Streamso 212
7.2.6.2 TextFormatting 213
7.3 POV-Ray Coordinate System 14 2
7.3.1 Transformations 214
7.3.11 Translate 214
7.3.1.2 Scale 215
7.3.13 Rotate 216
73.14 Matrix Keyword 216
7.3.2 Transformation Order 217
7.3.3 Transform Identifiers o oo 217
7.3.4 Transforming Textures and Objects 218
T4 Camera e 219
741 Typeof Projection 220
742 FocalBlur 222
743 CameraRayPerturbation 222
7.44 PlacingtheCamera, 222
7441 Locationand Loolt 223
7.4.4.2 The Sky Vector 223
7443 The Direction Vector 223
7444 Angle 224
7445 UpandRightVectors 224
74451 AspectRatio. 225
7.4.45.2 Handedness 226
7.4.4.6 Transformingthe Camera 227

7.4.5 Camera ldentifiers 228

CONTENTS Xi

75 Objects e 228
751 Emptyand SolidObjects 229
7511 HaloPitfall 229
7512 Refraction Pitfall 230
7.5.2 Finite Solid Primitives 32
7521 Blob. 231
7522 BOX 234
7523 CoNe . . . 235
7524 Cylinder 235
75.25 Height Field 236
7526 JuliaFractal 239
75.2.7 Lathe 242
7528 Prism 244
7.5.2.9 Sphere 246
7.5.2.10 Superquadric Ellipsoid o L. 624
7.5.2.11 Surface of Revolution 247
75212 Text 249
75213 TOMUS oo 250
7.5.3 Finite PatchPrimitives 512
7531 BicubicPatch 252
7.5.3.2 DiSC . . v v o 253
75.3.3 Mesh 254
7534 Polygon 254
7535 Triangle and Smooth Triangle 256
7.5.4 Infinite Solid Primitives, . 52
7541 Plane 257
754.2 Poly, Cubicand Quartic 258
7.5.4.3 Quadric 260
7.5.5 Constructive Solid Geometry 612

7.55.1 AboutCSG 261

Xii CONTENTS
7552 Inside and Qutside 261
7553 Inverse 262
7554 union 262
7555 Intersection 263
7556 Difference 264
7.5.5.7 Merge e e 265

756 LightSources 265
7.5.6.1 PointLights. 266
7.5.6.2 Spotlights 266
7.5.6.3 Cylindrical Lights 268
75.6.4 Arealights 269
7.5.6.5 Shadowless Lights 271
7.5.6.6 Lookdike 271
7.5.6.7 Light Fading 272
7.5.6.8 Atmosphere Interaction 272
7.5.6.9 Atmospheric Attenuation L. 273

757 ObjectModifiers 273
7571 ClippedBy 273
75.7.2 BoundedBy 274
75.7.3 Hollow 276
75.74 NaShadow 276
75.75 StUrM . . . 277

7.6 Textures 277

7.6.1 Pigment 278
76.11 SolidColorPigments 279
76.1.2 Color ListPigments 279
7.6.1.3 ColorMaps i 280
76.14 PigmentMaps 281
7.6.15 ImageMaps 283

7.6.15.1 SpecifyinganlmageMap 283

CONTENTS Xiii

7.6.1.5.2 The mapype Option 284
7.6.1.5.3 The Filter and Transmit Bitmap Modifiers 428
7.6.1.5.4 Using the Alpha Channel 285
7.6.1.6 Quick Color 285
7.6.2 Normal 286
7.6.2.1 SlopeMaps e 288
7.6.2.2 NormalMaps 290
7.6.2.3 BumpMaps. e 292
7.6.2.3.1 SpecifyingaBumpMap, 292
7.6.2.3.2 BumpSize 293
7.6.2.3.3 Usdndexand UseColor 293
7.6.3 Finish 294
7.6.3.1 Ambient Lo 295
7.6.3.2 Diffuse Reflectionltems 295
7.6.3.2.1 Diffuse 296
7.6.3.2.2 Brilliance 296
7.6.3.2.3 Crand Graininess 296
7.6.3.3 Highlights 297
7.6.3.3.1 Phong Highlights 297
7.6.3.3.2 Specular Highlight 298
7.6.3.3.3 Metallic Highlight Modifier 298
7.6.3.4 Specular Reflection L. 299
7.6.35 Refraction 299
7.6.35.1 Light Attenuation 300
7.6.3.5.2 Faked Caustics 301
7.6.3.6 Iridescence 301
764 Halo 302
76.4.1 HaloMapping, 303
7.6.4.2 Multiple Halos, 304

76.4.3 HaloType 305

Xiv

CONTENTS
7.6.4.3.1 Attenuating 305
7.6.4.3.2 Dust 305
7.6.4.3.3 Emitting 306
7.6.4.3.4 Glowing 306
76.4.4 Density Mapping 307
7.6.4.4.1 BoxMapping 307
7.6.4.4.2 Cylindrical Mapping 307
7.6.4.4.3 Planar Mapping 307
7.6.4.4.4 Spherical Mapping L 308
7.6.45 Density Function 308
7.6.45.1 Constant 308
7.6.4.5.2 Linear 308
7.6.45.3 Cubic 309
7.6.45.4 Poly 309
7.6.4.6 HaloColorMap 310
7.6.4.7 Halo Sampling 310
7.6.4.7.1 Numberof Samples 311
7.6.4.7.2 Super-Sampling o 311
7.6.4.7.3 Jitter 311
7.6.4.8 Halo Modifiers 312
7.6.4.8.1 Turbulence Modifier 312
7.6.4.8.2 Octaves Modifier 312
7.6.4.8.3 Omega Modifier 312
7.6.4.8.4 Lambda Modifier 312
7.6.4.8.5 Frequency Modifier 312
7.6.4.8.6 Phase Modifier 313
7.6.4.8.7 Transformation Modifiers 313
7.6.5 Special Textures 313
76.51 Texture Maps 313

7.6.5.2 Tiles e e 315

CONTENTS XV

7.6.5.3 Material Maps 315
7.6.53.1 Specifying aMaterialMap 315
7.6.6 Layered Textures 317
7.6.7 Patterns 318
7.6.7.1 Agate 319
7.6.7.2 Average e 319
7.6.7.3 Bozo 320
76.7.4 Brick 321
7.6.7.5 Bumps 322
7.6.7.6 Checker 322
7.6.7.7 Crackle 323
7.6.7.8 DENtS 323
7.6.7.9 Gradient 324
7.6.7.10 Granite 324
7.6.7.11 Hexagon 325
7.6.7.12 Leopard 326
7.6.7.13 Mandel 326
76714 Marble 327
76715 0ONion 328
7.6.7.16 Quilted 328
76717 Radial 328
7.6.7.18 Ripples 329
7.6.719 Spirall 330
7.6.7.20 Spiral2 330
7.6.721 Spotted 330
7.6.7.22 Waves 331
7.6.7.23 Wood 331
7.6.7.24 Wrinkles 331
7.6.8 Pattern Modifiers L 332
7.6.8.1 Transforming Patterns 332

XVi CONTENTS

7.6.8.2 FrequencyandPhase 332
7.6.8.3 Waveform 333
7.6.8.4 Turbulence 334
7.6.8.5 Octaves e 335
7.6.8.6 Lambda 335
7.6.8.7 omega e 336
7.6.8.8 Warps 336
7.6.8.8.1 Black HoleWarp 336
7.6.8.8.2 RepeatWarp 342
7.6.8.8.3 TurbulenceWarp 343
7.6.8.9 Bitmap Modifierso L 345
7.6.8.9.1 TheonceOption. 345
7.6.8.9.2 The "magype” Option 345
7.6.8.9.3 The interpolate Option 346
7.7 AtmosphericEffects 734
7.7.1 Atmosphere 347
7.72 Background 350
773 Fog. e 351
774 SkySphere 352
775 Ranbow 353
7.8 Global Settings 355
7.81 ADCBailout 356
7.82 AmbientLight 356
7.83 Assumedcamma 357
7.8.31 Monitor Gamma 357
7.8.3.2 Image FileGamma 358
7.8.3.3 SceneFileGamma 359
784 HEGray16 359
7.85 IridWavelength 360

7.8.6 MaxTracelLevel 360

CONTENTS XVii

7.87 MaxIntersections 361
7.8.8 NumberOfWaves 362
7.8.9 Radiosity. e 362
7.8.9.1 How RadiosityWorks 362
7.8.9.2 Adjusting Radiosity 363
7.8.9.2.1 brightness 364
7.8.9.2.2 Count oo 364
7.8.9.2.3 distancenaximum, 364
7.8.9.2.4 errabound L 365
7.8.9.25 graythreshold 365
7.8.9.2.6 lowerrorfactor 366
7.8.9.2.7 minimumreuse 366
7.8.9.2.8 nearestount 366
7.8.9.2.9 radiositquality 367
7.8.9.2.10 recursiatimit. L. 367
7.8.9.3 TipsonRadiosity 367
IV Appendix 369
A Copyright 371
A.1 General License Agreement oo 713
A2 Usage Provisions 372
A.3 General Rules for All Distributions 372
A.4 Definition of Full Packageo 372
A.5 Conditions for Shareware/Freeware Distribution Cones 373
A.6 Conditions for On-Line Services and BBS's Includingelmtet 374
A.7 Online or Remote Execution of POV-Ray 374
A.8 Conditions for Distribution of Custom Versions 374
A.9 Conditions for Commercial Bundling 376
A.10 Other Provisions i i i e 637
A.11 Revocation ofLicense 773
A.12 Disclaimer 377

A.13 Technical Support 773

Xviii CONTENTS

B Authors 379

C Contacting the Authors 385

D Postcards for POV-Ray Team Members 387

E POV-Ray Output Messages 389

E.1 OptionsinUse it 389

E.2 Warning Messages i 389
E.2.1 Warnings during the Parsing Stage 389
E.22 OtherWarnings 389

E.3 ErmorMessages e 389
E.3.1 SceneFileErrors 390
E.3.2 OtherErrors 390

E.4 Statistics 390

F Tips and Hints 391

F.1 SceneDesignTips o v v i it i 391

F.2 Scene Debugging Tips o v it i 391

F3 AnimationTips e 392

FA4 Texture TipS o o i 393

F5 HeightFieldTips 393

F.6 Converting "Handedness” 943

G Frequently Asked Questions 395

G.1 GeneralQuestions 395

G.2 POV-RayOptionQuestions 953

G.3 Atmosphere Questionso 6 39

H Suggested Reading 399

List of Figures

4.1
4.2

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18

The lext-handed coordinate system. 34
The point configuration of our cupobject. 59
Example of how the adpative super-sampling works. 180
The perspectivecamera. 220
The geometryofabox. 234
The geometry ofacone. 235
The geometry of acylinder. 623
The size and orientation of an un-scaled height field. 237
The geometry ofasphere. 247
A segment ina surface of revolution. 250
Major and minor radius ofatorus. 512
Two overlapping objects. 226
The union of twoobjects. 326
The intersection between two objects. 264
The difference between twoobjects. 264
Merge removes inner surfaces. 265
The geometry of aspotlight. 672
Different light intensity multiplier curves. 268
Area light adaptive sampling. 271
Light fading functions for different fading powers. 272
An object clipped by another object. 274

XiX

XX

7.19 The different halo density functions.
7.20 The hexagon pattern.
7.21 Quilted pattern functions.

7.22 The different atmospheric scattering functions.

LIST OF FIGURES

List of Tables

21
2.2
2.3

6.1

7.1

Graphic-orientated BBSsin North America.
Graphic-orientated BBSsin Europe.

Graphic-orientated BBSs in the rest of the world.
Number of samples for different super-sampling methods.

All available julia fractal functions.

XXi

18
19
19

181

242

Chapter 1

Introduction

Note that this document is still in work and there may (and wil) be some larger
changes. Do not waste your time, money and paper to print thisocument! You
should also note that we will release a nicely formatted Postript version of the
docs in the near future.

This document details the use of the Persistence of VisiBay Tracer (POV-Ray).

It is broken down into four parts: the installation guidee tlitorial guide, the refer-
ence guide and the appendix. The first part (see chapter 2gmn pahapter and 3
on page 21) tells you where to get and how to install POV-Raglsb gives a short
introduction to ray-tracing. The tutorial explains stepstgp how to use the different
features of POV-Ray (see chapter 4 on page 33). The refegives a complete de-
scription of all features available in POV-Ray by explagqall command line options
(INI file keywords) and the scene description language ($apter 5 on page 145,
chapter 6 on page 147 and chapter 7 on page 183). The appentlidds some tips
and hints, suggested reading, contact addresses andrifegadation.

POV-Ray is based on DKBTrace 2.12 by David K. Buck and Aaron A. Collins

1.1 Notation

Throughout this document the following notation is used &wkrkeywords of the scene
description language, command line options, INI file keydgoand file names.

name scene description keyword
name command line option

name INI file keyword

NAME file name

nane Internet address, Usenet group

CHAPTER 1. INTRODUCTION

Part |

Installation Guide

Chapter 2

Program Description

The Persistence of Visiah Ray-Tracer creates three-dimensional, photo-realistic i
ages using a rendering technique called ray-tracing. dsréaa text file containing
information describing the objects and lighting in a sceng generates an image of
that scene from the view point of a camera also describeckitettt file. Ray-tracing is
not a fast process by any means, but it produces very higlityjimbhges with realistic
reflections, shading, perspective and other effects.

2.1 What is Ray-Tracing?

Ray-tracing is a rendering technique that calculates agéntd a scene by shooting
rays into the scene. The scene is build from shapes, lightesua camera, materials,
special features, etc.

For every pixel in the final image a viewing ray is shot into #eene and tested for
intersection with any of the objects in the scene. Viewingsrariginate from the

viewer, represented by the camera, and pass through thmgigindow (representing

the final image).

Every time an object is hit, the color of the surface at thamtps calculated. For this
purpose the amount of light coming from any light source & $hene is determined
to tell wether the surface point lies in shadow or not. If theface is reflective or
translucent new rays are set up and traced in order to deterttmé contribution of the
reflected and refracted light to the final surface color.

Special features like interdiffuse reflection (radiositgmospheric effects and area
lights make it necessary to shoot a lot of additional rays ihé scene for every pixel.

5

6 CHAPTER 2. PROGRAM DESCRIPTION
2.2 Whatis POV-Ray?

The Persistence of VisiohRay-Tracer was developed from DKBTrace 2.12 (written
by David K. Buck and Aaron A. Collins) by a bunch of people)edlthe POV-Tearm,

in their spare time. The headquarters of the POV-Team isarGRAPHDEV forum
on CompuServe (see 2.4.1 on page 17 for more details).

The POV-Rayl package includes detailed instructions on using the r&getrand cre-
ating scenes. Many stunning scenes are included with PGQ\6®gou can start creat-
ing images immediately when you get the package. These scanebe modified so
you don't have to start from scratch.

In addition to the pre-defined scenes is a large library ofigfieed shapes and mate-
rials that you can use in your own scenes by just includingapgropriate files and
typing the name of the shape or material.

Here are some highlights of POV-Ray'’s features:

Easy to use scene description language.

Large library of stunning example scene files.

Standard include files that pre-define many shapes, coldrgeatures.

Very high quality output image files (up to 48-bit color).

15 and 24 bit color display on IBM-PC'’s using appropriatedazare.

Create landscapes using smoothed height fields.

Spotlights, cylindrical lights and area lights for sopiuated lighting.

Phong and specular highlighting for more realistic-logksurfaces.

Interdiffuse reflection (radiosity) for more realisticHigng.

Atmospheric effects like atmosphere, fog and rainbow.

Halos to model effects like clouds, dust, fire and steam.

Several image file output formats including Targa, PNG anit PP

Basic shape primitives such as spheres, boxes, quadrics, cylinders,

cones, triangles and planes.

e Advanced shape primitives such as torii (donuts), hyperboloids,
paraboloids, bezier patches, height fields (mountainghshlquartics,
smooth triangles, text, fractals, superquadrics, susfaaferevolution,
prisms, polygons, lathes and fractals.

e Shapes can easily be combined to create new complex shapg<os-
structive Solid Geometry (CSG). POV-Ray supports uniorerges, in-
tersections and differences.

e Objects are assigned materials called textures (a texeserides the
coloring and surface properties of a shape).

e Built-in color and normal patterns: Agate, Bozo, Bumps, €Kee,
Crackle, Dents, Granite, Gradient, Hexagon, Leopard, Mandarble,
Onion, Quilted, Ripples, Spotted, Sprial, Radial, Wavesody Wrinkles
and image file mapping.

e Users can create their own textures or use pre-defined ésxturch as

... Brass, Chrome, Copper, Gold, Silver, Stone, Wood.

2.3. WHICH VERSION OF POV-RAY SHOULD YOU USE? 7

e Combine textures using layering of semi-transparent texstor tiles of
textures or material map files.

e Display preview of image while computing (not available dhpdat-
forms).
Halt rendering when part way through.
Continue rendering a halted partial scene later.

2.3 Which Version of POV-Ray should you use?

POV-Ray can be used under MS-Dos, Windows 3.x, 95 and NT;eAbfacintosh 68k
and Power PC; Commodore Amiga; Linux, UNIX and other platfer

The latest versions of the necessary files are available GoerpuServe, Internet,
America Online and several BBS's. See section 2.4 on pagerl@idre info.

2.3.1 IBM-PC and Compatibles

Currently there are three different versions for the IBM-R@ning under different
operating systems (MS-Dos, Windows, Linux) as describéalbe

23.1.1 MS-Dos

The MS-Dos version runs under Ms-Dos or as a dos applicatioleruwindows’95,
Windows NT, Windows 3.1 or 3.11. It also runs under OS/2 andpVa

Required hardware and software:

A 386 or better CPU and at least 4 meg of RAM.
About 6 meg disk space to install and 2-10 meg or more beyasiddh
working space.

e Atext editor capable of editing plain ASCII text files. TheIT program
that comes with MS-Dos will work for moderate size files.

e Graphic file viewer capable of viewing GIF and perhaps TGA BNG
formats.

Required POV-Ray files:

e POVMSDOS.EXE — a self-extracting archive containing the program,
sample scenes, standard include files and documentatioimypeatext
help format with help viewer. This file may be split into srealfiles for
easier downloading. Check the directory of your downloaétpsite to
see if other files are needed.

8 CHAPTER 2. PROGRAM DESCRIPTION

Recommended:

e Pentium or 486dx or math co-processor for 386 or 486sx.

e 8 megor more RAM.
SVGA display preferably with VESA interface and high colartaue
color ability.

Optional: The source code is not needed to use POV-Ray. ribisgded for the curious
and adventurous.

e POVMSD_S.zIP — The C source code for POV-Ray for MS-Dos Con-
tains generic parts and MS-Dos specific parts. It does nhtdecsample
scenes, standard include files and documentation so yoldshiso get
the executable archive as well

e A C compiler that can create 32-bit protected mode apptioati We
support Watcom 10.5a, Borland 4.52 with Dos Power Pack andHBG
2.0 (GNU GCC) compilers.

2.3.1.2 Windows

The Windows version runs under Windows’95, Windows NT andeuriVindows 3.1
or 3.11 if Win32s extensions are added. Also runs under OS#pW

Required hardware and software:

e A 386 or better CPU and at least 8 meg of RAM.
e About 12 meg disk space to install and 2-10 meg or more beyuatddr
working space.

Required POV-Ray files:

e User archivePOvWIN3.EXE — a self-extracting archive containing the
program, sample scenes, standard include files and docatioentThis
file may be split into smaller files for easier downloading. eCi the
directory of your download or ftp site to see if other files aeeded.

Recommended:

e Pentium or 486dx or math co-processor for 386 or 486sx.

e 16 meg or more RAM.

e SVGA display preferably with high color or true color abléind drivers
installed.

Optional: The source code is not needed to use POV-Ray. ribisded for the curious
and adventurous.

2.3. WHICH VERSION OF POV-RAY SHOULD YOU USE? 9

e POVWIN_S.zIP — The C source code for POV-Ray for Windows. Con-
tains generic parts and Windows specific parts. It does catde sample
scenes, standard include files and documentation so yoldsaiso get
the executable archive as well.

e POV-Ray can only be compiled using C compilers that createit3®/in-
dows applications. We support Watcom 10.5a, Borland 4.62/6mpil-
ers. The source code is not needed to use POV-Ray. It is pabviad the
curious and adventurous.

2.3.1.3 Linux

Required hardware and software:

A 386 or better CPU and at least 4 meg of RAM.
About 6 meg disk space to install and 2-10 meg or more beyasiddh
working space.
A text editor capable of editing plain ASCII text files.
Any recent (1994 onwards) Linux kernel and support for ELFTat
binaries. POV-Ray for Linux is not in a.out-format.

e ELF libraries libc.s0.5, libm.s0.5 and one or both of libXdd.6 or lib-
vga.so.l.

Required POV-Ray files:

e POVLINUX.TGZ OF POVLINUX.TAR.GZ — archive containing an official
binary for each SVGALib and X-Windows modes. Also contaiasple
scenes, standard include files and documentation.

Recommended:

Pentium or 486dx or math co-processor for 386 or 486sx.

8 meg or more RAM.

SVGA display preferably high color or true color ability.

If you want display, you'll need either SVGALIb or X-Windows
Graphic file viewer capable of viewing PPM, TGA or PNG formats

Optional: The source code is not needed to use POV-Ray. lbvédzd for the curious
and adventurous.

e POVUNI_S.TAR.GZ Or POVUNI_S.TGZ — The C source code for POV-
Ray for Linux. Contains generic parts and Linux specific palt does
not include sample scenes, standard include files and dotatioe so
you should also get the executable archive as well.

e The GNU C compiler and (optionally) the X include files and-dities
andknowledge of how to use it Although we provide source code for
generic Unix systems, we do not provide technical supporham to
compile the program.

10

CHAPTER 2. PROGRAM DESCRIPTION

2.3.2 Apple Macintosh

The Macintosh versions run under Apple’s MacOS operatirgiesy version 7.0 or
better, on any 68020/030/040-based Macintosh (with orawitl floating point copro-
cessor) or any of the Power Macintosh computers.

Required hardware and software:

A 68020 or better CPU without a floating point unit (LC or Penfa or
Centris series) and at least 8 meg RAM or

A 68020 or better CPU *with* a floating point unit (Mac Il or Qdia
series) and at least 8 meg RAM or

Any Power Macintosh computer and at least 8 meg RAM.

System 7 or newer and color QuickDraw (System 6 is no longpr su
ported).

About 6 meg free disk space to install and an additional 2-£Q free
space for working space.

Graphic file viewer utility capable of viewing Mac PICT, Glnd per-
haps TGA and PNG formats (the shareware GIFConverter orhirap
Converter applications are good.)

Required POV-Ray files:

POVMACNF.SIT Of POVMACNF.SIT.HQX — a Stuffit archive containing
the non-FPU 68K Macintosh application, sample scenesdatenin-
clude files and documentation (slower version for Macs wittem FPU)
or

POVMACG68.SIT or POVMAC68.SIT.HQX — a Stuffit archive contain-
ing the FPU 68K Macintosh application, sample scenes, atdridclude
files and documentation (faster version for Macs WITH an F&U)
POVPMAC.SIT Or POVPMAC.SIT.HQX — a Stuffit archive containing the
native Power Macintosh application, sample scenes, staridalude
files and documentation.

Recommended:

68030/33 or faster with FPU, or any Power Macintosh

8 meg or more RAM for 68K Macintosh; 16 meg or more for Power
Macintosh systems.

Color monitor preferred, 256 colors OK, but thousands ofion$ of
colors is even better.

Optional: The source code is not needed to use POV-Ray. ribisded for the curious
and adventurous. POV-Ray can be compiled using Apple’s MP3Y [detrowerks
CodeWarrior 8 or Symantec 8.

2.3. WHICH VERSION OF POV-RAY SHOULD YOU USE? 11

e POVMACS.SIT or POVMACS.SIT.HQX — The full C source code for
POV-Ray for Macintosh. Contains generic parts and Macingjgecific
parts. It does not include sample scenes, standard incledeafid docu-
mentation so you should also get the executable archive las we

2.3.3 Commodore Amiga

The Amiga version comes in several flavors: 68000/68020awitfrPU (not recom-
mended, very slow), 68020/68881(68882), 68030/68882 &0d® There are also
two sub-versions, one with a CLI-only interface, and onehwitGUI (requires MUI

3.1). All versions run under OS2.1 and up. Support existpémsharing and window
display under OS3.x with 256 color palettes and CybeGFXlalslibrary support.

Required:

at least 4 meg of RAM.
at least 2 meg of hard disk space for the necessities, 5-26 rmoom-
mended for workspace.

e an ASCII text editor, GUI configurable to launch the editor yafur
choice.

e Graphic file viewer - POV-Ray outputs to PNG, Targa (TGA) amivP
formats, converters from the PPMBIN distribution are inigd to con-
vert these to IFF ILBM files.

Required POV-Ray files:

e POVAMI.LHA — a LHA archive containing executible, sample scenes,
standard include files and documentation.

Recommended:

e 8 meg or more of RAM.
e 68030 and 68882 or higher processor.
e 24bit display card (CyberGFX library supported)

As soon as a stable compiler is released for Amiga PowerP@ragsplans are to add
this to the flavor list.

Optional: The source code is not needed to use POV-Ray. lbvédzd for the curious
and adventurous.

e POVLHA S.ZIP — The C source code for POV-Ray for Amiga. Con-
tains generic parts and Amiga specific parts, includes sarspénes,
standard include files and documentation. It does not ieckample
scenes, standard include files and documentation so yoldshiso get
the executable archive as well.

12 CHAPTER 2. PROGRAM DESCRIPTION

2.3.4 SunOS
Required hardware and software:

A Sun SPARC processor and at least 4 meg of RAM.

About 6 meg disk space to install and 2-10 meg or more beyaatdfdh
working space.

A text editor capable of editing plain ASCII text files.

SunOS 4.1.3 or other operating system capable of runniny sbmary
(Solaris or possibly Linux for Sparc).

Required POV-Ray files:

e POVSUNOS.TGZ Or POVSUNOS.TAR.GZ — archive containing an of-
ficial binary for each text-only and X-Windows modes. Alsatzons
sample scenes, standard include files and documentation.

Recommended:

8 meg or more RAM.
If you want display, you'll need X-Windows or an X-Term.
preferably 24-bit TrueColor display ability, although tkedisplay code
is known to work with ANY combination of visual and color dapt

e Graphic file viewer capable of viewing PPM, TGA or PNG formats

Optional: The source code is not needed to use POV-Ray. ribisded for the curious
and adventurous.

e POVUNI_S.TGZ Or POVUNI_S.TAR.GZ — The C source code for POV-
Ray for UNIX. Contains generic UNIX parts and Linux specifars. It
does not include sample scenes, standard include files and@mtation
so you should also get the executable archive as well.

e A C compiler and (optionally) the X include files and librari@and
knowledge of how to use it

Although we provide source code for generic Unix systemsgavaot provide techni-
cal support on how to compile the program.

2.3.5 Generic Unix
Required:
e POVUNI_S.TGZ or POVUNI_S.TAR.GZ — The C source code for POV-

Ray for Unix. Either archive contains full generic sourcenityand X-
Windows specific source.

2.3. WHICH VERSION OF POV-RAY SHOULD YOU USE? 13

e POVUNI_D.TGZ Or POVUNI_D.TAR.GZ or any archive containing the sam-
ple scenes, standard include files and documentation. ©hid be the
Linux or SunOS executable archives described above.

e A C compiler for your computer ankinowledge of how to use it Al-
though we provide source code for generic Unix systems, weotipro-
vide technical support on how to compile the program.

e A text editor capable of editing plain ASCII text files.

Recommended:

e Math co-processor.
e 8 meg or more RAM.
e Graphic file viewer capable of viewing PPM, TGA or PNG formats

Optional:

e X Windows if you want to be able to display as you render.

e You will need the X-Windows include files as well. If you'retrfamiliar
with compiling programs for X-Windows you may need some irdm
someone who is knowledgeable at your installation becdngsX include
files and libraries are not always in a standard place.

2.3.6 All Versions

Each executable archive includes full documentation fovdRay itself as well as
specific instructions for using POV-Ray with your type oftfibem.

All versions of the program share the same ray-tracing featlike shapes, lighting
and textures. In other words, an IBM-PC can create the sach&r@s as a Cray super
computer as long as it has enough memory.

The user will want to get the executable that best matchas cbmputer hardware.
See the section 2.4 on page 16 for where to find these files. &bwcantact those
sources to find out what the best version is for you and youipcien.

2.3.7 Compiling POV-Ray

The following sections will help you to compile the portallesource code into a
working executable version of POV-Ray. They are only forsthpeople who want
to compile a custom version of POV-Ray or to port it to an upsuted platform or
compiler.

The first question you should ask yourself before proceedirgo | really need to
compile POV-Ray at all®©fficial POV-Ray Team executable versions are available for
MS-Dos, Windows 3.1x/95/NT, Mac 68k, Mac Power PC, Amigajux for Intel x86,

14 CHAPTER 2. PROGRAM DESCRIPTION

and SunOS. Other unofficial compiles may soon be availabletfeer platforms. If
you do not intend to add any custom or experimental featurébe program and if
an executable already exists for your platform then you me¢d¢ompile this program
yourself.

If you do want to proceed you should be aware that you are veaylyron your own.
The following sections and other related compiling docutaigon assume you know
what you are doing. It assumes you have an adequate C conmgifalled and working.
It assumes you know how to compile and link large, multi-paograms using &AKE
utility or an IDE project file if your compiler supports thenBecause makefiles and
project files often specify drive, directory or path infortna, we cannot promise our
makefiles or projects will work on your system. We assume ymankhow to make
changes to makefiles and projects to specify where your mykiearies and other
necessary files are located.

In general you should not expect any technical support fleenROV-Ray Team on
how to compile the program. Everything is provided here albwe can say with
any certainty is that we were able to compile it on our systdifris doesn’t work for
you we probably cannot tell you why.

There is no technical documentation for the source codk éseept for the comments
in the source files. We try our best to write clear, well- comted code but some
sections are barely commented at all and some comments mauyt lblated. We do
not provide any technical support to help you to add featuiéesdo not explain how a
particular feature works. In some instances, the personwrbte a part of the program
is no longer active in the Team and we don’'t know exactly howaitks.

When making any custom version of POV-Ray or any unofficiahgite, please make
sure you read and follow all provisions of our license in A ag@ 371. In general you
can modify and use POV-Ray on your own however you want butifgistribute your
unofficial version you must follow our rules. You may not un@dey circumstances
use portions of POV-Ray source code in other programs.

2.3.7.1 Directroy Structure

POV-Ray source code is distributed in archives with filearaged in a particular hier-
archy of directories or folders. When extracting the arekiyou should do so in a way
that keeps the directory structure intact. In general wgesigyou create a directory
calledpPoVvRAY3 and extract the files from there. The extraction will creatirectory
calledsouRcE with many files and sub-directories.

In general, there are separate archives for each hardvaferph and operating system
but each of these archives may support more than one compiberexample here is
the directory structure for the MS-Dos archive.

SOURCE
SOURCE\LIBPNG

2.3. WHICH VERSION OF POV-RAY SHOULD YOU USE? 15

SOURCE\ZLIB
SOURCE\MSDOS
SOURCE\MSDOS\PMODE
SOURCE\MSDOS\BORLAND
SOURCE\MSDOS\DJGPP
SOURCE\MSDOS\WATCOM

The souRcE directory contains source files for the generic parts of FRay-that are
the same on all platforms. TrEOURCE\LIBPNG contains files for compiling a library
of routines used in reading and writing PNG (Portable Nekw@raphics) image files.
ThesouRce\zLIB contains files for compiling a library of routines usedltBPNG
to compress and uncompress data streams. All of these fassad by all platforms
and compilers. They are in every version of the source agshiv

The souRCE\MsDOS directory contains all source files for the MS-Dos versiomeo
mon to all supported MS-Dos compilers. Th&1ODE sub-directory contains source
files for PMODE.LIB which is required by all MS-Dos versions. TIEORLAND,
DJGPP, and WATCOM sub-directories contain source, makefiles and project filles
C compilers by Borland, DJGPP and Watcom.

The SOURCE\MSDOS directory is only in the MS-Dos archive. Similarly the Win-
dows archive contains aO0URCE\WINDOWS directory. The Unix archive contains
SOURCE/UNIX etc.

The sourRCE\MSDOS directory contains a flempL_MsD.DOC which contains com-
piling information specific to the MS-Dos version. Othertfdem specific directo-
ries contain similarcmpL XXxx.Doc files and the compiler specific sub-directories
also contain compiler specificmpL_XxXx.DocC files. Be sure to read all pertinent
CMPL_XxX.Doc files for your platform and compiler.

2.3.7.2 Configuring POV-Ray Source

Every platform has a header fieONFIG.H that is generally in the platform specific
directory but may be in the compiler specific directory. Sqtaforms have multiple
versions of this file and you may need to copy or rename tt@sFIG.H. This file
is included in every module of POV-Ray. It contains any piygtes, macros or other
definitions that may be needed in the generic parts of POMERBsust be customized
for a particular platform or compiler.

For example different operating systems use differentazhiars as a separator between
directories and file names. MS-Dos uses back slash, Uninagtash or Mac a colon.
The CONFIG.H file for MS-Dos and Windows contains the following:

#define FILENAME SEPARATOR ’\\’

which tells the generic part of POV-Ray to use a back slash.

16 CHAPTER 2. PROGRAM DESCRIPTION

Every customization that the generic part of the code neassatdefault setting in the
file SOURCE\FRAME.H which is also included in every module afteoONFIG.H. The
FRAME.H header contains many groups of defines such as this:

#ifndef FILENAME_ SEPARATOR
#define FILENAME_SEPARATOR '/’
#endif

which basically saysf we didn't define this previously i@ONFIG.H then here’s a
default value SeeFRAME.H to see what other values you might wish to configure.

If any definitions are used to specify platform specific fimts you should also include
a prototype for that function. The filBOURCE\MSDOS\CONFIG.H, for example, not
only contains the macro:

#define POV_DISPLAY INIT(w,h) MSDOS Display Init ((w), (h));

to define the name of the graphics display initializationction, it contains the proto-
type:

void MSDOS_Display_Init (int w, int h);
If you plan to port POV-Ray to an unsupported platform youusthgrobably start with

the simplest, non-display generic Unix version. Then add cestom pieces via the
CONFIG.H file.

2.3.7.3 Conclusion

We understand that the above sections are only the mostl tiirst steps but half the
fun of working on POV-Ray source is digging in and figuringut on your own. That's
how the POV-Ray Team members got started. We've tried to rtrekeode as clear as
we can.

Be sure to read thempL_xxX.Doc files in your platform specific and compiler spe-
cific directories for some more minor help if you are workingasupported platform
or compiler.

Good luck!

2.4 Where to Find POV-Ray Files

The latest versions of the POV-Ray software are availabla fihe following sources.

2.4. WHERE TO FIND POV-RAY FILES 17

2.4.1 Graphics Developer Forum on CompuServe

POV-Ray’s headquarters are on CompuServe, GRAPHDEYV fomagfracing sec-
tions. We meet there to share info and graphics and discysdraeing, frac-
tals and other kinds of computer art. Everyone is welcomeoio in on the ac-
tion on CIS GRAPHDEV. Hope to see you there! You can get inftion on
joining CompuServe by calling (800)848-8990 or visit thenfpuServe home page
http://ww. conpuser ve. com Direct CompuServe access is also available in
Japan, Europe and many other countries.

2.4.2 Internet

The internet home of POV-Ray is reachable on the World Widé We the address
http://ww. povray. org and via ftp asft p. povray. org. Please stop by
often for the latest files, utilities, news and images from dfficial POV-Ray internet
site.

The conp. gr aphi cs. renderi ng. raytraci ng newsgroup has many compe-
tent POV-Ray users that are very willing to share their kmaolgke. They generally ask
that you first browse a few files to see if someone has alreaslyexrd the same ques-
tion, and of course, that you follow proper "netiquette”ytfu have any doubts about
the qualifications of the folks that frequent the group, a feimutes spend at the Ray
Tracing Competition pages atwv. povr ay. or g will quickly convince you!

2.4.3 PC Graphics Area on America On-Line

There’s an area now on America On-Line dedicated to POV-Riapat and infor-
mation. You can find it in the PC Graphics section of AOL. Juregvikord POV (the
keyword PCGRAPHICS brings you to the top of the graphicsteelaection). This
area includes the Apple Macintosh executables also. Itssibenessages are left in
the Company Supporsection. Currently, Bill Pulver (BPulver) is our repressive
there.

2.4.4 The Graphics Alternative BBS in El Cerrito, CA

For those on the West coast, you may want to find the POV-Raydildhe Graphics
Alternative BBSIt's a great graphics BBS run by Adam Shiffman. TGA is higlaliy,
active and progressive BBS system which offers both quali#gsaging and files to its
1300+ users.

510-524-2780 (PM14400FXSA v.32bis 14.4k, Public)
510-524-2165 (USR DS v.32bis/HST 14.4k, Subscribers)

18 CHAPTER 2. PROGRAM DESCRIPTION
USA and Canada
411-Exchange Alpharetta GA 404-345-0008
Autodesk Global Village San Rafael CA 415-507-5921
CAD/Engineering Services Hendersonville TN 615-822-2539
Canis Major Nashville TN 615-385-4268
CEAO BBS Columbus OH 614-481-3194
CHAOS BBS Columbia MO 314-874-2930
Joes CODE BBS West Bloomfield MI 810-855-0894
John’s Graphics Brooklyn Park MN 612-425-4436
PC-AUG Phoenix AZ 602-952-0638
SAUG BBS Bellevue WA 206-644-7115
Space Command BBS Kennewick WA 509-735-4894
The CAD/fx BBS Mesa AZ 602-835-0274
The Drawing Board BBS Anchorage AK 907-349-5412
The Graphics Alternative El Cerrito CA 510-524-2780
The Happy Canyon Denver CcO 303-759-3598
The New Graphics BBS Piscataway NJ 908-271-8878
The University Shrewsbury Twp NJ 908-544-8193
The Virtual Dimension Oceanside CA 619-722-0746
Time-Out BBS Sadsburyville PA 610-857-2648

Table 2.1: Graphic-orientated BBSs in North America.

245 PCGNet

The Professional CAD and Graphics Network (PCGnet) seretis the CAD and
Graphics communities by making information useful to theidealy available.

Formerly known as ADEnet, PCGnet is a new network createu fitee ground up,
incorporating new nodes and focusing evenly on both CAD aagtdcs related topics,
including, but not limited to the following topics: desigdrafting, engineering, 2d
and 3d modeling, multimedia, systems, raster imagingyaaitg, 3d rendering and
animation.

PCGnet is designed to serve the needs of all callers by sttinglinterest and gener-
ating support forums for active users who have an intergsiefCAD and graphics re-

lated topics previously mentioned; interest and suppagererated through PCGnet's
message conferences, file sharing across the network, dnsktipn news and press re-
leases. PCGnet's message conference are moderated faesigeed! to accommodate
friendly, yet professional and informative discussion &0Tand graphics related sub-
jects.

TGA BBS serves as the central hub for a large network of geapbiiented BBS sys-
tems around the world. In table 2.1, table 2.2 on the next pagetable 2.3 on the
facing page you wil find a concise listing of active PCGNetewdt the time of this
writing. The POV-Team can not vouch for the currency of thieimation, nor verify

that any of these boards may carry POV-Ray.

2.4. WHERE TO FIND POV-RAY FILES 19

Austria
AutoCAD User Group Graz 43-316-574-426
Belgium
Lucas Visions BBS Boom 32-3-8447-229
Denmark
Horreby SuperBBS Nykoebing Falster 45-53-84-7074
Finland
DH-Online Jari Hiltunen 358-0-40562248
Triplex BBS Helsinki 358-0-5062277
France
CAD Connection Montesson 33-1-39529854
Zyllius BBS! Saint Paul 33-93320505
Germany
Ray BBS Munich Munich 49-89-984723
Tower of Magic Gelsenkirchen 49-209-780670
Netherlands
BBS Bennekom: Fractal Board Bennekom 31-318-415331
CAD-BBS Nieuwegein 31-30-6090287
31-30-6056353
Foundation One Baarn 31-35-5422143
Slovenia
MicroArt Koper 386-66-34986
Sweden
Autodesk On-line Gothenburg 46-31-401718

United Kingdom

CADenza BBS
Raytech BBS

Leicester, UK
Tain, Scotland

44-116-259-6725
44-1862-83-2020

44-181-641-8593

The Missing Link Surrey, England

Table 2.2: Graphic-orientated BBSs in Europe.

Australia
Toowong QLD
Erskineville NSW
Caringbah NSW
Melbourne VIC

MULTI-CAD Magazine BBS
My Computer Company
Sydney PCUG Compaq BBS
The Baud Room

61-7-878-2940
61-2-557-1489
61-2-540-1842
61-3-481-8720

New Zealand
The Graphics Connection Wellington 64-4-566-8450
The Graphics Connection I New Plymouth 64-6-757-8092
The Graphics Connection llI Auckland 64-9-309-2237

Table 2.3: Graphic-orientated BBSs in the rest of the world.

Country or long distance dial numbers may require additionanbers to be used.
Consult your local phone company.

20 CHAPTER 2. PROGRAM DESCRIPTION

2.4.6 POV-Ray Related Books and CD-ROMs

The following items were produced by POV-Team members. chitin they are only
current to POV-Ray 2.2 they will still be helpful. Steps arirlyg taken to update the
POV-Ray CDROM to version 3.0, with a new version expectedisidOctober 1996.

The books listed below have been recently listed as outiof-put may still be found
in some bookstores or libraries (Visit http://www.dnant80/waite/ for more details).

Ray Tracing Creations, 2d Ed.

Chris Young and Drew Wells

ISBN 1-878739-69-7

Waite Group Press 1994

700 pages with color insert and POV-Ray 2.2 on 3.5” MS-Dok.dis

Ray Tracing Worlds with POV-Ray

Alexander Enzmann, Lutz Kretzschmar, Chris Young

ISBN 1-878739-64-6

Waite Group Press 1994

Includes Moray 1.5x modeler and POV-Ray 2.2 on 3.5” MS-Dakdli

Ray Tracing for the Macintosh CD

Eduard Schwan

ISBN 1-878739-72-7

Waite Group Press, 1994

Comes with a CD-ROM full of scenes, images, and QuickTimeigmwand
an interactive keyword reference. Also a floppy with POV-Raythose who
don’t have a CD ROM drive.

The Official POV-Ray CDROM: The Official POV-Ray CDROM is a compilation of
images, scene source, program source, utilities and tifa0tRay and 3D graphics
from the Internet and Compuserve. This CD is aimed not onlthege who want

to create their own images or do general 3D programming wiauk,also at those

who want simply to experience some high-quality renderit@yse by some of the best
POV-Ray artists, and to learn from their source code. The GBIRontains over 500

ray-traced images.

It's a good resource for those learning POV-Ray as well asetlweho are already pro-
ficient, and contains a Microsoft Windows-based interactitorial. The disk comes
with a fold-out poster and reference sheet. The CD is corolgatiith DOS/Windows
and Macintosh formats.

The CDROM is available for free retrieval and browsing on Yierld Wide Web at
http://ww. povray. or g/ pov-cdrom For more details you may also visit
http://ww. povray. or g/ povcd.

Chapter 3

Quick Start

The next section describes how to quickly install POV-Raymder sample scenes on
your computer. It is assumed that you are using an IBM-PC atifnle computer with
MS-Dos. For other platforms you must refer to the specificudoentation included in
POV-Ray’s archive.

3.1 Installing POV-Ray

[*** STILL BEING WRITTEN **¥]

Specific installation instructions are included with thee@xtable program for your
computer. In general, there are two ways to install POV-Ray.

[Note that the generic word "directory” is used throughoibur operating system
may use another word (subdirectory, folder, etc.)]

1) The messy way: Create a directory called POVRAY and cofi@V-Ray files into
it. Edit and run all files and programs from this directory.isTimethod works, but is
not recommended.

Or the preferred way:

2) Create a directory called POVRAY and several subdirgztocalled INCLUDE,
DEMO, SCENES, UTIL. The self-extracting archives used imsoversions of the
program will create subdirectories for you. If you creataryown, the file tree for this
should look something like this:

Copy the executable file and docs into the directory POVRAYCthe standard in-
clude files into the subdirectory INCLUDE. Copy the samplergcfiles into the sub-
directory SCENES. And copy any POV-Ray related utility peogs and their related
files into the subdirectory UTIL. Your own scene files will gaa the SCENES subdi-
rectory. Also, you'll need to add the directorigBOVRAY and\POVRAY\UTIL to
your "search path” so the executable programs can be rundrgndirectory.

21

22 CHAPTER 3. QUICK START

Note that some operating systems don’t have an equivaletfietonulti-path search
command.

The second method is a bit more difficult to set-up, but isgrefl. There are many
files associated with POV-Ray and they are far easier to didlalwthen separated into
several directories.

3.2 Basic Usage

Notice: If you did not install the program using th’STALL.EXE system, the exam-
ples and instructions given here may not work! The installaprocess configures
POVRAY.INI and several important batch files. Without these files cordidjuthe ex-

amples herein may not work.

POV-Ray’s basic purpose is to read a scene descriptionewritt the POV language
and to write an image file. The scene files are plain ASCII tdes fihat you create
using a text editor. Dozens of sample files are included vhith package to illustrate
the various features.

You invoke POV-Ray by typing a command at the MS-Dos prompte €ommand
is POVRAY and it must be followed by one or more command line switcheschE
switch begins with a plus or minus sign. Blanks separate whtelses. The switches
may be upper or lower case.

Note: The examples in this documentation assume you iedt&#lOV-Ray in the
c:\POVRAY3 directory. The installer will let you install POV-Ray anyeste and will
properly configure it for the drive and directory you spedfi&ou just substitute that
drive and directory anywhere we tell you to usg POVRAY 3. Change to that directory
now. Then type the following command line and press [ENTER]

POVRAY +ISHAPES +D1

The +I command (forinput) tells the program what file to read as input. If you don't
give an extension on the file name,0v is assumed. ThusISHAPES tells it to read
in SHAPES.POV to be rendered.

The +D switch (for display) tells the program to turn the graphic preview display on.
A —D would turn it off. The number "1" tells it what type of display use. Type "1" is
the old fashioned standard generic VGA at 320 by 200 reswoiutind just 256 colors.
This is pretty much guaranteed to work on any VGA video system

There are other options in effect besides those you typettendmmand line. They
are stored in a file calledoVvRAY.INI which was created by the install system. POV-
Ray automatically looks for this file in the same directoryendP OVRAY.EXE resides.
See 3.2.2 on page 25 and 6.1.2 on page 148 for more informatieoVvRAY.INI and
other INI files.

3.2. BASIC USAGE 23

When you enter the command shown above, you will see briglatlgred geometric
shapes begin to appear as POV-Ray calculates the color lofogaat row by row. You
will probably be disappointed with the graphic display tesuThat is because this is
only a preview display. The actual image is in full 24-bitaobut we cannot display
that high quality using simple VGA with a fixed set of 256 casloif your hardware
supports the VESA interface standard or you have a VESA T3Rrdioaded, try
running with+DG rather thart+D1. This will give you access to all of the various
modes your video hardware can use. If you have 15-bit or 16dpn color capability
try +DGH or if you have 24-bit true color capability tryDGT to see the image in all
its glory. See section 3.2.5 on page 27 below for more inftionan graphics preview.

When the program finishes, you will hear beeps. After admitime image, press
[ENTER]. You will see a text screen of statistics. If the téxttoo much to fit on
the screen you may press [CURSOR UP] or [CURSOR DOWN] key®ad more
text. Notice that there are tabs at the bottom of the screeessSHCURSOR LEFT]
or [CURSOR RIGHT] keys to view other interesting text infation. Press [ENTER]
again to exit POV-Ray.

If you do not have high color or true color ability you will hato view the image file to
see the real colors. The image flBAPES.TGA is written to your current directory. By
default POV-Ray creates files in TGA format. This is a statidarmat for storing 24-

bit true-color images. You will need an image viewing progr view the file. Such

programs are usually available from the same place wher®ltined POV-Ray but
a viewer is not included in this package.

If you cannot view TGA files you may add the switeffrN and POV-Ray will output
PNG (Portable Network Graphic) format. If PNG format vievinot available then
type the following

T2G SHAPES

and press [ENTER]. This will run a batch file that invokes tte2GIF program. The
program will read yousHAPES.TGA file, create an optimal 256 color palette and write
a GIF format filesHAPES.GIF. Most image viewing programs support GIF.

3.2.1 Running Files in Other Directories

Normally POV-Ray only looks in the current directory for tfikes it needs. It does
not search your MS-Dos path for data files; it only searchegpifograms. In the
sample scene you just ran, fil@iAPES.POV was in the current directory so this was
no problem. That scene also needed other files but yourAY.INI file tells POV-Ray
other places to search for necessary files.

If you allowed the install system to update yomwTOEXEC.BAT file, then you can
change to any drive or directory and can run POV-Ray from diractory. You will
also be able to use the batch files and utilities that came thithpackage in any

24 CHAPTER 3. QUICK START

directory. For future reference let’s call the "use\POVRAY 3-in-your-path-plan” as
plan one

There are some circumstances where you may not want ta:jetovRAY 3 in your
path. There is a limit of 128 characters in your path statéraed you may not have
room for it. Try rendering theHAPES example from a different directory. If it doesn't
work, then you forgot to re-boot your system so the new patbst&ffect. If after re-
booting it still doesn’t work, it probably means your pathas full. You will have to
adopt a different plan.

Chances are, you already have several directories in ydhr pdost systems have
c:\Dos, c:\WINDOWS or some directory such &s\uTILITY already in the path. We
have provided several small batch files that you can copyabdhectory. For fu-
ture reference we'll call the "put-batch-files-in-a-direy-already-on-the-path-plan”
asplan twa

Atany dos prompt, type the womhthand press [ENTERY]. It will show you what direc-
tories are already on your path. Then copy the following files your c:\POvVRAY3
directory to any of the directories already on your path. files are:

RUNPOV.BAT RERUNPOV.BAT RUNPHELP.BAT T2G.BAT

Once you have copied these files, try the following exampl¢hik case, do not invoke
the program with the commarrbvRAY. Instead us&UNPoOV as follows:

cd \POVRAY3\POV3DEMO\SHOWOFF
RUNPOV +ISUNSET3 +D1

This changes to thepOVRAY3\POV3DEMO\SHOWOFF directory where the filsuN-
SeT3.pPov is found. It runs the filRUNPOV.BAT. That batch file is set up to run POV-
Ray even if it is not on the dos path. It also passes the svatalang to POV-Ray.
These batch files have other uses, even if you are ygamgoneas described above or
plan threeas described below. For more on these batch files, see 3.2dgen26.

All of the early examples in this document assumed you wemging POV-Ray from
the directory where it was installed such @s POvRAY3. This approach of always
using the installation directory is in faptan three If you are using this method, you
need to tell POV-Ray where else to look for files. In the casswfiSET3.POV you
could do this:

POVRAY +IC:\POVRAY3\POV3DEMO\SHOWOFF\SUNSET3 +D1

However some scenes need more than one file. For example¢htodyDRUMS2 that
can be found undeypovRAY3\POVSCN\LEVEL3 contains three filesoRUMS. POV,
DRUMS.INC andREDNEWT.GIF all of which are required for that one scene. In this
case you should use the. switch (for library) to add new library paths to those that
POV-Ray will search. You would render the scene with this iw@nd.

POVRAY +L\POVRAY3\POVSCN\LEVEL3\DRUMS2 +IDRUMS +D1

3.2. BASIC USAGE 25

3.2.2 INIFiles

There were more options used in these renderings than gisiwhchestl, +D, and
+L that you specify. When you run the program, POV- Ray autarahyilooks for the
file POVRAY.INI in whatever directory thabOVRAY.EXE is in. The POVRAY.INI file
contains many options that control how POV-Ray works. Weehsat this file up so
that itis especially easy to run your first scene with miniprablems. The file should
be placed in the same directory RSVRAY.EXE and it will automatically read when
POV-Ray is run. If you ever moveOVRAY.EXE to a different directory, be sure to
move POVRAY.INI t0o.

Complete details on all of the available switches and optibrat can be given on the
command line or irrOVRAY.INI are given in 6 on page 147.

You may also create INI files of your own with switches or opsosimilar to
POVRAY.INI. If you put a file name on the command line without a plus or minu
sign before it, POV-Ray reads it as an INI file. Try this

POVRAY RES120 +ISHAPES +D1

This causes POV-Ray to look for a file calleds120.IN1 which we have provided. It
sets your resolution to 120 by 90 pixels for a quick previewe Tollowing INI files
have been provided for you.

RES120.INI Sets resolution to 120 by 90.

RES320.INI Sets resolution to 320 by 200.

RES640.INI Sets resolution to 640 by 480.

RESB00.INI Sets resolution to 800 by 600.

RES1K.INI Sets resolution to 1024 by 768.

LOW.INI Sets low quality at 120 by 90.

SLOW.INI Turns on radiosity and anti-aliasing; slow but beautiful.
TGAFLIL.INI Create an FLI animation from TGA images.
PNGFLI.INI Create an FLI animation from DTA images.
ZIPFLI.INI Create an FLI animation from zipped images.
TGAFLC.INI Create an FLC animation from TGA images.
PNGFLC.INI Create an FLC animation from DTA images.
ZIPFLC.INI Create an FLC animation from zipped images.

You can create your own custom INI's which can contain anyroamd in the reference
guide.

3.2.3 Alternatives toPOVRAY.INI

The PoVRAY.INI file is supposed to hold your favorite global default optidinat you
want to use all the time. You should feel free to edit it withvmgptions that suit your

26 CHAPTER 3. QUICK START

needs. However it must be located in the same directoRORAY.EXE or it won't be
found. The dos path isn’t searched nor will commands help becaus®VRAY.INI is
processed before any command line switches.

If your POVRAY.EXE resides on a CD-ROM then you can't edit thR@vRAY.INI on
the CD. There is an alternative. You may use an environmaidhbla to specify an
alternative global default.

In your AUTOEXEC.BAT file add a line similar to this:
set POVINI=D:\DIRECT\FILE.INI

which sets the POVINI environment variable to whatevereiridirectory and INI file
you choose. If you specify any POVINI environment variatblertP OVRAY.INI is not
read. This is true even if the file you named doesn't exist. Not¢ yoa are specifying
an entire path and file name. This is not a pointer to a dirgaciontainingP OVRAY.INI.
Itis a pointer to the actual file itself.

Note that the POVRAYOPT environment variable in previousians of POV-Ray is
no longer supported.

3.2.4 Batch Files

We've already described how the filruUNPOV.BAT can be used as an alternative to
running POV-Ray directlyRUNPOV.BAT also has one other use. It uses @& switch

to create a file calle®RERUN.INI. This makes it very easy to run the same file over
again with the same parameters. When creating your own $idesigou will probably
make dozens of test renders. This is a very valuable feateee is how it works ..
Suppose you render a scene as follows:

RUNPOV +IMYSCENE +D1 RES120

This renderavy SCENE.POV at 120 by 90 resolution. Note there is no such scene. This
is hypothetical. After viewing it, you noticed a mistake winiyou fixed with your text
editor. To rerun the scene type:

RERUNPOV

and that's all. It will rerun the same scene you just ran. $8pp/ou want more detail
on the next run. You can add more switches or INI files. For gtam

RERUNPOV RES320

3.2. BASIC USAGE 27

will rerun at higher resolution. Subsequent usegRUNPOV will be at 320 by 200
until you tell it differently. As another example, thé\ switch turns on anti-aliasing.
Typing "RERUNPOV +A” reruns with anti- aliasing on. All subsequent reruns wéi/h
it on until you do a ' RERUNPOV —A”" to turn it off. Note if you do anotheRUNPOV it
starts over from youpOVRAY.INI defaults and it overwrites the oRIERUN.INI.

Two other batch files are include@UNPHELP.BAT is only used as an alternative way
to run POVHELP from another directory. If you used installatigan twothen use
RUNPHELP.BAT rather tharPOVHELP.EXE. This batch file serves no other purpose.

Finally T2G.BAT invokes theTGA2GIF.EXE program for converting TGA files to GIF
files. You could runTGA2GIF directly but its default parameters do not generally
produce the best results. If you use T2G instead, it adds somenand line switches
which work better. For a full list of switches available foGA2GIF, type TGA2GIF
with no parameters and it will display the available swikhed options.

3.2.5 Display Types

You have already seen how to turn on graphics preview usibity Here are details on
other variations of the-D switch. Use-D to turn the display off. If you useD then

you will probably want to add theV switch to turn on verbose status messages so you
can monitor the progress of the rendering while in progress.

The number "1” after the-D tells it what kind of video hardware to use. If you us@
alone or+DO0 then POV-Ray will attempt to auto detect your hardware tyypee+D?
to see a message about what type of hardware POV-Ray found.

You may also explicitly tell POV-Ray what hardware to usee Thllowing chart lists
all of the supported types.

+D0 Auto detect (S)VGA type (Default)
+D1 Standard VGA 328200

+D2 Standard VGA 368480

+D3 Tseng Labs 3000 SVGA 643180
+D4 Tseng Labs 4000 SVGA

+D5 AT&T VDC600 SVGA 640x400

+D6 Oak Technologies SVGA 640480
+D7 Video 7 SVGA 640480

+D8 Video 7 Vega (Cirrus) VGA 368480
+D9 Paradise SVGA 640480

+DA Ahead Systems Ver. A SVGA 643180
+DB Ahead Systems Ver. B SVGA 6480
+DC Chips & Technologies SVGA 640480
+DD ATl SGVA 640x480

+DE Everex SVGA 64480

+DF Trident SVGA 640480

+DG VESA Standard SVGA Adapter

28 CHAPTER 3. QUICK START

+DH ATI XL display card
+DI Diamond Computer Systems SpeedSTAR 24X

The most common type is a VESA standard card which #f85. VESA is a standard
software interface that works on a wide variety of cards. sehocards which do not
have VESA support directly built-in, generally have a vidiwer that you can load to
provide VESA support. The prograbiniVBE is a high quality universal VESA driver
that may work for you. It can be found ht t p: / / www. povr ay. or g or possibly
other POV-Ray sites.

The options listed above had been tested worked underreagtiions of POV-Ray but
there have been many changes in the program and we cannahtpethese all still
work. If you can use VESA then do so. It has been well testedvahidjive you the
most flexibility.

After the +D and the type, you may specify a 3rd character that specifeepdtette
type.

+D?3 Use 332 palette with dithering (default and best for VGA eys).
This is a fixed palette of 256 colors with each color consis8#bits
of red data, 3-bits green and 2-bits blue.

+D?0 Use HSV palette option for VGA display. This is a fixed paleite
256 colors where colors are matched according to hue, satura
and intensity rather than the amount of red, green and blue.

+D?G Use fixed gray scale palette option for VGA display.

+D?H Use HiColor option. Displays more than 32000 colors wittnelit
ing. Supported on VESA, SpeedSTAR 24X, ATl XL HiColor and
Tseng 4000 based cards with high color 15 or 16 bit options.

+D?T For Truecolor 24 bit cards. Use 24 bit color. Supported orltize
mond SpeedSTAR 24X and cards with 24bit VESA support only.

Here are some examples:

+DOH Auto detect the VGA display type and display the image to the
screen as it's being worked on. Use the 15-bit HiColor chig an
dithering to display more than 32,000 colors on screen.

+D4 Display to a TSENG 4000 chipset VGA using the 332 palette op-
tion.

+D4H Display to a TSENG 4000 chipset VGA using the HiColor option.

+DGO Display to a VESA VGA adapter and use the HSV palette option.

+DG3 Display to a VESA VGA adapter and use the 332 palette option.

+DGH Display to a VESA VGA adapter and use the HiColor option for
over 32,000 colors.

+DGT Display to a VESA VGA adapter and use the TrueColor option for
over 16 million colors.

3.2. BASIC USAGE 29

Note that your VESA BIOS must support these options in orderydu to use them.
Some cards may support HiColor and/or TrueColor at the harelvlevel but not

through their VESA BIOS.

30

CHAPTER 3. QUICK START

Part |l

Tutorial Guide

31

Chapter 4
Beginning Tutorial

The beginning tutorial explains step by step how to use P@ysdRscene description
language to create your own scenes. The use of almost evsnrdeof POV-Ray’s

language is explained in detail. You will learn basic thitige placing cameras and
light sources. You will also learn how to create a large warad objects and how to
assign different textures to them. The more sophisticaatiifes like radiosity, halos,
and atmospheric effects will also be explaind in detail.

The following sections explain the features in roughly thene order as they are de-
scribed in the reference chapter.

4.1 Your FirstImage

Let's create the scene file for a simple picture. Since ragers thrive on spheres,
that's what we’ll render first.

4.1.1 Understanding POV-Ray’'s Coordinate System

First, we have to tell POV-Ray where our camera is and whisreitking. To do this,
we use 3D coordinates. The usual coordinate system for P@\VHas the positive
Y axis pointing up, the positive X axis pointing to the rigaid the positive Z axis
pointing into the screen as shown in figure 4.1 on the follgipage.

This kind of coordinate system is called a left-handed coateé system. If you use
your left hand’s fingers you can easily see why it is calletheihded. Just point your
thumb in the direction of the positive x-axis, your index fngn the direction of the
positive y-axis and your middle finger in the positive z-adiiection. You can only do
this with your left hand. If you had used your right hand youndonot have been able
to point the middle finger in the correct direction.

33

34 CHAPTER 4. BEGINNING TUTORIAL

—
-

Y
x

Figure 4.1: The left-handed coordinate system (the z-axjminting away from the
viewer).

The left hand can also be used to determine rotation dimextido do this you must
perform the famousComputer Graphics Aerobiosxercise. Hold up your left hand.
Point your thumb in the positive direction of the axis of taa. Your fingers will curl
in the positive direction of rotation. Similarly if you pdigour thumb in the negative
direction of the axis your fingers will curl in the negativeeadition of rotation.

If you want to use a right-handed system, as some CAD systechsas AutoCAD do,
the right vector in the camera specification needs to be changed. Betethiled
description in 7.4.4.5.2 on page 226. In a right-handedesysbu use your right hand
for the Aerobics

Note that there is some controversy over whether POV-Ragthou of doing a right-
handed system is really proper. If you want to avoid problevessuggest you stick
with the left-handed system which is not in dispute.

4.1.2 Adding Standard Include Files

Using your personal favorite text editor, create a file chiemo . pov. Now type in
the following (the input is case sensitive, so be sure to gpital and lowercase letters
correct).

#include "colors.inc" // The include files contain
#include "shapes.inc" // pre-defined scene elements
#include "finish.inc"
#include "glass.inc"
#include "metals.inc"
#include "stones.inc"
#include "woods.inc"

4.1. YOUR FIRST IMAGE 35

The first include statement reads in definitions for varioseful colors. The second
include statement reads in some useful shapes. The nexjpreatkfined finishes,
glass, metal, stone, and wood textures. When you get a chiaaee a look through
them to see but a few of the many possible shapes and textaishée.

You should only include files you really need in your scene.m8mf the include
files coming with POV-Ray are quite large and you should betige the parsing time
(and memory) if you don’t need them. In the following exansplege will only use
the colors.inc, finish.inc andstones. inc include files so you'll better
remove the appropriate lines from your scene file.

You may have as many include files as needed in a scene filediéles may them-
selves contain include files, but you are limited to dechpiimcludes nested only ten
levels "deep”.

Filenames specified in the include statements will be sedrfidr in the current direc-
tory first and, if not found, will then be searched for in diggges specified by any
+L or Library_Path options active. This would facilitate keeping all your "inde”
(.INC) files such aSHAPES.INC, COLORS.INC, and TEXTURES.INC in an "include”
subdirectory, and giving a#L option on the command line to where your library of
include files are.

4.1.3 Addinga Camera

The camera declaration describes where and how the canesrgheescene. It gives

y, z coordinates to indicate the position of the camera and wédtqgb the scene it is

pointing at. You describr, y, zcoordinates using a three-p&gctor. A vector is spec-

ified by putting three numeric values between a pair of anghekets and separating
the values with commas.

Add the following camera statement to the scene.

camera {
location <0, 2, -3>
look_at <0, 1, 2>
}

Briefly, location (0,2,—3) places the camera up two units and back three units
from the center of the ray-tracing universe which is(@t0,0). Remember that by
default+z is into the screen andzis back out of the screen.

Also look_at (0,1,2) rotates the camera to point:aty, z coordinates0,1,2). A
point 5 units in front of and 1 unit lower than the camera. Tdwklat point should be
the center of attention of your image.

4.1.4 Describing an Object

Now that the camera is set up to record the scene, let's plgedicav sphere into the
scene. Add the following to your scene file:

36 CHAPTER 4. BEGINNING TUTORIAL

sphere {
<0, 1, 2>, 2
texture {
pigment { color Yellow }
}
}

The first vector specifies the center of the sphere. In thismplathex coordinate is
zero so itis centered left and right. It is alsoyat 1 or 1 unit up from the origin. The
zcoordinate is 2 which is 5 units in front of the camera, whiglatiz= —3. After the
center vector is a comma followed by the radius which in thiseds 2 units. Since the
radius is half the width of a sphere, the sphere is 4 units wide

4.1.5 Adding Texture to an Object

After we have defined the location and size of the sphere, \ed @ describe the
appearance of the surface. Thexture { ... } block specifies these parameters.
Texture blocks describe the color, bumpiness and finisheptigs of an object. In this
example we will specify the color only. This is the minimum weist do. All other
texture options except color will use default values.

The color you define is the way you want it to look if fully illunated. If you were
painting a picture of a sphere you would use dark shades ofoa toindicate the
shadowed side and bright shades on the illuminated side.etaway-tracing takes
care of that for you. You pick the basic color inherent in thgeot and POV-Ray
brightens or darkens it depending on the lighting in the sc&gcause we are defining
the basic color the object actualiysrather than how itooks the parameter is called
pigment

Many types of color patterns are available for use fmigment { ... } statement.
The keywordcolor specifies that the whole object is to be one solid color ratheen
some pattern of colors. You can use one of the color idergtifieeviously defined in
the standard include fileolors. inc.

If no standard color is available for your needs, you may defiour own color by
using the color keyword followed hyed, green andblue keywords specifying the
amount of red, green and blue to be mixed. For example a nadestf pink can be
specified by:

color red 1.0 green 0.8 blue 0.8

The values after each keyword should be in the range 0.0 to Ay of the three
components not specified will default to 0. A shortcut notatmay also be used. The
following produces the same shade of pink:

4.1. YOUR FIRST IMAGE 37

color rgb <1.0, 0.8, 0.8>

Colors are explained in more detail in section 7.1.5 on p&ge 1

4.1.6 Defining a Light Source

One more detail is needed for our scene. We need a light sdurdi you create one,
there is no light in this virtual world. Thus add the line

light_source { <2, 4, -3> color White}

to your scene file to get your first complete POV-Ray scene dilshawn below.

#include "colors.inc"
background { color Cyan }

camera {
location <0, 2, -3>
look_at <0, 1, 2>
}

sphere {
<0, 1, 2>, 2
texture {
pigment { color Yellow }
}
}

light_source { <2, 4, -3> color White}

The vector in thelight_source statement specifies the location of the light as 2
units to our right, 4 units above the origin and 3 units badknfithe origin. The light
source is invisible, it only casts light, so no texture isdesk

That's it! Close the file and render a small picture of it usiimg command
POVRAY +W160+H120+P +X +D0 -V -IDEMO.POV
If your computer does not use the command line, see yourophatspecific docs for

the correct command to render a scene.

You may also set any other command line options you like. Tdeme is written to
the image filedemo . tga (or some suffix other thantGa if your computer uses a
different default file format).

The scene you just traced isn't quite state of the art butlweVe to start with the
basics before we soon get to much more fascinating featatesaenes.

38 CHAPTER 4. BEGINNING TUTORIAL

4.2 Using the Camera

[*** STILL BEING WRITTEN ***]

4.2.1 Camera Types

[*** STILL BEING WRITTEN ***]

4.2.2 Using Focal Blur

[*** STILL BEING WRITTEN ***]

4.2.3 Using Camera Ray Perturbation

[*** STILL BEING WRITTEN ***]

4.3 Simple Shapes

So far we've just used the sphere shape. There are many gpesr af shapes that can
be rendered by POV-Ray. The following sections will desefilbw to use some of the
more simple objects as a replacement for the sphere used.abov

4.3.1 Box Object

The box is one of the most common objects used. Try this exampplace of the
sphere:

box {
<-1, 0, -1>, // Near lower left corner
< 1, 0.5, 3> // Far upper right corner

texture {
T Stone25 // Pre-defined from stones.inc
scale 4 // Scale by the same amount in all
// directions

}

rotate y*20 // Equivalent to "rotate <0,20,0>"

4.3. SIMPLE SHAPES 39

In this example you can see that a box is defined by speciffi@@D coordinates of its
opposite corners. The first vector must be the minimyiy z coordinates and the 2nd
vector must be the maximumy, zvalues. Box objects can only be defined parallel to
the axes of the world coordinate system. You can later rdkegen to any angle. Note
that you can perform simple math on values and vectors. Imafa¢e parameter we
multiplied the vector identifiey by 20. This is the same &6, 1,0) x 20 or (0, 20, 0).

4.3.2 Cone Object

Here’s another example showing how to use a cone:

cone {
<0, 1, 0>, 0.3 // Center and radius of one end
<1, 2, 3>, 1.0 // Center and radius of other end

texture { T _Stone25 scale 4 }

}

The cone shape is defined by the center and radius of eachretinis €xample one end
is at location(0, 1,0) and has radius of 0.3 while the other end is centergd, & 3)
with radius= 1. If you want the cone to come to a sharp point then raskus = 0.
The solid end caps are parallel to each other and perpeadittuthe cone axis. If you
want an open cone with no end caps then add the keywpech after the 2nd radius
like this:

cone {
<0, 1, 0>, 0.3 // Center and radius of one end
<1, 2, 3>, 1.0 // Center and radius of other end
open // Removes end caps

texture { T_Stone25 scale 4 }

4.3.3 Cylinder Object

You may also define a cylinder like this:

cylinder {
<0, 1, 0>, // Center of one end
<1, 2, 3>, // Center of other end
0.5 // Radius
open // Remove end caps

texture { T Stone25 scale 4 }

40 CHAPTER 4. BEGINNING TUTORIAL

4.3.4 Plane Object

Let's try out a computer graphics standardFre Checkered FloorAdd the following
object to the first version of theemo.pov file, the one including the sphere.

plane { <0, 1, 0>, -1
pigment {
checker color Red, color Blue
}
}

The object defined here is an infinite plane. The ve¢iot, 0) is the surface normal
of the plane (i.e. if you were standing on the surface, thenabipoints straight up).
The number afterward is the distance that the plane is disglalong the normal from
the origin — in this case, the floor is placedyat —1 so that the sphere st= 1,
radius= 2, is resting on it.

Notice that there is neexture { ... } statement. There really isanimplied texture
there. You might find that continually typing statementg tr& nested like exture
{pigment { ... }} can getto be a tiresome so POV-Ray lets you leave out the
texture { ... }under many circumstances. In general you only need theréextu
block surrounding a texture identifier (like tieStone25example above), or when
creating layered textures (which are covered later).

This pigment uses the checker color pattern and specifieshiaawo colors red and
blue should be used.

Because the vectord, 0,0), (0,1,0) and (0,0,1) are used frequently, POV-Ray has
three built-in vector identifierg, y, andz respectively that can be used as a shorthand.
Thus the plane could be defined as:

plane { vy, -1
pigment { ... }
}

Note that you do not use angle brackets around vector idenstifi

Looking at the floor, you'll notice that the ball casts a shvadm the floor. Shadows
are calculated very accurately by the ray-tracer, whichteeprecise, sharp shadows.
In the real world, penumbral or "soft” shadows are often seaetier you'll learn how
to use extended light sources to soften the shadows.

4.3.5 Standard Include Objects

The standard include fileHAPES.INC contains some pre-defined shapes that are about
the size of a sphere with a radius of one unit. You can invokenthike this:

4.4. ADVANCED SHAPES 41

#include "shapes.inc"

object {
UnitBox
texture { T_Stone25 scale 4 }
scale 0.75
rotate <-20,25,0>
translate y

4.4 Advanced Shapes

After you have gained some experience with the simpler shapailable in POV-Ray
it is time to go on to the more advanced, thrilling shapes.

You should be aware that the shapes described below areiviat to understand.
Don't worry if you do not know how to use them or how they workustltry the
examples and play with the features described in the refereimapter. There is nothing
better than learning by doing.

4.4.1 Bicubic Patch Object

Bicubic or Bezier patches are useful surface representatiecause they allow an easy
definition of surfaces using only a few control points. Foy ti@acing (or rendering)
the patches are approximated using triangles. The contiolgpserve to determine the
shape of the patch. Instead of defining the vertices of tiésng/ou simply give the
coordinates of the control points. A single patch has 16robmibints, four at each
corner, and the rest positioned to divide the patch into lemséctions. Bezier patches
are almost always created using a third party modeler sdisttutorial, we will use
MORAY (any other modeler that supports Bezier patches and POVlsarba used).
We will useMORAY only to create the patch itself, not the other elements ofteme.

Bezier patches are actually very useful and, with a littectice, some pretty amazing
things can be created with them. For our first tutorial, letake a sort of a teepee/tent
shape using a single sheet patch.

First, startMORAY and, from the main edit screen, click on "CREATE". Name your
objectTeepee The "CREATE BEZIER PATCH” dialogue box will appear. Makersu
that "SHEET" is depressed. Click on "OK, CREATE". At the hmtt of the main edit
screen, click on "EXTENDED EDIT".

Hold the cursor over the "TOP” view and right click to make fiep-up menu appear.
Click on "MAXIMIZE". [ALT]-drag to zoom in a little. Click on"MARK ALL", and
under the transformation mode box, "UFRM SCL”. Drag the neotgsscale the patch

42 CHAPTER 4. BEGINNING TUTORIAL

until it is approximately four units wide. Click on "TRANSLIA", and move the patch
so that its center is over the origin. Right click — "MINIMIZE'UNMARK ALL".

[SHIFT]-drag a box around the lower right control point torkd. [ALT]-zoom
into the "FRONT” view so that you can see the patch better.hén"'FRONT” view,
"TRANSLATE” that point 10 units along the negatieaxis (note that in MORAY z
is up). "UNMARK ALL”. Repeat this procedure for each of thehet three corner
points. Make sure you remember to "UNMARK ALL” once each pidias been trans-
lated. You should have a shape that looks as though it isistaod four pointed legs.
"UNMARK ALL".

Working once again in the "TOP” view, [SHIFT]-drag a box amoduthe four center
control points to mark them. Right-click over the "TOP” vie(WMAXIMIZE". Click
on "UFRM SCL” and drag the mouse to scale the four points ctogether. [ALT]-
drag to zoom closer and get them as close together as you ARBf}-drag to zoom
out, right click, "MINIMIZE".

In the "FRONT” view, "TRANSLATE” the marked points 10 unit$omg the positiver-
axis. "UNMARK ALL". The resulting shape is quite interesginwas simple to model,
and could not be produced using CSG primitives. Now let'sitisea scene.

Click on "DONE” to return to the main edit screen. Notice tHRatSTEPS and
V_STEPS are both set to 3 and flatness is set to 0.01. Leave tlera f@r now.
Click on "FILES”, and then "SAVE SEL” (save selection). Nargeur new file
TEEPEEL1.MDL. Press [F3] and opemeePEEL1.MDL. There is no need to save the
original file. WhenTEEPEEL is open, create a quick "dummy” texturet @RAY will
not allow you to export data without a texture), say, whitéwdefault finish, name it
TeePeeTexand apply it to the object. Save the file and press [CTRL-F@RAY will
create two filesSTEEPEEL.INC and TEEPEEL.POV.

Exit MORAY and copyTEEPEEL.INC andTEEPEEL.POV into your working directory
where you are doing these tutorials. Create a new file callEmbEMO.POV and edit
it as follows:

#include "colors.inc"

camera {
location <0, .1, -60>
look_at O
angle 36

}

background { color Gray25 }
light_source { <300, 300, -700> White }
plane { vy, -12

texture {
pigment {

4.4. ADVANCED SHAPES 43

checker
color Green
color Yellow

}

Using a text editor, create and declare a simple texturedor feepee object:

#tdeclare TeePeeTex = texture {
pigment {
color rgb <1, 1, 1,>

}

finish {
ambient .2
diffuse .6

}

Now, paste in the bezier patch data frareEPEEL.POV (the additional object key-
words added byORAY were removed):

bicubic patch {
type 1 flatness 0.0100 u _steps 3 v_steps 3,
<-5.174134, 5.528420, -13.211995>,
<-1.769023, 5.528420, 0.000000>,
<1.636088, 5.528420, 0.000000>,
<5.041199, 5.528420, -13.003932>,
<-5.174134, 1.862827, 0.000000>,
<0.038471, 0.031270, 18.101474>,
<0.036657, 0.031270, 18.101474>,
<5.041199, 1.862827, 0.000000>,
<-5.174134, -1.802766, 0.000000>,
<0.038471, 0.028792, 18.101474>,
<0.036657, 0.028792, 18.101474>,
<5.041199, -1.802766, 0.000000>,
<-5.174134, -5.468359, -13.070366>,
<-1.769023, -5.468359, 0.000000>,
<1.636088, -5.468359, 0.000000>,
<4.974128, -5.468359, -12.801446>
texture {
TeePeeTex
}
rotate -90*x // to orient the object to LHC
rotate 25*y // to see the four "legs" better
}

Add the above rotations so that the patch is oriented to P@¥'$anded coordinate
system (remember the patch was made @RAY in aright handed coordinate system)

44 CHAPTER 4. BEGINNING TUTORIAL

and so we can see all four legs. Rendering this at 200x150 sewpretty much what
we expect, a whitéeepeeover a green and yellow checkered plane. Let's take a little
closer look. Render it again, this time at 320x200.

Now we see that something is amiss. There appears to be sigimpga almost like
faceting, especially near the top. This is indeed a kind oétiag and is due to the
U_STEPS and \\STEPS parameters. Let's change these from 3 to 4 and see what
happens.

That’s much better, but it took a little longer to render. STisi an unavoidable tradeoff.
If you want even finer detail, use a §TEPS and \STEPS value of 5 and set flatness
to 0. But expect to use lots of memory and an even longer waaime.

Well, we can't just leave this scene without adding a few &gust for interest. Declare
the patch object and scatter a few of them around the scene:

#declare TeePee = bicubic_patch {
type 1 flatness 0.0100 u_steps 3 v_steps 3,
<-5.174134, 5.528420, -13.211995>,
<-1.769023, 5.528420, 0.000000>,
<1.636088, 5.528420, 0.000000>,
<5.041199, 5.528420, -13.003932>,
<-5.174134, 1.862827, 0.000000>,
<0.038471, 0.031270, 18.101474>,
<0.036657, 0.031270, 18.101474>,
<5.041199, 1.862827, 0.000000>,
<-5.174134, -1.802766, 0.000000>,
<0.038471, 0.028792, 18.101474>,
<0.036657, 0.028792, 18.101474>,
<5.041199, -1.802766, 0.000000>,
<-5.174134, -5.468359, -13.070366>,
<-1.769023, -5.468359, 0.000000>,
<1.636088, -5.468359, 0.000000>,
<4.974128, -5.468359, -12.801446>
texture {
TeePeeTex
}
rotate -90*x // to orient the object to LHC
rotate 25*y // to see the four "legs" better

object { TeePee }

object { TeePee translate <8, 0, 8> }
object { TeePee translate <-9, 0, 9> }
object { TeePee translate <18, 0, 24> }
object { TeePee translate <-18, 0, 24> }

That looks good. Let's do something about that boring gragkgpeound. Delete the
background declaration and replace it with:

4.4. ADVANCED SHAPES 45

plane { y, 500
texture {
pigment { SkyBlue }
finish { ambient 1 diffuse 0}
}
texture {
pigment {
bozo
turbulence .5
color_map {
[0 White]
[1 White filter 1]
}
}
finish { ambient 1 diffuse 0 }
scale <1000, 250, 250>
rotate <5, 45, 0>
}
}

This adds a pleasing cirrus-cloud filled sky. Now, let's demhe checkered plane to
rippled sand dunes:

plane {y,-12
texture {
pigment {
color <.85, .5, .15>
}

finish {
ambient .25
diffuse .6
crand .5

}

normal {

ripples .35
turbulence .25
frequency 5

}

scale 10

translate 50*x

}

Render this at 320x240 -a. Not bad! Let’s just add one momnee. Let's place a
golden egg under each of the teepees. And since this is ar lpeth tutorial, let's
make the eggs out of bezier patches.

Return toMORAY and create another bezier patch. Nanmeggland select "CYLIN-
DRICAL 2 - PATCH” from the "CREATE BEZIER PATCH” dialogue boxClick on

46 CHAPTER 4. BEGINNING TUTORIAL

"EXTENDED EDIT”. "MARK ALL", and rotate the patch so that theylinder lays
on its side. "UNMARK ALL". In the "FRONT" view, [SHIFT]-draga box around the
four points on the right end to mark them. In the "SIDE” viewght click, "MAXI-
MIZE”. [ALT]-drag to zoom in a little closer. "UFRM SCL” the qints together as
close as possible. Zoom in closer to get them nice and tightnZout, right click,
"MINIMIZE".

Click on "TRANSLATE” and drag the points to the left so thaethare aligned on the
z-axis with the next group of four points. This should creatdumt end to the patch.
Repeat this procedure for the other end. "UNMARK ALL".

In the "FRONT” view, the control grid should be a rectanglevremd the patch should
be an ellipsoid. [SHIFT]-drag a box around the upper righheo of the control grid

to mark those points. Then [SHIFT]-drag a box around the tavght corner to mark

those points as well. In the "SIDE” view, "UFRM SCL” the poapart a little to make
that end of the egg a little wider than the other. "UNMARK ALL"

The egg may need a little proportional adjustment. You shdwl able to "MARK
ALL” and "LOCAL SCL” in the three views until you get it to lookke an egg. When
you are satisfied that it does, "UNMARK ALL” and click on doniesarning from our
teepee object, we now go ahead and chandg&TBPS and \STEPS to 4.

Create a dummy texture, white with default finish, naméggTex and apply it to the
egg. From the FILES menu, "SAVE SEL” to filenaree&sc1.MDL. Load this file and
export ([CTRL F9]). ExitMORAY and copy the fileEGG1.INC andEGGL.POV into
your working directory.

Back inBEZDEMO.POV, create a nice, shiny gold texture:

#declare EggTex = texture {
pigment { BrightGold }

finish {
ambient .1
diffuse .4

specular 1
roughness 0.001
reflection .5
metallic

And while we're at it, let's dandy up oufeePeeTex

#declare TeePeeTex = texture {
pigment { Silver }

finish {
ambient .1
diffuse .4

specular 1

4.4. ADVANCED SHAPES

roughness 0.001
reflection .5
metallic

Now paste in your egg patch data and declare your egg:

#declare Egg = union { // Eggl
bicubic patch {

type 1 flatness 0.0100 u_steps 4 v_steps 4,
<2.023314, 0.000000, 4.355987>,
<2.023314, -0.000726, 4.355987>,
<2.023312, -0.000726, 4.356867>,
<2.023312, 0.000000, 4.356867>,
<2.032037, 0.000000, 2.734598>,
<2.032037, -1.758562, 2.734598>,
<2.027431, -1.758562, 6.141971>,
<2.027431, 0.000000, 6.141971>,

<-1.045672, 0.000000, 3.281572>,
<-1.045672, -1.758562, 3.281572>,
<-1.050279, -1.758562, 5.414183>,
<-1.050279, 0.000000, 5.414183>,
<-1.044333, 0.000000, 4.341816>,
<-1.044333, -0.002947, 4.341816>,
<-1.044341, -0.002947, 4.345389>,
<-1.044341, 0.000000, 4.345389>

}
bicubic_patch {

type 1 flatness 0.0100

u_steps 4 v_steps 4,

<2.023312, 0.000000, 4.356867>,
<2.023312, 0.000726, 4.356867>,
<2.023314, 0.000726, 4.355987>,
<2.023314, 0.000000, 4.355987>,
<2.027431, 0.000000, 6.141971>,
<2.027431, 1.758562, 6.141971>,
<2.032037, 1.758562, 2.734598>,
<2.032037, 0.000000, 2.734598>,
<-1.050279, 0.000000, 5.414183>,
<-1.050279, 1.758562, 5.414183>,
<-1.045672, 1.758562, 3.281572>,
<-1.045672, 0.000000, 3.281572>,
<-1.044341, 0.000000, 4.345389>,
<-1.044341, 0.002947, 4.345389>,
<-1.044333, 0.002947, 4.341816>,
<-1.044333, 0.000000, 4.341816>

}

texture { EggTex }

translate <0.5,

0, -5>

// center egg around origin

48 CHAPTER 4. BEGINNING TUTORIAL

translate -9.8*y // place egg on the ground

Now place a copy of the egg under each teepee. This shouldeemly the x and z
coordinates of each teepee:

object { Egg }

object { Egg translate <8, 0, 8> }
object { Egg translate <-9, 0, 9> }
object { Egg translate <18, 0, 24> }
object { Egg translate <-18, 0, 24> }

Render this at 320x246A. Everything looks good so run it again at 640x488. Now
we see that there is still some faceting near the top of theeteeand on the eggs as
well. The only solution is to raise \STEPS and VSTEPS from 4 to 5 and set flatness
to O for all our bezier objects. Make the changes and rendegyaiin at 640x480-A.

4.4.2 Blob Object

[** STILL BEING WRITTEN ** Dieter Bayer]

4.4.3 Height Field Object

A height field is an object that has a surface that is deteminbyethe color value or
palette index number of an image designed for that purposth. W&ight fields, realistic
mountains and other types of terrain can easily be made, ¥ns need an image from
which to create the height field. It just so happens that P@Y-R ideal for creating
such an image.

Make a new file calledvAGE.POV and edit it to contain the following:

#include "colors.inc"

global_settings {
assumed_gamma 2.2
hf gray_ 16

}

Thehf gray 16 keyword causes the output to be in a special 16 bit graysbhatast
perfect for generating height fields. The normal 8 bit outpilt lead to less smooth
surfaces.

Now create a camera positioned so that it points directlyrditve z-axis at the origin.

4.4. ADVANCED SHAPES 49

camera {
location <0, 0, -10>
look_at O

}

Then create a plane positioned like a walkat 0. This plane will completely fill the
screen. It will be colored with white and gray wrinkles.

plane { z, 10
pigment {
wrinkles
color_map {
[0 0.3*White]
[1 White]
}

Finally, create a light source.

light_source { <0, 20, -100> color White }

Render this scene at 640x480.0.1 +FT. You will get an image that will produce an
excellent heighffield.

Now we will use this image to create a height field. Create a figsvcalled
HFDEMO.POV and edit it as follows:

#include "colors.inc"

Add a camera that is two units above the origin and ten unitk ha

camera {
location <0, 2, -10>
look_at O
angle 15

}

... and a light source.

light_source{ <1000,1000,-1000> White }

50 CHAPTER 4. BEGINNING TUTORIAL

Now add the height field. In the following syntax, a Targa imditg is specified, the
height field issmoothedit is given a simple white pigment, it is translated to ceiite
around the origin, and it is scaled so that it resembles nadnsmand fills the screen.

height_ field {
tga "image.tga"
smooth
pigment { White 1}
translate <-.5, -.5, -.5>
scale <17, 1.75, 17>

Save the file and render it at 320x248.. Later, when you are satisfied that the height
field is the way you want it render it at a higher resolutionhvantialiasing.

Wow! The Himalayas have come to your computer screen!

4.4.4 Julia Fractal Object

[*** STILL BEING WRITTEN ***]

4.4.5 Lathe Object

[** STILL BEING WRITTEN ** Dieter Bayer]

4.4.6 Mesh Object

Mesh objects are very useful because they allow you to codgéets containing hun-
dreds or thousands of triangles. Compared to a simple urfidiangles the mesh
object stores the triangles more efficiently. Copies of nasghcts need only a little
additional memory because the triangles are stored onlg.onc

Almost every object can be approximated using trianglesybutmay need a lot of
triangles to create more complex shapes. Thus we will o@gtera very simple mesh
example. This example will show a very useful feature of tlengles meshs though:
a different texture can be assigned to each triangle in trehme

Now let us start. We'll create a simple box with differentlglared sides. Create an
empty file calledvESHDEMO.POV and add the following lines.

camera {
location <20, 20, -50>
look_at <0, 5, 0>

}

4.4. ADVANCED SHAPES 51

light_source { <50, 50, -50> color rgb<l, 1, 1> }

#declare Red = texture {
pigment { color rgb<0.8, 0.2, 0.2> }
finish { ambient 0.2 diffuse 0.5 }

#tdeclare Green = texture {
pigment { color rgb<0.2, 0.8, 0.2> }
finish { ambient 0.2 diffuse 0.5 }

#declare Blue = texture {
pigment { color rgb<0.2, 0.2, 0.8> }
finish { ambient 0.2 diffuse 0.5 }

We must declare all textures we want to use inside the meshebife mesh is created.
Textures cannot be specified inside the mesh due to the woesaory performance
that would result.

Now add the mesh object. Three sides of the box will use iddad textures while the
other will use the "global” mesh texture.

mesh {

/* top side */

triangle { <-10,10,-10>,<10,10,-10>,<10,10,10>
texture { Red }

}

triangle { <-10,10,-10>,<-10,10,10>,<10,10,10>
texture { Red }

}

/* bottom side */

triangle { <-10,-10,-10>,<10,-10,-10>,<10,-10,10> }

triangle { <-10,-10,-10>,<-10,-10,10>,<10,-10,10> }

/* left side */

triangle { <-10,-10,-10>,<-10,-10,10>,<-10,10,10> }

triangle { <-10,-10,-10>,<-10,10,-10>,<-10,10,10> }

/* right side */

triangle { <10,-10,-10>,<10,-10,10>,<10,10,10>
texture { Green }

}

triangle { <10,-10,-10>,<10,10,-10>,<10,10,10>
texture { Green }

}

/* front side */

triangle { <-10,-10,-10>,<10,-10,-10>,<-10,10,-10>
texture { Blue }

52 CHAPTER 4. BEGINNING TUTORIAL

}
triangle { <-10,10,-10>,<10,10,-10>,<10,-10,-10>
texture { Blue }
}
/* back side */
triangle { <-10,-10,10>,<10,-10,10>,<-10,10,10> }
triangle { <-10,10,10>,<10,10,10>,<10,-10,10> }
texture {
pigment { color rgb<0.9, 0.9, 0.9> }
finish { ambient 0.2 diffuse 0.7 }

Trace the scene at 320x240. You'll see that the top, righd, feant side of the box
have different textures. Thought this is not a very imprassixample it shows what
you can do with mesh objects. More complex examples, alsgusnooth triangles,
can be found under the scene directoncagsMsH.POV andROBOTMSH.POV.

4.4.7 Polygon Object

The polygon object can be used to create any planar, n-shagues like squares, rect-
angles, pentagons, hexagons, octagons, etc.

A polygon is defined by a number of points that describe itgpsheBince polygons
have to be closed the first point has to be repeated at the éhd pbint sequence.

In the following example we will create the woRIOV using just one polygon state-
ment.

We start with thinking about the points we need to describaltisired shape. We want
the letters to lie in the-y-plane with the lette© being at the center. The letters extend
fromy=0toy=1. Thus we get the following points for each letter (hepordinate

is automatically set to zero).

Letter P (outer polygon) :
<-0.8, 0.0>, <-0.8, 1.0>,
<-0.3, 1.0>, <-0.3, 0.5>,
<-0.7, 0.5>, <-0.7, 0.0>

Letter P (inner polygon) :
<-0.7, 0.6>, <-0.7, 0.9>,
<-0.4, 0.9>, <-0.4, 0.6>

Letter O (outer polygon) :
<-0.25, 0.0>, <-0.25, 1.0>,
< 0.25, 1.0>, < 0.25, 0.0>

4.4. ADVANCED SHAPES 53

Letter O (inner polygon) :
<-0.15, 0.1>, <-0.15, 0.9>,
< 0.15, 0.9>, < 0.15, 0.1>

Letter V:
<0.45, 0.0>, <0.30, 1.0>,
<0.40, 1.0>, <0.55, 0.1>,
<0.70, 1.0>, <0.80, 1.0>,
<0.65, 0.0>

Both lettersP andO have a hole while the lett&f consists of only one polygon. We'll
start with the letteN because it is easier to define than the other two letters.

Create a new file calleHoLYGDEM.POV and add the following text.

camera {
orthographic
location <0, 0, -10>
right 1.3 * 4/3 * x
up 1.3 * vy

look_at <0, 0.5, 0>
}

light_source { <25, 25, -100> color rgb 1 }

polygon {
8,
<0.45, 0.0>, <0.30, 1.0>, // Letter "v"
<0.40, 1.0>, <0.55, 0.1>,
<0.70, 1.0>, <0.80, 1.0>,
<0.65, 0.0>,
<0.45, 0.0>

pigment { color rgb <1, 0, 0> }

As noted above the polygon has to be closed by appending #tédiint to the point
sequence. A closed polygon is always defined by a sequenaent$ phat ends when
a point is the same as the first point.

After we have created the lettémwe’ll continue with the letteP. Since it has a hole we
have to find a way of cutting this hole into the basic shapes ©quite easy. We just
define the outer shape of the let®rwhich is a closed polygon, and add the sequence
of points that describes the hole, which is also a closedgooly That's all we have to
do. There’ll be a hole where both polygons overlap.

In general you'll get holes whenever an even number of siygpaos inside a single
polygon statement overlap. A sub-polygon is defined by sed@®quence of points.

54 CHAPTER 4. BEGINNING TUTORIAL

The letterP consists of two sub-polyons, one for the outer shape andasrted hole.
Since the hole polygon overlaps the outer shape polygor get’h hole.

After you've understood how multiple sub-polygons in a &npgolygon statement
work, it's quite easy to add the missiletter.

Finally, we get the complete wolROV.

polygon {
30,
<-0.8, 0.0>, <-0.8, 1.0>, // Letter "p"
<-0.3, 1.0>, <-0.3, 0.5>, // outer shape
<-0.7, 0.5>, <-0.7, 0.0>,
<-0.8, 0.0>,
<-0.7, 0.6>, <-0.7, 0.9>, // whole
<-0.4, 0.9>, <-0.4, 0.6>,

<-0.7, 0.6>

<-0.25, 0.0>, <-0.25, 1.0>, // Letter "O"
< 0.25, 1.0>, < 0.25, 0.0>, // outer shape
<-0.25, 0.0>,

<-0.15, 0.1», <-0.15, 0.9>, // whole
.15, 0.9>, < 0.15, 0.1>,
<-0.15, 0.1>,

A
o

<0.45, 0.0>, <0.30, 1.0>, // Letter "wv®
<0.40, 1.0>, <0.55, 0.1>,

<0.70, 1.0>, <0.80, 1.0>,

<0.65, 0.0>,

<0.45, 0.0>

pigment { color rgb <1, 0, 0> }

4.4.8 Prism Object

[*** STILL BEING WRITTEN *** Dieter Bayer]

4.49 Superquadric Ellipsoid Object

Sometimes we want to make an object that does not have perébetrp edges like a
box does. Then, the super quadric ellipsoid is a useful tbjéés described by the
simple syntax:

superellipsoid { <r, n> }

4.4. ADVANCED SHAPES 55

Wherer andn are float values greater than zero and less than or equal tolLat's
make a superellipsoid and experiement with the valugsasfdn to see what kind of
shapes we can make.

Create a file calleduPELLPS. POV and edit it as follows:

#include "colors.inc"

camera {
location <10, 5, -20>
look_at O
angle 15

}

background { color rgb <.5, .5, .5> 1}

light_source { <10, 50, -100> White }

The addition of a gray background makes it a little easieeto®ir object. Now type:

superellipsoid { <.25, .25>
pigment { Red }
}

Save the file and trace it at 200x158\ to see the shape. It will look like a box, but
the edges will be rounded off. Now let's experiment with elifint values of andn.

For the next trace, tryl,0.2). The shape now looks like a cylinder, but the top edges
are rounded. Now try0.1,1). This shape is an odd one! We don’'t know exactly what
to call it, but it is interesting. Finally, lets tryl, 1). Well, this is more familiar... a
sphere!

There are a couple of facts about superellipsoids you shmdd. First, you should
not use a value of 0 for eitheérnor n. This will cause POV-Ray to incorrectly make
a black box instead of your desired shape. Second, very salalts ofr andn may
yield strange results so they should be avoided. FinaldySturmian root solver will
not work with superellipsoids.

Superellipsoids are finite objects so they respond to aotmdling and can be used in
CSG.

Now let's use the superellipsoid to make something that dvdo@ useful in a scene.
We will make a tiled floor and place a couple of superellipsalijects hovering over
it. We can start with the file we have already made.

Rename itriILES.PoOV. Edit it so that it reads as follows:

#include "colors.inc"
#include "textures.inc"

56 CHAPTER 4. BEGINNING TUTORIAL

camera {
location <10, 5, -20>
look_at 0
angle 15

}
background { color rgb <.5, .5, .5> 1}

light_source{ <10, 50, -100> White }

Note that we have addetinclude "textures.inc" so we can use pre-defined
textures. Now we want to define the superellipsoid which béllour tile.

#declare Tile = superellipsoid { <0.5, 0.1>
scale <1, .05, 1>

Superellipsoids are roughly>22 x 2 units unless you scale them otherwise. If we wish
to lay a bunch of our tiles side by side, they will have to beetfffrom each other so
they don’t overlap. We should select an offset value thaighty more than 2 so that
we have some space between the tiles to fill with grout. So rdutlas:

#declare Offset = 2.1

We now want to lay down a row of tiles. Each tile will be offsedrh the original by
an ever-increasing amount in both the and—z directions. We refer to our offset and
multiply by the tile’s rank to determine the position of eadk in the row. We also
union these tiles into a single object callRdwlike this:

#declare Row = union {

object { Tile }
object { Tile translate z*Offset }
object { Tile translate z*Offset*2 }
object { Tile translate z*Offset*3 1}
object { Tile translate z*Offset*4 }
object { Tile translate z*Offset*5 }
object { Tile translate z*Offset*6 }
object { Tile translate z*Offset*7 }
object { Tile translate z*Offset*8 }
object { Tile translate z*Offset*9 }
object { Tile translate z*Offset*10 }
object { Tile translate -z*Offset }
object { Tile translate -z*Offset*2 }
object { Tile translate -z*Offset*3 }
object { Tile translate -z*Offset*4 }
{ }

object Tile translate -z*Offset*5

4.4. ADVANCED SHAPES 57

object { Tile translate -z*Offset*6 }

This gives us a single row of 17 tiles, more than enough toHdl$creen. Now we
must make copies of tHRowand translate them, again by the offset value, in both the
+x and—x directions in ever increasing amounts in the same manner.

object { Row }

object { Row translate x*Offset }
object { Row translate x*Offset*2 }
object { Row translate x*Offset*3 }
object { Row translate x*Offset*4 }
object { Row translate x*Offset*5 }
object { Row translate x*Offset*6 }
object { Row translate x*Offset*7 }
object { Row translate -x*Offset }
object { Row translate -x*Offset*2 }
object { Row translate -x*Offset*3 }
object { Row translate -x*Offset*4 }
object { Row translate -x*Offset*5 }
object { Row translate -x*Offset*6 }
object { Row translate -x*Offset*7 }

Finally, our tiles are complete. But we need a texture fomthdo do this we union
all of the Rowstogether and apply &hite Marblepigment and a somewhat shiny

refelctive surface to it:

union/{
object { Row }
object { Row translate x*Offset }
object { Row translate x*Offset*2 }
object { Row translate x*Offset*3 }
object { Row translate x*Offset*4 }
object { Row translate x*Offset*5 }
object { Row translate x*Offset*6 }
object { Row translate x*Offset*7 }
object { Row translate -x*Offset }
object { Row translate -x*Offset*2 }
object { Row translate -x*Offset*3 }
object { Row translate -x*Offset*4 }
object { Row translate -x*Offset*5 }
object { Row translate -x*Offset*6 }
object { Row translate -x*Offset*7 }

pigment { White Marble

finish { phong 1 phong_size 50 reflection

}

58 CHAPTER 4. BEGINNING TUTORIAL

We now need to add thgrout. This can simply be a white plane. We have stepped up
the ambient here a little so it looks whiter.

plane { y, 0 //this is the grout
pigment { color White }
finish { ambient .4 diffuse .7 }

To complete our scene, let's add five different supereligissceach a different color,
so that they hover over our tiles and are reflected in them.

superellipsoid {
<0.1, 1>
pigment { Red }
translate <5, 3, 0>
scale .45

}

superellipsoid {
<1, 0.25>
pigment { Blue }
translate <-5, 3, 0>
scale .45

superellipsoid {
<0.2, 0.6>
pigment { Green }
translate <0, 3, 5>
scale .45

superellipsoid {
<0.25, 0.25>
pigment { Yellow }
translate <0, 3, -5>
scale .45

superellipsoid {
<1, 1>
pigment { Pink }
translate y*3
scale .45

Trace the scene at 320x20@ to see the result. If you are happy with that, do a final
trace at 640x480-A0.2.

4.4. ADVANCED SHAPES 59

4.4.10 Surface of Revolution Object

Bottles, vases, and glasses make nice objects in ray-teeetks. We want to create a
golden, cup using the surface of revolution object (SORathje

We first start by thinking about the shape of the final objeds duite difficult to come
up with a set of points that describe a given curve withouthtéip of a modelling
program supporting POV's surface of revolution object.uéls a program is available
you should take advantage of it.

10.0 -

8.0

6.0

Height h

4.0

20

0.0

. .
-4.0 -2.0
Radius r

Figure 4.2: The point configuration of our cup object.

We will use the point configuration shown in figure 4.2. Thexeight points describ-
ing the curve that will be rotated about tix@xis to get our cup. The curve was calcu-
lated using the method described in the reference secéenq$.2.11 on page 247).

Now it is time to come up with a scene that uses the above SO&ttobiEdit a file
calledsordemo.pov and enter the following text.

#include "colors.inc"
#include "golds.inc"

global_settings { assumed_gamma 2.2 }

camera {
location <10, 15, -20>
look_at <0, 5, 0>
angle 45

}

background { color rgb<0.2, 0.4, 0.8> }

60 CHAPTER 4. BEGINNING TUTORIAL

light_source { <100, 100, -100> color rgb 1 }

plane { vy, O
pigment { checker color Red, color Green scale 10 }

}

sor {

8,

<0.0, -0.5>,
<3.0, 0.0>,
<1.0, 0.2>,
<0.5, 0.4>,
<0.5, 4.0>,
<1.0, 5.0>,
<3.0, 10.0>,

<4.0, 11.0>
texture { T Gold_ 1B 1}

The scene contains our cup object resting on a checkered. plerace the scene at
320x240 to see the resulting image.

The surface of revolution is described by starting with tbhenber of points followed

by the points with ascending heights. Each point deterntimesadius the curve for a
given height. E. g. the first point tells POV-Ray that at heigh.5 the radius is 0. You

should take care that each point has a larger height thameittepessor. If this is not
the case the program will abort with an error message.

4.4.11 Text Object

Creating text objects using POV-Ray always used to meantliealetters had to be
built either from CSG, a painstaking process, or by usingaakohnd white image of
the letters as a height field, a method that was only somevettisfactory. Now, for

POV-Ray 3.0, a new primitive has been introduced that carangelrueType font to
create text objects. These objects can be used in CSG,draresf, and textured just
like any other POV primitive.

For this tutorial, we will make two uses of the text objectrsEilet’s just make some
block letters sitting on a checkered plane. Any TTF font $tholo, but for this tutorial,
we will use the ones bundled with POV-Ray 3.0.

Create a file calledEXTDEMO.POV and edit it as follows:

#include "colors.inc"

camera {
location <0, 1, -10>

4.4. ADVANCED SHAPES 61

look_at 0
angle 36
}

light_source { <500,500,-1000> White }

plane { vy,0
pigment { checker Green White }

}

Now let's add the text object. We will use the fontMrROM.TTF and we will create
the stringPOV-RAY 3.0 For now, we will just make the letters red. The syntax is
very simple. The first string in quotes is the font name, thepsé one is the string
to be rendered. The two floats are the thickness and offsa¢valThe thickness float
determines how thick the block letters will be. Values.®fto 2 are usually best for
this. The offset value will add to the kerning distance of létéers. We will leave this

a 0 for now.

text { ttf "timrom.ttf" "POV-RAY 3.0" 1, O
pigment { Red 1}
}

Rendering this at 200x156A, we notice that the letters are off to the right of the
screen. This is because they are placed so that the lowdrdeftcorner of the first
letter is at the origin. To center the string we need to tatest—x some distance. But
how far? In the docs we see that the letters are.&It@075 units high. If we assume
that each one takes aboubQnits of space on theaxis, this means that the string is
about 6 units long (12 characters and spaces). Let’s titangla string 3 units along
the negativex-axis.

text { ttf "timrom.ttf" "POV-RAY 3.0" 1, O
pigment { Red }
translate -3*x

That's better. Now let’s play around with some of the pararebf the text object.
First, let’s raise the thickness float to something outlaihdi. say 25!

text { ttf "timrom.ttf"™ "POV-RAY 3.0" 25, 0
pigment { Red }
translate -2.25%*x

Actually, that’s kind of cool. Now let’s return the thickresgalue to 1 and try a different
offset value. Change the offset float from 0 t&@ @nd render it again.

Wait a minute?! The letters go wandering off up at an angletTsinot what the docs
describe! It almost looks as if the offset value applies ithiibex- andy-axis instead

62 CHAPTER 4. BEGINNING TUTORIAL

of just thex axis like we intended. Could it be that a vector is called farehinstead of
afloat? Let’s try it. Replace . 1 with 0.1*x and render it again.

That works! The letters are still in a straight line along #haxis, just a little further
apart. Let’s verify this and try to offset justin tiyeaxis. Replac® . 1 *x with 0. 1*y.
Again, this works as expected with the letters going up taidig at an angle with no
additional distance added along the x axis. Now let’s tryzheis. Replac®.1l*y
with 0.1*z. Rendering this yields a disappointment. No offset occurké offset
value can only be applied in theandy directions.

Let’s finish our scene by giving a fancier texture to the bléetters, using that cool
large thickness value, and adding a slight y offset. For fue,will throw in a sky
sphere, dandy up our plane a bit, and use a little more irtbegesamera viewpoint
(render the following scene at 640x480.0.2):

#include "colors.inc"

camera {
location <-5,.15,-2>
look _at <.3,.2,1>
angle 36

}

light_source { <500,500,-1000> White }

plane { y,0
texture {
pigment { SeaGreen }
finish { reflection .35 specular 1 }
normal { ripples .35 turbulence .5 scale .25 }
}
}

text { ttf "timrom.ttf" "POV-RAY 3.0" 25, 0.1*y
pigment { BrightGold }
finish { reflection .25 specular 1 }
translate -3*x

}

#include "skies.inc"

sky _sphere { S _Cloud5 }

Now. let’s try using text in a CSG object. We will attempt t@ate an inlay in a stone
block using a text object. Create a new file caffekTcsG.Pov and edit it as follows:

i u .1
#include "colors.inc"
#include "stones.inc"

4.4. ADVANCED SHAPES 63

background { color rgb 1 }

camera {
location <-3, 5, -15>
look_at O
angle 25

}

light_source { <500,500,-1000> White }

Now let’s create the block. We want it to be about eight unit®ss because our text
string POV-RAY 3.pis about six units long. We also want it about four units haglal
about one unit deep. But we need to avoid a potential cointiglerface with the text
object so we will make the firgtcoordinate (L instead of 0. Finally, we will give this
block a nice stone texture.

box { <-3.5, -1, 0.1>, <3.5, 1, 1>
texture { T _StonelO }
}

Next, we want to make the text object. We can use the sametaetbgegsed in the first
turorial except we will use slightly different thicknessdamifset values.

text { ttf "timrom.ttf" "POV-RAY 3.0" 0.15, O
pigment { BrightGold }
finish { reflection .25 specular 1 }
translate -3*x

Remember that the text object is placed by default so théoms surface lies directly

on thex-y-plane. If the front of the box begins z& 0.1 and thickness is set atl®, the
depth of the "inlay” will be 005 units. Go ahead and place a difference block around
the two objects.

difference {

box { <-3.5, -1, 0.1>, <3.5, 1, 1>
texture { T _StonelO }

}

text { ttf "timrom.ttf"™ "POV-RAY 3.0" 0.15, O
pigment { BrightGold }
finish { reflection .25 specular 1 }
translate -3*x

64 CHAPTER 4. BEGINNING TUTORIAL

Render this at 200x156A. We can see the inlay clearly and that it is indeed a bright
gold color. Render this at 640x486070.2 to see the results more clearly, but be fore-
warned. . . this trace will take a little time.

4.4.12 Torus Object

A torus can be thought of as a donut or an innertube. It is aestiegt is vastly useful
in many kinds of CSG so POV-Ray has adopted this 4th ordetiquaolynomial as a
primitive shape. The syntax for a torus is so simple that ikesdt a very easy shape
to work with once you learn what the two float values mean.ekdtof a lecture on the
subject, let's create one and do some experiments with it.

Create a file calledorRDEMO.POV. Edit it as follows:
#include "colors.inc"

camera {
location <0, .1, -25>
look_at O
angle 36

}

background { color Gray50 }
light_source{ <300, 300, -1000> White }
torus { 4, 1 // major and minor radius
rotate -90*x // so we can see it from the top

pigment { Green }

}

Go ahead and trace this. Well, it's a donut allright. Letjs¢hanging the major and
minor radius values and see what happens. Change themagsoll

torus { 5, .25 // major and minor radius

That looks more like a hula-hoop! Let's try this:

torus { 3.5, 2.5 // major and minor radius

Whoa! A donut with a serious weight problem!

With such a simple syntax, there isn't much else you can dottous besides change
its texture. .. or is there? Let's see.

Torus’ are very useful objects in CSG. Let’s try a little eripeent. Make a difference
of a torus and a box:

4.4. ADVANCED SHAPES 65

difference {
torus { 4, 1
rotate x*-90 // so we can see it from the top

}
box { <-5, -5, -1>, <5, 0, 1>}
pigment { Green }

Interesting. .. a half-torus. So? So, now add another one flipped the other Gualy,
let's declare the original half-torus and the necessamstmmations so we can use
them again:

#tdeclare Half_Torus = difference {
torus { 4, 1
rotate -90*x // so we can see it from the top

}
box { <-5, -5, -1>, <5, 0, 1>}
pigment { Green }

#declare Flip_It_Over = 180*x

#declare Torus_Translate = 8 // 2 * major radius

Now create a union of twblalf_Torusobjects:

union {
object { Half_Torus }
object { Half_Torus
rotate Flip_It_Over
translate Torus_Translate*x

This makes arS-shaped object, but we can't see the whole thing from oureotes
camera. Let's add a few more links, three in each directicoventhe object along the
+z direction and rotate it about they axis so we can see more of it. We also notice
that there appears to be a small gap whereHhE_Torus’ meet. This is due to the
fact that we are viewing this scene from directly on gaeplane. We will change the
cameray coordinate from 0 to A to eliminate this.

union {
object { Half_Torus }
object { Half_Torus
rotate Flip_TIt Over
translate x*Torus_Translate

66 CHAPTER 4. BEGINNING TUTORIAL

object { Half_ Torus

translate x*Torus_Translate*2
}
object { Half_ Torus

rotate Flip_ It_Over

translate x*Torus_Translate*3
}
object { Half_Torus

rotate Flip It_Over

translate -x*Torus_Translate
}
object { Half_ Torus

translate -x*Torus_Translate*2
}
object { Half_Torus

rotate Flip It_Over

translate -x*Torus_Translate*3
}
object { Half_ Torus

translate -x*Torus_Translate*4
}
rotate y*45
translate z*20

Rendering this we see a cool, undulating, snake-like samgtir-other. Neato. But
we want to model something useful, something that we migbtiseeal life. How
about a chain?

Thinking about it for a moment, we realize that a single lifilae@hain can be easily
modeled using two half toruses and two cylinders. Go aheddaate a new file. You
can use the same camera, background, light source, andetkolgects and transfor-
mations as you used iMORDEMO.POV:

#include "colors.inc"
camera {

location <0, .1, -25>

look_at O

angle 36
background { color Gray50 }
light_source{ <300, 300, -1000> White }
#declare Half Torus = difference {

torus { 4,1
sturm

4.4. ADVANCED SHAPES 67

rotate x*-90 // so we can see it from the top

}
box { <-5, -5, -1>, <5, 0, 1>}
pigment { Green }

#declare Flip_It_Over = x*180

#tdeclare Torus_Translate = 8

Now, make a complete torus of two half toruses:

union {
object { Half_Torus }
object { Half_Torus rotate Flip_It_ Over }

This may seem like a wasteful way to make a complete toruswbudre really going
to move each half apart to make room for the cylinders. Fadd,the declared cylinder
before the union:

#ideclare Chain_Segment =
cylinder { <0, 4, 0>, <0, -4, 0>, 1
pigment { Green }

Then add twaChain Segmentso the union and translate them so that they line up with
the minor radius of the torus on each side:

union {
object { Half_Torus }
object { Half_Torus rotate Flip_It_Over }
object { Chain_Segment
translate x*Torus_Translate/2
}
object { Chain_Segment
translate -x*Torus_Translate/2

Now translate the two half torusasy and—y so that the clipped ends meet the ends of
the cylinders. This distance is equal to half of the previypdeclaredTorus Translate

union {
object { Half_Torus

68 CHAPTER 4. BEGINNING TUTORIAL

translate y*Torus_Translate/2
}
object { Half_ Torus

rotate Flip_ It_Over

translate -y*Torus_Translate/2
}
object { Chain_Segment

translate x*Torus_Translate/2
}
object { Chain_Segment

translate -x*Torus_Translate/2

Render this and voila! A single link of a chain. But we arermhd yet! Whoever heard
of a green chain? We would rather use a nice metallic coldeaus First, remove any
pigment blocks in the declared toruses and cylinders. Thdrtlze following before
the union:

#declare Chain_Gold = texture {
pigment { BrightGold }

finish {
ambient .1
diffuse .4

reflection .25
specular 1
metallic

Then add the texture to the union and declare the union agie sink:

#declare Link = union {

object { Half_ Torus

translate y*Torus_Translate/2
}
object { Half_Torus

rotate Flip It_Over

translate -y*Torus_Translate/2
}
object { Chain_Segment

translate x*Torus_Translate/2
}
object { Chain_Segment

translate -x*Torus_Translate/2
}
texture { Chain_Gold }

4.4. ADVANCED SHAPES 69

Now make a union of two links. The second one will have to bedli@ed+y so that
its inner wall just meets the inner wall of the other link,tjlike the links of a chain.
This distance turns out to be double the previously declaoeds Translateminus 2
(twice the minor radius). This can be described by the expvas

Torus_Translate*2-2*y

Declare this expression as follows:

#tdeclare Link_Translate = Torus_Translate*2-2*y

In the object block, we will use this declared value so thatcase multiply it to create
other links. Now, rotate the second ligk *y so that it is perpendicular to the first,
just like links of a chain. Finally, scale the union by 1/4 kattwe can see the whole
thing:

union {
object { Link 1}
object { Link translate y*Link Translate rotate y*90 }
scale .25

Render this and you will see a very realistic pair of linksw# want to make an entire
chain, we must declare the above union and then create anottos of this declared
object. Be sure to remove the scaling from the declared bbjec

#tdeclare Link_Pair =
union {
object { Link }
object { Link translate y*Link Translate rotate y*90 }

Now declare your chain:

#declare Chain = union {

object { Link_Pair}

object { Link_Pair translate vy*Link Translate*2 }

object { Link Pair translate y*Link Translate*4 }

object { Link Pair translate y*Link Translate*6 }

object { Link Pair translate -y*Link Translate*2 }

object { Link Pair translate -y*Link Translate*4 }
{ }

object Link_Pair translate -y*Link Translate*6

70 CHAPTER 4. BEGINNING TUTORIAL

And, finally create your chain with a couple of transformasido make it easier to see.
These include scaling it down by a factor of 1/10, and rotgitiiso that you can clearly
see each link:

object { Chain scale .1 rotate <0, 45, -45> }

Render this and you should see a very realistic gold chagtchied diagonally across
the screen.

4.5 CSG Objects

Constructive solid geomerty, CSG, is a powerful tool to coratprimitve objects to
create more complex objects as shown in the following sestio

451 Whatis CSG?

CSG stands foConstructive Solid Geometry?OV-Ray allows you to construct com-
plex solids by combining primitive shapes in four differamays. These are union,
where two or more shapes are added together, intersectierevvo or more shapes
are combined to make a new shape that consists of the areaototaroth shapes, dif-
ference where subsequent shapes are subtracted from tlehéipe, and merge which
is like a union where the surfaces inside the union are rech@u®eful in transparent
CSG objects). We will deal with each of these in detall in thatrfew sections.

CSG objects can be extremely complex. They can be deeplgdebt other words
there can be unions of differences or intersections of nsengélifferences of intersec-
tions or even unions of intersections of differences of merg. ad infinitum. CSG
objects are (almost always) finite objects and so respondttslaounding and can be
transformed like any other POV primitive shape.

452 CSGUnion

Let's try making a simple union. Create a file calledGbeEMo.POV and edit it as
follows:

#include "colors.inc"

camera {
location <0, 1, -10>
look_at O
angle 36

}

4.5. CSG OBJECTS 71

light_source { <500, 500, -1000> White }

plane { y, -1.5
pigment { checker Green White }

Now let's add two spheres each translatesl uhits along the-axis in each direction.
Color one blue and the other red.

sphere { <0, 0, 0>, 1
pigment { Blue }
translate -0.5*x

}

sphere { <0, 0, 0>, 1
pigment { Red }
translate 0.5*x

Try tracing this file now at 200x156-A. Now place a union block around the two
spheres. This will create a single CSG union out of the tweaibj

union{

sphere { <0, 0, 0>, 1
pigment { Blue }
translate -0.5*x

}

sphere { <0, 0, 0>, 1
pigment { Red }
translate 0.5*x

Trace the file again. The union will appear no different frotmatveach sphere looked
like on its own, but now we can give the entire union a singleuie and transform it
as awhole. Let's do that now.

union{

sphere { <0, 0, 0>, 1
translate -0.5*x*

}

sphere { <0, 0, 0>, 1
translate 0.5*x

}

pigment { Red }

scale <1, .25, 1>

rotate <30, 0, 45>

72 CHAPTER 4. BEGINNING TUTORIAL

Trace the file again. As you can see, the object has changethtically. Experiment
with different values of scale and rotate and try some diffiétextures.

There are some advantages of assigning only one texture 8Gadbject instead of

assigning the texture to each individual component. Firss much easier to use
one texture if your CSG object has a lot of components beccheeging the objects

appereance involves changing only one single texture. riéiedbe file parses faster
because the texture has to be parsed only once. This may leatafactor when do-

ing large scenes or animatons. Third, using only one texdaes memory because
the texture is only stored once and referenced by all comuen® the CSG object.

Assigning the texture to all n components means that it iedto times.

45.3 CSG Intersection

Now let’s use these same spheres to illustrate the next Kir@iS6& object, thdn-
tersection Change the wordinion to intersection and delete thecale and
rotate statements:

intersection {
sphere { <0, 0, 0>, 1
translate -0.5*x
}
sphere { <0, 0, 0>, 1
translate 0.5*x
}
pigment { Red }
}

Trace the file and you will see a lens-shaped object instedldeafwo spheres. This

is because an intersection consists of the area shared hyshapes, in this case the
lens-shaped area where the two spheres overlap. We likletisisshaped object so we
will use it to demostrate differences.

45.4 CSG Difference

Rotate the lens-shaped intersection aboutthgis so that the broad side is facing the
camera.

intersection{
sphere { <0, 0, 0>, 1
translate -0.5*x
}
sphere { <0, 0, 0>, 1
translate 0.5*x

4.5. CSG OBJECTS 73

}
pigment { Red }
rotate 90*y

}

Now let’s create a cylinder and stick it right in the middletioé lens.

cylinder { <0, 0, -1> <0, 0, 1>, .35
pigment { Blue }
}

Render the scene now to see the position of the cylinder. Wephace a difference
block around both the lens-shaped intersection and thedsyilike this:

difference {
intersection {
sphere { <0, 0, 0>, 1
translate -0.5*x
}
sphere { <0, 0, 0>, 1
translate 0.5*x

}
pigment { Red }
rotate 90*y
}
cylinder { <0, 0, -1> <0, 0, 1>, .35
pigment { Blue }
}

Now render the file. You should see the lens-shaped intéosewith a neat hole in
the middle of it where the cylinder was. The cylinder has bedtractedfrom the
intersection. Note that the pigment of the cylinder causestirface of the hole to be
colored blue. If you eliminate this pigment the surface &f tiole will be red.

OK, let’s get a little wilder now. Let's declare our perfagdtlens object to give it a
name. Let's also eliminate all textures in the declared athipecause we will want
them to be in the final union instead.

#tdeclare Lens_With Hole = difference {
intersection {
sphere { <0, 0, 0>, 1
translate -0.5*x
}
sphere { <0, 0, 0>, 1
translate 0.5%*x

74

}

rotate 90*y

}

cylinder { <O,

0,

-1> <0,

CHAPTER 4. BEGINNING TUTORIAL

0, 1>,

.35 }

Now, let’s use union to build a complex shape composed ofesopi this object.

union {
object
object
object
object

{
{
{
{

Lens _With Hole
Lens _With Hole
Lens_With_ Hole
Lens_With Hole

pigment { Red }

translate
translate
translate
translate

<-.65,
<.65,
<-.65,
<.65,

.65, 0>}
.65, 0>}

-.65, 0>}
-.65, 0>}

Render it. An interesting object to be sure. But let’s try stiimg more. Let's make it
a partially-transparent object by adding some filter to tigenent block.

union {
object
object
object
object

pigment { Red filter

A e

Lens_With Hole
Lens_With Hole
Lens_With Hole
Lens_With Hole
.5

translate
translate
translate
translate

}

<-.65,
<.65,
<-.65,
<.65,

.65, 0>}
.65, 0>}

-.65, 0>}
-.65, 0>}

Now render the file again. This looks pretty goodonly ... you can see parts of each
of the lens objects inside the union! This is no good.

455 CSG Merge

This brings us to the fourth kind of CSG object, tmerge Merges are the same as
unions, but the geometry of the objects in the CSG that idéie merge is not traced.
This should eliminate the problem with our object. Let'sitry

merge {
object
object
object
object

pigment { Red filter

e e

Lens _With Hole
Lens _With Hole
Lens _With Hole
Lens_With Hole
.5

Sure enough, it does!

translate
translate
translate
translate

}

<-.65,
<.65,
<-.65,
<.65,

.65, 0>}
.65, 0>}

-.65, 0>}
-.65, 0>}

4.6. THE LIGHT SOURCE 75

45.6 CSG Pitfalls

There is a severe pitfall in the POV-Ray’s CSG code that yoe va be aware of.

45.6.1 Coincidence Surfaces

POV-Ray uses inside/outside tests to determine the pointsigh a ray intersects
a CSG object. A problem arises when the surfaces of two diftegshapes coincide
because there is no way (due to numerical problems) to tethewea point on the
coincident surface belongs to one shape or the other.

Look at the following example where a cylinder is used to chbke in a larger box.

difference {
box { -1, 1 pigment { Red } }
cylinder { -z, z, 0.5 pigment { Green } }

}

If you trace this object you'll see red speckles where the ®bupposed to be. This is
caused by the coincident surfaces of the cylinder and the ®oe time the cylinder’'s
surface is hit first by a viewing ray, resulting in the corresdering of the hole, and
another time the box is hit first, leading to a wrong result rghbe hole vanishes and
red speckles appear.

This problem can be avoided by increasing the size of thenasti to get rid of the
coincidence surface. This is done by:

difference {

box { -1, 1 pigment { Red } 1}

cylinder { -1.001*z, 1.001*z, 0.5 pigment { Green } }
}

In general you have to make the subtracted object a littlatgjer in a CSG difference.
Just look for coincident surfaces and increase the subttastject appropreatly to get
rid of those surfaces.

The same problem occurs in CSG intersections and is alsded/bly scaling some of
the involved objects.

4.6 The Light Source

In any ray-traced scene, the light needed to illuminate yijects and their surfaces
must come from a light source. There are many kinds of lightces available in

POV-Ray and careful use of the correct kind can yield veryrespive results. Let's
take a moment to explore some of the different kinds of lightrses and their various
parameters.

76 CHAPTER 4. BEGINNING TUTORIAL

4.6.1 The Ambient Light Source

The ambient light source is used to simulate the effect @rditfuse reflection. If

there wasn't interdiffuse reflection all areas not direditipy a light source would be
completely dark. POV-Ray uses thebient keyword to determine how much light
coming from the ambient light source is reflected by a surface

By default the ambient light source, which emits its ligheswhere and in all direc-
tions, is pure white (rgk 1,1,1 >). Changing its color can be used to create interesting
effects. First of all the overall light level of the scene tenadjusted easily. Instead of
changing albmbient values only the ambient light source is modified. By assignin
different colors you can create nice effects like a moodylissdambient lighting. For
more details about the ambient light source see 7.8.2 on 3fsije

Below is an example of a red ambient light source.

global_settings { ambient_light rgb<1l, 0, 0> }

4.6.2 The Point Light Source

Pointlights are exactly what the name indicates. A poihtligas no size, is invisible,
and illuminates everything in the scene equally no matter fav away from the light
source it may be. This is the simplest and most basic lightceouThere are only
two important parameters, location and color. Let’s desigiimple scene and place a
pointlight source in it.

Create a new file and nametitrEDEMO.POV. Edit it as follows:

#include "colors.inc"
#include "textures.inc"

camera {
location <-4, 3, -9>
look_at <0, 0, 0>
angle 48

}

Add the following simple objects:

plane { vy, -1
texture {
pigment {
checker
color rgb<0.5, 0, 0>
color rgb<0, 0.5, 0.5>
}
finish {

4.6. THE LIGHT SOURCE 77

diffuse 0.4
ambient 0.2
phong 1
phong_size 100
reflection 0.25

}

torus { 1.5, 0.5
texture { Brown_Agate }
rotate <90, 160, 0>
translate <-1, 1, 3>

}

box { <-1, -1, -1>, <1, 1, 1>
texture { DMFLightOak 1}
translate <2, 0, 2.3>

}

cone { <0,1,0>, 0, <0,0,0>, 1
texture { PinkAlabaster }
scale <1, 3, 1>
translate <-2, -1, -1>

}

sphere { <0,0,0>,1
texture { Sapphire Agate }
translate <1.5, 0, -2>

Now add a pointlight:

light_source {
<2, 10, -3>
color White

Render this at 200x156A. You will see that the objects are clearly visible with sharp
shadows. The sides of curved objects nearest the light es@re brightest in color
with the areas that are facing away from the light sourceaddrkNote also that the
checkered plane is illuminated evenly all the way to thezwni This allows us to see
the plane, but it is not very realistic.

4.6.3 The Spotlight Source

Spotlights are a very useful type of light source. They canded to add highlights
and illuminate features much as a photographer uses spitstb@ same thing. There

78 CHAPTER 4. BEGINNING TUTORIAL

are a few more parameters with spotlights than with pointtig These areadius,
falloff, tightness, andpoint _at. Theradius parameter is the angle of the
fully illuminated cone. TheEallof £ parameter is the angle of timnbracone where
the light falls off to darkness. Theightness is a parameter that determines the rate
of the light falloff. point at is just what it says, where the spotlight is pointing to.
Let’s change the light in our scene as follows:

light_source {
<0, 10, -3>
color White
spotlight
radius 15
falloff 20
tightness 10
point_at <0, 0, 0>

Render this at 200x150A and you will see that only the objects are illuminated. The
rest of the plane and the outer portions of the objects areurditv There is a broad
falloff area, but the shadows are still razor sharp. Leyditidling with some of these
parameters to see what they do. Try changingfbe@loff value to 16 (it must
always be larger thanadius) and render again. Now the falloff is very narrow, and
the objects are either brightly lit, or in total darknesswiNohangefallof f back to

20 and change theightness value to 100 (higher is tighter) and render again. The
spotlight appears to have gotten much smaller, but whatdaly happened is that the
falloff has become so steep that the radius actually appeaadier.

We decide that aightness value of 10 (the default) and &a11off value of 18

are best for this spotlight and we now want to put a few spatsrat the scene for
effect. Lets place a slightly narrower blue and a red one ditiath to the white one
we already have:

light_source {
<10, 10, -1>
color Red
spotlight
radius 12
falloff 14
tightness 10
point_at <2, 0, 0>
}

light_source {
<-12, 10, -1>
color Blue
spotlight
radius 12

4.6. THE LIGHT SOURCE 79

falloff 14

tightness 10

point_at <-2, 0, 0>
}

Rendering this we see that the scene now has a wonderfullieryss air to it. The
three spotlights all converge on the objects making thera bluone side and red on
the other with enough white in the middle to provide a balance

4.6.4 The Cylindrical Light Source

Spotlights are cone shaped, meaning that their effect Wdhge with distance. The
farther away from the spotlight an object is, the larger thgaaant radius will be. But
we may want the radius and falloff to be a particular size ndtendow far away
the spotlight is. For this reason, cylindrical light sowa@ge needed. A cylindrical
light source is just like a spotlight, except that the radingl falloff regions are the
same no matter how far from the light source your object ise $hape is therefore
a cylinder rather than a cone. You can specify a cylindricditsource by replacing
the spot1light keyword withcylinder. Try this now with our scene. Replace all
three spotlights with cylinder lights and render again. \&fe that the scene is much
dimmer. This is because the cylindrical constraints do eiotHe light spread out like
in a spotlight. Largetrradius andfalloff values are needed to do the job. Try a
radius of 20 and afalloff of 30 for all three lights. That's the ticket!

4.6.5 The Area Light Source

So far all of our light sources have one thing in common. Thregpce sharp shadows.
This is because the actual light source is a point that isiiaBRnsmall. Objects are
either in direct sight of the light, in which case they ardyfulluminated, or they
are not, in which case they are fully shaded. In real lifes #ind of stark light and
shadow situation exists only in outer space where the digttof the sun pierces the
total blackness of space. But here on Earth, light bendsndrobjects, bounces off
objects, and usually the source has some dimension, metvd@hg can be partially
hidden from sight (shadows are not sharp anymore). They Wwaet is known as an
umbra, or an area of fuzziness where there is neither tgfial &r shade. In order to
simulate thesesoft shadows, a ray-tracer must give its light sources dimendtav-
Ray accomplishes this with a feature known as an area light.

Area lights have dimension in two axis’. These are specifiethb first two vectors
in the area light syntax. You must also specify how many $igire to be in the array.
More will give you cleaner soft shadows but will take longerender. Usually a 3 3
or a 5x 5 array will suffice. You also have the option of specifyingafeptive
value. Theadaptive command tells the ray-tracer that it can adapt to the s@nati
and send only the needed rays to determine the value of tleé pixadaptive is

80 CHAPTER 4. BEGINNING TUTORIAL

not used, a separate ray will be sent for every light in tha $ight. This can really
slow things down. The higher thiedaptive value the cleaner the umbra will be but
the longer the trace will take. Usually an adaptive value f dufficient. Finally, you
probably should use theitter command. This tells the raytracer to slightly move
the position of each light in the area light so that the shadappear truely soft instead
of giving you an umbra consisting of closely banded shadows.

OK, let’s try one. Comment out the cylinder lights and addftilewing:

light_source {
<2, 10, -3>
color White
area_light <5, 0, 0>, <0, 0, 5>, 5, 5
adaptive 1
jitter
}

This is a white area light centered @, 10,—3). It is 5 units (along thec-axis) by
5 units (along thez-axis) in size, and has 25 (5) lights in it. We have specified
adaptive 1 and jitter. Render this at 200x159.

Right away we notice two things. The trace takes quite a bigdo than it did with
a point or a spotlight, and the shadows are no longer shargy @&l have nice soft
umbras around them. Wait, it gets better.

Spotlights and cylinder lights can be area lights too! Rebwmthose sharp shadows
from the spotlights in our scene? It would not make much stmase a 5 5 array for

a spotlight, but a smaller array might do a good job of givisgust the right amount of

umbra for a spotlight. Let’s try it. Comment out the areatlighd change the cylinder
lights so that they read as follows:

light_source {
<2, 10, -3>
color White
spotlight
radius 15
falloff 18
tightness 10
area_light <1, 0, 0>, <0, 0, 1>, 2, 2
adaptive 1
jitter
point_at <0, 0, 0>
}

light_source {
<10, 10, -1>
color Red
spotlight
radius 12

4.6. THE LIGHT SOURCE 81

falloff 14
tightness 10
area_light <1, 0, 0>, <0, 0, 1>, 2, 2
adaptive 1
jitter
point_at <2, 0, 0>
}

light_source {
<-12, 10, -1>
color Blue
spotlight
radius 12
falloff 14
tightness 10
area_light <1, 0, 0>, <0, 0, 1>, 2, 2
adaptive 1
jitter
point_at <-2, 0, 0>

You now have three area-spotlights, one unit square camgist an array of four

(2 x 2) lights, three different colors, all shining on your sceRender this at 200x150
—A. This appears to work perfectly. All our shadows have srtight umbras, just the
sort you would expect to find on an object under a real spdtligh

4.6.6 Assigning an Object to a Light Source

Light sources are invisible. They are just a location whée light appears to be
coming from. They have no true size or shape. If you want yiglint lsource to be a
visible shape, you can use theoks_1ike keyword. You can specify that your light
source can look like any object you choose. When youlugsks_1ike, no_shadow

is applied to the object automatically. This is done so thatdbject will not block
any illumination from the light source. If you want some I{img to occur (as in a
lampshade), it is better to simply use a union to do the sang.tlet's add such an
object to our scene. Here is a light bulb | have made just isrgbrpose:

#ideclare Lightbulb = union {
merge {

sphere { <0,0,0>,1 }

cylinder { <0,0,1>, <0,0,0>, 1
scale <0.35, 0.35, 1.0>
translate 0.5*z

}

texture {
pigment {color rgb <1, 1, 1>}

82 CHAPTER 4. BEGINNING TUTORIAL

finish {ambient .8 diffuse .6}

}

}

cylinder { <0,0,1>, <0,0,0>, 1
scale <0.4, 0.4, 0.5>
texture { Brass_Texture }
translate 1.5*z

}

rotate -90*x

scale .5

}

Now add the light source:

light_source {

<0, 2, 0>

color White

looks_1like { Lightbulb }
}

Rendering this we see that a fairly believable light bulb ntuminates the scene.
However, if we do not specify a high ambient value, the lightbhis not lit by the light
source. On the plus side, all of the shadows fall away fromighe bulb, just as they
would in a real situation. The shadows are sharp, so let'smak bulb an area light:

light_source {
<0, 2, 0>
color White
area_light <1, 0, 0>, <0, 1, 0>, 2, 2
adaptive 1
jitter
looks_like { Lightbulb }
}

Note that we have placed this area light in #ag-plane instead of the-z-plane. Note
also that the actual appearance of the light bulb is not taiein any way by the light
source. The bulb must be illuminated by some other lightaaor by, as in this case,
a high ambient value. More interesting results might tteeebe obtained in this case
by using halos (see section 4.8.5 on page 104).

4.6.7 Light Source Specials
4.6.7.1 Using Shadowless Lights

Light sources can be assigned #ieadowless keyword and no shadows will be cast
due to its presence in a scene. What good is that you may asketBaees, scenes

4.6. THE LIGHT SOURCE 83

are difficult to illuminate properly using the lights you leaghosen to illuminate your
objects. It isimpractical and unrealisitic to apply a highenbient value to the texture
of every object in the scene. So instead, you would place pleaifill lights around
the scene. Fill lights are simply dimmer lights with tbeadowless keyword that
act to boost the illumination of other areas of the scenerti@t not be lit well. Let’s
try using one in our scene.

Remember the three colored area spotlights? Go back nowreadniment them and
comment out any other lights you have made. Now add the follpw

light_source {
<0, 20, 0>
color Gray75
shadowless

This is a fairly dim Gray75 light 20 units over the center of the scene. It will give
a dim illumination to all objects including the plane in theckground. Render it and
see.

4.6.7.2 Using Light Fading

If it is realism we want, it is not realistic for the plane to &eenly illuminated off into
the distance. In real life, light gets scattered as it tisvgel it diminishes its ability
to illuminate objects the farther it gets from its source. slimulate this, POV-Ray
allows you to use two keywordstade distance, which specifies the distance at
which full illumination is achieved; andade power, an exponential value which
determines the actual rate of attenuation. Let’s applyethkegwords to our fill light.

First, make the fill light a little brighter by changirgray75to Gray5Q Now change
that fill light as follows:

light_source {
<0, 20, 0>
color Gray50
fade_distance 5
fade_power 1
shadowless

This means that the full value of the fill light will be achievat a distance of 5 units
away from the light source. Theade power of 1 means that the falloff will be linear
(the light falls of at a constant rate). Render this to seedhalt.

That definitely worked! Now let's try @ade_power of 2 and afade_distance of
10. Again, this works well. The falloff is much sharper wittf ade_power of 2 so
we had ot raise th€ade_distance to 10.

84 CHAPTER 4. BEGINNING TUTORIAL

4.6.7.3 Light Sources and Atmosphere

By definition more than default, light sources are affectgdtmosphere, i.e. their light
is scattered by the atmosphere. This can be turned off bpgddimosphere off

to the light source block. The light emitted by a light souce@ also be attenuated by
the atmosphere (and also fog), that is it will be diminishedt &ravells through it, by
addingatmospheric attenuation on. The falloff is exponential and dependes
on thedistance parameter of the atmosphere (or fog). You should note th&t th
featuer only affects light coming directly from the lightsoe. Reflected and refracted
light is ignored.

Let’s experiment with these keywords. First we must add emoaphere to our scene:

#include "atmos.inc"
atmosphere { Atmosphere2 }

Then, so the trace will not take as long and the effect will &sier to see, comment
out the three lines that turn each of the three spotlightsanta lights:

//area_light <1, 0, 0>, <0, 0, 1>, 2, 2
//adaptive 1
//jitter

Tracing the scene at 200x15@\ we see that indeed the spotlights are visible. We can
see where the blue and red spots cross each other and whevhitheverhead light
shines down through the center of the scene. We also notitehid spotlights appear
to diminish in their intensity as the light descends fromltgket source to the objects.
The red light is all but gone in the lower left part of the scand the blue light all but
gone in the lower right. This is due to the atmospheric atitan and lends a further
realism to the scene. The atmosphere-lightsource intenagives our scene a smoky,
mysterious appearance, but the trace took a long time. Malsetspotlights area lights
and it will take even longer. This is an inevitable trade-efftracing speed for image
quality.

4.7 Simple Texture Options

The pictures rendered so far where somewhat boring regattaappearance of the
objects. Let’'s add some fancy features to the texture.

4.7.1 Surface Finishes

One of the main features of a ray-tracer is its ability to deriesting things with surface
finishes such as highlights and reflection. Let's add a nitte ihong highlight (shiny

4.7. SIMPLE TEXTURE OPTIONS 85

spot) to the sphere. To do this you needimish parameter. Change the definition
of the sphere to this:

sphere { <0, 1, 2>, 2
texture {
pigment { color Yellow } // pre-defined in COLORS.INC
finish { phong 1 }
}
}

Now render this the same way you did before. Hieng keyword adds a highlight
the same color of the light shining on the object. It adds efletedibility to the picture

and makes the object look smooth and shiny. Lower valugshehg will make the

highlight less bright (values should be between 0 and 1).

4.7.2 Adding Bumpiness

The highlight you've added illustrates how much of our ppticr depends on the
reflective properties of an object. Ray-tracing can explog by playing tricks on our
perception to make us see complex details that aren't rdahe.

Suppose you wanted a very bumpy surface on the object. Itdamilery difficult to
mathematically model lots of bumps. We can however simutaevay bumps look
by altering the way light reflects off of the surface. Reflectcalculations depend on
a vector called aurface normaklector. This is a vector which points away from the
surface and is perpendicular to it. By artificially modifgifor perturbing) this normal
vector you can simulate bumps. Change the scene to readasda@nd render it:

sphere { <0, 1, 2>, 2
texture {
pigment { color Yellow }
normal { bumps 0.4 scale 0.2 }
finish { phong 1 }
}
}

This tells POV-Ray to use Bump pattern to modify the surface normal. The value
0.4 controls the apparent depth of the bumps. Usually the bargabout 1 unit wide
which doesn’'t work very well with a sphere of radius 2. Thelsecaakes the bumps
1/5th as wide but does not affect their depth.

4.7.3 Creating Color Patterns

You can do more than assign a solid color to an object. You kezatie complex patterns
in the pigment block. Consider this example:

86 CHAPTER 4. BEGINNING TUTORIAL

sphere { <0, 1, 2>, 2
texture {
pigment {
wood
color_map {
[0.0 color DarkTan]
[0.9 color DarkBrown]
[1.0 color VeryDarkBrown]
}
turbulence 0.05
scale <0.2, 0.3, 1>
}
finish { phong 1 }
}

The keywordwood specifies a pigment pattern of concentric rings like ringa/daod.
The color_map specifies that the color of the wood should blend frorarkTanto
DarkBrownover the first 90% of the vein and frodarkBrownto VeryDarkBrowrover
the remaining 10%. Theurbulence slightly stirs up the pattern so the veins aren’t
perfect circles and thecale factor adjusts the size of the pattern.

Most patterns are set up by default to give you feetureacross a sphere of radius
1.0. A featureis very roughly defined as a color transition. For examplecad
texture would have one band on a sphere of radils In this example we scale
the pattern using thecale keyword followed by a vector. In this case we scaled
0.2 in thex direction, 03 in they direction and thez direction is scaled by 1, which
leaves it unchanged. Scale values larger than one wiltstaat element. Scale values
smaller than one will squish an element. And a scale valua®fxll leave an element
unchanged.

4.7.4 Pre-defined Textures

POV-Ray has some very sophisticated textures pre-definge istandard include files
GLASS.INC, METALS.INC, STONES.INC and WOODS.INC. Some are entire textures
with pigment, normal and/orfinish parameters already defined. Some are just
pigments or just finishes. Change the definition of our spteetiee following and then
re-render it:

sphere { <0, 1, 2>, 2
texture {

pigment {
DMFWood4 // pre-defined in textures.inc
scale 4 // Scale by the same amount in all

// directions

4.8. ADVANCED TEXTURE OPTIONS 87

}
finish { Shiny } // pre-defined in finish.inc
}

The pigment identifieDMFWood4has already been scaled down quite small when it
was defined. For this example we want to scale the patterarlddgcause we want to
scale it uniformly we can put a single value after the scajsvioed rather than a vector
of X, y, zscale factors.

Look through the fileTEXTURES.INC to see what pigments and finishes are defined
and try them out. Just insert the name of the new pigment wbstEWood4is now
or try a different finish in place dbhinyand re-render your file.

Here is an example of using a complete texture identifieeratian just the pieces.

sphere { <0, 1, 2>, 2
texture { PinkAlabaster }

}

4.8 Advanced Texture Options

The extremely powerful texturing ability is one thing thatlly sets POV-Ray apart
from other raytracers. So far we have not really tried amghoo complex but by now
you should be comfortable enough with the program’s syntaxytsome of the more
advanced texture options.

Obviously, we cannot try them all. It would take a tutorialod inore pages to use
every texturing option available in POV-Ray. For this liedttutorial, we will content
ourselves to just trying a few of them to give you an idea of lextures are created.
With a little practice, you will soon be creating beautifektures of your own.

4.8.1 Pigment and Normal Patterns

Previous versions of POV-Ray made a distinction betweemig and normal pat-
terns, i. e. patterns that could be used insid@amal { ... }orpigment { ...

} statement. With POV-Ray 3.0 this restriction was removethaball patterns listed
in section 7.6.7 on page 318 can be used as a pigment or noathedm

4.8.2 Pigments

Every surface must have a color. In POV-Ray, this color iledadpigment It does not
have to be a single color. It can be a color pattern, a colgrdiseven an image map.

88 CHAPTER 4. BEGINNING TUTORIAL

Pigments can also be layered one on top of the next so long apgermost layers are
at least partially transparent so the ones beneath can $iough. Let’s play around
with some of these kinds of pigments.

Create a file calledExDEMO.POV and edit it as follows:

#include "colors.inc"

camera {
location <1, 1, -7>
look _at 0
angle 36

}

light_source { <1000, 1000, -1000> White }

plane { vy, -1.5
pigment { checker Green, White }

}

sphere { <0,0,0>, 1
pigment { Red }
}

Giving this file a quick test render at 200x15@ we see that it is a simple red sphere
against a green and white checkered plane. We will be usenggthere for our textures.

4.8.2.1 Using Color List Pigments

Before we begin you should note that we have already madeiodeok pigment, the
color list pigment. In the previous example we have used akered pattern on our
plane. There are two other kinds of color list pigmefisick andhexagon. Let's
quickly try each of these. First, change the plane’s pignasrfollows:

pigment { hexagon Green, White, Yellow }

Rendering this we see a three-color hexagonal pattern. tRatehis pattern requires
three colors. Now change the pigment to$ldots

pigment { brick Gray75, Red rotate -90*x scale .25 }

Looking at the resulting image see that the plane now hasck pattern. Note that
we had to rotate the pattern to make it appear correctly ofidhplane. This pattern
normally is meant to be used on vertical surfaces. We alsattadale the pattern
down a bit so we could see it more easily. Feel free to playrataith these color list
pigments, change the colors, etc. until you gélbar that you like.

4.8. ADVANCED TEXTURE OPTIONS

89

4.8.2.2 Using Pigment and Patterns

Let's begin texturing our sphere by using a pattern and a ¢colp consisting of three
colors. Replace the pigment block with the following.

pigment {

gradient x
color_map {

[0.00
[0.33
[0.66
[1.00

color Red]
color Blue]
color Yellow]
color Red]

Rendering this we see that it gives us an interesting patiekrertical stripes. Try
changing the gradient direction yo The stripes are horizontal now. Try changing the
gradient direction ta. The stripes are now more like concentric rings. This is bsea
the gradient direction is directly away from the camera. i@§jesthe direction back to
and add the following change to the pigment block.

pigment {

gradient x
color_map {

[0.00

[0.33

[0.66

[1.00
}

rotate

-45%z

color Red]
color Blue]
color Yellow]
color Red]

// <- add this line

The vertical bars are now slanted at a 45 degree angle. Akmatcan be rotated,
scaled, and translated in this manner. Let’s now try sonferdifit types of patterns.
One at a time, substitute the following keywords foradient x and render to see
the result:bozo, marble, agate, granite, leopard, spotted, andwood (if
you like you can test all patterns listed in section 7.6.7 agep318).

Rendering these we see that each results in a slightly eliffgrattern. But to get really
good results each type of pattern requires the use of sortexmpatodifiers.

4.8.2.3 Using Pattern Modifiers

Let’s take a look at some pattern modifiers. First, changgaktern type to bozo. Then
add the following change.

90 CHAPTER 4. BEGINNING TUTORIAL

pigment {
bozo
frequency 3 // <- add this line
color_map {
[0.00 color Red]
[0.33 color Bluel
[0.66 color Yellow]
[1.00 color Red]

rotate -45*z

}

The f requency modifier determines the number of times the color map rejisais
per unit of size. This change makes thezo pattern we saw earlier have many more
bands in it. Now change the pattern typertorble. When we rendered this earlier,
we saw a banded pattern similardg@adient vy that really did not look much like
marble at all. This is because marble really is a kind of gnadand it needs another
pattern modifier to look like marble. This modifier is calledrbulence. Change
the line frequency 3 to turbulence 1 and render again. That's better! Now
let's putfrequency 3 back in right after the turbulence and take another looknEve
more interesting!

But wait, it gets better! Turbulence itself has some modifadrits own. You can adjust
the turbulence several ways. First, the float that followstthrbulence keyword
can be any value with higher values giving you more turbuder®econd, you can use
the keywordsomega, 1ambda, andoctaves to change the turbulence parameters.
Let’s try this now:

pigment {

marble

turbulence 0.5

lambda 1.5

omega 0.8

octaves 5

frequency 3

color_map {
[0.00 color Red]
[0.33 color Blue]
[0.66 color Yellow]
[1.00 color Red]

}

rotate 45*z

}

Rendering this we see that the turbulence has changed anmhttieen looks differ-
ent. Go ahead and play around with the numerical valuesigbulence, lambda,
omega, andoctaves to see what they do.

4.8. ADVANCED TEXTURE OPTIONS 91

4.8.2.4 Using Transparent Pigments and Layered Textures

Pigments are described by numerical values that give thealgie of the color to be
used (likecolor rgb(1,0,0) giving you a red color). But this syntax will give you
more than just the rgb values. You can specify filtering gpanency by changing it
as follows: color rgbf(1,0,0,1). Thef stands fortilter, POV-Ray’s word for
filtered transparency. A value of one means that the coloorisptetely transparent,
but still filters the light according to what the pigment is.this case, the color will be
a transparent red, like red cellophane.

There is another kind of transparency in POV-Ray. It is chllansmittanceor non-
filtering transparency (the keywordtsansmit). Itis different fromf£ilter in that
it does not filter the light according to the pigment colorinktead allows all the light
to pass through unchanged. It can be specified like thigit (1,0,0,1).

Let’'s use some transparent pigments to create another kiedtare, the layered tex-
ture. Returning to our previous example, declare the fatigwexture.

#declare LandArea = texture {
pigment {
agate
turbulence 1
lambda 1.5
omega .8
octaves 8
color_map {

[0.00 color rgb <.5, .25, .15>]
[0.33 color rgb <.1, .5, .4>]
[0.86 color rgb <.6, .3, .1>]
[1.00 color rgb <.5, .25, .15>]

This texture will be thdand area. Now let's make the oceans by declaring the follow-
ing.

#ideclare OceanArea = texture {
pigment {
bozo
turbulence .5
lambda 2
color_map {
[0.00, 0.33 color rgb <0, 0, 1>
color rgb <0, 0, 1>]
[0.33, 0.66 color rgbf <1, 1, 1, 1>
color rgbf <1, 1, 1, 1>]

92 CHAPTER 4. BEGINNING TUTORIAL

[0.66, 1.00 color rgb <0, 0, 1>
color rgb <0, 0, 1>]

}

Note how theoceanis the opaque blue area, and taad is the clear area which will
allow the underlying texture to show through.

Now, let's declare one more texture to simulate an atmosgpivith swirling clouds.

#declare CloudArea = texture {
pigment {

agate

turbulence 1

lambda 2

frequency 2

color_map {
[0.0 color rgbf <1, 1, 1, 1>]
[0.5 color rgbf <1, 1, 1, .35>]
[1.0 color rgbf <1, 1, 1, 1>]

}

Now apply all of these to our sphere.

sphere { <0,0,0>, 1
texture { LandArea }
texture { OceanArea }
texture { CloudArea }

}

Render this and you'll have a pretty good rendition of adiftlanetoid. But it could
be better. We don't particularly like the appearance of thads. There is a way they
could be done that would be much more realistic.

4.8.2.5 Using Pigment Maps

Pigments may be blended together in the same way as the @olarsolor map
using the same pattern keywords that you can use for pigmBaither than trying to
impress you with the possible implications of this powefgdture, let’s just give it a
try.

Add the following declarations, making sure they appeaotaethe other declarations
in the file.

4.8. ADVANCED TEXTURE OPTIONS 93

#ideclare Cloudsl = pigment {
bozo
turbulence 1
color_map {
[0.0 color White filter 1]
[0.5 color Whitel]
[1.0 color White filter 1]

}
#tdeclare Clouds2 = pigment {
agate
turbulence 1
color_map {
[0.0 color White filter 1]
[0.5 color Whitel]
[1.0 color White filter 1]
}
}
#tdeclare Clouds3 = pigment {
marble
turbulence 1
color_map {
[0.0 color White filter 1]
[0.5 color Whitel]
[1.0 color White filter 1]

}
#tdeclare Clouds4d = pigment {
granite
turbulence 1
color_map {
[0.0 color White filter 1]
[0.5 color White]
[1.0 color White filter 1]

Now use these declared pigments in our cloud layer on ouremah Replace the
declared cloud layer with.

#declare CloudArea = texture {
pigment {

gradient y

pigment_map {
[0.00 Cloudsl]
[0.25 Clouds2]
[0.50 Clouds3]
[0.75 Cloudsd]

94 CHAPTER 4. BEGINNING TUTORIAL

[1.00 Cloudsl]

Render this and you'll see a remarkable pattern that lookg meich like weather
patterns on the planet earth. They are separated into bsinaglating the different
weather types found at different latitudes.

4.8.3 Normals

Objects in POV-Ray have very smooth surfaces. This is nat realistic so there are
several ways to disturb the smoothness of an object by pantyithe surface normal.
The surface normal is the vector that is perpendicular taatlge of the surface. By
changing this normal the surface can be made to appear bwripkled, or any of the

many patterns available. Let's try a couple of them.

4.8.3.1 Using Basic Normal Modifiers

Comment out the planetoid sphere for now and, at the bottothedfile, create a new
sphere with a simple, single color texture.

sphere { <0,0,0>, 1
pigment { Gray75 }
normal { bumps 1 scale .2 }

}

Here we have added mormal block in addition to thepigment block (note that
these do not have to be included ircaxture block unless they need to be trans-
formed together or need to be part of a layered texture). ðis to see what it
looks like. Now, one at a time, substitute for the keywbranps the following key-
owrds: dents, wrinkles, ripples, andwaves (you can also use any of the
patterns listed in 7.6.7 on page 318). Render each to seethdyatlook like. Play
around with the float value that follows the keyword. Try expenting with the scale
value too.

For added interest, change the plane texture to a single wdlva normal as follows.

plane { vy, -1.5
pigment { color rgb <.65, .45, .35> }
normal { dents .75 scale .25 }

}

4.8. ADVANCED TEXTURE OPTIONS 95

4.8.3.2 Blending Normals

Normals can be layered similar to pigments but the resuitdeaunexpected. Let's try
that now by editing the sphere as follows.

sphere { <0,0,0>, 1

pigment { Gray75 }
normal { radial frequency 10 }
normal { gradient y scale .2 }

As you can see, the resulting pattern is neither a radial mpadient. It is instead the
result of first calculating a radial pattern and then cakindpa gradient pattern. The
results are simply additive. This can be difficult to contsolPOV-Ray gives the user
other ways to blend normals.

One way is to use normal maps. A normal map works the same wthegsgment
map we used earlier. Let's change our sphere texture asviallo

sphere { <0,0,0>, 1
pigment { Gray75 }
normal {
gradient y
frequency 3
turbulence .5
normal_map {
[0.00 granite]
[0.25 spotted turbulence .35]
[0.50 marble turbulence .5]
[0.75 bozo turbulence .25]
[1.00 granitel]

Rendering this we see that the sphere now has a very irreguiapy surface. The
gradient pattern type separates the normals into band$éytatre turbulated, giving
the surface a chaotic appearance. But this give us an idea.

Suppose we use the same pattern for a normal map that we usezhte the oceans
on our planetoid and applied it to the land areas. Does iMothat if we use the same
pattern and modifiers on a sphere the same size that the shtiqgepattern would be
the same? Wouldn't that make the land areas bumpy whilerlgdkie oceans smooth?
Let’s try it. First, let’s render the two spheres side-bgiesso we can see if the pattern
is indeed the same. Un-comment the planetoid sphere andthef@lowing changes.

96 CHAPTER 4. BEGINNING TUTORIAL

sphere { <0,0,0>, 1
texture { LandArea }
texture { OceanArea }
//texture { CloudArea } // <-comment this out
translate -x // <- add this transformation

Now change the gray sphere as follows.

sphere { <0,0,0>, 1
pigment { Gray75 }
normal {
bozo
turbulence .5
lambda 2
normal_map {
[0.4 dents .15 scale .01]
[0.6 agate turbulence 1]
[1.0 dents .15 scale .01]

}

translate x // <- add this transformation

Now render this to see if the pattern is the same. We see tHaedhit is. So let's
comment out the gray sphere and addlemal block it contains to the land area
texture of our planetoid. Remove the transformations sotki@aplanetoid is centered
in the scene again.

#declare LandArea = texture {
pigment {
agate
turbulence 1
lambda 1.5
omega .8
octaves 8
color_map {

[0.00 color rgb <.5, .25, .15>]
[0.33 color rgb <.1, .5, .4>]
[0.86 color rgb <.6, .3, .1>]
[1.00 color rgb <.5, .25, .15>]

}

normal {
bozo
turbulence .5
lambda 2

4.8. ADVANCED TEXTURE OPTIONS 97

normal_map {
[0.4 dents .15 scale .01]
[0.6 agate turbulence 1]
[1.0 dents .15 scale .01]

Looking at the resulting image we see that indeed our ide&si/drhe land areas are
bumpy while the oceans are smooth. Add the cloud layer baakdinour planetoid is
complete.

There is much more that we did not cover here due to spacerainst On your own,
you should take the time to exploggd ope_map, average, andbump_map.

4.8.4 Finishes

The final part of a POV-Ray texture is tfiaish It controls the properties of the sur-
face of an object. It can make it shiny and reflective, or dali dlat. It can also
specify what happens to light that passes through transpaigments, what hap-
pens to light that is scattered by less-than-perfectlyegmaurfaces, and what hap-
pens to light that is reflected by surfaces with thin-film ifeeence properties. There
are twelve different properties available in POV-Ray toc#iyethe £inish of a
given object. These am@mbient, diffuse, brilliance, phong, specular,
metallic, reflection, refraction, caustics, attenuation, crand,
andiridescence. Let's design a couple of textures that make use of theserngara
ters.

4.8.4.1 Using Ambient

Since objects in POV-Ray are illuminated by light sourcés, fortions of those ob-
jects that are in shadow would be completely black were ifoothe first two finish
properties,ambient anddiffuse. Ambient is used to simulate the light that is
scattered around the scene that does not come directly fligitsource. Diffuse de-
termines how much of the light that is seen comes directiynfeolight source. These
two keywords work together to control the simulation of aamiilight. Let’s use our
gray sphere to demonstrate this. Let's also change our jplacleto its original green
and white checkered pattern.

plane {y,-1.5
pigment {checker Green, White}

}

sphere { <0,0,0>, 1
pigment {Gray75}
finish {

98 CHAPTER 4. BEGINNING TUTORIAL

ambient .2
diffuse .6

In the above example, the default values for ambient andsgfeare used. Render this
to see what the effect is and then make the following changfeetfinish.

ambient 0
diffuse 0

The sphere is black because we have specified that none oflthedming from any
light source will be reflected by the sphere. Let's chafige fuse back to the default
of 0.6.

Now we see the gray surface color where the light from thet kgturce falls directly
on the sphere but the shaded side is still absolutely blaok Ht's changeliffuse
to 0.3 andambient to 0.3.

The sphere now looks almost flat. This is because we havdigpkefairly high degree
of ambient light and only a low amount of the light coming fraéhe light source is
diffusely reflected towards the camera. The default valfiesibient anddiffuse
are pretty good averages and a good starting point. In messcan ambient value of
0.1...0.2 is sufficient and a diffuse value of3..0.7 will usually do the job. There
are a couple of exceptions. If you have a completely traespasurface with high
refractive and/or reflective values, low values of both amband diffuse may be best.
Here is an example.

sphere { <0,0,0>, 1
pigment { White filter 1 }
finish {

ambient 0
diffuse 0
reflection .25
refraction 1
ior 1.33
specular 1
roughness .001

This is glass, obviously. Glass is a material that takeslyedr of its appearance
from its surroundings. Very little of the surface is seenduse it transmits or reflects
practically all of the light that shines on it. SeeAss.INC for some other examples.

If you ever need an object to be completely illuminated ireefently of the lighting
situation in a given scene, you can do this artificially bycifyeng anambient value
of 1 and adiffuse value of 0. This will eliminate all shading and simply giveeth

4.8. ADVANCED TEXTURE OPTIONS 99

object its fullest and brightest color value at all pointshisTis good for simulating
objects that emit light like lightbulbs, and for skies in ses where the sky may not be
adequately lit by any other means.

Let’s try this with our sphere now.

sphere { <0,0,0>, 1
pigment { White }
finish {
ambient 1
diffuse 0
}
}
}

Rendering this we get a blinding white sphere with no visiilghlights or shaded
parts. It would make a pretty good streetlight.

4.8.4.2 Using Surface Highlights

In the glass example above, we noticed that there were hitgkt hotspotson the
surface. This gave the sphere a hard, shiny appearance RR@¥ives you two ways
to specify surface specular highlights. The first is calbéng highlighting Usually,
Phong highlights are described using two keyworngsong andphong_size. The
float that followsphong determines the brightness of the highlight while the float
following phong_size determines its size. Let’s try this.

sphere { <0,0,0>, 1
pigment { Gray50 1}

finish {
ambient .2
diffuse .6
phong .75

phong_size 25
}
}

Rendering this we see a fairly broad, soft highlight thategithe sphere a kind of
plastic appearance. Now let’s changieong_size to 150. This makes a much smaller
highlight which gives the sphere the appearance of beinchrhaader and shinier.

There is another kind of highlight that is calculated by $edént means callespecu-
lar highlighting. It is specified using the keyworgbecular and operates in conjunc-
tion with another keyword calletloughness. These two keywords work together in
much the same way gshong andphong_size to create highlights that alter the
apparent shininess of the surface. Let's try using spedulaur sphere.

100 CHAPTER 4. BEGINNING TUTORIAL

sphere { <0,0,0>, 1
pigment { Gray50 }

finish {
ambient .2
diffuse .6

specular .75
roughness .1

Looking at th result we see a broad, soft highlight similantioat we had when we
usedphong_size of 25. Changeroughness to .001 and render again. Now we
see a small, tight highlight similar to what we had when weduskong_size of
150. Generally speaking, specular is slightly more aceunatl therefore slightly more
realistic than phong but you should try both methods wheigde®y a texture. There
are even times when both phong and specular may be used osha fini

4.8.4.3 Using Reflection and Metallic

There is another surface parameter that goes hand in hahdigftlights,reflection
Surfaces that are very shiny usually have a degree of reffeti them. Let's take a
look at an example.

sphere { <0,0,0>, 1
pigment { Gray50 }

finish {
ambient .2
diffuse .6

specular .75
roughness .001
reflection .5

We see that our sphere now reflects the green and white cleecilame and the black
background but the gray color of the sphere seems out of .plHgis is another time
when a lower diffuse value is needed. Generally, the highketlection is the lower
diffuse should be. Try lowering the diffuse value to 0.3 and the ambi@lue to
0.1 and render again. That is much better. Let's make oursseshiny as a polished
gold ball bearing.

sphere { <0,0,0>, 1
pigment { BrightGold }

4.8. ADVANCED TEXTURE OPTIONS 101

finish {
ambient .1
diffuse .1

specular 1
roughness .001
reflection .75

}

That is very close but there is something wrong with the higtl To make the sur-
face appear more like metal the keywordtallic is used. Add it now to see the
difference.

sphere { <0,0,0>, 1
pigment { BrightGold }

finish {
ambient .1
diffuse .1

specular 1
roughness .001
reflection .75
metallic

}

We see that the highlight has taken on the color of the surfatter than the light
source. This gives the surface a more metallic appearance.

4.8.4.4 Using Refraction

Objects that are transparent allow light to pass througmihé/ith some substances,
the light is bent as it traves from one substance into ther dtbeause of the differing
optical densities of the objects. This is calledraction Water and glass both bend
light in this manner so to create water or glass, POV-Raysgna a way to specify
refraction. This is done with the keywords:fraction andior. The amount of
light that passes through an object is determined by theevafuhe filtering and/or
transmittance channel in the pigment. You should use thaatidn value only to
switch refraction on or off using vaules of 1 or 0 respectiVelr the boolean valuesn
andof f). See section 7.6.3.5 on page 299 for a detailed explanatithe reasons.

The degree of refraction, i. e. the amount of bending thatis;cs given by the

keyword ior, short forindex of refraction If you know the index of refraction of the
substance you are trying to create, you may just use thatintamce, water is 1.33,
glass is around 1.45 and diamond is 1.75. Let’s return toxheple of a glass sphere
we used earlier.

102 CHAPTER 4. BEGINNING TUTORIAL

sphere { <0,0,0>, 1
pigment { White filter 1 }
finish {

ambient 0
diffuse 0
reflection .25
refraction 1
ior 1.45
specular 1
roughness .001

Render this again and notice how the plane that is visibtitiin the sphere is distorted
and turned upside-down. This is because the light passingdh the sphere is being
bent or refracted to the degree specified. Try redugiag to 1.25. Try increasing it
to 1L75. Notice how the distortion changes.

4.8.4.5 Light Attenuation and Caustics

Transparent objects can be made to cause the intensityhopligsing through them to
be reduced. In reality, this is due to impurities in scatigthe light. Two float values
determine the effecttade_distance is the distance the light has to travel to reach
one-half its original intensity andade_power is the degree of falloff. Let's try an
example of this.

sphere { <0,0,0>, 1
pigment { White filter 1 }

finish {
ambient .1
diffuse .1

reflection .15
refraction 1
ior 1.45
specular 1
roughness .001
fade_distance 5
fade power 1

This gives the sphere a slightly clouded look as if not allhef light was able to pass
through it. For interesting variations of this texture, toyering ior to 1.15 and
raisingreflectionto 0.5.

4.8. ADVANCED TEXTURE OPTIONS 103

One thing we do notice is that the shadow of the sphere iglstilsame old flat gray
shadow we have had all along. If there is all this light reiat going on shouldn’t
there be something going on with the shadow as well? That thimgewould be due

to an effect known asaustics POV-Ray cannot do caustics but it can fake them to
some degree. This is an easy one. Simply addstics 1 tothefinish block
and re-render to see the effect. What we see is a highlightishadow that simulates
the effect of light passing through the sphere and beingstediecause of the curved
surface. Remember that this is not real caustics, so chauagher finish parameters
like ior will not affect the caustic highlight. The faked causticiisited to the area
shadowed by the corresponding object.

4.8.4.6 Using Iridescence

Iridescenceis what you see on the surface of an oil slick when the sun shoneit.
The rainbow effect is created by something calthoh-film interference(read sec-
tion 7.6.3.6 on page 301 for details). For now let's just teing it. Iridescence
is specified by theirid keyword and three valuesamount, thickness and
turbulence. The amount is the contribution to the overall surface coldsually
0.1 to 0.5 is sufficient here. The thickness affectshihgynessf the effect. Keep this
between 0.25 and 1 for best results. The turbulence isadiiffierent from pigment or
normal turbulence. You cannot settaves, lambda or omega but you can specify
an amount which will affect the thickness in a slightly di#et way from the thickness
value. Values between 0.25 and 1 work best here too. Fimdtlgscence will respond
to the surface normal since it depends on the angle of incalefithe light rays striking
the surface. With all of this in mind, let's add some iridesm our glass sphere.

sphere { <0,0,0>, 1
pigment { White filter 1 }

finish {
ambient .1
diffuse .1

reflection .2
refraction 1
ior 1.5
specular 1
roughness .001
fade distance 5
fade_power 1
caustics 1
irid {
0.35
thickness .5
turbulence .5

104 CHAPTER 4. BEGINNING TUTORIAL

Try varying the values fommount, thickness and turbulence to see what
changes they make. Try addingharmal block to see what happens.

4.8.5 Halos

Halos are a powerful feature that can be used to create a Hiffefent effects like
clouds, fogs, fire, lasers, etc. The name actually comes tinenability to render halos
with it, like the ones seen around the moon or the sun.

Due to the complexity of the halo feature and the large amofiparameters provided
it is very difficult to get satisfying results. The followingections will help you to
create a halo step by step, starting with the basic thingggaind) to the more subtle
stuff.

It is also helpful to read the halo reference sections to petter understanding of the
halo feature. You should especially read the sections dib5dage 229 and 7.6.4.1 on
page 303 because they are essential for understanding halos

4.8.5.1 What are Halos?

Halos are a texture feature allowing you to fill the interibaa object with particles.

The distribution of these particles can be modified usingsd\density mappings and
density functions. The particles can emit light to give fisedaser-like effects or they
can absorb light to create clouds or fog.

A halo is attached to an object, the so called container gbjest like a pigment,
normal or finish. This object is completely filled by the halg You won't see anything
if you do not make sure that the object is hollow and the serfadranslucent. How
this is accomplished will be shown in the next section.

When working with halos you always have to keep in mind thatdbntainer object
has to be hollow and translucent.

4.8.5.2 The Emitting Halo

We start with one of the simpler types, the emitting halo. désiparticles that only
emit light. There are no particles that absorb the light canfiom other particles.

4.8.5.2.1 Starting with a Basic Halo
A clever approach in designing a nice halo effect is to stétth & simple, unit-sized
shape that sits on the coordinate system’s origin.

In the first example{ALOO1.PoV) we try to create a fiery explosion, which the sphere
is best suited for. We start with a simple scene consisting aimera, a light source

4.8. ADVANCED TEXTURE OPTIONS 105

(we don’t care about shadows so we add the shadowless keyworteckered plane
and a unit-sized sphere containing the halo.

camera {
location <0, 0, -2.5>
look_at <0, 0, 0>

}

light_source { <10, 10, -10> color rgb 1 shadowless }

plane { z, 2
pigment { checker color rgb 0, color rgb 1 }
finish { ambient 1 diffuse 0 }
scale 0.5
hollow

}

sphere { 0, 1
pigment { color rgbt <1, 1, 1, 1> }
halo {
emitting
spherical_mapping
linear
color_map {
[0 color rgbt <1, 0, 0, 1>]
[1 color rgbt <1, 1, 0, 0>]
}

samples 10

}
hollow

You'll note that the sphere is set to be hollow and has a twaesit surface (the trans-
mittance channel in the pigment color is 1), just like it igued for halos. You'll also
note that the plane hasta11low keyword even though it has no halo. Why is this
necessary?

The reason is quite simple. As described in section 7.5.1age 229 there can be no
halo inside any other non-hollow object. Since the camenmasislethe plane object,
i.e. it is one the side of the plane that is considered be énglte halo will never be
visible unless the plane is made hollow (or thegative keyword is added to bring
the camera on theutsideside of the plane).

What do all those halo keywords and values mean? At the hiegirof the halo the
emitting keyword is used to specify what type of halo we want to use.€Fhidting
halo emits light. That's what's best suited for our fiery egibn.

Thespherical_mapping andlinear keyword need a more detailed explanation
of how a halo work (this is also done in chapter 7.6.4 on pagei@nore detail).

106 CHAPTER 4. BEGINNING TUTORIAL

As noted above the halo is made up of lots of small particlés. distribution of these
particles is described by a density function. In generakrssidy function tells us how
much particles we’ll find at a given location.

Instead of using an explicitly, mathematical density fimict halos rely on a given set
of density mappings and density functions to model a vanéparticle distributions.

The first step in this model is the density mapping functicat th used to map three-
dimensional points onto a one-dimensional range of vallresur example we use a
spherical mapping, i.e. we take the distance of a point flwcenter of the coordinate
system. This is the reason why it is clever to start with a@ioltr object sitting on the
coordinate system’s center. Since all density mappingsnage relative to this center
you won't see anything if you start with an object sitting swvhere else. Moving the
whole object (including textures and halos) to another locat®the correct way of
placing a container object.

Now we have a single value in the range from 0 to 1. This valuebeitransformed
using a density function to get density values instead dfdie values. Just using
this single value won’t work because we want to have partidé&ributions were the
density decreases as we move fromitiddlethe container object to the outside.

This is done by the density function. There are severalratemes available as de-
scribed in the halo reference (see section 7.6.4.5 on pa8je 30e use the simple
linear function that just maps values between 0 and 1 ontma@Xdange. Thus we get
a density value of 1 at the center of our sphere and a value tit9surface.

Now that we have a density function what do we do to see songhirhis is where
the colour map keyword comes into play. It is used to describe a color map tha
actually tells the program what colors have to be used fott wlasity. The relation is
guite simple: colors at the beginning of the color map (witta#f values) will be used
for low density values and colors at the end of the map (higheg will be used for
high densities. In our example the halo will be yellow at thater of the sphere where
the density is greatest and it will blend to red at the surfafcéhe sphere where the
density approaches zero.

The transmittance channel of the colors in the color mapésl s model the translu-
cency of the density field. A value of O represents no tramslay, i. e. that areas with
the corresponding density will be (almost) opaque, whil@laes of 1 means (almost)
total translucency.

In our example we use

color_map {
[0 color rgbt <1, 0, 0, 1>]
[1 color rgbt <1, 1, 0, 0>]

which results in a halo with a very translucent, reddish oatea and a nearly opaque,
yellowish inner areas as you can see after tracing the exaimplge.

4.8. ADVANCED TEXTURE OPTIONS 107

There is one parameter that still needs to be explainedsdhe1es keyword. This
keyword tells POV-Ray how many samples along any ray trangethrough the halo
have to be taken to calculate the halo. Using a low value edllt in a high tracing
speed while a high value will lead to a low speed. The sampievzas to be increased
if the halo looks somewhadtrange i. e. if some artifacts of the low sampling rate
appear. For more details see section 7.6.4.7 on page 310.

A good starting value for the number of samples is 10.

4.8.5.2.2 Increasing the Brightness

The colors of the halo in the above image are somewhat dimreTisgoo much of
the background visible through the halo. That does not loakhrlike fire, does it?
An easy way to fix this is to decrease the transparency of theles in the areas of
high density. Just use the following color map instead ofdltkone (the negative
transmittance is correct).

color_map {
[0 color rgbt <1, 0, O, 1>]
[1 color rgbt <1, 1, 0, -1>]
}

Looking at the result ofl ALO02.PoV we will see that the halo is indeed much brighter.

4.8.5.2.3 Adding Some Turbulence

What we now have does not look like a fiery explosion. It's maglowing ball than
anything else. Somehow we have to make it look nedraotic we have to add some
turbulence to it.

This is done by using theurbulence keyword together with the amount of turbu-
lence we want to add. Just like in the following example.

sphere { 0, 1
pigment { color rgbt <1, 1, 1, 1>}
halo {
emitting
spherical_mapping
linear
turbulence 1.5
color_map {
[0 color rgbt <1, 0, 0, 1>]
[1 color rgbt <1, 1, 0, -1>]
}
samples 10
}
hollow

108 CHAPTER 4. BEGINNING TUTORIAL

Adding turbulence to the halo moves all points inside the ltaintainer in a pseudo-
random manner. This results in a particle distribution tbeks like there was some
kind of flow in the halo (depending on the amount of turbulence you’'llay&minar
or turbulent flow). The hight turbulence value is used beearsexplosion is highly
turbulent.

Looking at the example imageiAL003.PoV) you'll see that this looks more like a
fiery explosion than the glowing ball we got until now.

You'll natice that the time it took to render the image ined after we added the
turbulence. This is due to the fact that for every samplertdf@n the halo the slow
turbulence function has to be evaluated.

4.8.5.2.4 Resizing the Halo

There is one strange thing about our fiery explosion thougstilllooks like a sphere.
Why does this happen and what can we do to avoid it?

As noted above adding turbulence moves the particles itisgdealo container around.
The problem is that some of the particles are actually mouedfcthe container object.
This leads to high densities at the surface of the contaibjecbrevealing the shape of
the object (all particles outside the container are lostwifichot visible resulting in a
large, highly visible density change at the surface).

An easy way of avoiding this is to make sure that the partistag inside the container
object even if we add some turbulence. This is done by scétiadpalo to reduce its
size. We dmot scale the container object, just the halo.

This is done by adding thecale keyword inside the halo statement.

sphere { 0, 1
pigment { color rgbt <1, 1, 1, 1> 1}
halo {
emitting
spherical mapping
linear
turbulence 1.5
color_map {
[0 color rgbt <1, 0, O, 1>]
[1 color rgbt <1, 1, 0, -1>]
}
samples 10
scale 0.5
}
hollow
scale 1.5

4.8. ADVANCED TEXTURE OPTIONS 109

The scale 0.5 command tells POV-Ray to scale all points inside the halohisy t
amount. This effectively scales the radius we get after éresitly mapping to a range
of 0 to 0.5 instead of O to 1 (without turbulence). If we now dbd turbulence the
points are allowed to move half a unit in every direction withleaving the container
object. That is excactly what we want.

To compensate for the smaller halo we would get we scale theregand the halo
inside) by 1.5.

Looking at the new example imagaAL004.Pov) you will no longer see any signs
of the container sphere. We finally have a nice fiery explosion

The amount by which to scale the halo depends on the amounthefi¢nce you use.
The higher the turbulence value the smaller the halo hassodded. That is something
to experiment with.

Another way to avoid that points move out of the sphere is éoauarger sphere, i. e. a
sphere with a radius larger than one. It is important to eelie sphere before the halo
is added because otherwise the halo will also be scaled.

You should note that this only works for spherical and box jpiragp (and a non-constant
density function). All other mapping types are (partialigjinite, i.e. the resulting
particle distribution covers an infinite space (see als@l7L6on page 303).

4.8.5.2.5 Using Frequency to Improve Realism

Another very good way of improving the realism of our exptwsis to use a frequency
value other than one. The way frequency works is explaineskaiion 7.6.4.8.5 on
page 312 in the reference part.

The rather mathematical explanation used there doesnptmekh in understanding
how this feature is used. It is quite simple though. The feaqy value just tells the
program how many times the color map will be repeated in tinsitderange from 0 to
1. If a frequency of one (the default) is specified the colopmal be visible once in

the density field, e. g. the color at 0 will be used for densjtgddor at 0.5 will be used
for density 0.5 and the color at 1 will be used for density Inj8e, isn't it?

If you choose a frequency of two, the color at 0 will be useddfemsity 0, the color at
0.5 will be used for density 0.25 and the color at 1 will be ukediensity 0.5. What
about the densities above 0.5? Since there are no entribe icotor map for values
above 1 we just start at 0 again. Thus the color at 0.1 will kel der density 0.55
((2%x0.55) mod 1= 1.1 mod 1= 0.1), the color at 0.5 will be used for density 0.75
and the color at 1 will be used for density 1.

If you are good at mathematics you'll note that the above g@kans not quite right
becausd1x2) mod 1= 0 and not 1. Just think that we used a value slightly smaller
than one and everything will be fine.

110 CHAPTER 4. BEGINNING TUTORIAL

You may have noticed that in order to avoid sudden changédswihdlo color for fre-
guencies larger than one you'll have to used a periodic aolap, i.e. a color map
whose entries at 0 and 1 are the same.

We'll change our example by using a periodic color map andhgimg the frequency
value to two.

sphere { 0, 1
pigment { color rgbt <1, 1, 1, 1> 1}
halo {
emitting
spherical_mapping
linear
turbulence 1.5
color_map {
[0.0 color rgbt <1, 0, 0, 1>]
[0.5 color rgbt <1, 1, 0, -1>]
[1.0 color rgbt <1, , 1>]
}
frequency 2
samples 20
scale 0.5

o

o
o

}
hollow
scale 1.5

Looking at the result of HALOO5.POV) we can be quite satisfied with the explosion
we just have created, can't we?

There’s one thing left you should be aware of when increagiegrequency value. It
is often necessary to increase the sample rate in (neadydaime way as you change
the frequency. If you don't do this you'll probably get sonevare aliasing artefacts
(like color jumps or strange bands of colors). If this happprst change the samples
value according to the frequency value (twice sampling fiata doubled frequency).

4.8.5.2.6 Changing the Halo Color

We have a nice fiery explosion but we want to try to add senience fictiortouch to
it by using different colors. How about a nice green, leskulemt explosion that gets
red at its borders?

Nothing easier than that!

sphere { 0, 1.5
pigment { color rgbt <1, 1, 1, 1> 1}
halo {

4.8. ADVANCED TEXTURE OPTIONS 111

emitting

spherical_mapping

linear

turbulence 0.5

color_map {
[0 color rgbt <0, 1, 0, 1>]
[1 color rgbt <1, 0, 0, -1>]

}

samples 10
scale 0.75

}
hollow
scale 1.5

}

This should do the trick. Looking at the result ®ALO06.POV you may be disap-
pointed. Where is the red center of the explosion? The bsraler green as expected
but there is a lot of yellow in the center and only a little l@tr What is happening?

We use an emitting halo in our example. According to the spoading section in
the halo reference chapter (see 7.6.4.3.3 on page 306yplef halo uses very small
particles that do not attenuate light passing through the lzspecially particles near
the viewer do not attenuate the light coming from particesafvay from the viewer.

During the calculation of the halo’s color near the centethef container sphere, the
ray steps through nearly all possible densities of the@artistribution. Thus we get
red and green colors as we march on, depending on the cuwstitiop in the halo.
The sum of these colors is used which will gives as a yellowrcgthe sum of red and
green is yellow). This is what is happening here.

How can we still get what we want? The answer is to use a glowalg instead of
the emitting halo. The glowing halo is very similar to the #mg one except that
it attenuates the light passing through. Thus the light ofiglas lying behind other
particles will be attenuated by the particles in front.

For the results of the glowing halo see 4.8.5.3.

4.8.5.3 The Glowing Halo

We have mentioned the glowing halo in the section about th#irghhalo as one way
to avoid the color mixing that is happening with emittingdsal

The gowing halo is very similar to the emitting halo excettti also absorbs light.
You can view it as a combination of the emitting and the atiting halo described in
section 4.8.5.4 on the following page.

By just replacing theemitting keyword in the example in section 4.8.5.2.6 on the
preceding page with thelowing keyword we get the desired effect as shown in the
example imageHALO11.PoV).

112 CHAPTER 4. BEGINNING TUTORIAL

Even though the red color of the high density areas is notwisityle because the green
colored, lower density areas lying in front absorb most efriéd light, you don’t get
yellow color where you would have expected a red one.

Due to its similarity with the emitting halo we leave it up towto make some exper-
iments with this halo type. You just have to keep all thoseghiyou learned in the
previous sections in mind to get some satisfying results.

4.8.5.4 The Attenuating Halo

Another simple halo type is the attenuating halo that onlgodts light. It doesn’t
radiate on its own.

A great difference between the attenuating halo and the btide types is that the color
of the attenuating halo is calculated from the halo’s colaprasing the total particle
density along a given ray. The other types calculated a (wed) average of the colors
calculated from the density at each sample.

4.8.5.4.1 Making a Cloud

Attenuating halos are ideal to create clouds and smoke elfolfowing examples we
will try to make a neat little cloud. We start again by usingrét-sized sphere that is
filled with a basic attenuating haleidLo21.PoV).

camera {
location <0, 0, -2.5>
look _at <0, 0, 0>

}

light_source { <10, 10, -10> color rgb 1 shadowless }

plane { z, 2
pigment { checker color rgb 0, color rgb 1 }
finish { ambient 1 diffuse 0 }
scale 0.5
hollow
}

sphere { 0, 1
pigment { color rgbt <1, 1, 1, 1> 1}
halo {
attenuating
spherical mapping
linear
color_map {
[0 color rgbt <1, 0, 0, 1>]

4.8. ADVANCED TEXTURE OPTIONS 113

[1 color rgbt <1, 0, 0, 0>]
}
samples 10

}
hollow

Even though clouds normally are not red but white or gray, & thhe red color to
make it more visible against the black/white checkerboaakground.

The color of an attenuating halo is calculated from the tataumulated density after
a ray has marched through the complete particle field. Thisttvdoe kept in mind

when creating the color map. We want the areas of the cloudanitw density to have
a high translucency so we use a color of {dbd,0,1) and we want the high density
areas to be opaque so we choose a color of igt0,0).

4.8.5.4.2 Scaling the Halo Container

The cloud we have created so far doesn’t look very realidtig just a red, partially

translucent ball. In order to get a better result we use sdnieeomethods we have
already learned in the sections about emitting halos ab@eadd some turbulence
to get a more realistic shape, we scale the halo to avoid thtaio@r object’s surface
to become visible and we decrease the translucency of tlas an¢h a high particle
density.

Another idea is to scale the container object to get an ellipshape that can be used
to model a cloud pretty good. This is done by theale (1.5,0.75,1) command at
the end of the sphere. It scales both, the sphere and thenisidie.i

sphere { 0, 1
pigment { color rgbt <1, 1, 1, 1>}
halo {
attenuating
spherical_mapping
linear
turbulence 1
color_map {
[0 color rgbt <1, 0, 0, 1>]
[1 color rgbt <1, 0, 0, -1>]
}
samples 10
scale 0.75
}
hollow
scale <1.5, 0.75, 1>

114 CHAPTER 4. BEGINNING TUTORIAL

Looking at the results afiaAL022.Pov you'll see that this looks more like a real cloud
(besides the color).

4.8.5.4.3 Adding Additional Halos

Another trick to get some more realism is to use multiple falbyou look at cumulus
clouds e. g. you'll notice that they often extend at the toplevthey are quite flat at
the bottom.

We want to model this appearance by adding two additionaishtal our current con-
tainer object (see section 7.6.4.2 on page 304 for morelsletaihis is done in the
following way:

sphere { 0, 1.5
pigment { color rgbt <1, 1, 1, 1> }
halo {
attenuating
spherical_mapping
linear
turbulence 1
color_map {
[0 color rgbt <1, 0, 0, 1>]
[1 color rgbt <1, 0, 0, -1>]
}
samples 10
scale <0.75, 0.5, 1>
translate <-0.4, 0, 0>
}
halo {
attenuating
spherical_mapping
linear
turbulence 1
color_map {
[0 color rgbt <1, 0, O, 1> 1]
[1 color rgbt <1, 0, 0, -1>]
}
samples 10
scale <0.75, 0.5, 1>
translate <0.4, 0, 0>
}
halo {
attenuating
spherical mapping
linear
turbulence 1
color_map {
[0 color rgbt <1, 0, O, 1> 1]

4.8. ADVANCED TEXTURE OPTIONS 115

[1 color rgbt <1, 0, 0, -1>]
}
samples 10
scale 0.5
translate <0, 0.2, 0>

}
hollow

The three halos used differ only in their location, i. e. ia thanslation vector we have
used. The first two halos are used to form the base of the clbild tie last sits on top
of the others. The sphere has a different radius than théop®wnes because more
space is needed for all three halos.

The result ofHALO23.POV somehwat looks like a cloud, even though it may need
some work.

4.8.5.5 TheDustHalo

The dust halo is a very complex halo type. It allows you to keartteraction of light
coming from light sources with the particles in the halo. 3é&garticles do absorb
light like the attenuating halo. In addition they scattghticoming from light sources
passing through them. This makes beams of light and shadmst®yg objects onto the
halo become visible.

4.8.5.5.1 Starting With an Object Lit by a Spotlight

We start with a box shaped object that is lit by a spotlight. dbe’'t use any halo at
this moment because we want to see if the object is complitddy the light source
(HALO31.POV).

camera {
location <0, 0, -2.5>
look_at <0, 0, 0>

}

background { color rgb <0.2, 0.4, 0.8> }

light_source {
<2.5, 2.5, -2.5>
colour rgb <1, 1, 1>
spotlight
point_at <0, 0, 0>
radius 12
falloff 15
tightness 1

116 CHAPTER 4. BEGINNING TUTORIAL

}

difference {
box { -1, 1}
box { <-1.1, -0.8, -0.8>, <1.1, 0.8
box { <-0.8, -1.1, -0.8>, <0.8, 1.1, 0.8> }
box { <-0.8, -0.8, -1.1>, <0.8, 0.8
pigment { color rgb <1, 0.2, 0.2> }

scale 0.5

rotate 45*y

rotate 45*x

}

As you see the whole object is lit by the light source. Now we start to add some
dust.

4.8.5.5.2 Adding Some Dust

We use a box to contain the dust halo. Since we use a constasityd&nction it
doesn’t matter what kind of density mapping is used. Theitdehas the value speci-
fied by themax value keyword everywhere inside the halo (the default value i3.one
The isotropic scattering is selected withst type .

box { -1, 1
pigment { colour rgbt <1, 1, 1, 1> }
halo {
dust
dust_type 1
box_mapping
constant
colour_map {
[0 color rgbt <1, 1, 1, 1> 1]
[1 color rgbt <1, 1, 1, 0> 1]
}
samples 10
}
hollow
scale 5

}

The result ofHALO32.POV is too bright. The dust is too thick and we can only see
some parts of the object and no background.

4.8.5.5.3 Decreasing the Dust Density

The density inside the halo has the constant value one. Tésmsnthat only the color
map entry at position one is used to determine the densitgaliod of the dust.

4.8. ADVANCED TEXTURE OPTIONS 117

We use a transmittance value of 0.7 to get a much thinner dust.

box { -1, 1
pigment { colour rgbt <1, 1, 1, 1> }
halo {
dust
dust_type 1
box_mapping
constant
colour_map {
[0 color rgbt <1, 1, 1, 1.0>]
[1 color rgbt <1, 1, 1, 0.7> 1]
}
samples 10
}
hollow
scale 5

Beside the ugly aliasing artefacts the image looks muclebétte can see the whole
object and even the background is slightly visitda(033.PoV).

4.8.5.5.4 Making the Shadows Look Good

In order to reduce the aliasing artefacts we use three diftetechniques: jittering,
super-sampling and an increased overall sampling rate.

The jittering is used to add some randomness to the sampingspmaking the image
look more noisy. This helps because the regular aliasirgfeants are more annoying
than noise. A lowjitter value is a good choice.

The super-sampling tries to detect fine features by takirditiadal samples in ar-
eas of high intensity changes. The threshold at which ssgeepling is used and the
maximum recursion level can be specified usingdhethreshold andaa_level
keywords.

The approach that always works is to increase the overalpkgrrate. Since this is
also the slowest method you should always try to use the atleénods first. If they
don't suffice you'll have to increase the sampling rate.

We use the following halo to reduce the aliasing artefagta. ©034.rPov).

box { -1, 1
pigment { colour rgbt <1, 1, 1, 1> }
halo {
dust
dust_type 1

118 CHAPTER 4. BEGINNING TUTORIAL

box_mapping
constant
colour_map {
[0 color rgbt <1, 1, 1, 1.0>]
[1 color rgbt <1, 1, 1, 0.7>
}
samples 50
aa_level 3
aa_threshold 0.2
jitter 0.1
}
hollow
scale 5

}

The image looks much better now. There are hardly any ajiastefacts left.

The same parameters we have used are discussed in the sdudidrthe atmosphere
feature (see 4.9.4 on page 131 for further explanations).

4.8.5.5.5 Adding Turbulence

The major difference between the halo’s dust and the atneosplescribed in 4.9.4 on
page 131 is the ability to choose a non-uniform particlerithistion for the dust. This

includes the fact that the halo is limited to a container ctbgs well as the different
density mappings and functions.

Another interesting way of getting an irregular disribuatiis to add some turbulence
to the dust. This is done with theurbulence keyword followed by the amount of
turbulence to use, like the following example shows1(035.POV).

box { -1, 1
pigment { colour rgbt <1, 1, 1, 1>}
halo {
dust
dust_type 1
box_mapping
linear
turbulence 1
colour_map {
[0 color rgbt <1, 1, 1, 1.0>]
[1 color rgbt <1, 1, 1, 0.5>]
}
samples 50
aa_level 3
aa_threshold 0.2
jitter 0.1

4.8. ADVANCED TEXTURE OPTIONS 119

hollow
scale 5

The image we now get looks much more interesting due to tHesshithe particle
density.

You should note that we use a linear density function instédte previous constant
one. This is necessary because with a constant densityidorttte density has the
same value everywhere. Adding turbulence would have notdffecause wherever the
points are moved the density will have this same value. Omigraconstant density
distribution makes sense when turbulence is added.

The fact that the turbulence value is actually a vector camsiegl to create effects like
waterfalls by using a large turbulence value in on directialy (e.g. turbulence
(0.2,1,0.2)).

4.8.5.5.6 Using a Coloured Dust

If you want to create a colored dust you can easily do this bygus non-white color in
the halo’s color map. In this case you'll also have to set tlherfthannels in the color
map to non-zero values to specify the amount of light thatheilfiltered by the dust’s
color.

Use the following color map to get a partially filtering, registifor example:

colour_map {
[0 color rgbft <1, O
[1 color rgbft <1, O

4.8.5.6 Halo Pitfalls

Due to the complexity of the halo feature and the few expedsrpeople have made
so far there are a lot of things still to discover.

Some of the most common problems and pitfalls are describktviin order to help
you to avoid the most common problems.

4.8.5.6.1 Where Halos are Allowed

As mentioned above a halo completly fills the interior of afeob Keeping this in
mind it is reasonable that the following example does noterssnse.

120 CHAPTER 4. BEGINNING TUTORIAL

sphere { 0, 1
pigment {
checker
texture {
pigment { color Clear }
halo { ... }
}
texture {
pigment { color Red 1}
}
}
hollow

What's wrong with this example? It's simply that a halo isdisedescribe theterior

of an object and that you cannot describe this interior bgileing how the surface of
the object looks like. But that's what was done in the exarapleve. Can you imagine
what the interior of the sphere will look like? Will it be fillecompletey with the halo?
Will there be areas filled by the halo and some filled by air? kgivthose areas look
like?

You won't be able to tell the interior’s properties from lao§ at the surface. It's just
not possible. This should always be kept in mind.

If the above example was meant to create a sphere filled witthosamd covered with
a checker board pattern that partially hid the halo you wiade used the following
syntax:

sphere { 0, 1
pigment {
checker
texture {
pigment { color Clear }
}
texture {
pigment { color Red }
}
}
halo { ... }
hollow

A halo is always applied to an object in the following way:

OBJECT {
texture {

4.8. ADVANCED TEXTURE OPTIONS 121

pigment { ... }
normal { ... }
finish { ... }
halo { ... }

}

hollow

}

There’s no halo allowed inside any pigment statement, ¢colw, pigment map, texture
map, material map, or whatever. You are not hindered to dolthi you will not get
what you want.

You can use a halo with a layered textures as long as you ma&etsi the halos are
only attached to the lowest layer (this layer has to be phrtiansparent to see the
halo of course).

4.8.5.6.2 Overlapping Container Objects

POV-Ray is not able to handle overlapping container objeotsectly. If you create

two overlapping spheres that contain a halo you won't getecorresults where the
spheres overlap. The halo effect is calculated indepehydemteach sphere and the
results are added.

If you want to add different halos you have to put all halosdesa single container
object to make sure the halo is calculated correctly (see/a&4.2 on page 304).

You should also note non-overlapping, stacked halo costsiare handled correctly.
If you put a container object in front of another containejeobthe halos are rendered
correctly.

4.8.5.6.3 Multiple Attenuating Halos

It is currently not possible to use mutliple attenuatingoBakith different color maps.
The color map of the last halo will be used for all halos in thetainer object.

4.8.5.6.4 Halos and Hollow Objects

In order to correctly render halo effects you have to make $hiat all objects the
camera is inside are hollow. This is done by addingtth& 1 ow keyword.

For a detailed explanation see 7.5.1 on page 229.
4.8.5.6.5 Scaling a Halo Container

If you scale a halo container object you should keep in mirat thmakes a great
difference where you place the scale keyword.

122 CHAPTER 4. BEGINNING TUTORIAL

Scaling the object before the halo statement will only sttaecontainer object not the
halo. This is useful if you want to avoid that the surface eftbntainer object becomes
visible due to the use of turbulence. As you've learned insthetions above particles
may move out of the container object — where they are inwsibl if turbulence
is added. This only works for spherical and box mapping beedbe density fields
described by the other mapping types don’t have finite difoess

If the scale keyword is used after the halo statement bothh#tho and the container
object, are scaled. This is useful to scale the halo to yoadse

The halo keeps its appearance regardless of the transfonsmaipplied to the container
object (after the halo), i.e. the halo’s translucency, catw turbulence characteristics
will not change.

4.8.5.6.6 Choosing a Sampling Rate

Normally you'll start with a low sampling rate and you'll gnincrease it if any aliasing
artefacts turn up (and don't vanish by using super-samgimdjittering).

The halo’s appearance is independent from the samplingasteng as there are
enough samples to get a good estimate of what the halo realksg like. This means

that one or two samples are hardly ever enough to determéinigaib’s appearance. As
you increase the number of samples the halo will quickly @ggin its real appearance.

To put it in a nutshell, the halo will not change its appeaeanith the sample rate as
long as you have a sufficient number of samples and no aliasiatacts occur.

4.8.5.6.7 Using Turbulence

As noted in one of the above sections turbulence will haveffexteif the constant

density function is used (keywoktbnstant) . It doesn’t matter how much or where
you move a point if the density is constant and thus does notrdk on the points
location. You'll get the same density value for all location

Whenever you add turbulence to a halo do not use the constasityl function.

4.9 Using Atmospheric Effects

POV-Ray offers a variety of atmospheric effects, i. e. fesguhat affect the back-
ground of the scene or the air by which everything is surrednd

It is easy to assign a simple color or a complex color pattera virtual sky sphere.
You can create anything from a cloud free, blue summer skystorany, heavy clouded
sky. Even starfields can easily be created.

4.9. USING ATMOSPHERIC EFFECTS 123

You can use different kinds of fog to create foggy scenestiplalfog layers of differ-
ent colors can add an eerie touch to your scene.

A much more realistic effect can be created by using an athewspa constant fog that
interacts with the light coming from light sources. Beamdigtit become visible and
objects will cast shadows into the fog.

Last but not least you can add a rainbow to your scene.

49.1 The Background

The background feature is used to assign a color to all ragtsdiin’t hit any object.
This is done in the following way.

camera {
location <0, 0, -10>
look_at <0, 0, 0>

}

background { color rgb <0.2, 0.2, 0.3> 1}

sphere { 0, 1
pigment { color rgb <0.8, 0.5, 0.2> }
}

The background color will be visible if a sky sphere is used fisome translucency
remains after all sky sphere pigment layers are processed.

4.9.2 The Sky Sphere

The sky sphere can be used to easily create a cloud covered sightly star sky or
whatever sky you have in mind.

In the following examples we’ll start with a very simple skghere that will get more
and more complex as we add new features to it.

49.2.1 Creating a Sky with a Color Gradient

Beside the single color sky sphere that is covered with tlkdraund feature the
simplest sky sphere is a color gradient.

You may have noticed that the color of the sky varies with thgle to the earth’s
surface normal. If you look straight up the sky normally hamuwch deeper blue than
it has at the horizon.

We want to model this effect using the sky sphere as shown enstiene below
(SKYSPHL1.POV).

124 CHAPTER 4. BEGINNING TUTORIAL

#include "colors.inc"

camera {
location <0, 1, -4>
look _at <0, 2, 0>
angle 82

}

light_source { <10, 10, -10> White }

sphere { 2*y, 1

pigment { color rgb <1, 1, 1> }

finish { ambient 0.2 diffuse 0 reflection 0.6 }
}

sky_sphere {
pigment {
gradient y
color_map {
[0 color Red]
[1 color Blue]
}
scale 2
translate -1

The interesting part is the sky sphere statement. It cantaipigment that describe
the look of the sky sphere. We want to create a color gradiengahe viewing angle

measured against the earth’s surface normal. Since theresgtidn vector is used to
calculate the pigment colors we have to useytigeadient.

The scale and translate transformation are used to map thts ierived from the
direction vector to the right range. Without those transfations the pattern would be
repeated twice on the sky sphere. Bwale statement is used to avoid the repetition
and thetranslate -1 statement moves the color at index zero to the bottom of the
sky sphere (that's the point of the sky sphere you'll seeif gk straight down).

After this transformation the color entry at position O wi# at the bottom of the sky
sphere, i. e. below us, and the color at position 1 will be atttip, i. e. above us.

The colors for all other positions are interpolated betwibese two colors as you can
see in the resulting image.

If you want to start one of the colors at a specific angle ydu$t have to convert the
angle to a color map index. This is done by using the formula

1—cogqangle

color mapindex= 5

4.1)

4.9. USING ATMOSPHERIC EFFECTS 125

where the angle is measured against the negated eartrégsurbrmal. This is the
surface normal pointing towards the center of the earth. igtesof O degrees describes
the point below us while an angle of 180 degrees represeatzettith.

In POV-Ray you first have to convert the degree value to radidures as it is shown in
the following example.

sky_sphere {
pigment {
gradient y
color_map {

[(1-cos(radians(30)))/2 color Red]
[(1-cos (radians(120))) /2 color Blue]
}
scale 2

translate -1

This scene uses a color gradient that starts with a red coRD degrees and blends
into the blue color at 120 degrees. Below 30 degrees evarytkired while above 120
degrees all is blue.

4.9.2.2 Adding the Sun

In the following example we will create a sky with a red surrsunded by a red color
halo that blends into the dark blue night sky. We'll do thigngsonly the sky sphere
feature.

The sky sphere we use is shown below. A ground plane is alsmdddgreater realism
(SKYSPH2.POV).

sky_sphere {
pigment {
gradient y
color_map {

[0.000 0.002 color rgb <1.0, 0.2, 0.0>
color rgb <1.0, 0.2, 0.0>]
[0.002 0.200 color rgb <0.8, 0.1, 0.0>
color rgb <0.2, 0.2, 0.3>]

}

scale 2

translate -1
}

rotate -135%*x

126 CHAPTER 4. BEGINNING TUTORIAL

plane { vy, O

pigment { color Green }

finish { ambient .3 diffuse .7 }
}

The gradient pattern and the transformation inside the @igrare the same as in the
example in the previous section.

The color map consists of three colors. A bright, slightilorgish red that is used for
the sun, a darker red for the halo and a dark blue for the night Bhe sun’s color
covers only a very small portion of the sky sphere becauseomtt @ant the sun to
become too big. The color is used at the color map values Ga@600.002 to get a
sharp contrast at value 0.002 (we don’t want the sun to biatiackhe sky). The darker
red color used for the halo blends into the dark blue sky cfslam value 0.002 to
0.200. All values above 0.200 will reveal the dark blue sky.

Therotate -135*x statementis used to rotate the sun and the complete skyespher
to its final position. Without this rotation the sun would h®aegrees, i.e. right below
us.

Looking at the resulting image you’'ll see what impressifea$ you can achieve with
the sky sphere.

4.9.2.3 Adding Some Clouds

To further improve our image we want to add some clouds bynapalisecond pigment.
This new pigment uses the bozo pattern to create some niggscl&ince it lays on top
of the other pigment it needs some translucent colors indl@ cnap (look at entries
0.5to 1.0).

sky_sphere {

pigment {
gradient y
color_map {

[0.000 0.002 color rgb <1.0, 0.2, 0.0>
color rgb <1.0, 0.2, 0.0>]
[0.002 0.200 color rgb <0.8, 0.1, 0.0>
color rgb <0.2, 0.2, 0.3>]

}
scale 2
translate -1

}

pigment {
bozo
turbulence 0.65
octaves 6

4.9. USING ATMOSPHERIC EFFECTS 127

omega 0.7
lambda 2
color_map {
[0.0 0.1 color rgb <0.85, 0.85, 0.85>
color rgb <0.75, 0.75, 0.75>]
[0.1 0.5 color rgb <0.75, 0.75, 0.75>
color rgbt <1, 1, 1, 1>]
[0.5 1.0 color rgbt <1, 1, 1, 1>
color rgbt <1, 1, 1, 1>]
}
scale <0.2, 0.5, 0.2>
}

rotate -135%*x

The sky sphere has one drawback as you might notice whemipakithe final image
(skyspPH3.PoOV). The sun doesn’t emit any light and the clouds will not cast a
shadows. If you want to have clouds that cast shadows yaawvi o use a real, large
sphere with an appropriate texture and a light source sosr@ngutside the sphere.

49.3 TheFog

You can use the fog feature to add fog of two different typegta scene: constant fog
and ground fog. The constant fog has a constant densitywkerg while the ground
fog’s density decreases as you move upwards.

The usage of both fog types will be described in the next sestin detail.

49.3.1 A Constant Fog

The simplest fog type is the constant fog that has a conseadity in all locations. It
is specified by @1istance keyword which actually describes the fog's density and a
fog color.

The distance value determines the distance at which 36.8%edfackground are still
visible (for a more detailed explanation of how the fog iscoédted read the reference
section 7.7.3 on page 351).

The fog color can be used to create anything from a pure whigered, bloodish fog.
You can also use a black fog to simulate the effect of a limitedye of vision.

The following example will show you how to add fog to a simpbese €0G1.POV).

#include "colors.inc"

camera {

128 CHAPTER 4. BEGINNING TUTORIAL

location <0, 20, -100>

background { colour SkyBlue }

plane { y, -10
pigment {
checker colour Yellow colour Green
scale 20

sphere { <0, 25, 0>, 40
pigment { Red }
finish { phong 1.0 phong_size 20 }

sphere { <-100, 150, 200>, 20
pigment { Green }
finish { phong 1.0 phong_size 20 }

sphere { <100, 25, 100>, 30
pigment { Blue }
finish { phong 1.0 phong_size 20 }

light_source { <100, 120, 40> colour White}

fog {
distance 150
colour rgb<0.3, 0.5, 0.2>

According to their distance the spheres in this scene mdeseivanish in the greenish
fog we used, as does the checkerboard plane.

49.3.2 Setting a Minimum Translucency

If you want to make sure that the background does not compledmish in the fog
you can set the transmittance channel of the fog's coloréathount of background
you always want to be visible.

Using as transmittance value of 0.2 as in

fog {
distance 150
colour rgbt<0.3, 0.5, 0.2, 0.2>

4.9. USING ATMOSPHERIC EFFECTS 129

the fog's translucency never drops below 20% as you can st iresulting image
(FOG2.POV).

4.9.3.3 Creating a Filtering Fog

The greenish fog we have used so far doesn't filter the lighsipg through it. All it
does is to diminish the light’s intensity. We can change blyizising a non-zero filter
channel in the fog’s colorHOG3.POV).

fog {

distance 150

colour rgbf<0.3, 0.5, 0.2, 1.0>
}

The filter value determines the amount of light that is filédog the fog. In our example
100% of the light passing through the fog will be filtered bg fhg. If we had used a
value of 0.7 only 70% of the light would have been filtered. Témaining 30% would
have passed unfiltered.

You'll notice that the intensity of the objects in the fog @ wnly diminished due to the
fog's color but that the colors are actually influenced byfte The red and especially
the blue sphere got a green hue.

4.9.3.4 Adding Some Turbulence to the Fog

In order to make our somewhat boring fog a little bit more ries¢ing we can add some
turbulence, making it look like it had a non-constant dgngioG4.pov).

fog {
distance 150
colour rgbf<0.3, 0.5, 0.2, 1.0>
turbulence 0.2
turb_depth 0.3

The tubulence keyword is used to specify the amount of turbulence usedevth@é
turb_depth value is used to move the point at which the turbulence vaelicu-
lated along the viewing ray. Values near zero move the poittig viewer while values
near one move it to the intersection point (the default vadue5). This parameter can
be used to avoid noise that may appear in the fog due to thelémde (this normally
happens at very far away intersecion points, especiallg ifntersection occurs, i. e.

130 CHAPTER 4. BEGINNING TUTORIAL

the background is hit). If this happens just lower therb_depth value until the
noise vanishes.

You should keep in mind that the actual density of the fog da#shange. Only the
distance-based attenuation value of the fog is modified bytdtbulence value at a
point along the viewing ray.

4.9.3.5 Using Ground Fog

The much more interesting and flexible fog type is the growty fvhich is selected
with the fog_type statement. It's appearance is described withfibg_of fset
andfog_alt keywords. Thefog_of fset specifies the height, i. e/ value, below
which the fog has a constant density of one. Fhgy_alt keyword determines how
fast the density of the fog will approach zero as one movawyaloey axis. At a height
of fogof fset}- fog alt the fog will have a density of 25%.

The following example K0G5.PoV) uses a ground fog which has a constant density
belowy = 25 (the center of the red sphere) and quickly falls off foréasing altitudes.

fog {
distance 150
colour rgbf<0.3, 0.5, 0.2, 1.0>
fog_type 2
fog_offset 25
fog_alt 1

4.9.3.6 Using Multiple Layers of Fog

It is possible to use several layers of fog by using more thenfog statement in your
scene file. This is quite useful if you want to get nice effaeig turbulent ground

fogs. You could add up several, differently colored fogs reate an eerie scene for
example.

Just try the following exampler©G6.POV).

fog {
distance 150
colour rgb<0.3, 0.5, 0.2>
fog_type 2
fog_offset 25
fog_alt 1
turbulence 0.1
turb_depth 0.2

4.9. USING ATMOSPHERIC EFFECTS 131

fog {
distance 150
colour rgb<0.5, 0.1, 0.1>
fog_type 2
fog_offset 15
fog_alt 4
turbulence 0.2
turb_depth 0.2
}

fog {
distance 150
colour rgb<0.1, 0.1, 0.6>
fog_type 2
fog_offset 10
fog_alt 2
}

You can combinate constant density fogs, ground fogs,ifijdogs, non-filtering fogs,
fogs with a translucency threshold, etc.

49.3.7 Fog and Hollow Objects

Whenever you use the fog feature and the camera is inside-haitmw object you
won't get any fog effects. For a detailed explanation whys theppens see 7.5.1 on
page 229.

In order to avoid this problem you have to make all those dbj&ollow by either
making sure the camera is outside these objects (usingrtherse keyword) or by
adding thehol 1ow to them (which is much easier).

4.9.4 The Atmosphere

The atmosphere feature can be used to model the interadtlghbwith particles in
the air. Beams of light will become visible and objects wakt shadowinto the fog
or dust that’s filling the air.

The atmosphere model used in POV-Ray assumes a constantepdensity every-
where except solid objects. If you want to create cloud ldgsfor smoke you'll have
to use the halo texturing feature described in section 48.5age 104.

49.4.1 Starting With an Empty Room

We want to create a simple scene to explain how the atmosfeediee works and how
you'll get good results.

132 CHAPTER 4. BEGINNING TUTORIAL

Imagine a simple room with a window. Light falls through thmdow and is scattered
by the dust particles in the air. You'll see beams of light cayfrom the window and
shining on the floor.

We want to model this scene step by step. The following exesnptart with the
room, the window and a spotlight somewhere outside the ro@omrently there’s no
atmosphere to be able to verify if the lighting is correxctj0s1.PoOV).

camera {
location <-10, 8, -19>
look _at <0, 5, 0>
angle 82

}

background { color rgb <0.2, 0.4, 0.8> }
light_source { <0, 19, 0> color rgb 0.5 atmosphere off }

light_source {
<40, 25, 0> color rgb <1, 1, 1>
spotlight
point_at <0, 5, 0>
radius 20
falloff 20
atmospheric_attenuation on

}

union {
difference {
box { <-21, -1, -21>, <21, 21, 21> }
box { <-20, 0, -20>, <20, 20, 20> }
box { <19.9, 5, -3>, <21.1, 15, 3> }
}
box { <20, 5, -0.25>, <21, 15, 0.25> }
box { <20, 9.775, -3>, <21, 10.25, 3>}
pigment { color red 1 green 1 blue 1 }
finish { ambient 0.2 diffuse 0.5 }

}

The point light source is used to illuminate the room fronmdesvithout any interaction
with the atmosphere. This is done by addingmosphere off . We don’t have to
care about this light when we add the atmosphere later.

The spotlight is used with thetmospheric_attenuation keyword. This means
that light coming from the spotlight will be diminished byetatmosphere.

The union object is used to model the room and the window. eSime use the dif-
ference between two boxes to model the room (the first two 9axehe difference
statement) there is no need for setting the union hollow.elfare inside this room we
actually will be outside the object (see also 4.9.4.5.5 aref87).

4.9. USING ATMOSPHERIC EFFECTS 133

4.9.4.2 Adding Dust to the Room

The next step is to add an atmosphere to the room. This is dotteeldollowing few
lines ATMOS2.POV).

atmosphere {
type 1
samples 10
distance 40
scattering 0.2

}

The type keyword selects the type of atmospheric scattering we veansé. In this
case we use the isotropic scattering that equally scaigétst all directions (see 7.7.1
on page 347 for more details about the different scatteyipgs).

The samples keyword determines the number of samples used in accumgléte
atmospheric effect. For every ray samples are taken ale@athto determine wether
a sample is lit by a light source or not. If the sample is lit @meount of light scattered
into the direction of the viewer is determined and added edotal intensity.

You can always start with an arbitrary number of sampleshdfresults do not fit your
ideas you can increase the sampling rate to get betterge3ie problem of choosing
a good sampling rate is the trade-off between a satisfyiragerand a fast rendering.
A high sampling rate will almost always work but the rendgrinill also take a very

long time. That's something to experiment with.

Thedistance keyword specifies the density of the atmosphere. It workhérsame
way as the distance parameter of the fog feature.

Last but not least will thescattering value determine the amount of light that is
scattered by the particles (the remaining light is absgrbéds you'll later see this
parameter is very useful in adjusting the overall brightnefshe atmosphere.

Looking at the image created from the above scene you’ltaaibme very ugly anti-
aliasing artefacts known as mach-bands. They are the @fsulbw sampling rate.

How this effect can be avoid is described in the followingteec

4.9.4.3 Choosing a Good Sampling Rate

As you've seen a too low sampling rate can cause some uglhitgedinere are some
ways of reducing or even avoiding those problems.

The brute force approach is to increase the sampling railehmiartefacts vanish and
you get a satisfying image. Though this will always work igid$ad idea because it
is very time consuming. A better approach is to use jitteengd anti-aliasing first. If
both features don't help you'll have to increase the sargpiate.

134 CHAPTER 4. BEGINNING TUTORIAL

Jittering moves each sample point by a small, random amdong ahe sampling di-
rection. This helps to reduce regular features resultioign faliasing. There is (hardly)
nothing more annyoing to the human visual system than thdaeteatures resulting
from a low sampling rate. It's much better to add some extigento the image by
jittering the sample positions. The human eye is much mogiving to that.

Use thej i tter keyword followed by the amount of jittering you want to usend@
jittering values are up to 0.5, higher values result in tocinnoise.

You should be aware that jittering can not fix the artefactso@tuced by a too low
sampling rate. It can only make them less visible.

An additional and better way of reducing aliasing artefést® use (adaptive) super-
sampling. This method casts additional samples whereikdlylthat they are needed.
If the intensity between two adjactent samples differs tagcimadditional samples
are taken inbetween. This step is done recursively untilegifipd recursion level is
reached or the sample get close to each other.

The aa level and aa threshold keywords are used to control the super-
sampling. Theaa 1evel keyword determines the maximum recursion level while
theaa threshold keyword specifies the maximum allowed difference between tw
sample before the super-sampling is done.

Atfter all this theory we get back to our sample scene and agldppropriate keywords
to use both jittering and supersamlingrf10s3.rPov).

atmosphere {
type 1
samples 50
distance 40
scattering 0.2
aa_level 4
aa_threshold 0.1
jitter 0.2

A very low threshold value was choosen to super-sample esvelen adjactent points
with a very similar intensity. The maximum recursion levEfavill lead to a maximum
of fifteen super-samples.

If you are looking at the results that you get after addingijihg and super-sampling
you won't be satisfied. The only way of reducing the still blsiartefacts is to increase
the sampling rate by choosing a higher number of samples.

Doing this you'll get a good result showing (almost) no aate$. Btw. the amount of
dust floating around in this room may be a little bit exaggeatdiut it’s just an example.
And examples tend to be exaggerated.

4.9. USING ATMOSPHERIC EFFECTS 135

4.9.4.4 Using a Coloured Atmosphere

You can assign a color to the atmosphere that gives you marteot@ver the atmo-

sphere’s appearance. First of all the color is used to filtdigat passing through it,

wether it comes from light sources, relfected and refracésd, or the background.
The amount by which the passing light is filtered by the atrhesgs color is deter-
mined by the color’s filter value. A value of 0 means that thghtliis not influenced
by the atmosphere’s color while a value of 1 means that dit kgl be filtered by the

color.

If you want to create a reddish atmosphere for example, youwadd the following line
to the atmosphere statement used in the above example.

color rgbf <1, 0, 0, 0.25>

Just usingcgb (1,0,0) does not work because the color’s filter value will be zero and
thus no light will be filtered by the color, i. e. no light willmultiplied with the color’s
RGB components.

The filter value of 0.25 means that 25% of the light passinguth the atmosphere
will be filtered by the red color and 75% will pass unfiltered.

The transmittance channel of the atmosphere’s color is tsepecify a minimum
translucency. By default the transmittance channel is aarbthus there is no such
minimum translucency. Using a positive value lets you deiee the amount of back-
ground light that will always pass through the atmosphergardless of its thickness
set by thedistance keyword.

If you use e.g. a color afgbt (0,0,0,0.3) with our room example you can make the
blue background become visible. Until now it was hidden leydtmosphere.

49.45 Atmosphere Tips

It is very difficult to get satisfying results when using thenasphere feature. Some of
the more common problems will be discussed in the next sectmhelp you to solve
them (see also the FAQ section about the atmosphere in G.8gen396).

49.45.1 Choosing the Distance and Scattering Parameters

The first difficult step is to choose a good distance and stagtealue. You need to be
able to control the visibility of the objects in the scene #melatmospheric effects.

The best approach is to choose the distance value first. Hhie \determines the
visibility of the objects in the scene regardless of atmesighight scattering. It works
in the same way as the distance value of the fog feature.

136 CHAPTER 4. BEGINNING TUTORIAL

Since fog is very similar to the unlit atmosphere you can ugaganstead of an at-
mosphere to quickly choose a working distance value. If yotihis with room scene
we used earlier you would use the following fog statemertears of the atmosphere
(ATMOS4.POV).

fog {

distance 40

color rgb <0, 0, 0>
}

The black color is used to simulate the attenuation you'tl igethose parts of the
atmosphere scene lying in shadow.

If you want to use a colored atmosphere you'll have to use dineescolor for the fog
as you want to use for the atmosphere, including the filterteamtsmittance channel
values (see 4.9.4.4 on the page before and 7.7.1 on page r34iT éxplanation of the
atmosphere’s color).

If you (roughly) want to simulate the appearance of thostspiaby a light source you
can use the color of the atmosphere inside the fog statemstetid.

After you are satisfied with the distance value you'll haveltoose a scattering value.
This value lets you fit the atmosphere’s intensity to yourdse&tarting with a value of
one you have to increase the value if the atmosphere effectsaadly visible. If you

don’t see anything in the lit parts of the atmosphere yowitdnto decrease the value.

You should be aware that you may have to use very small or ege Ivalues to get
the desired results.

4.9.4.5.2 Atmosphere and Light Sources

The best results are generated with spotlights and cytiatiight sources. They create
nice beams of light and are fast to render because the aterwsghampling takes only
place inside the light cone of the spotlight or light cylindé the cylindrical light.

If you want to add a light source that does not interact withatmosphere you can use
theatmosphere keyword inside the light source statement (see 7.5.6.8 ga pa2).
Just adchtmosphere off.

By default the light coming from any light source will not berghished by the at-
mosphere. Thus the highlights in your scene will normallytdmebright. This can be
changed withatmospheric attenuation on.

4.9.4.5.3 Atmosphere Scattering Types

The different scattering types listed in 7.7.1 on page 34itbeaused to model different
types of particles. This is something for you to experimeithw

4.9. USING ATMOSPHERIC EFFECTS 137

The Rayleigh scattering is used for small particles liket dusl smoke while the Mie
scattering is used for fog.

If you ever saw the lighthouse scene in the ma@speryou’ll know what effect the
scattering type has. In this scene the beam of light commg the lighthouse becomes
visible while it points nearly towards the viewer. As it $tato point away from the
viewer it vanishes. This behaviour is typical for minisculater droplets as modeled
by the Mie scattering.

4.9.4.5.4 Increasing the Image Resolution

You have to be aware that you may have to increase the atmasgampling rate if
you increase the resolution of the image. Otherwise somsiaf artefacts that were
no visible at the lower resolution may become visible.

4.9.4.5.5 Using Hollow Objects and Atmosphere

Whenever you use the atmosphere feature you have to makéhatiia! objects that
ought to be filled with atmosphere are set to hollow usinghihel ow keyword.

Even though this is not obvious this holds for infinite andchadbjects like quadrics,
quartics, triangles, polygons, etc. Whenever you add orikasfe objects you should
add the hollow keyword as long as you are not absolutely somedgn’t need it. You
also have to make sure that all objects the camera is insédgetito be hollow.

Whenever you get unexpected results you should check fat glgjects and set them
to be hollow.

495 The Rainbow

The rainbow feature can be used to create rainbows and madkibe raore strange
effects. The rainbow is a fog like effect that is restrictecicone-like volume.

4.9.5.1 Starting With a Simple Rainbow

The rainbow is specified with a lot of parameters: the angtieumvhich it is visible,
the width of the color band, the direction of the incominghtigthe fog-like distance
based particle density and last not least the color map tebe. u

The size and shape of the rainbow are determined byathgle andwidth key-
words. Thedirection keyword is used to set the direction of the incoming light,
thus setting the rainbow’s position. The rainbow is visibleen the angle between
the direction vector and the incident light direction iglarthanangle— width/2 and
smaller tharangle+ width/ 2.

138 CHAPTER 4. BEGINNING TUTORIAL

The incoming light is the virtual light source that is respitate for the rainbow. There
needn't be a real light source to create the rainbow effect.

The rainbow is a fog-like effect, i.e. the rainbow’s colomisxed with the background
color based on the distance to the intersection point. If glooose small distance
values the rainbow will be visible on objects, not just in ieckground. You can
avoid this by using a very large distance value.

The color map is the crucial part of the rainbow since it cimstall the colors that

normally can be seenin a rainbow. The color of the innermalst dand is taken from

the color map entry 0 while the outermost band is take fromyeht You should note

that due to the limited color range any monitor can display impossible to create a
real rainbow. There are just some colors that you cannotagisp

The filter channel of the rainbow’s color map is used in theesaray as with fogs. It
determines how much of the light passing through the rainisdiltered by the color.

The following example shows a simple scene with a groundepltiree spheres and a
somewhat exaggerated rainboRA(NBOW1.POV).

#include "colors.inc"
camera {
location <0, 20, -100>
look_at <0, 25, 0>
angle 82
background { color SkyBlue }
plane { y, -10 pigment { colour Green } }

light_source {<100, 120, 40> colour White}

// declare rainbow’s colours

#declare r_violetl = colour rgbf<l1.0, 0.5, 1.0, 1.0>
#declare r_violet2 = colour rgbf<1.0, 0.5, 1.0, 0.8>
#declare r_indigo = colour rgbf<0.5, 0.5, 1.0, 0.8>
#declare r_blue = colour rgbf<0.2, 0.2, 1.0, 0.8>
#declare r_cyan = colour rgbf<0.2, 1.0, 1.0, 0.8>
#declare r_green = colour rgbf<0.2, 1.0, 0.2, 0.8>
#declare r_yellow = colour rgbf<l1.0, 1.0, 0.2, 0.8>
#declare r_orange = colour rgbf<l1.0, 0.5, 0.2, 0.8>
#declare r_redl = colour rgbf<1.0, 0.2, 0.2, 0.8>
#declare r_red2 = colour rgbf<1.0, 0.2, 0.2, 1.0>

// create the rainbow

rainbow {

4.9. USING ATMOSPHERIC EFFECTS 139

angle 42.5

width 5

distance 1.0e7

direction <-0.2, -0.2, 1>

jitter 0.01

colour_map {
[0.000 colour r_violetl]
[0.100 colour r_violet2]
[0.214 colour r_indigo]
[0.328 colour r_blue]
[0.442 colour r_cyan]
[0.556 colour r_green]
[0.670 colour r_yellow]
[0.784 colour r_orange]
[0.900 colour r_redl]

Some irregularity is added to the color bands usingjtheter keyword.

The rainbow in our sample is much too bright. You'll never againbow like this in
reality. You can decrease the rainbow’s colors by decrgaia RGB values in the
color map.

49.5.2 Increasing the Rainbow’s Translucency

The result we have so far looks much too bright. Just reduttiegainbow’s color
helps but it's much better to increase the translucencyefambow because it is more
realistic if the background is visible through the rainbow.

We can use the transmittance channel of the colors in the codp to specify a
minimum translucency, just like we did with the fog. To getlistic results we
have to use very large transmittance values as you can ske foltowing example
(RAINBOW2.POV).

rainbow {

angle 42.5

width 5

distance 1.0e7

direction <-0.2, -0.2, 1>

jitter 0.01
colour_map {

[0.000 colour r violetl transmit 0.98]
[0.100 colour r violet2 transmit 0.96]
[0.214 colour r_indigo transmit 0.94]
[0.328 colour r_blue transmit 0.92]
[0.442 colour r_cyan transmit 0.90]

140 CHAPTER 4. BEGINNING TUTORIAL

[0.556 colour r_green transmit 0.92]
[0.670 colour r_yellow transmit 0.94]
[0.784 colour r_orange transmit 0.96]
[0.900 colour r _redl transmit 0.98]

The transmittance values increase at the outer bands odithi@orv to make it softly
blend into the background.

The resulting image looks much more realistic than our fasthow.

4.9.5.3 Using a Rainbow Arc

Currently our rainbow has a circular shape, even though ofdsis hidden below the
ground plane. You can easily create a rainbow arc by usingtheangle keyword
with an angle below 360 degrees.

If you usearc_angle 120 for example you'll get a rainbow arc that abruptly van-
ishes at the arc’s ends. This does not look good. To avoidhbisalloff_angle
keyword can be used to specify a region where the arc smobfihgs into the back-
ground.

As explained in the rainbow’s reference section (see 7.7 page 353) the arc extends
from —arc_angle/2 to arc_angle/2 while the blending takes place frorarc_angle/2

to —fallof f_angle/2 and fallof f_angle/2 to arc_angle/2. This is the reason why
thefalloff_angle has to be smaller or equal to thec_angle.

In the following examples we use an 120 degrees arc with a geeddalloff region on
both sides of the ark@aINBOW3.POV).

rainbow {
angle 42.5
width 5
arc_angle 120
falloff angle 30
distance 1.0e7
direction <-0.2, -0.2, 1>
jitter 0.01
colour_map {

[0.000 colour r violetl transmit 0.98]
[0.100 colour r violet2 transmit 0.96]
[0.214 colour r_indigo transmit 0.94]
[0.328 colour r_blue transmit 0.92]
[0.442 colour r_cyan transmit 0.90]
[0.556 colour r_green transmit 0.92]
[0.670 colour r_yellow transmit 0.94]
[0.784 colour r_orange transmit 0.96]

4.9. USING ATMOSPHERIC EFFECTS 141

[0.900 colour r_redl transmit 0.98]

The arc angles are measured against the rainbows up direchich can be specified
using theup keyword. By default the up direction is tlyeaxis.

We finally have a realistic looking rainbow arc.

142 CHAPTER 4. BEGINNING TUTORIAL

Part Il

Reference Guide

143

Chapter 5

POV-Ray Reference

The reference section describes all command line optiodsiMhfile switches, the
scene description language and all other features thatasre@fPPOV-Ray. It is sup-
posed to be used as a reference for looking up things. It doesamtain detailed
explanations on how scenes are written or how POV-Ray is. ukgdst explains all
features, their syntax, applications, limits, drawbaeks,

145

146 CHAPTER 5. POV-RAY REFERENCE

Chapter 6

POV-Ray Options

POV-Ray was originally created as a command-line progranmoferating systems
without graphical interfaces, dialog boxes and pull-dowenos. Most versions of
POV-Ray still use command-line switches to tell it what to dithis documentation
assumes you are using the command-line version. If you éng hdacintosh, MS-

Windows or other GUI versions, there will be dialog boxes @nos which do the
same thing. There is system-specific documentation for egpstem describing the
specific commands.

6.1 Setting POV-Ray Options

There are two distinct ways of setting POV-Ray options: camdline switches and
INI file keywords. Both are explained in detail in the follawi sections.

6.1.1 Command Line Switches

Command line switches consist ofta(plus) or— (minus) sign, followed by one or
more alphabetic characters and possibly a humeric valuee ide typical command
line with switches.

POVRAY +ISIMPLE.POV +V +W80+H60

POVRAY is the name of the program and it is followed by several swgctEach switch
begins with a plus or minus sign. The¢ switch with the filename tells POV-Ray what
scene file it should use as input ahd tells the program to output its status to the text
screen as it's working. TheW and+H switches set the width and height of the image
in pixels. This image will be 80 pixels wide by 60 pixels high.

147

148 CHAPTER 6. POV-RAY OPTIONS

In switches which toggle a feature, the plus turns it on andusniturns it off. For
example+P turns on thegause for keypress when finishggtion while—P turns it off.
Other switches are used to specify values and do not toggataré. Either plus or
minus may be used in that instance. For examjé320 sets the width to 320 pixels.
You could also useW320 and get the same results.

Switches may be specified in upper or lower case. They areledatb right but in
general may be specified in any order. If you specify a switchenthan once, the
previous value is generally overwritten with the last sfieafion. The only exception
is the+L switch for setting library paths. Up to ten unique paths magpecified.

Almost all +/— switches have an equivalent option which can be used in arfileNI
which is described in the next section. A detailed desanptif each switch is given in
the option reference section.

6.1.2 Using INI Files

Because it is difficult to set more than a few options on a comihime, you have the
ability to put multiple options in one or more text files. Thésitialization filesor INI
files have.INI as their default extension. Previous versions of POV-Régadhem
default filesor DEF files You may still use existing DEF files with this version of
POV-Ray.

The majority of options you use will be stored in INI files. Ttemmand line switches
are recommended for options which you will turn off or on freqtly as you perform
test renderings of a scene you are developing. TherfilerAY.INI is automatically

read if present. You may specify additional INI files on thencoand-line by simply

typing the file name on the command line. For example:

POVRAY MYOPTS.INI

If no extension is given, thenNi is assumed. POV-Ray knows this is not a switch
because it is not preceded by a plus or minus. In fact a commonamong new users
is that they forget to put thel switch before the input file name. Without the switch,
POV-Ray thinks that the scene fd@MPLE.POV is an INI file. Don't forget! If no plus

or minus precedes a command line switch, it is assumed to bel dile name.

You may have multiple INI files on the command line along wittitshes. For exam-
ple:

POVRAY MYOPTS +V OTHER

This reads options fromiYOPTS.INI, then sets theV switch, then reads options from
OTHER.INI.

An INI file is a plain ASCII text file with options of the form..

6.1. SETTING POV-RAY OPTIONS 149
Option_Keyword=VALUE ; Text after semicolon is a comment

For example the INI equivalent of the switehsIMPLE.POVis...

Input_File Name=simple.pov

Options are read top to bottom in the file but in general maypeeified in any order.
If you specify an option more than once, the previous valuegyanerally overwritten
with the last specification. The only exception is thibrary_Path=pPATH options. Up
to ten unique paths may be specified.

Almost all INI-style options have equivalent—switches. The option reference section
gives a detailed description of all POV-Ray options. It imtds both the INI-style
settings and the/— switches.

The INI keywords are not case sensitive. Only one INI opt®péarmitted per line of
text. You may also include switches in your INI file if they @&&sier for you. You may
have multiple switches per line but you should not mix swetchnd INI options on the
same line. You may nest INI files by simply putting the file naomea line by itself
with no equals sign after it. Nesting may occur up to ten kedelep.

For example:
; This is a sample INI file. This entire line is a comment.
; Blank lines are permitted.
Input_File Name=simple.pov ; This sets the input file name
+W80 +H60 ; Traditional +/- switches are permitted too
MOREOPT ; Read MOREOPT.INI and continue with next line
+V ; Another switch

; That’s all folks!

INI files may have labeled sections so that more than one sitimins may be stored
in a single file. Each section begins with a label in [] braské&tor example:

; RES.INI
; This sample INI file is used to set resolution.

+W120 +H100 ; This section has no label.
; Select it with "RES"

[Low]

150 CHAPTER 6. POV-RAY OPTIONS

+W80 +H60 ; This section has a label.
; Select it with "RES[Low]"

[Med]
+W320 +H200 ; This section has a label.
; Select it with "RES [Med]™"
[High]
+W640 +H480 ; Labels are not case sensitive.

; "RES[high]" works

[Really Highl]
+W800 +H600 ; Labels may contain blanks

When you specify the INI file you should follow it with the skt label in brackets.
For example..

POVRAY RES[Med] +IMYFILE.POV

POV-Ray readRES.INI and skips all options until it finds the labled It processes
options after that label until it finds another label and tliteskips. If no label is
specified on the command line then only the unlabeled aréa &bp of the file is read.
If a label is specified, the unlabeled area is ignored.

6.1.3 Using the POVINI Environment Variable

The environment variable POVINI is used to specify the lmcaand name of a default
INI file that is read every time POV-Ray is executed. If POVIllInot specified a
default INI file may be read depending on the platform usethdfspecified file does
not exist a warning message is printed.

To set the environment variable under MS-Dos you might peifahowing line in your
AUTOEXEC.BATfile ...
set POVINI=C:\POVRAY3\DEFAULT.INI

On most operating systems the sequence of reading optiassadows:

1. Read options from default INI file specified by the POVINVieon-
ment variable or platform specific INI file.

2. Read switches from command line (this includes readigsaeci-
fied INI/DEF files).

The POVRAYOPT environment variable supported by previo@/4Ray versions is
no longer available.

6.2. OPTIONS REFERENCE 151

6.2 Options Reference

As explained in the previous section, options may be spédifjeswitches or INI-style
options. Almost all INI-style options have equivalert switches and most switches
have equivalent INI-style option. The following sectiorigega detailed description of
each POV-Ray option. It includes both the INI-style setiagd thet/— switches.

The notation and terminology used is described in the tdis&svy.

Keyword=bool turnKeyword on if bool equalstrue, yes onor 1 and turn
it off if it is any other value.

Keyword=true do this option ifrue, yes on or 1 is specified.

Keyword=false do this option ifalse no, off or 0 is specified.

Keyword=file any valid file name. Note: some options prohibit the use o
any of the aboverue or falsevalues as a file name. They
are noted in later sections.

n any integer such as in +W320

n.n any float such as in Clock=3.45

0.n any float< 1.0 even if it has no leading O

s any string of text

X ory any single character

path any directory name, drive optional, no final path separ@\” or
"I”, depending on the operating system)

Unless otherwise specifically noted, you may assume thagredt plus or minus sign
before a switch will produce the same results.

6.2.1 Animation Options

POV-Ray 3.0 greatly improved its animation capability whie addition of an internal
animation loop, automatic output file name numbering andathibty to shell out to
the operating system to external utilities which can as$ennilividual frames into
an animation. The internal animation loop is simple yet fiexi You may still use
external programs or batch files to create animations witthmiinternal loop as you
may have done in POV-Ray 2.

6.2.1.1 External Animation Loop

Clock=n.n Set<lockfloat identifier to n.n
+Kn.n Same a€lock=n.n

The Clock=n.n option or thetKn.n switch may be used to pass a single float value to
the program for basic animation. The value is stored in tte fitentifierclock If an

152 CHAPTER 6. POV-RAY OPTIONS

object had a rotaté0, clock 0) attached then you could rotate the object by different
amounts over different frames by setting10.0,+K20.0... etc. on successive ren-
derings. It is up to the user to repeatedly invoke POV-Ral witlifferentClock value
and a differenOutput File Name for each frame.

6.2.1.2 Internal Animation Loop

Initial_Frame=n Sets initial frame number to n
Final_Frame=n Sets final frame number
Initial_Clock=n.n Sets initial clock value
Final_Clock=n.n Sets final clock value

+KFIn Same asnitial_Frame=n
+KFFn Same a&inal_Frame=n
+Kln.n Same ahitial_Clock=n.n
+KFn.n Same akinal_Clock=n.n

The internal animation loop new to POV-Ray 3.0 relieves ther of the task of gener-
ating complicated sets of batch files to invoke POV-Ray mpldttimes with different
settings. While the multitude of options may look intimidat the clever set of de-
fault values means that you will probably only need to speitié Final Frame=n or
the +KFFn option to specify the number of frames. All other values mayain at
their defaults.

Any Final Frame setting other than-1 will trigger POV-Ray'’s internal animation
loop. For examplé-inal Frame=10 or+KFF10 causes POV-Ray to render your scene
10 times. If you specifie®utput_File_Name=FILE.TGA then each frame would be
output asFILEOL.TGA, FILEO2.TGA, FILEO3.TGA etc. The number of zero-padded
digits in the file name depends upon the final frame number.ekample+KFF100
would generateriILEOOL.TGA through FILEL00.TGA. The frame number may en-
croach upon the file name. On MS-Dos with an eight charaatgt, MY SCENE.POV
would render tavYSCeEOO1.TGA throughMYSCEL100.TGA.

The defaultinitial_Frame=1 will probably never have to be changed. You would only
change it if you were assembling a long animation sequengiedes. One scene might
run from frame 1 to 50 and the next from 51 to 100. Thaial Frame=n or +KFIn
option is for this purpose.

Note that if you wish to render a subset of frames such as 3ughr40 out of a 1
to 100 animation, you should not changeame_lnitial or Frame_Final. Instead you
should use the subset commands described in section 6db th& facing page.

Unlike some animation packages, the action in POV-Ray aeithacenes does not
depend upon the integer frame numbers. Rather you shouighdgsur scenes based
upon the float identifiec1ock . By default, the clock value is 0.0 for the initial frame
and 1.0 for the final frame. All other frames are interpolatetiveen these values.
For example if your object is supposed to rotate one full war the course of the

6.2. OPTIONS REFERENCE 153

animation, you could specifyotate 360*clock*y. Then as clock runs from 0.0
to 1.0, the object rotates about thaxis from 0 to 360 degrees.

The major advantage of this system is that you can render eafiefanimation or a
100 frame or 500 frame or 329 frame animation yet you stillayet full 360 degree
rotation. Test renders of a few frames work exactly like fresders of many frames.

In effect you define the motion over a continuous float valuathmeter (the clock)
and you take discrete samples at some fixed intervals (thefh If you take a movie
or video tape of a real scene it works the same way. An objactisal motion depends
only on time. It does not depend on the frame rate of your camer

Many users have already created scenes for POV-Ray 2 thetteodpck values over a
range other than the default 0.0 to 1.0. For this reason weadeahelnitial_Clock=n.n

or +KIn.n andFinal_Clock=n.n or+KFn.n options. For example to run the clock from
25.0 to 75.0 you would specifinitial_Clock=25.0 andFinal_Clock=75.0. Then the
clock would be set to 25.0 for the initial frame and 75.0 far fimal frame. Inbetween
frames would have clock values interpolated from 25.0 thhod5.0 proportionally.

Users who are accustomed to using frame numbers ratherlt@kvalues could spec-
ify Initial_Clock=1.0 andFinal_Clock=10.0 andFrame_Final=10 for a 10 frame ani-
mation.

For new scenes, we recommend you do not changénttiel_Clock or Final_Clock
from their default 0.0 to 1.0 values. If you want the clock &mywover a different range
than the default 0.0 to 1.0, we recommend you handle thiglengour scene file as
follows ...

#declare Start = 25.0
#tdeclare End = 75.0
#declare My Clock = Start+ (End-Start) *clock

Then useMy_Clock in the scene description. This keeps the critical value8 abd
75.0 in your.PoV file.

Note that more details concerning the inner workings of tiienation loop are in the
section on shell-out operating system commands in sectibd 6n page 168.

6.2.1.3 Subsets of Animation Frames

Subset_Start_ Frame=n Set subset starting frame to n
Subset_Start_ Frame=0.n Set subset starting frame to n percent
Subset End_Frame=n Set subset ending frame to n

Subset End_Frame=0.n Set subset ending frame to n percent
+SFn or+SF0.n Same aSubset_Start_ Frame

+EFn or +EF0.n Same aSubset_End_Frame

154 CHAPTER 6. POV-RAY OPTIONS

When creating a long animation, it may be handy to render amgrtion of the ani-
mation to see what it looks like. Suppose you have 100 fraraeertly want to render
frames 30 through 40. If you sktitial Frame=30 andrinal Frame=40 then the clock
would vary from 0.0 to 1.0 from frames 30 through 40 rathentB&80 through 0.40
as it should. Therefore you should lednitial Frame=1 andFinal Frame=100 and
useSubset Start Frame=30 andSubset End_Frame=40 to selectively render part
of the scene. POV-Ray will then properly compute the clodkes

Usually you will specify the subset using the actual inteffame numbers how-
ever an alternate form of the subset commands takes a floa¢ \ml the range
0.0 < n.nnn < 1.0 which is interpreted as a fraction of the whole animatioor &x-
ample,Subset_Start_Frame=0.333 andsubset_End_Frame=0.667 would render the
middle 1/3rd of a sequence regardless of the number of frames

6.2.1.4 Cyclic Animation

Cyclic_Animation=bool Turn cyclic animation on/off
+KC Turn cyclic animation on
-KC Turn cyclic animation off

Many computer animation sequences are designed to be rwointiauous loop. Sup-
pose you have an object that rotates exactly 360 degreeshmveourse of your ani-
mation and you didcotate 360*clock*y to do so. Both the first and last frames
would be identical. Upon playback there would be a brief samé jerkiness. To elim-
inate this problem you need to adjust the clock so that thefriasie does not match
the first. For example a ten frame cyclic animation shoulduset clock 0.0 to 1.0. It
should run from 0.0 to 0.9 in 0.1 increments. However if yoarde to 20 frames it
should run from 0.0 to 0.95 in 0.05 increments. This compdisahings because you
would have to change the final clock value every time you chdRignal Frame. Set-
ting Cyclic_Animation=on or using+KC will cause POV-Ray to automatically adjust
the final clock value for cyclic animation regardless of hoany total frames. The
default value for this setting is off.

6.2.1.5 Field Rendering

Field_Render=bool Turn field rendering on/off
Odd_Field=bool Set odd field flag

+UF Turn field rendering on
-UF Turn field rendering off
+UO Set odd field flag on
-Uo Set odd field flag off

Field rendering is sometimes used for animations when theadion is being output
for television. TVs only display alternate scan lines onhegertical refresh. When

6.2. OPTIONS REFERENCE 155

each frame is being displayed the fields are interlaced &oth® impression of a higher
resolution image. The even scan lines make up the even freddaue drawn first (i. e.
scan lines 0, 2, 4, etc.), followed by the odd field, made umefadd numbered scan
lines are drawn afterwards. If objects in an animation aréingoquickly, their position
can change noticably from one field to the next. As a resutiaiy be desirable in these
cases to have POV-Ray render alternate fields at the actighidte (which is twice the
frame rate), rather than rendering full frames at the nofraahe rate. This would save
a great deal of time compared to rendering the entire armati twice the frame rate,
and then only using half of each frame.

By default, field rendering is not used. SettiRgld_Render=on or using+UF will
cause alternate frames in an animation to be only the evedddii@ds of an animation.
By default, the first frame is the even field, followed by theldigéld. You can have
POV-Ray render the odd field first by specifyi@gld Field=on, or by using theeUO
switch.

6.2.2 Output Options

6.2.2.1 General Output Options

6.2.2.1.1 Height and Width of Output

Height=n Set screen height ton
Width=n Sets screen width to n pixels
+Hn Same asleight=n (when n> 8)
+Wn Same adVidth=n

These switches set the height and width of the image in piféls specifies the image
size for file output. The preview display, if on, will gendyahttempt to pick a video
mode to accommodate this size but the display settings dinrenty way affect the
resulting file output.

6.2.2.1.2 Partial Output Options

Start_Column=n Set first column to n
Start_Column=0.n Set first column to n percent of width
+SCnor+SCO0.n Same aStart_Column

Start Row=n Set first row to n pixels
Start Row=0.n Set first row to n percent of height
+SRnor+Sn Same aStart Row=n

+SR0.n or+S0.n Same aStart_Row=0.n

156 CHAPTER 6. POV-RAY OPTIONS

End_Column=n Set last column to n pixels
End_Column=0.n Set last column to n percent of width
+ECnor+ECO.n Same aEnd_Column

End_Row=n Set last row to n pixels
End_Row=0.n Set last row to n percent of height
+ERn or+En Same a&nd _Row=n

+ERO0.n or+EO.n Same aEnd_Row=0.n

When doing test rendering it is often convenient to define allsmectangular sub-
section of the whole screen so you can quickly check out ose aif the image. The
Start Row, End_Row, Start Column and End_Column options allow you to define
the subset area to be rendered. The default values are tisézRibf the image from
(1,1) which is the upper left to (w,h) on the lower right wharend h are th&Vidth=n
andHeight=n values you have set.

Note if the number specified is greater than 1 then it is in&tegl as an absolute
row or column number in pixels. If it is a decimal value betwe®0 and 1.0 then
it is interpreted as a percent of the total width or heighthef tmage. For example:
Start_ Row=0.75 andStart_Column=0.75 starts on a row 75% down from the top at
a column 75% from the left. Thus it renders only the lowehtig5% of the image
regardless of the specified width and height.

The +SR, +ER, +SC and+EC switches work in the same way as the corresponding
INI-style settings for both absolute settings or perceesadearly versions of POV-Ray
allowed only start and end rows to be specified withn and+En so they are still
supported in addition t6SR and+ER.

6.2.2.1.3 Interrupting Options

Test_Abort=bool Turn test for user abort on/off
+X Turn test abort on
—X Turn test abort off

Test_Abort_Count=n Set to test for abort every n pixels
+Xn Set to test for abort every n pixels on
-Xn Set to test for abort off (in future test every n pixels)

On some operating systems once you start a rendering you letustfinish. The
Test_Abort=on option or+X switch causes POV-Ray to test the keyboard for keypress.
If you have pressed a key, it will generate a controlled ubertaFiles will be flushed
and closed but only data through the last full row of pixelsased. POV-Ray exits
with an error code 2 (normally POV-Ray returns 0 for a sudoéssn or 1 for a fatal
error).

6.2. OPTIONS REFERENCE 157

When this option is on, the keyboard is polled on every lindevbarsing the scene file
and on every pixel while rendering. Because polling the kayth can slow down a ren-
dering, theTest Abort Count=n option or+Xn switch causes the test to be performed
only every n pixels rendered or scene lines parsed.

6.2.2.1.4 Resuming Options

Continue_Trace=bool Sets continued trace on/off

+C Sets continued trace on

—-C Sets continued trace off

Create_Ini=FILE Generate an INI file namesl LE

Create_Ini=true GeneratelLE.INI where file is the scene name.
Create_lni=false Turn off generation of previously SaLE.INI
+GIFILE Same as Creat®i=FILE

If you abort a render while it's in progress or if you used Ewd Row option to end
the render prematurely, you can uSentinue_Trace=on or+C option to continue the
render later at the point where you left off. This option eadthe previously gener-
ated output file, displays the partial image rendered sdHan proceeds with the ray-
tracing. This option cannot be used if file output is disalléth Output_to_file=off or
-F.

The Continue_Trace option may not work if theStart_Row option has been set to
anything but the top of the file, depending on the output farbeing used.

POV-Ray tries to figure out where to resume an interruptezbthy reading any previ-
ously generated data in the specified output file. All file fatsncontain the image size,
so this will override any image size settings specified. Sfilméormats (namely TGA
and PNG) also store information about where the file staitesl #SCn and+SRn
options), alpha outputUA, and bit-depth+FNn, which will override these settings.
It is up to the user to make sure that all other options arehses@ame as the original
render.

The Create_Ini option or+Gl switch provides an easy way to create an INI file with all
of the rendering options, so you can re-run files with the saptiens, or ensure you
have all the same options when resuming. This option createhll file with every
option set at the value used for that rendering. This indwiifault values which you
have not specified. For example if you run POV-Ray with

POVRAY +ISIMPLE.POV MYOPTS +GIRERUN.INI MOREOPTS

POV-Ray will create a file calle@ERUN.INI with all of the options used to generate
this scene. The file is not written until all options have bpescessed. This means
that in the above example, the file will include options froottbmMYOPTS.INI and
MOREOPTS.INI despite the fact that theGl switch is specified between them. You
may how re-run the scene with.

158 CHAPTER 6. POV-RAY OPTIONS

POVRAY RERUN
or resume an interrupted trace with
POVRAY RERUN +C

If you add other switches with ttRRERUN. INI reference, they will be included in future
re-runs because the file is re-written every time you use it.

The Create_Ini option is also useful for documenting how a scene was redddfe
you rendemwAy cooL.PoV with Create_Ini=on then it will create a file&vAYCOOL.INI
that you could distribute along with your scene file so othemrs can exactly re-create
your image.

6.2.2.2 Display Output Options

6.2.2.2.1 Display Hardware Settings

Display=Dbool Turns graphic display on/off

+D Turns graphic display on

-D Turns graphic display off

Video_Mode=x Set video mode tg; does not affect on/off
+Dx Set display on; Set mode 10

—Dx Set display off; but for future use mode
Palette=y Set display palette tg d oes not affect on/off
+Dxy Set display on; Set mode Set palettey

—Dxy Set display off; use mode palettey in future

Display Gamma=n.n Sets the display gamma to n.n

The Display=on or+D switch will turn on the graphics display of the image while it
is being rendered. Even on some non-graphics systems, RQVHRy display an 80
by 24 characteASCII-Art version of your image. Where available, the display may
be full, 24-bit true color. Settin@isplay=off or using the-D switch will turn off the
graphics display which is the default.

TheVideo_Mode=x option sets the display mode or hardware type chosen wisre
a single digit or letter that is machine dependent (see@e8tR.5 on page 27 for a de-
scription of the modes supported by the MS-Dos version).eGdly Video_Mode=0
means the default or an auto-detected setting should be ¥edn using switches,
this character immediately follows the switch. For exantple+DO0 switch will turn
on the graphics display in the default mode.

6.2. OPTIONS REFERENCE 159

The Palette=y option selects the palette to be used. Typically the simflaracter
parametely is a digit which selects one of several fixed palettes or afestichG for
gray scaleH for 15-bit or 16-bit high color ofT for 24-bit true color. When using
switches, this character is the 2nd character after theekwior example the DOT
switch will turn on the graphics display in the default modéwa true color palette.

The Display_Gamma=n.n setting is new with POV-Ray 3.0, and is not available as a
command-line switch. ThBisplay Gamma setting overcomes the problem of images
(whether ray-traced or not) having different brightnesemheing displayed on differ-
ent monitors, different video cards, and under differemraping systems. Note that the
Display_Gamma is a setting based on your computer’s display hardware, bodd

be set correctly once and not changed. Thsplay Gamma INI setting works in
conjunction with the nevessumed gamma global setting to ensure that POV scenes
and the images they create look the same on all systems. Gemse8.3 on page 357
which describes thes sumed_gamma global setting and describes gamma more thor-
oughly.

While the Display_Gamma can be different for each system, there are a few general
rules that can be used for settiBgsplay_Gamma if you don’t know it exactly. If

the Display_Gamma keyword does not appear in the INI file, POV-Ray assumes that
the display gamma is 2.2. This is because most PC monitors dayamma value

in the range 1.6 to 2.6 (newer models seem to have a lower gamiwa). MacOS
has the ability to do gamma correction inside the systenwsoft (based on a user
setting in the gamma control panel). If the gamma controep@&nturned off, or is

not available, the default Macintosh system gamma is 1.81éSugh-end PC graphics
cards can do hardware gamma correction and should use tteacisplayGamma
setting, usually 1.0. A gamma test image is also availableelp users to set their
Display_Gamma accurately.

For scene files that do not have a@assumed_gamma global setting theDis-
play_Gamma will not have any affect on the preview output of POV-Ray ar ritost
output file formats. However, thBisplay_Gamma value is used when creating PNG
format output files, and also when rendering the POV-Ray elaifiles (because they
have anassumed_gamma), so it should still be correctly set for your system to easur
proper results.

6.2.2.2.2 Display Related Settings

Pause_When_Done=bool Sets pause when done on/off

+P Sets pause when done on
-P Sets pause when done off
Verbose=bool Set verbose messages on/off
+V Set verbose messages on

-V Set verbose messages off

160 CHAPTER 6. POV-RAY OPTIONS

Draw_Vistas=bool Turn draw vistas on/off
+UD Turn draw vistas on
-UbD Turn draw vistas off

On some systems, when the image is complete, the graphigkyis cleared and
POV-Ray switches back into text mode to print the final stigisand to exit. Normally
when the graphics display is on, you want to look at the imagsila before continu-
ing. UsingPause_When_Done=on or+P causes POV-Ray to pause in graphics mode
until you to press a key to continue. The default is not to pguR).

When the graphics display is not used, it is often desirablenonitor progress of
the rendering. Usinyerbose=on or+V turns on verbose reporting of your rendering
progress. This reports the number of the line currentlydesmdered, the elapsed time
for the current frame and other information. On some systémsstextual information
can conflict with the graphics display. You may need to tura tiff when the display
is on. The default setting is off{).

The optionDraw_Vistas=on or+UD was originally a debugging help for POV-Ray’'s
vista buffer feature but it was such fun we decided to keeyista buffering is a spatial
sub-division method that projects the 2-D extents of boogidiioxes onto the viewing
window. POV-Ray tests the 2-R, y pixel location against these rectangular areas to
determine quickly which objects, if any, the viewing ray Miit. This option shows
you the 2-D rectangles used. The default setting is-6ff[§) because the drawing of
the rectangles can take considerable time on complex segwki serves no critical
purpose. See section 6.2.6.3 on page 177 for more details.

6.2.2.2.3 Mosaic Preview

Preview_Start_Size=n Set mosaic preview start size to n
+SPn Same a®review_Start_Size=n

Preview_End_Size=n Set mosaic preview end size to n
+EPn Same a®review_End_Size=n

Typically, while you are developing a scene, you will do mdmy resolution test
renders to see if objects are placed properly. Often thisré@elution version doesn'’t
give you sufficient detail and you have to render the scen@aga higher resolution.
A feature callednosaic previevgolves this problem by automatically rendering your
image in several passes.

The early passes paint a rough overview of the entire imagey uarge blocks of

pixels that look like mosaic tiles. The image is then refingthg higher resolutions
on subsequent passes. This display method very quickljagisghe entire image at a
low resolution, letting you look for any major problems withe scene. As it refines
the image, you can concentrate on more details, like shadod$extures. You don't
have to wait for a full resolution render to find problems csityou can interrupt the

6.2. OPTIONS REFERENCE 161

rendering early and fix the scene, or if things look good, yan let it continue and
render the scene at high quality and resolution.

To use this feature you should first selest/@th andheightvalue that is the highest
resolution you will need. Mosaic preview is enabled by siyawoy how big the mosaic
blocks will be on the first pass usiRreview_Start_Size=n or +SPn. The value n

should be a number greater than zero that is a power of twq @,& 16, 32, etc.) If

it is not a power of two, the nearest power of two less than mlisttuted. This sets
the size of the squares, measured in pixels. A value of 1&ivallv every 16th pixel as
a 16x 16 pixel square on the first pass. Subsequent passes wilklfstad previous

value (such as 8 8, 4x 4 and so on.)

The process continues until it reaches 1 pixels or until it reaches the size you set
with Preview_End_Size=n or +EPn. Again the value n should be a number greater
than zero that is a power of two and less than or equedreview_Start_Size. If it

is not a power of two, the nearest power of two less than n istguted. The default
ending value is 1. If you s&®review_End_Size to a value greater than 1 the mosaic
passes will end before reaching 1, but POV-Ray will always finish with ax 1. For
example, if you want a single 88 mosaic pass before rendering the final image, set
Preview_Start Size=8 andPreview _End_Size=8.

No file output is performed until the finalxd 1 pass is reached. Although the prelimi-
nary passes render only as many pixels as neededstlephss re-renders every pixel
so that anti-aliasing and file output streams work propefrhis makes the scene take
up to 25% longer than the regularx1l pass to render, so it is suggested that mosaic
preview not be used for final rendering. Also, the lack of filkpoit until the final pass
means that renderings which are interrupted before thé pass can not be resumed
without starting over from the beginning.

Future versions of POV-Ray will include some system of terapofiles or buffers
which will eliminate these inefficiencies and limitatiodosaic preview is still a very
useful feature for test renderings.

6.2.2.3 File Output Options

Output_to_File=bool Sets file output on/off
+F Sets file output on (use default type)
-F Sets file output off

By default, POV-Ray writes an image file to disk. When you areetbping a scene
and doing test renders, the graphic preview may be sufficiemtsave time and disk
activity you may turn file output off witlOutput_to_File=off or —F.

6.2.2.3.1 Output File Type

Output_File_Type=x Sets file output format tg

162 CHAPTER 6. POV-RAY OPTIONS

+Fxn Sets file output on; sets formgtdepthn
—Fxn Sets file output off; but in future use formgtdepth
n

Output_Alpha=bool Sets alpha output on/off
+UA Sets alpha output on
-UA Sets alpha output off

Bits_Per_Color=n Sets file output bits/color to

The default type of image file depends on which platform yauwesing. MS-Dos and
most others default to 24-bit uncompressed Targa. See Yatform-specific docu-
mentation to see what your default file type is. You may selaetof several different
file types usingOutput_File_Type=x or +Fx where x is one of the following. .

+FC Compressed Targa-24 format (RLE, run length encoded)
+FN New PNG (portable network graphics) format

+FP Unix PPM format

+FS System-specific such as Mac Pict or Windows BMP

+FT Uncompressed Targa-24 format

Note that the obsoleteFD dump format and-FR raw format have been dropped from
POV-Ray 3.0 because they were rarely used and no longersaage®PM, PNG, and
system specific formats have been added. PPM format imagemeompressed, and
have a simple text header, which makes it a widely portabkegarformat. PNG is
a new image format designed not only to replace GIF, but taong on its short-
comings. PNG offers the highest compression availableoutttoss for high quality
applications, such as ray-tracing. The system specificdfbdapends on the platform
used and is covered in the appropriate system specififc dextation.

Most of these formats output 24 bits per pixel with 8 bits facle of red, green and blue
data. PNG allows you to optionally specify the output bitttiejpom 5 to 16 bits for
each of the red, green, and blue colors, giving from 15 to #8ddicolor information
per pixel. The default output depth for all formats is 8 litddr (16 million possible
colors), but this may be changed for PNG format files by sgitts_Per_Color=n or
by specifying+FNn, where n is the desired bit depth.

Specifying a smaller color depth like 5 bits/color (327680c®) may be enough for
people with 8- or 16-bit (256 or 65536 color) displays, and imiprove compression
of the PNG file. Higher bit depths like 10 or 12 may be useful Vteo or pub-

lishing applications, and 16 bits/color is good for graysdaeight field output (See
section 7.5.2.5 on page 236 for details on height fields).

Targa format also allows 8 bits of alpha transparency dataetoutput, while PNG
format allows 5 to 16 bits of alpha transparency data, dépgrah the color bit depth
as specified above. You may turn this option on v@thtput_Alpha=on or+UA. The

6.2. OPTIONS REFERENCE 163

default is off or—UA. See section 7.6.1.5.4 on page 285 for further details arstra
parency.

In addition to support for variable bit-depths, alpha cl&@nand grayscale formats,
PNG files also store thBisplay Gamma value so the image displays properly on
all systems (see section 6.2.2.2.1 on page 158). hthegray_16 global setting, as
described in section 7.8.4 on page 359 will also affect tpe tyf data written to the
output file.

6.2.2.3.2 Output File Name

Output _File Name=FILE Sets output file to file
+OFILE Same a®utput_File_Name=FILE

The default output filename is created from the scene namenaad not be speci-
fied. The scene name is the input name with all drive, path eatehsion information
stripped. For example if the input file nameds\POVRAY3\MYSTUFF\MYFILE.POV

the scene name i8YFILE. The proper extension is appended to the scene name based
on the file type. For exampl@YFILE.TGA or MYFILE.PNG might be used.

You may override the default output name us®gtput_File_Name=FILE or +OFILE.
For example:

Input_File Name=MYINPUT.POV
Output_File Name=MYOUTPUT.TGA

If an output file name of "-" is specified (a single minus sigign the image will
be written to standard output, usually the screen. The owtgu then be piped into
another program or to a GUI if desired.

6.2.2.3.3 Output File Buffer

Buffer_Output=bool Turn output buffering on/off

+B Turn output buffering on
-B Turn output buffering off
Buffer_Size=n Set output buffer size to kilobytes. Ifnis zero, no

buffering occurs. lin is smaller than the default, the
system default is used.

+Bn Turn buffer on, set size

—-Bn Turn buffer off, but for future set size

The Buffer_Output andBuffer_Size options and the-B switch allows you to assign
large buffers to the output file. This reduces the amountré tspent writing to the

164 CHAPTER 6. POV-RAY OPTIONS

disk. If this parameter is not specified, then as each rom@gis finished, the line is
written to the file and the file is flushed. On most systems,dperation ensures that
the file is written to the disk so that in the event of a systeasleior other catastrophic
event, at least a part of the picture has been stored progedlyetrievable on disk. The
default is not to use any buffer.

6.2.2.4 CPU Utilization Histogram

The CPU utilization histogram is a way of finding out where PR&Y is spending its

rendering time, as well as an interesting way of generat@igHitfields. The histogram
splits up the screen into a rectangular grid of blocks. As HRa¥ renders the image,
it calculates the amount of time it spends rendering eactl pixd then adds this time
to the total rendering time for each grid block. When the esimd) is complete, the
histogram is a file which represents how much time was spenpuating the pixels in

each grid block.

Not all versions of POV-Ray allow the creation of histograrfise histogram output is
dependent on the file type and the system that POV-Ray is bamgn.

6.2.2.4.1 File Type

Histogram_Type=x Set histogram type te (turn off if type is X)
+HTx Same a#listogram_Type=x

The histogram output file type is nearly the same as that useti¢ image output file
typesin 6.2.2.3.1 on page 161. The available histogramyfiest are as follows.

+HTC Comma separated values (CSV) often used in spreadsheets
+HTN New PNG (portable network graphics) format grayscale
+HTP Unix PPM format

+HTS System-specific such as Mac Pict or Windows BMP

+HTT Uncompressed Targa-24 format (TGA)

+HTX No histogram file output is generated

Note that+HTC does not generate a compressed Targa-24 format output ffilethar
a text file with a comma-separated list of the time spent imeagai block, in left-
to-right and top-to bottom order. The units of time outputhe CSV file are system
dependent. See the system specific documentation for fuddtails on the time units
in CSV files.

The Targa and PPM format files are in the POV heightfield for(sat 7.5.2.5 on
page 236), so the histogram information is stored in bothréldeand green parts of
the image, which makes it unsuitable for viewing. When used beight field, lower
values indicate less time spent calculating the pixelsanltock, while higher indicate
more time spent in that block.

6.2. OPTIONS REFERENCE 165

PNG format images are stored as grayscale images and au fasdfoth viewing the
histogram data as well as for use as a heightfield. In PNG filegjarker (lower) areas
indicate less time spent in that grid block, while the braghthigher) areas indicate
more time spent in that grid block.

6.2.2.4.2 File Name

Histogram Name=FILE Set histogram name fILE
+HNFILE Same aglistogram Name=FILE

The histogram file name is the name of the file in which to wiigehistogram data. If
the file name is not specified it will default todSTGRAM.EXT, where ext is based on
the file type specified previously. Note that if the histognaame is specified the file
name extension should match the file type.

6.2.2.4.3 Grid Size

Histogram_Grid_Size=x.y Set histogram grid ta by y
+HSxX.y Same aslistogram_Grid_Size=x.y

The histogram grid size gives the number of times the imagmlis up in both the
horizontal and vertical directions. For example

POVRAY +ISAMPLE +W640+H480
+HTN +HS160.120+HNHISTOGRM.PNG

will split the image into 160« 120 grid blocks, each of size>44 pixels, and output
a PNG file, suitable for viewing or for use as a heightfield. Benamumbers for the
grid size mean more pixels are put into the same grid blockth\ @5V output, the
number of values output is the same as the number of grid ®lspkcified. For the
other formats the image size is identical to the renderegénmather than the specified
grid size, to allow easy comparison between the histograirtt@rendered image. If
the histogram grid size is not specified, it will default te fame size as the image, so
there will be one grid block per pixel.

Note that on systems that do task-switching or multi-tagkime histogram may not
exactly represent the amount of time POV-Ray spent in a givehblock since the

histogram is based on real time rather than CPU time. As dtyéisne may be spent
for operating system overhead or on other tasks runningeasdéime time. This will

cause the histogram to have speckling, noise or large spikas can be reduced by
decreasing the grid size so that more pixels are averaged igiven grid block.

166 CHAPTER 6. POV-RAY OPTIONS

6.2.3 Scene Parsing Options

POV-Ray reads in your scene file and processes it to creat@emal model of your
scene. The process is callpdrsing As your file is parsed other files may be read
along the way. This section covers options concerning whattse, where to find it
and what version specific assumptions it should make whilginit.

6.2.3.1 Input File Name

Input_File_Name=FILE Sets input file name tBILE
+IFILE Same asnput_File_Name=FILE

You will probably always set this option but if you do not thefallt input filename is
OBJECT.POV. If you do not have an extension tharov is assumed. On case-sensitive
operating systems botlrov and.POV are tried. A full path specification may be used
(on MS-Dos systems |c:\POVRAY3\MYSTUFF\MYFILE.POV is allowed for exam-
ple). In addition to specifying the input file name this alstablishes thecene name

The scene name is the input name with drive, path and extesgipped. In the above
example the scene nameNsFILE. This hame is used to create a default output file
name and it is referenced other places.

If you use " as the input file name the input will be read frotarglard input. Thus
you can pipe a scene created by a program to POV-Ray and riémdtdtout having a
scene file.

Under MS-Dos you can try this feature by typing.

type ANYSCENE.POV — POVRAY +|—

6.2.3.2 Library Paths

Library_Path=PATH Add path to list of library paths
+LPATH Same ad.ibrary_Path=PATH

POV-Ray looks for files in the current directory. If it doed find a file it needs it looks
in various other library directories which you specify. PRdy does not search your
operating system path. It only searches the current dineeted directories which you
specify with this option. For example the standard inclutés fare usually kept in one
special directory. You tell POV-Ray to look there with

Library_Path=c:\povray3\include

You must not specify any final path seperators’ @r /") at the end.

Multiple uses of this option switch do not override previ@astings. Up to ten unique
paths may be specified. If you specify the exact same patle ftiie only counts once.
The current directory will be searched first followed by theicated library directories
in the order in which you specified them.

6.2. OPTIONS REFERENCE 167

6.2.3.3 Language Version

Version=n.n Set initial language compatibility to versiom
+MVn.n Same a¥ersion=n.n

While many language changes have been made for POV-RayIBdd, eersion 2.0
syntax and most of version 1.0 syntax stillworks. Whenewssjble we try to maintain
backwards compatibility. One feature introduced in 2.Q tes incompatible with any
1.0 scene files is the parsing of float expressions. Seyngijon=1.0 or using-MV1.0
turns off expression parsing as well as many warning messsgéhat nearly all 1.0
files will still work. The changes between 2.0 and 3.0 are soéxtensive. Setting
Version=2.0 is only necessary to eliminate some warning messagesurally the
default setting for this option igersion=3.0.

The #version language directive can also be used to change modes sewegal t
within scene files. The above options affect only the inietting. See 7.2.4 on
page 208 for more details about the language version dieecti

6.2.3.4 Removing User Bounding

Remove_Bounds=bool Turn unnecessary bounds removal on/off

+UR Turn unnecessary bounds removal on
-UR Turn unnecessary bounds removal off
SplitUnions=bool Turn split bounded unions on/off
+SU Turn split bounded unions on

-Su Turn split bounded unions off

Early versions of POV-Ray had no system of automatic bogndin spatial sub-
division to speed up ray-object intersection tests. Usadsth manually create bound-
ing boxes to speed up the rendering. POV-Ray 3.0 has moréstiopted automatic
bounding than any previous version. In many cases the mauuaiding on older
scenes is slower than the new automatic systems. There@veRRy removes manual
bounding when it knows it will help. In rare instances you megnt to keep man-
ual bounding. Some older scenes incorrectly used boundivenwthey should have
used clipping. If POV-Ray removes the bounds in these scemgesnage will not
look right. To turn off the automatic removal of manual bosneu should specify
Remove_Bounds=off or use-UR. The default iRemove_Bounds=on.

One area where the jury is still out is the splitting of mahuabunded unions. Un-
bounded unions are always split into their component parteat automatic bounding
works better. Most users do not bound unions because they #rat doing so is usu-
ally slower. If you do manually bound a union we presume yallyavant it bound.
For safety sake we do not presume to remove such bounds. Waotito remove man-
ual bounds from unions you should spec#plit_Unions=on or use+SU. The default
is Split.Unions=off.

168 CHAPTER 6. POV-RAY OPTIONS

6.2.4 Shell-out to Operating System

Pre_Scene_.Command=s Set command before entire scene
Pre_Frame_Command=s Set command before each frame
Post_Scene_Command=s Set command after entire scene
Post_Frame_Command=s Set command after each frame

User_Abort Command=s Set command when user aborts POV-Ray
Fatal Error Command=s Set command when POV-Ray has fatal error

Note that not/— switches are available for these options. They cannot be fulsm
the command line. They may only be used from INI files.

POV-Ray offers you the opportunity to shell-out to the opiaasystem at several key
points to execute another program or batch file. Usuallyithissed to manage files
created by the internal animation loop however the shellmamds are available for
any scene. The CMD is a single line of text which is passeddmpierating system to
execute a program. For example

Post_Scene_Command=tga2gif -d -m myfile
would use the utilityrGA2GIF with the—d and—m parameters to convemyFILE.TGA

to MYFILE.GIF after the scene had finished rendering.

6.2.4.1 String Substitution in Shell Commands

It could get cumbersome to change tRest Scene Command every time you
changed scene names. POV-Ray can substitute various walaes CMD string for
you. For example:

Post_Scene_Command=tga2gif -d -m %s

POV-Ray will substitute th&swith the scene name in the command. Baeene name
is theInput_File_Name or +| setting with any drive, directory or extension removed.
For example:

Input_File Name=c: \povray3\scenes\waycool .pov

is stripped down to the scene namvaycooL which results in..

Post_Scene Command=tga2gif -d -m waycool

In an animation it may be necessary to have the exact outputidihe with the frame
number included. The strirfigho will substitute the output file name. Suppose you want
to save your output files in a zip archive usipgzipP. You could do...

6.2. OPTIONS REFERENCE 169

Post_Frame_Command=pkzip -m %s %O

After rendering frame 12 of1YSCeENE.POV POV-Ray would shell to the operating
system with PkzIP —m MYSCENE MYSCEQ12.TGA". The —m switch in PKzIP
movesMYSCEQO12.TGA to MYSCENE.zIP and removes it from the directory. Note
that %0 includes frame numbers only when in an animation loop. [Rurine
Pre_Scene_Command and Post_Scene_Command there is no frame number so
the original, unnumbere®utput_File_Name is used. AnyUser_Abort_.Command
or Fatal_Error_.Command not inside the loop will similarly give an unnumberéeb
substitution.

Here is the complete list of substitutions available for amown string.

%0 Output file name with extension and embedded frame nurhbay.i
%s Scene name derived by stripping path and ext from inpuenam
%n Frame number of this frame.

%k Clock value of this frame.

%h Height of image in pixels.

%w Width of image in pixels.

%% A single % sign.

6.2.4.2 Shell Command Sequencing

Here is the sequence of events in an animation loop. Nonatridrscenes work the
exact same way except there is no loop.

Process all INI file keywords and command line switchesguse.
Open any text output streams andCleate_INI if any.
ExecutePre_Scene_Command if any.

Loop through frames (or just do once on non-animation).

(&) ExecutePre_Frame_Command if any.

(b) Parse entire scene file, open output file and read settimgson
display, render the frame, destroy all objects, textures elose
output file, close display.

(c) ExecutePost_Frame_Command if any.

(d) Go back to 4 until all frames done.

5. ExecutePost_Scene_Command if any.

6. Exit POV-Ray.

AP wDN PR

If the user interrupts processing thiser_Abort_ Command, if any, is executed. User
aborts can only occur during the parsing and rendering pagtep 4a above.

If a fatal error occurs that POV-Ray notices thatal_ Error_Command, if any, is
executed. Sometimes an unforeseen bug or memory error caukk a total crash of

170 CHAPTER 6. POV-RAY OPTIONS

the program in which case there is no chance to shell out.| &attas can occur just
about anywhere including during the processing of switdnehll files. If a fatal error
occurs before POV-Ray has read tetal Error Command string then obviously no
shell can occur.

Note that the entire scene is re-parsed for every frame. ré&uwersions of POV-Ray
may allow you to hold over parts of a scene from one frame tathe but for now
it starts from scratch every time. Note also that Bve_Frame Command occurs
before the scene is parsed. You might use this to call somermuscene generation
utility before each frame. This utility could rewrite youpov or .INC files if needed.
Perhaps you will want to generate newIF or .TGA files for image maps or height
fields on each frame.

6.2.4.3 Shell Command Return Actions

Pre_Scene_Return=s Set pre scene return actions
Pre_Frame_Return=s Set pre frame return actions
Post_Scene_Return=s Set post scene return actions
Post_Frame_Return=s Set post frame return actions
User_Abort_ Return=s Set user abort return actions
Fatal Error Return=s Set fatal return actions

Note that no+/— switches are available for these options. They cannot be fuism
the command line. They may only be used from INI files.

Most operating systems allow application programs to nedurerror code if something
goes wrong. When POV-Ray executes a shell command it can nsakef this error

code returned from the shell process and take some app@igtion if the code is
zero or non-zero. POV-Ray itself returns such codes. ItmetQ for success, 1 for fatal
error and 2 for user abort.

The actions are designated by a single letter in the differen_Return=s options.
The possible actions are:

ignore the code

skip one step

all steps skipped

quit POV-Ray immediately
generate a user abort in POV-Ray
generate a fatal error in POV-Ray

mMCcO>»wn—

For example if yourPre_Frame_Command calls a program which generates your
height field data and that utility fails then it will return amzero code. We would
probably want POV-Ray to abort as well. The optre_Frame_Return=F will cause
POV-Ray to do a fatal abort if there_Frame_Command returns a non-zero code.

6.2. OPTIONS REFERENCE 171

Sometimes a non-zero code from the external process is athowd Suppose you
want to test if a frame has already been rendered. You co@dhesS action to skip
this frame if the file is already rendered. Most utilitiesaepan error if the file is not
found. For example the commamkziP —v MYSCENE MYSCEO12.TGA tells pkzip
you want to view the catalog of YSCENE.zIP for the fileMYSCE012.TGA. If the file
isn'tin the archiverkzip returns a non-zero code.

However we want to skip if the file is found. Therefore we needetverse the action
so it skips on zero and doesn't skip on non-zero. To reversed¢hno vs. non-zero
triggering of an action precede it with a "-” sign (note a "ilixalso work since it is
used in many programming languages as a negate operator).

Pre_Frame_Return=S will skip if the code shows error (non-zero) and will prodee
normally on no error (zeroPre_Frame_Return=-S will skip if there is no error (zero)
and will proceed normally if there is an error (non-zero).

The default for all shells i$ which means that the return action is ignored no matter
what. POV-Ray simply proceeds with whatever it was doingpleethe shell com-
mand. The other actions depend upon the context. You mayteaafer back to the
animation loop sequence chart in the previous section. Ttienafor each shell is as
follows.

On return from anyUser_Abort_Command if there is an action triggered and you
have specified. .

F then turn this user abort into a fatal error. Do the-
tal Error_ Command if any. Exit POV-Ray with error code
1.

S, A, Q,orU then proceed with the user abort. Exit POV-Ray\eitror
code 2.

On return from anyFatal Error_.Command proceed with the fatal error no matter
what. Exit POV-Ray with error code 1. On return from d@Pse_Scene_Command,
Pre_Frame_Command, Post_Frame_Command or Post_Scene_Commands if
there is an action triggered and you have specified

F then generate a fatal error. Do tRatal Error Command if any. Exit
POV-Ray with an error code 1.

U then generate a user abort. Do thser Abort Command if any. Exit
POV-Ray with an error code 2.

Q then quit POV-Ray immediately. Acts as though POV-Ray newally
ran. Do no further shells (not evdPost Scene_ Command and exit
POV-Ray with an error code 0.

On return from &Pre_Scene_Command if there is an action triggered and you have
specified...

172 CHAPTER 6. POV-RAY OPTIONS

S then skip rendering all frames. Acts as though the scene com
pleted all frames normally. Do not do amre Frame Command or
Post Frame_Commands. Do thePost Scene_ Command if any. Exit
POV-Ray with error code 0. On the earlier chart this meang stap 4
on page 169.
then skip all scene activity. Works exactly likg quit On the earlier

A chart this means skip to step 6 on page 169.

On return from a&Pre_Frame_Command if there is an action triggered and you have
specified ..

S then skip only this frame. Acts as though this frame nevisteck Do
not do thePost Frame_Command. Proceed with the next frame. On
the earlier chart this means skip steps 4b on page 169 andpbgenl69
but loop back as needed in 4d on page 169.

A then skip rendering this frame and all remaining frames. tsAas
though the scene completed all frames normally. Do not dofany
ther Post Frame _Command. Do thePost Scene_ Command if any.
Exit POV-Ray with error code 0. On the earlier chart this nseskip the
rest of step 4 on page 169 and proceed at step 5 on page 169.

On return from &ost_Frame_Command if there is an action triggered and you have
specified ..

S then skip rendering all remaining frames. Acts as thouglstiene com-
pleted all frames normally. Do tHeost Scene_Command if any. Exit
POV-Ray with error code 0. On the earlier chart this means tia rest
of step 4 on page 169 and proceed at step 5 on page 169.

A same asSfor this shell command.

On return from anyPost_Scene_Command if there is an action triggered and you
have specified. .

S or A same a$ for this shell command.

6.2.5 Text Output

Text output is an important way that POV-Ray keeps you inftrabout what it is
going to do, what it is doing and what it did. New to POV-Ray;, 3t& program splits
its text messages into 7 separate streams. Some versio®@VeRRy color codes the
various types of text. Some versions allow you to scroll ksmleral pages of messages.
All versions allow you to turn some of these text streamsoaffdr to direct a copy of
the text output to one or several files. This section dethésaptions which give you
control over text output.

6.2. OPTIONS REFERENCE 173

6.2.5.1 Text Streams

There are seven distinct text streams that POV-Ray usesifpub On some versions
each stream is designated by a particular color. Text frasedlstreams are displayed
whenever it is appropriate so there is often an intermixihthe text. The distinction
is only important if you choose to turn some of the stream®ofb direct some of the
streams to text files. On some systems you may be able to réviestreams separately
in their own scroll-back buffer.

Here is a description of each stream.

BANNER: This stream displays the program’s sign-on banner, coplricpntribu-
tor's list, and some help screens. It cannot be turned ofiirectéd to a file because
most of this text is displayed before any options or switdmesread. Therefore you
cannot use an option or switch to control it. There are sw#ahhich display the help
screens. They are covered in section 6.2.5.4 on page 176.

DEBUG: This stream displays debugging messages. It was primagiygded for
developers but this and other streams may also be used bgeh&uwisplay messages
from within their scene files. See 7.2.6.1 on page 212 forildeta this feature. This
stream may be turned off and/or directed to a text file.

FATAL: This stream displays fatal error messages. After disptatiiis text, POV-
Ray will terminate. When the error is a scene parsing erar,may be shown several
lines of scene text that leads up to the error. This stream beatyrned off and/or
directed to a text file.

RENDER: This stream displays information about what options yoletspecified to
render the scene. It includes feedback on all of the majdomgpisuch as scene name,
resolution, animation settings, anti-aliasing and oth&tss stream may be turned off
and/or directed to a text file.

STATISTICS: This stream displays statistics after a frame is renderedcludes
information about the number of rays traced, the lengthroétof the processing and
other information. This stream may be turned off and/oraled to a text file.

STATUS: This stream displays one-line status messages that exphain POV-Ray
is doing at the moment. On some systems this stream is desplatya status line at the
bottom of the screen. This stream cannot be directed to addause there is generally
no need to. The text displayed by therbose option or+V switch is output to this
stream so that part of the status stream may be turned off.

WARNING: This stream displays warning messages during the parsisceot files
and other warnings. Despite the warning, POV-Ray can aoatto render the scene.
You will be informed if POV-Ray has made any assumptions tlour scene so that
it can proceed. In general any time you see a warning, youdlago assume that this
means that future versions of POV-Ray will not allow the vestraction. Therefore
you should attempt to eliminate warning messages so yomesgi be able to run in
future versions of POV-Ray. This stream may be turned off@ndirected to a text
file.

174

6.2.5.2 Console Text Output

Debug_Console=bool
+GD
-GD

Fatal_Console=bool
+GF
-GF

Render_Console=boo
+GR
-GR

Statistic_Console=bool
+GS

-GS
Warning_Console=bool
+GW

-GW

All_Console=bool

+GA
-GA

You may suppress the outpu

CHAPTER 6. POV-RAY OPTIONS

Turn console display of debug info text on/off
Same aPebug_Console=on
Same aPebug_Console=off

Turn console display of fatal error text on/off
Same a$atal_Console=on
Same a$atal_Console=off

Turn console display of render info text on/off
Same afkender_Console=on
Same afkender_Console=off

Turn console display of statistic text on/off
Same astatistic.Console=on
Same astatistic_Console=off

Turn console display of warning text on/off
Same asVarning_Console=on
Same asVarning_Console=off

Turn on/off all debug, fatal, render, statistic and
warning text to console.
Same a\ll_Console=on
Same a\ll_Console=off

t to the console of Brebug Fatal, Render Statistic

or Warningtext streams. For example titatistic_.Console=off option or the-GS
switch can turn off theStatisticstream. Usingon or +GS you may turn it on again.
You may also turn all five of these streams on or off at oncegugtie All_Console

option or+GA switch.

Note that these options take effect immediately when sgecifDbviously anyError
or Warningmessages that might occur before the option is read are radtduted.

6.2.5.3 Directing Text Streams to Files

Debug_File=true Ech

o debug info text thEBUG.OUT

Debug_File=false Turn off file output of debug info
Debug_File=FiLe Echo debug info text teILE

+GDFILE Both Debug_Console=on, Debug_File=FILE
—GDFILE Both Debug_Console=off, Debug_File=FILE

Fatal_FILE=true Echo fatal text teATAL.OUT

6.2. OPTIONS REFERENCE 175

Fatal_File=false Turn off file output of fatal
Fatal_File=FILE Echo fatal info text tarFILE

+GFFILE Both Fatal_Console=on, Fatal_File=FILE
—GFFILE Both Fatal_Console=off, Fatal_File=FILE

Render_File=true Echo render info text tRENDER.OUT
Render_File=false Turn off file output of render info
Render_File=FiLE = Echo render info text teILE

+GRFILE Both Render_Console=on,Render_File=FILE
—GRFILE Both Render_Console=off, Render_File=FILE

Statistic_File=true = Echo statistic text teTATS.OUT
Statistic_File=false Turn off file output of statistics
Statistic_File=FILE Echo statistic text t&ILE

+GSFILE Both Statistic_Console=on, Statistic_File=FILE
—GSFile Both Statistic_Console=off, Statistic_File=FILE

Warning_File=true Echo warning info text ta’ ARNING.OUT
Warning_File=false Turn off file output of warning info
Warning_File=FILE Echo warning info text t&ILE

+GWFILE Both Warning_Console=on, Warning_File=FILE

—GWEFILE Both Warning_Console=off, Warning_File=FILE

All_File=true Echo all debug, fatal, render, statistic and and wgrni
text toALLTEXT.OUT

All_File=false Turn off file output of all debug, fatal, render, stat
and warning text

All_File=FILE Echo all debug, fatal, render, statistic and warning text
to file

+GAFILE Both All_Console=on,All_File=FILE

—GAFILE Both All_Console=off, All File=FILE

You may direct a copy of the text streams to a text file for Erebug Fatal, Render
Statisticor Warningtext streams. For example tiaatistic_File=s option or therGSs
switch. If the strings is true or any of the other validrue strings then that stream is
redirected to a file with a default name. Vatidie values ardrue, yes onor 1. If the
value isfalsethe direction to a text file is turned off. Valfdlsevalues ardalse no, off
or 0. Any other string specified turns on file output and the stisnigterpreted as the
output file name.

Similarly you may specify such a true, false or file name gtafter a switch such as
+GSfile. You may also direct all five streams to the same file udiveghl_File option
or +GA switch. You may not specify the same file for two or more stred®cause
POV-Ray will fail when it tries to open or close the same filécev

Note that these options take effect immediately when sgekifDbviously anyerror
or Warningmessages that might occur before the option is read will ectftected.

176 CHAPTER 6. POV-RAY OPTIONS

6.2.5.4 Help Screen Switches

+H or +? Show help screen 0 if this is the only switch
+HO to+H8 Show help screen 0 to 8 if this is the only switch
+?0to+?8 Same asHO to+H8

Note that there are no INI style equivalents to these options

Graphical interface versions of POV-Ray such as Mac or Wirsdloave extensive on-
line help. Other versions of POV-Ray have only a few quidlerence help screens.
The +? switch, optionally followed by a single digit from 0 to 8, Wdisplay these
help screens to thBannertext stream. After displaying the help screens, POV-Ray
terminates. Because some operating systems do not permnstian mark as a com-
mand line switch you may also use thél switch. Note however that this switch is
also used to specify the height of the image in pixels. Tlueesthe+H switch is only
interpreted as a help switch if it is the only switch on the omand line and if the value
after the switch is less than or equal to 8.

6.2.6 Tracing Options

There is more than one way to trace a ray. Sometimes thereréla-off between
quality and speed. Sometimes options designed to makedréster can slow things
down. This section covers options that tell POV-Ray how @oerrays with the appro-
priate speed and quality settings.

6.2.6.1 Quality Settings

Quality=n Set quality value tm =0...9
+Qn Same aQuality=n

The Quality=n option or+Qn switch allows you to specify the image rendering quality.
You may choose to lower the quality for test rendering anserdifor final renders. The
quality adjustments are made by eliminating some of theutations that are normally
performed. For example settings below 4 do not render shedBettings below 8 do
not use reflection or refraction. The values correspondeddtiowing quality levels:

0,1 Use ambient lighting and quick colors only. Quick colars used only
at 5 or below.

2,3 Show specified diffuse and ambient lighting.

4 Render shadows but no extended lights.

5 Render shadows including extended lights.

6, 7 Compute texture patterns.

8 Compute reflected, refracted and transmitted rays.

9 Compute halos.

The default is 9 if not specified.

6.2. OPTIONS REFERENCE 177

6.2.6.2 Radiosity Setting

Radiosity=bool Turns radiosity on/off
+0OR Turns radiosity on
-QR Turns radiosity on

Radiosity is an additional calculation which computesudiéf inter-reflection. It is an
extremely slow calculation that is somewhat experimeritaé parameters which con-
trol how radiosity calculations are performed are specifidieglobal_settings
{ radiosity { ... } } statement. See 7.8.9 on page 362 for further details.

6.2.6.3 Automatic Bounding Control

Bounding=bool Turn bounding on/off

+MB Turn bounding on; threshold 25 or previous
amount

-MB Turn bounding off

Bounding Threshold=n Set bound threshold to n

+MBn Turn bounding on; set future threshold to n

—MBn Turn bounding off; set future threshold to n

Light Buffer=bool Turn light buffer on/off

+UL Turn light buffer on

-UL Turn light buffer off

Vista_Buffer=bool Turn vista buffer on/off

+UV Turn vista buffer on

-uv Turn vista buffer off

POV-Ray uses a variety of spatial sub-division systemsé¢edup ray-object intersec-
tion tests. The primary system uses a hierarchy of nesteatioay boxes. This system
compartmentalizes all finite objects in a scene into inlésibctangular boxes that are
arranged in a tree-like hierarchy. Before testing the dbjaadthin the bounding boxes
the tree is descended and only those objects are tested Wwhosds are hit by a ray.
This can greatly improve rendering speed. However for sceiith only a few objects
the overhead of using a bounding system is not worth theteffidie Bounding=off
option or—MB switch allows you to force bounding off. The default valueris

The Bounding_Threshold=n or +MBn switch allows you to set the minimum number
of objects necessary before bounding is used. The defatiMB25 which means that
if your scene has fewer than 25 objects POV-Ray will autoradlti turn bounding off
because the overhead isn't worth it. Generally it's a goaghitb use a much lower
threshold like+tMB5.

178 CHAPTER 6. POV-RAY OPTIONS

Additionally POV-Ray uses systems knownwasta buffersandlight buffersto further
speed things up. These systems only work when bounding isi@mwaen there are
a sufficient number of objects to meet the bounding threshdlde vista buffer is
created by projecting the bounding box hierarchy onto theescand determining the
rectangular areas that are covered by each of the elemehs lierarchy. Only those
objects whose rectangles enclose a given pixel are testdtehyimary viewing ray.
The vista buffer can only be used with perspective and ortiigc cameras because
they rely on a fixed viewpoint andraasonableprojection (i. e. straight lines have to
stay straight lines after the projection).

The light buffer is created by enclosing each light sourcannimaginary box and
projecting the bounding box hierarchy onto each of its gibesi Since this relies on a
fixed light source, light buffers will not be used for areahlig

Reflected and transmitted rays do not take advantage ofghiedind vista buffer.

The default settings ardista_Buffer=on or +UV and Light Buffer=on or+UL. The
option to turn these features off is available to demonsttheir usefulness and as
protection against unforeseen bugs which might exist ircditlyese bounding systems.

In general, any finite object and many types of CSG of finitectsj will properly re-
spond to this bounding system. In addition blobs and mesteamadditional internal
bounding system. These systems are not affected by the aboteh. They can be
switched off using the appropriate syntax in the scene féde (65.2.1 on page 231
and 7.5.3.3 on page 254 for details). Text objects are spétindividual letters that
are bounded using the bounding box hierarchy. Some CSG oatidnis of finite and
infinite objects are also automatically bound. The end tésthat you will rarely need
to add manual bounding objects as was necessary in earigong of POV-Ray unless
you use many infinite objects.

6.2.6.4 Anti-Aliasing Options

Antialias=bool Turns anti-aliasing on/off

+A Turns anti-aliasing on with threshold 0.3 or pre-
vious amount

-A Turns anti-aliasing off

Sampling_Method=n Sets anti-aliasing sampling method (1 or 2)

+AMn Same asSampling_Method=n
Antialias_Threshold=n.n Sets anti-aliasing threshold

+An.n Sets anti-aliasing on with thresholdnat
—An.n Sets anti-aliasing off (threshatdh in future)
Jitter=bool Sets jitter on/off

+J Sets jitter on with 1.0 or previous amount

-J Sets jitter off

6.2. OPTIONS REFERENCE 179

Jitter Amount=n.n Sets jitter amount to.n. If n.n <O jitter is set
off

+Jn.n Sets jitter on; jitter amount to.n. If nn <0
jitter is set off

=Jn.n Sets jitter off (jitter amount.n in future)

Antialias Depth=n Sets anti-aliasing depth £ 1...9)

+Rn Same a#ntialias Depth=n

The ray-tracing process is in effect a discrete, digital garg of the image with typ-

ically one sample per pixel. Such sampling can introducergetyaof errors. This

includes a jagged, stair-step appearance in sloping oeduimes, a broken look for
thin lines, moire patterns of interference and lost detaih@sing objects, which are
so small they reside between adjacent pixels. The effettighasponsible for those
errors is calledhliasing

Anti-aliasing is any technique used to help eliminate sucbre or to reduce the neg-
ative impact they have on the image. In general, anti-algashakes the ray-traced
image looksmoother TheAntialias=on option or+A switch turns on POV-Ray’s anti-
aliasing system.

When anti-aliasing is turned on, POV-Ray attempts to redheesrrors by shooting
more than one viewing ray into each pixel and averaging thelt®to determine the
pixel's apparent color. This technique is called supergamg and can improve the
appearance of the final image but it drastically increasedithe required to render a
scene since many more calculations have to be done.

POV-Ray gives you the option to use one of two alternate ssg@epling methods. The
Sampling_Method=n option or+AMn switch selects non-adaptive super-sampling
(method 1) or adaptive super-sampling (method 2). Sekpaiire of those methods
does not turn anti-aliasing on. This has to be done by usiaeg-# command line
switch orAntialias=on option.

In the default, non-adaptive methodAM1), POV-Ray initially traces one ray per
pixel. If the color of a pixel differs from its neighbors (tbe left or above) by more
than a threshold value then the pixel is super-sampled bgtisigoa given, fixed num-
ber of additional rays. The default threshold is 0.3 but iyrba changed using the
Antialias_Threshold=n.n option. When the switches are used, the threshold may op
tionally follow the+A. For examplerAO0.1 turns anti-aliasing on and sets the threshold
to 0.1.

The threshold comparison is computed as follows:.; Jfg;, by andry, go, b, are the
rgb components of two pixels then the difference betweeelpis computed by

diff:|r2—r1|+|gz—gl\+|b2—b1|. (61)

If this difference is greater than the threshold both pixets super-sampled. The rgb
values are in the range from@to 10 thus the most two pixels can differ i903 If the

180 CHAPTER 6. POV-RAY OPTIONS

anti-aliasing threshold is 0.0 then every pixel is supemslad. If the threshold is 3.0
then no anti-aliasing is done. Lower threshold means mdieaiasing and less speed.
Use anti-aliasing for your final version of a picture, not thagh draft. The lower the
contrast, the lower the threshold should be. Higher conpiatures can get away with
higher tolerance values. Good values seem to be aro2mi Q4.

When using the non-adaptive method, the default numberprssamples is nine per
pixel, located on a & 3 grid. TheAntialias_Depth=n option or+Rn switch controls
the number of rows and columns of samples taken for a supgned pixel. For
example+R4 would give 4x 4 = 16 samples per pixel.

The second, adaptive super-sampling method starts bywgrémir rays at the corners
of each pixel. If the resulting colors differ more than theethold amount additional
samples will be taken. This is done recursively, i. e. theslpig divided into four
sub-pixels that are separately traced and tested for fustitalivision. The advantage
of this method is the reduced number of rays that have to lmedraSamples that
are common among adjacent pixels and sub-pixels are stagkdeased to avoid re-
tracing of rays. The recursive character of this method matkadaptive, i. e. the
super-sampling concentrates on those parts of the pixelatkamore likely to need
super-sampling (see figure 6.1).

< < ° <4 e new samples

o reused samples
++ .
4 4one pixel

° ° °
pixel corners
+ N - Gl
initial samples level 1
o e ooooﬁ»
+) * e000
o 0 o 000@0
e00
o/e O 0 00080 O
eoo00
e o0 0 o 0 Oe0®0 O
e00
4 @ 0O @4 4 000 O 4
level 2 level 3

Figure 6.1: Example of how the adpative super-sampling sork

The maximum number of subdivisions is specified by Amgialias Depth=n option
or +Rn switch. This is different from the non-adaptive method evédre total num-
ber of super-samples is specified. A maximum numben sfibdivisions results in a
maximum number of samples per pixel that is given by tableof.the facing page.

You should note that the maximum number of samples in thetivgagase is hardly
ever reached for a given pixel. If the adaptive method is ugtdno anti-aliasing each
pixel will be the average of the rays traced at its cornersndst cases a recursion level
of three is sufficient.

6.2. OPTIONS REFERENCE 181

+Rn | non-adaptive method the adaptive method

1 1 9

2 4 25

3 9 81

4 16 289

5 25 1089

6 36 4225

7 49 16641

8 64 66049

9 81 263169

Table 6.1: Number of samples for the non-adaptive and adaptive super-
sampling methods.

Another way to reduce aliasing artifacts is to introducesadnto the sampling process.
This is calledittering and works because the human visual system is much more for-
giving to noise than itis to regular patterns. The locatibtihe super-samples is jittered
or wiggled a tiny amount when anti-aliasing is used. Jitiggiis used by default but it
may be turned off with thditter=off option or—J switch. The amount of jittering can
be set with thelitter_Amount=n.n option. When using switches the jitter scale may be
specified after the-J switch. For example-J0.5 uses half the normal jitter. The default
amount of 1.0 is the maximum jitter which will insure that allper-samples remain
inside the original pixel. Note that the jitterimpiseis random and non-repeatable so
you should avoid using jitter in animation sequences asrtieatiased pixels will vary
and flicker annoyingly from frame to frame.

If anti-aliasing is not used one sample per pixel is takeramdgss of the super-
sampling method specified.

182 CHAPTER 6. POV-RAY OPTIONS

Chapter 7

Scene Description Language

The Scene Description Language allows you to describe thikelwoa readable and
convenient way. Files are created in plain ASCII text usingeditor of your choice.
The input file name is specified using thgut_File_Name=FILE option or +IFILE
switch. By default the files have the extensipov. POV-Ray reads the file, processes
it by creating an internal model of the scene and then reritlerscene.

The overall syntax of a scene is a file that contains any numobtie following items
in any order.

LANGUAGE_DIRECTIVES

camera{ CAMERA ITEMS }
OBJECT_STATEMENTS
ATMOSPHERE_STATEMENTS
global_settings { GLOBAL_ITEMS }

See 7.2 on page 204, 7.5 on page 228, 7.4 on page 219, 7.7 o4agad 7.8 on
page 355 for details.

7.1 Language Basics

The POV-Ray language consists of identifiers, reserved &msy floating point ex-
pressions, strings, special symbols and comments. ThetexPOV-Ray scene file
is free format. You may put statements on separate lines theosame line as you
desire. You may add blank lines, spaces or indentationsngsde you do not split any
keywords or identifiers.

7.1.1 Identifiers and Keywords

POV-Ray allows you to define identifiers for later use in thenecfile. An identifier
may be 1 to 40 characters long. It may consist of upper or loase letters, the digits

183

184

0 through 9 or an underscore charactel)("The first character must be an alphabetic

CHAPTER 7. SCENE DESCRIPTION LANGUAGE

character. The declaration of identifiers is covered later.

POV-Ray has a number of reserved keywords which are listed/be

aa_level
aa_threshold
abs

acos

acosh
adaptive
adc_bailout
agate
agate_turb
all

alpha
ambient
ambient_light
angle
aperture
arc_angle
area_light
asc

asin

asinh
assumed_gamma
atan

atan?

atanh
atmosphere

atmospheric_attenuation

attenuating
average
background

bicubic_patch

black_hole
blob

blue
blur_samples
bounded_by
box
box_mapping
bozo

break
brick
brick_size
brightness
brilliance
bumps
bumpy 1

fog_offset
fog_type
frequency
gif
global_settings
glowing
gradient
granite
gray_threshold
green

halo

height _field
hexagon
hf_gray_16
hierarchy
hollow
hypercomplex
if

ifdef

iff

image_map
incidence
include

int
interpolate
intersection
inverse

ior

irid
irid_wavelength
jitter
julia_fractal
lambda

lathe
leopard
light_source
linear
linear_spline
linear_sweep
location

log

looks_ like
look_at
low_error_factor
mandel

reciprocal
recursion_limit
red
reflection
refraction
render
repeat

rgb

rgbf

rgbft

rgbt

right
ripples
rotate
roughness
samples
scale
scallop_wave
scattering
seed
shadowless
sin
sine_wave
sinh

sky

sky sphere
slice
slope_map
smooth
smooth_triangle
sor
specular
sphere

spherical _mapping

spiral
spirall
spiral2
spotlight
spotted
sqr

sqgrt
statistics
str
strcmp
strength

7.1. LANGUAGE BASICS

bumpy2
bumpy3
bump_map
bump_size
camera
case
caustics
ceil
checker
chr
clipped_by
clock
color
color map
colour
colour_map
component
composite
concat
cone
confidence
conic_sweep
constant
control0
controll
cos

cosh

count
crackle
crand

cube

cubic
cubic_spline
cylinder
cylindrical_mapping
debug
declare
default
degrees
dents
difference
diffuse
direction
disc
distance
distance_maximum
div

dust
dust_type
eccentricity

map-type
marble
material_map
matrix

max

max_intersections

max_iteration
max_trace_level
max_value
merge

mesh
metallic

min

minimum reuse
mod

mortar
nearest_count
no

normal
normal_map
no_shadow
number of waves
object
octaves

off

offset

omega
omnimax

on

once

onion

open
orthographic
panoramic
patternl
pattern2
pattern3
perspective
pgm

phase

phong
phong_size

pi

pigment
pigment _map
planar mapping
plane

png

point_at

poly

185

strlen
strlwr
strupr

sturm

substr
superellipsoid
switch

sys

t

tan

tanh
test_camera_l
test_camera_2
test_camera 3
test_camera 4
text

texture
texture_map
tga
thickness
threshold
tightness
tile2

tiles

torus

track
transform
translate
transmit
triangle
triangle_wave
true

ttf
turbulence
turb_depth
type

u
ultra_wide_angle
union

up

use_color
use_colour
use_index
u_steps

v

val

variance
vaxis_rotate
VCross

vdot

186 CHAPTER 7. SCENE DESCRIPTION LANGUAGE
else polygon version
emitting pot vlength

end pow vnormalize
error ppm volume_object
error_bound precision volume_rendered
exp prism vol with light
exponent pwr vrotate
fade_distance quadratic_spline v_steps
fade_power quadric warning
falloff quartic warp
falloff_angle quaternion water_level
false quick_color waves
file_exists quick_colour while

filter quilted width

finish radial wood

fisheye radians wrinkles
flatness radiosity X

flip radius v

floor rainbow yes
focal_point ramp_wave z

fog rand

fog_alt range

All reserved words are fully lower case. Therefore it is raotended that your identi-
fiers contain at least one upper case character so it is saveitbconflict with reserved
words.

The following keywords are in the above list of reserved kensds but are not currently
used by POV-Ray however they remain reserved.

bumpy 1 test_camera_l
bumpy 2 test_camera 2
bumpy 3 test_camera 3

incidence test_camera 4
patternl track

pattern2 volume_object
pattern3 volume_rendered
spiral vol_with_light

7.1.2 Comments

Comments are text in the scene file included to make the sdeneaSier to read or
understand. They are ignored by the ray-tracer and are foergur information.
There are two types of comments in POV-Ray.

Two slashes are used for single line comments. Anything omeaalter a double slash
(//)is ignored by the ray-tracer. For example:

7.1. LANGUAGE BASICS 187

// This line is ignored

You can have scene file information on the line in front of thenment as in:

object { FooBar } // this is an object

The other type of comment is used for multiple lines. It starith ”/*” and ends with
"% /", Everything in-between is ignored. For example:

/* These lines
are ignored
by the
ray-tracer */

This can be useful if you want to temporarily remove elemdnats a scene file./ *

* / comments cacomment outines containing othey / comments and thus can
be used to temporarily or permanently comment out parts afeaes /* ... */
comments can be nested, the following is legal:

/* This is a comment
// This too

/* This also */

*/

Use comments liberally and generously. Well used, theyyréaprove the readability
of scene files.

7.1.3 Float Expressions

Many parts of the POV-Ray language require you to specifyasmaore floating point
numbers. A floating point number is a number with a decimahipoFloats may be
specified using literals, identifiers or functions whicturatfloat values. You may also
create very complex float expressions from combinationspfodthese using various
familiar operators.

Where POV-Ray needs an integer value it allows you to spexifipat value and it
truncates it to an integer. When POV-Ray needs a logical aleba value it interprets
any non-zero float as true and zero as false. Because floattismps are subject to
rounding errors POV-Ray accepts values extremely closerm as being false when
doing boolean functions. Typically values whose absolatees are less than a preset
value epsilonare considered false for logical expressions. The valuepsilonis
system dependent but is generally abo®e1 10. Two floatsa andb are considered
to be euqal ifa—b| < epsilon

188 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.1.3.1 Float Literals

Float literals are represented by an optional sign ("+”) digits, an optional decimal
point and more digits. If the number is an integer you may ¢h@tdecimal point and
trailing zero. If it is all fractional you may omit the leadjreero. POV-Ray supports
scientific notation for very large or very small numbers. Tokowing are all valid
float literals:

-2.0 -4 34 3.4e6 2e-5 .3 0.6

7.1.3.2 Float Identifiers
Float identifiers may be declared to make scene files morabémdnd to parameterize

scenes so that changing a single declaration changes mamsvaAn identifier is
declared as follows.

#declare IDENTIFIER = EXPRESSION

Where IDENTIFIER is the name of the identifier up to 40 characters long and
EXPRESSIONIS any valid expression which evaluates to a float value. ldsresome
examples.

#declare Count = 0

#declare Rows = 5.3
#declare Cols = 6.15
#declare Number = Rows*Cols
#declare Count = Count+1l

As the last example shows, you can re-declare a float iderdifigé may use previously
declared values in that re-declaration. There are seveii&d identifiers which POV-
Ray declares for you. See 7.1.7 on page 197 for details.

7.1.3.3 Float Operators

Arithmetic float expressions can be created from float lisgridentifiers or functions
using the following operators in this order of precedence

() expressions in parentheses first
+A unary plus

-A unary minus

'A logical not

A*B multiplication

7.1. LANGUAGE BASICS 189

A/B division
A+B addition
A-B subtraction

Relational, logical and conditional expressions may aksareated. However there is
a restriction that these types of expressions must be etlaoparentheses first. This
restriction, which is not imposed by most computer langsagenecessary because
POV-Ray allows mixing of float and vector expressions. Withthe parentheses there
is an ambiguity problem. Parentheses are not requireddarrthry logical not operator

"I" as shown above. The operators and their precedence avenshere.

Relational expressions:The operands are arithmetic expressions and the result is al
ways boolean with 1 for true and O for false. All relationakogtors have the same
precedence.

(A < B) AislessthanB

(A <= B) Aislessthanorequal to B

(A = B) Aisequal toB (actuallyA— B| < epsilon

(A !'= B) Aisnotequal to B (actuallyA—B| > epsilon
(A >= B) Aisgreater than or equal to B

(o > B) Aisgreater than B

Logical expressions:The operands are converted to boolean values of O for fatb& an
for true. The result is always boolean. All logical operathave the same precedence.
Note that these are not bitwise operations, they are lagical

(A & B) trueonly if both A and B are true, false otherwise
(A | B) trueif either A or B or both are true

Conditional expressions:The operand C is boolean while operands A and B are any
expressions. The result is of the same type as A and B.

(c 2 A : B) ifCthenAelseB

Assuming the various identifiers have been declared, thewirlg are examples of
valid expressions. .

1+2+3 2%5 1/3 Row*3 Col*5
(Offset-5)/2 This/That+Other*Thing

((This<That) & (Other>=Thing) ?Foo:Bar)

Expressions are evaluated left to right with innermost pidneses evaluated first, then
unary +, — or !, then multiply or divide, then add or subtract, then tielaal, then
logical, then conditional.

190 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.1.4 \ector Expressions

POV-Ray often requires you to specifyactor. A vector is a set of related float values.
Vectors may be specified using literals, identifiers or fiowg which return vector
values. You may also create very complex vector expresgions combinations of
any of these using various familiar operators.

POV-Ray vectors may have from two to five components but tke nmajority of vec-

tors have three components. Unless specified otherwiseshyould assume that the
word vectormeans a three component vector. POV-Ray operates inxa 3 coor-
dinate system and you will use three component vectors tifgpe y andzvalues. In
some places POV-Ray needs only two coordinates. Thesetareggfecified by a 2D
vector called atJV vector Fractal objects use 4D vectors. Color expressions use 5D
vectors but allow you to specify 3, 4 or 5 components and ufaulievalues for the
unspecified components. Unless otherwise noted, all 2, £onponent vectors work
just like 3D vectors but they have a different number of congras.

7.1.4.1 Vector Literals

Vectors consist of two to five float expressions that are lat@ck by angle brackets
(and). The terms are separated by commas. For example here iscaltjfpiee
component vector:

< 1.0, 3.2, -5.4578 >

The commas between components are necessary to keep thmenprisgm thinking
that the 2nd term is the single float expressian-35.4578 and that there is no 3rd
term. If you see an error message suctrst expected but)’ found insteadyou
probably have missed a comma.

Sometimes POV-Ray requires you to specify floats and vestdesby-side. The rules
for vector expressions allow for mixing of vectors with varst or vectors with floats
S0 commas are required separators whenever an ambiguityt arige. For example
(1,2,3) — 4 evaluates as a mixed float and vector expression where Btissted from
each component resulting {r-3, —2, —1). However the comma ifl, 2, 3), —4 means
this is a vector followed by a float.

Each component may be a full float expression. For exarfiplés+ 3, T hat/3,5
Other_Thing) is a valid vector.

7.1.4.2 Vector Identifiers

Vector identifiers may be declared to make scene files modabda and to parameter-
ize scenes so that changing a single declaration changesvalaes. An identifier is
declared as follows. .

7.1. LANGUAGE BASICS 191

#declare IDENTIFIER = EXPRESSION

Where IDENTIFIER is the name of the identifier up to 40 characters long and
EXPRESSION is any valid expression which evaluates to a vector valuere tdee
some examples..

#declare Here = <1,2,3>

#declare There = <3,4,5>

#declare Jump = <Foo*2,Bar-1,Bob/3>
#declare Route = There-Here
#tdeclare Jump = Jump+<1,2,3>

Note that you invoke a vector identifier by using its name wuthany angle brackets.
As the last example shows, you can re-declare a vector figrdind may use previ-
ously declared values in that re-declaration. There arerakbuilt-in identifiers which

POV-Ray declares for you. See 7.1.7 on page 197 for details.

7.1.4.3 Vector Operators

Vector literals, identifiers and functions may also be comabi in expressions the
same as float values. Operations are performed on a complop@aimponent basis.
For example(1,2,3) + (4,5,6) evaluates the same 8%+ 4,2+ 5,3+ 6) or (5,7,9).
Other operations are done on a similar component-by-coemgdoasis. For example
((1,2,3) = (3,2,1)) evaluates td0, 1,0) because the middle components are equal but
the others are not. Admittedly this isn’t very useful butdemsistent with other vector
operations.

Conditional expressions such&s 2 A : B) require that Cis a float expression but
A and B may be vector expressions. The result is that theeeatinditional evaluates
as a valid vector. For examplefbo andBar are floats then

Foo < Bar ? <1,2,3> : <5,6,7>

evaluates as the vect(t, 2,3) if Foo is less tharBar and evaluates &%, 6,7) other-
wise.

You may use the dot operator to extract a single componemt freector. Suppose the
identifier spot was previously defined as a vector. Thesot . x is a float value that

is the first component of this y, zvector. SimilarlySpot .y andspot. z reference

the 2nd and 3rd components.dbot was a two component UV vector you could use
Spot.uandspot. v to extract the first and second component. For a 4D vector use
.X, .y, .z and. t to extract each float component. The dot operator is alsoinsed
color expressions which are covered later.

192 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.1.4.4 Operator Promaotion

You may use a lone float expression to define a vector whosearemfs are all the

same. POV-Ray knows when it needs a vector of a particular @yl will promote a

float into a vector if need be. For example the POV-Ray1e statement requires a
three component vector. If you specify scale 5 then POV-Regrjprets this as scale
(5,5,5) which means you want to scale by 5 in every direction.

Versions of POV-Ray prior to 3.0 only allowed such use of atfésaa vector in various
limited places such ascale and turbulence. However you may now use this
trick anywhere. For example.

box { 0, 11} // This is the same as box { <0,0,0>, <1,1,1> }
sphere { 0, 1 } // This is the same as sphere { <0,0,0>, 1 }

When promoting a float into a vector of 2, 3, 4 or 5 componeiitspaponents are set
to the float value, however when promoting a vector of a loweniper of components
into a higher order vector, all remaining components ard¢seero. For example if
POV-Ray expects a 4D vector and you specify 9 the resu{®,i8,9,9) but if you
specify(7,6) the resultis(7,6,0,0).

7.1.5 Specifying Colors

POV-Ray often requires you to specify a color. Colors cdrsfidive values or color
components. The first three are calledd, green andblue. They specify the
intensity of the primary colors red, green and blue usingditize color system like
the one used by the red, green and blue color phosphors onrantohitor.

The 4th component, callefli 1 ter, specifies the amount of filtered transparency of
a substance. Some real-world examples of filtered transparee stained glass win-
dows or tinted cellophane. The light passing through sugbctd is tinted by the
appropriate color as the material selectively absorbs doeggencies of light while
allowing others to pass through. The color of the object ragted from the light
passing through so this is called subtractive transparency

The 5th component, calledransmi t, specifies the amount of non-filtered light that is
transmitted through a surface. Some real-world exampleswffiltered transparency
are thin see-through cloth, fine mesh netting and dust onfacgurin these examples,
all frequencies of light are allowed to pass through tinyebah the surface. Although
the amount of light passing through is diminished, the cofahe light passing through
is unchanged. The color of the object is added to the lightipgsthrough so this is
called additive transparency.

Note that early versions of POV-Ray used the keyworgha to specify filtered trans-
parency. However that word is often used to describe narditt transparency. For this
reasoralpha is no longer used.

7.1. LANGUAGE BASICS 193

Each of the five components of a color are float values whicimamaally in the range
between 0.0 and 1.0. However any values, even negatives enasell.

Colors may be specified using vectors, keywords with floatisl@ntifiers. You may
also create very complex color expressions from combinataf any of these using
various familiar operators. The syntax for specifying aocdias evolved since POV-
Ray was first released. We have maintained the original kedalvased syntax and
added a short-cut vector notation. Either the old or newesyig acceptable however
the vector syntax is easier to use when creating color esjores.

7.1.5.1 Color Vectors

The syntax for a color vector is any of the following

color rgb VECTOR3

color rgbf VECTOR4
color rgbt VECTOR4
color rgbft VECTORS5

wherevECTOR3, VECTOR4 Or VECTORS are any valid vector expressions of 3, 4 or
5 components. For example

color rgb <1.0, 0.5, 0.2>

This specifies a color whose red component is 1.0 or 100% lofteinsity. The green
component is 0.5 or 50% of full intensity and the blue compoie0.2 or 20% of full
intensity. Although the filter and transmit components areaxplicitly specified, they
exist and are set to their default values of 0 or no transpgren

The rgbf keyword requires a four component vector. The 4th compoisethe filter
component and the transmit component defaults to zero.l&iynihe rgbt keyword
requires four components where the 4th value is moved totthednponent which is
transmit and then the filter component is set to zero.

The rgbf t keyword allows you to specify all five components. Intemati expres-
sions all five are always used.

Under most circumstances the keywardlor is optional and may be omitted. We
also support the British or Canadian spellinglour. Under some circumstances, if
the vector expression is a 5 component expression or thexeadtor identifier in the
expression then thegbt £ keyword is optional.

7.1.5.2 Color Keywords

The older keyword method of specifying a color is still u¢eioud many users prefer it.
Like a color vector, you begin with the optional keywatrd1or. This is followed by

194 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

any of five additional keywordged, green, blue, filter or transmit. Each
of these component keywords is followed by a float expresd$ton example

color red 1.0 green 0.5

This specifies a color whose red component is 1.0 or 100% bfridnsity and the
green component is 0.5 or 50% of full intensity. Although kihee, filter and transmit
components are not explicitly specified, they exist and atdcstheir default values
of 0. The component keywords may be given in any order andyifmmponent is
unspecified its value defaults to zero.

7.1.5.3 Color Identifiers

Color identifiers may be declared to make scene files moreabdadnd to parameterize
scenes so that changing a single declaration changes miamg va color identifier is
declared as either of the following.

#declare IDENTIFIER
#declare IDENTIFIER

COLOR_VECTOR
COLOR_KEYWORDS. . .

Where IDENTIFIER is the name of the identifier up to 40 characters long and
COLOR_VECTOR Or COLOR_KEYWORDS are any valid color specifications as described
in the two previous sections of this document. Here are so@mmpgles. ..

#declare White = rgb <1,1,1>

#declare Cyan = color blue 1.0 green 1.0
#declare Weird = rgb <Foo*2,Bar-1,Bob/3>
#declare LightGray = White*0.8

#declare LightCyan = Cyan red 0.6

AstheLightGray example shows you do not need any color keywords when cgeatin
color expressions based on previously declared colors. |a3teexample shows you
may use a color identifier with the keyword style syntax. Makee that the identifier
comes first before any other component keywords.

Like floats and vectors, you may re-define colors through@eese but the need to do
sois rare.

7.1.5.4 Color Operators

Color vectors may be combined in expressions the same asdtoaéctor val-
ues. Operations are performed on a component-by-compdmaesig. For example
rgb (1.0,0.50.2) * 0.9 evaluatesthe sameagb (1.0,0.50.2) = (0.9,0.9,0.9)

or rgb (0.9,0.450.18. Other operations are done on a similar component-by-
component basis.

7.1. LANGUAGE BASICS 195

You may use the dot operator to extract a single component fxacolor. Suppose
the identifiershade was previously defined as a color. Thghade . red is the float
value of the red component gfhade. Similarly shade.green, Shade.blue,
Shade.filter and Shade. transmit extract the float value of the other color
components.

7.1.5.5 Common Color Pitfalls

The variety and complexity of color specification methods lesmd to some common
mistakes. Here are some things to consider when specifyoatpa

When using filter transparency, the colors which come thnoaig multiplied by the
primary color components. For example if grey light suck@s (0.9,0.9,0.9) passes
through a filter such asgbf (1.0,0.5,0.0,1.0) the resultisrgb (0.9,0.45,0.0) with
the red let through 100%, the green cut in half from 0.9 to A8 the blue totally
blocked. Often users mistakenly specify a clear object by

color filter 1.0

but this has implied red, green and blue values of zero. Yojugt specified a totally
black filter so no light passes through. The correct way feeeit

color red 1.0 green 1.0 blue 1.0 filter 1.0

or

color transmit 1.0

In the 2nd example it doesn’t matter what the rgb values ateofAhe light passes
through untouched.

Another pitfall is the use of color identifiers and expreasiwith color keywords. For
example. ..

color My Color red 0.5

this substitutes whatever was the red componemyaf:olor with a red component
of 0.5 however ..

color My Color + red 0.5

adds 0.5 to the red component of M3plor and even less obvious.

196 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

color My Color * red 0.5

that cuts the red component in half as you would expect bigatmultiplies the green,
blue, filter and transmit components by zero! The part of tkgression after the
multiply operator evaluates togbft (0.5,0,0,0,0) as a full 5 component color.

The following example results in no changeMp_Color.

color red 0.5 My Color
This is because the identifier fully overwrites the previgaisie. When using identifiers
with color keywords, the identifier should be first.

One final issue, some POV-Ray syntax allows full color speatifbns but only uses the
rgb part. In these cases it is legal to use a float where a colwaded. For example:

finish { ambient 1 }

The ambient keyword expects a color so the value 1 is promtotét 1,1, 1, 1) which
is no problem. However

pigment { color 0.4 }

is legal but it may or may not be what you intended. The 0.4 @mmmted to
(0.4,0.4,0.4,0.4,0.) with the filter and transmit set to 0.4 as well. It is more likel
you wanted . .

pigment { color rgb 0.4 }

in which case a 3 component vector is expected. Therefor®.thés promoted to
(0.4,0.4,0.4,0.0,0.0) with default zero for filter and transmit.

7.1.6 Strings

The POV-Ray language requires you to specify a string ofatttars to be used as afile
name, text for messages or text for a text object. Stringshmagpecified using literals,

identifiers or functions which return string values. Altigbuyou cannot build string

expressions from symbolic operators such as are used wits fleectors or colors,

you may perform various string operations using string fions. Some applications

of strings in POV-Ray allow for non-printing formatting ahaters such as newline or
form-feed.

7.1.6.1 String Literals

String literals begin with a double quote mark ™ which islitaved by up to 256
printable ASCII characters and are terminated by anothabldoquote mark. The
following are all valid string literals:

"Here" "There" "myfile.gif" "textures.inc"

7.1. LANGUAGE BASICS 197

7.1.6.2 String Identifiers

String identifiers may be declared to make scene files modabdaand to parameter-
ize scenes so that changing a single declaration changesvalaes. An identifier is
declared as follows. .

#declare IDENTIFIER = STRING

Where IDENTIFIER is the name of the identifier up to 40 characters long and
STRING is a string literal, string identifier or function which rets a string value.
Here are some examples

#declare Font_Name = "ariel.ttf"
#tdeclare Inc_File = "myfile.inc"
#declare Name = "John"

#tdeclare Name = concat (Name," Doe")

As the last example shows, you can re-declare a string fasrdaind may use previously
declared values in that re-declaration.

7.1.7 Built-in Identifiers

There are several built-in float and vector identifiers. Yau cise them to specify
values or to create expressions but you cannot re-declene tihn change their values.

7.1.7.1 Constant Built-in Identifiers

Most built-in identifiers never change value. They are defiae though the following
lines were at the start of every scene.

#tdeclare pi = 3.1415926535897932384626
#tdeclare true = 1
#declare yes = 1
#declare on = 1
#declare false = 0
#declare no = 0
#tdeclare off = 0
#declare u = <1,0>
#tdeclare v = <0,1>
#declare x = <1,0,0>
#declare y = <0,1,0>
#declare z = <0,0,1>
#declare t = <0,0,0,1>

198 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The built-in float identifiep i is obviously useful in math expressions involving circles.

The built-in float identifierson,0f £, yes, no, true andfalse are designed for use
as boolean constants.

The built-in vector identifiers<, y and z provide much greater readability for your
scene files when used in vector expressions. For example

plane { y, 1} // The normal vector is obviously "y".
plane { <0,1,0>, 1} // This is harder to read.

translate 5*x // Move 5 units in the "x" direction.
translate <5,0,0> // This is less obvious.

An expression likes *x evaluates to 8,0,0) or (5,0,0).

Similarly u andv may be used in 2D vectors. When using 4D vectors you should use
X, Yy, z, andt and POV-Ray will promotex, y and z to 4D when used where 4D is
required.

7.1.7.2 Built-in Identifier clock

The built-in float identifierc1ock is used to control animations in POV-Ray. Unlike
some animation packages, the action in POV-Ray animatawesaoes not depend
upon the integer frame numbers. Rather you should designsgames based upon the
float identifierc1ock. For non-animated scenes its default value is 0 but you dan se
it to any float value using the INI file optio@lock=n.n or the command-line switch
+Kn.n to pass a single float value your scene file.

Other INI options and switches may be used to animate scgnastbmatically loop-
ing through the rendering of frames using various valuesfosck. By default, the
clock value is 0 for the initial frame and 1 for the final framall other frames are
interpolated between these values. For example if yourcbigesupposed to rotate one
full turn over the course of the animation you could speeifitate 360*clock*y.
Then as clock runs from 0 to 1, the object rotates aboug-tds from 0 to 360 degrees.

Although the value ot:1ock will change from frame-to-frame, it will never change
throughout the parsing of a scene.

See 6.2.1 on page 151 for more detalils.

7.1.7.3 Built-in Identifier version

The built-in float identifierversion contains the current setting of the version com-
patibility option. Although this value defaults to 3 whichthe current POV-Ray ver-
sion number, the initial value ofersion may be set by the INI file optiover-
sion=n.n or by the+MVn.n command-line switch. This tells POV-Ray to parse the
scene file using syntax from an earlier version of POV-Ray.

7.1. LANGUAGE BASICS 199

The INI option or switch only affects the initial setting. like other built-in identi-
fiers, you may change the value wérsion throughout a scene file. You do not use
#declare to change it though. Th#éversion language directive is used to change
modes. Such changes may occur several times within scese file

Together with the built-inversion identifier the#version directive allows you to
save and restore the previous values of this compatibi#itirey. For example suppose
MYSTUFF.INCis in version 1 format. At the top of the file you could put:

#declare Temp_Vers = version // Save previous value
#version 1.0 // Change to 1.0 mode

// Version 1.0 stuff goes here...

#version Temp_Vers // Restore previous version

7.1.8 Functions

POV-Ray defines a variety of built-in functions for manigirg floats, vectors and
strings. The functions are listed grouped according ta thehge and not by the type
of value they return. For exampielot computes the dot product of two vectors and
is listed as a vector function even though it returns a sifight value.

Function calls consist of a keyword which specifies the nafitbeofunction followed
by a parameter list enclosed in parentheses. Parametessgarted by commas. For
example:

keyword (paraml, param2)

Functions evaluate to values that are floats, vectors ogstand may be used in ex-
pressions or statements anywhere that literals or idenstifiethat type may be used.

7.1.8.1 Float Functions

The following are the functions which take one or more floatapeeters and return
float values. Assume that andB are any valid expression that evaluates to a float.
See 7.1.8.2 on page 201 and 7.1.8.3 on page 202 for otherdsethich return float
values but whose primary purpose is more closely relate@d¢tovs and strings.

abs (A): Absolute value ofa. If A is negative, returns - A otherwise re-
turnsa.

acos (A): Arc-cosine ofa. Returns the angle, measured in radians, whose
cosine isA.

200 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

asin (a): Arc-sine ofA. Returns the angle, measured in radians, whose
sine isA.

atan2 (A, B): Arc-tangent of (A/B). Returns the angle, measured in ra-
dians, whose tangent ia/B) . Returns appropriate value eversifs
zero. Useatan2 (A, 1) to compute usuaktan (2) function.

ceil (a): Ceiling of A. Returns the smallestinteger greater thaRounds
up to the next higher integer.

cos (A): Cosine ofa. Returns the cosine of the angle wherea is mea-
sured in radians.

degrees (A): Convert radians to degrees. Returns the angle measured in
degrees whose value in radiansiisThe formula is

180
Adegrees: ? Aradians- (7-1)

div (A, B): Integer division. The integer part dfa/B) .

exp (A): Exponential of A. Returns the value of raised to thea
power wheree is the non-repeating value approximately equal to
2.71828182846 the base of natural logarithms.

floor (a): Floor of A. Returns the largest integer less thanRounds
down to the next lower integer.

int (A): Integer part ofa. Returns the truncated integer partzofRounds
towards zero.

log (A): Natural logarithm ofa. Returns the natural logarithm baseof
the valuea wheree is the non-repeating value approximately equal to
2.71828182846.

max (A, B): Maximum ofa andB. Returnsa if A larger tharB. Otherwise
returnss.

min (A, B): Minimum of 2 andB. Returns if A smaller thar. Otherwise
returnss.

mod (A, B): Value of A moduloa. Returns the remainder after the integer
division of A/B. The Formula i$

mod(A, B) = (g— {gJ) B. (7.2)

pow (A, B): Exponentiation. Returns the valuemfaised to the powes.

radians (A): Convert degrees to radians. Returns the angle measured in
radians whose value in degreesuisThe formula is

T
Aradians = @Adegree (7-3)

1| x] is the smallest integer number larger than

7.1. LANGUAGE BASICS 201

rand (A): Returns the next pseudo-random number from the stream speci
fied by the positive integer A. You must call seed() to inidala random
stream before calling rand(). The numbers are uniformlyribisted,
and have values between 0.0 and 1.0, inclusively. The nisrdearer-
ated by separate streams are independent random variables.

seed (A): Initializes a new pseudo-random stream with the initialdsee
value A. The number corresponding to this random streantusred.
Any number of pseudo-random streams may be used as showa in th
example below:
#tdeclare R1 = seed(0)
#declare R2 = seed(12345)

#sphere {
<rand (R1l), rand(R1l), rand(R1l)>,
rand (R2)

}

Multiple random generators are very useful in situationgnmgtyou use
rand() to place a group of objects, and then decide to us€)ramen-

other location eatrlier in the file to set some colors or plaes#tzer group
of objects. Without separate rand() streams, all of youectsjwould
move when you added more calls to rand(). This is very anigoyin

sin (A): Sine ofA. Returns the sine of the angle wherea is measured
in radians.

sqgrt (A): Square root of. Returns the value whose square.is

tan (A): Tangent ofA. Returns the tangent of the angle wherea is
measured in radians.

7.1.8.2 Vector Functions

The following are the functions which take one or more veatat float parameters and
return vector or float values. All of these functions suppmiy three component vec-
tors. Assume that andB are any valid expression that evaluates to a three component
vector and thar is any valid expression that evaluates to a float.

vaxis_rotate (A, B,F): Rotatea aboutB by A. Given thex, y, z coor-
dinates of a point in space designated by the vextootate that point
about an arbitrary axis defined by the vecrorRotate it through an
angle specified in degrees by the float vatueThe result is a vector
containing the new, y, z coordinates of the point.

veross (A,B): Cross product of andB. Returns a vector that is the vec-
tor cross product of the two vectors. The resulting vectquegen-
dicular to the two original vectors and its length is projmoral to the
angle between them. See the animated demo sceag2.pov for an
illustration.

202 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

vdot (A, B): Dot product ofa andB. Returns a float value that is the dot
product (sometimes called scaler produchafith B). The formula is

See the animated demo scerscT2.pPov for an illustration.

vlength (A): Length ofa. Returns afloat value that is the length of vec-
tor A. Can be used to compute the distance between two points. The
formula is

vlength= /vdot(A, A). (7.5)

vnormalize (A): Normalize vector. Returns a unit length vector that is
the same direction & The formula isrnormalize= A/vlengtiA).

vrotate (A,B): Rotatea about origin byB. Given thex, y, z coordinates
of a point in space designated by the veatorotate that point about
the origin by an amount specified by the veaoRotate it about the-
axis by an angle specified in degrees by the float value. Similarly
B.y andB. z specify the amount to rotate in degrees aboutytagis
andz-axis. The result is a vector containing the neyz coordinates
of the point.

7.1.8.3 String Functions

The following are the functions which take one or more steangd float parameters and
return string or float values. Assume tisat ands2 are any valid strings and that .,
andp are any valid expressions that evaluate to floats.

asc(s1): ASCIl value ofs1. Returns an integer value in the range O to
255 that is the ASCII value of the first characteraaf. For example
asc ("ABC") is 65 because that is the value of the character "A”.

chr (A): Character whose ASCII value . Returns a single character
string. The ASCII value of the character is specified by aagata
which must be in the range 0 to 255. For examgler (70) is the
string "F”. If you use chr() when rendering text objects ydwsld be
aware that the characters rendered for values of 27 are dependent
on the (TTF) font being used. Many (TTF) fonts use the LatifSIO
8859-1) character set, but not all do.

concat (81,82, [S3 ... 1): Concatenate stringsl ands2. Returns
a string that is the concatenation of all parameter strijsst have at
least 2 parameters but may have more. For example:

concat ("vValue is ", str(A,3,1), " inches")

7.1. LANGUAGE BASICS 203

If the float valuea was 12.34 the result is "Value is 12.3 inches”, which
is a string.

file exists (81): Search for file specified by1. Attempts to open the
file whose name is specified the string. The current directory and
all directories specified in anlibrary Path INI options or+L com-
mand line switches are searched. File is immediately cloReturns a
boolean value 1 on success and 0 on failure.

str(A,L,P): Convert floata to formatted string. Returns a formatted
string representation of float value The float parameter: specifies
the minimum length of the string and the type of left paddisgdiif
the string’s representation is shorter than the minimurn. if positive
then the padding is with blanks. 1f is negative then the padding is
with zeros. The overall minimum length of the formatted rejris
abs (L) . If the string needs to be longer, it will be made as long as
necessary to represent the value.

The float parametep specifies the number of digits after the decimal
point. If P is negative then a compiler-specific default precision & us
Here are some examples:

str(123.456,0, 3) "123.456"

str(123.456,4,3) "123.456"

str(123.456,9,3) " 123.456"

str(123.456,-9,3) "00123.456"

str(123.456,0,2) "123.46"

str(123.456,0,0) n123"

str(123.456,5,0) "oo123"

str(123.000,7,2) " 123.00"

str(123.456,0, -1) "123.456000" (platform specific)

stremp (S1,S2): Compare strings1 to S2. Returns a float value zero
if the strings are equal, a positive numbesif comes afteis2 in the
ASCII collating sequence, else a negative number.

strlen(S1): Length ofs1. Returns an integer value that is the number
of characters in the string1.

strlwr (S1): Lower case ofs1. Returns a new string in which all upper
case letters in the stringl are converted to lower case. The original
string is not affected. For exampletrlwr ("Hello There!™")
results in "hello there!”.

substr (S1,P,L): Sub-string froms1. Returns a string that is a subset
of the characters in parametget starting at the position specified by
the integer value for a length specified by the integer valueFor ex-
amplesubstr ("ABCDEFGHI", 4, 2) evaluates to the string "EF".
If P+L > strlenSL) an error occurs.

204 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

strupr (S1): Upper case o61. Returns a new string in which all lower
case letters in the stringl are converted to upper case. The original
string is not affected. For exampketrupr ("Hello There!")
results in "HELLO THERE!".

val (S1): Convert strings1 to float. Returns a float value that is repre-
sented by the text ig1. For exampleval ("123.45") is 123.45 as
a float.

7.2 Language Directives

The POV Scene Language contains several statements leai¢rege directivewhich
tell the file parser how to do its job. These directives careapjn almost any place in
the scene file — even in the middle of some other statemenés, dile used to include
other text files in the stream of commands, to declare idertifito define conditional
or looped parsing and to control other important aspectserfies file processing.

Each directive begins with the hash charagtdpften called a number sign or pound
sign). It is followed by a keyword and optionally other paeiers.

In versions of POV-Ray prior to 3.0, the use of thisharacter was optional. Language
directives could only be used between objects, camera lur $igurce statements and
could not appear within those statements. The exceptionthesi$include which
could appear anywhere. Now that all language directivedearsed almost anywhere,
the # character is mandatory.

The following keywords introduce language directives.
#break #default #statistics
#case #else #switch

#debug #end #version
#declare #render #warning

Earlier versions of POV-Ray considered#max intersections and
#max trace level to be language directives but they have been moved to
the global_settings statement. Their use as a directive still works but it
generates a warning and may be discontinued in the future.

7.2.1 Include Files

The language allows include files to be specified by placieditte

#include "filename.inc"

7.2. LANGUAGE DIRECTIVES 205

at any point in the input file. The filename may be specified by \alid string ex-
pression but it usually is a literal string enclosed in deudpliotes. It may be up to 40
characters long (or your computer’s limit), including tietdouble-quote characters.

The include file is read in as if it were inserted at that panthie file. Using include is
the same as actually cutting and pasting the entire contétités file into your scene.

Include files may be nested. You may have at most 10 nestaddméiles. There is no
limit on un-nested include files.

Generally, include files have data for scenes but are notescenthemselves. By
convention scene files end irov and include files end withinC.

It is legal to specify drive and directory information in tfie specification however it
is discouraged because it makes scene files less portabledrevarious platforms.

It is typical to put standard include files in a special sulectory. POV-Ray can only
read files in the current directory or one referenced bylLtitbeary_Path option (See
section 6.2.3.2 on page 166).

7.2.2 Declare

Identifiers may be declared and later referenced to make=dites more readable and
to parametrize scenes so that changing a single declacktéomges many values. There
are several built-in identifiers which POV-Ray declaresyfon. See 7.1.7 on page 197
for details.

7.2.2.1 Declaring identifiers

An identifier is declared as follows.

#declare IDENTIFIER = ITEM

WhereIDENTIFIER is the name of the identifier up to 40 characters long Bnam
is any of the following

float, vector, color or string expressions
objects (all kinds)

texture, pigment, normal, finish or halo
color_map, pigmentmap, slopemap, normalmap
camera, lightsource

atmosphere

fog

rainbow

sky_sphere

transform

206

CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Here are some examples.

#declare Rows = 5

#declare Count = Count+1

#declare Here = <1,2,3>

#declare White = rgb <1,1,1>

#declare Cyan = color blue 1.0 green 1.0
#declare Font_Name = "ariel.ttf"

#declare Ring = torus {5,1}

#declare Checks = pigment{ checker White, Cyan }

object{ Rod scale y*5 }

object {
Ring

// not "cylinder { Rod } "

pigment { Checks scale 0.5 }
transform Skew

Declarations, like most language directives, can appeantagre in the file — even
within other statements. For example:

#declare Here=<1,2,3>
#declare Count=0

union {
object {
#declare
object {
#declare
object {

Rod translate
Count=Count+1
Rod translate
Count=Count+1
Rod translate

// initialize Count

Here*Count }

// re-declare inside union
Here*Count }

// re-declare inside union
Here*Count }

As this example shows, you can re-declare an identifier andusa previously de-
clared values in that re-declaration. However if you attetope-declare an identifier
as anything other than its original type, it will generate amng message.

Declarations may be nested inside each other within limitsthe example in the
previous section you could declare the entire union as abbjtowever for technical
reasons you may not use any language directive inside thardgon of floats, vectors
or color expressions.

7.2.3 Default Directive

POV-Ray creates a default texture when it begins procesdog may change those
defaults as described below. Every time you specifgature { ... } statement,

7.2. LANGUAGE DIRECTIVES 207

POV-Ray creates a copy of the default texture. Anything youip the texture state-
ment overrides the default settings. If you attaghiament, normal or finish
to an object without any texture statement then POV-Rayksh&rsee if a texture has
already been attached. If it has a texture then the pigmenmad or finish will modify
the existing texture. If no texture has yet been attacheti@mbject then the default
texture is copied and the pigment, normal or finish will mgdffat texture.

You may change the default texture, pigment, normal or finsihg the language di-
rectiveidefault { ... } asfollows:

#default {

texture {
pigment {...}
normal {...}
finish {...}

Or you may change just part of it like this:

#default {
pigment {...}
}

This still changes the pigment of the default texture. At eime there is only one
default texture made from the default pigment, normal andHinThe example above
does not make a separate default for pigments alone. Ndtehhapecial textures
tiles andmaterial_map or atexture with &exture_map may not be used as
defaults.

You may change the defaults several times throughout a sseyeu wish. Subse-
guent#default statements begin with the defaults that were in effect atithe. If
you wish to reset to the original POV-Ray defaults then yooukhfirst save them as
follows:

//At top of file
#tdeclare Original_Default = texture {}

later after changing defaults you may restore it with

#default {texture {Original_Default}}

If you do not specify a texture for an object then the defaxture is attached when the
object appears in the scene. Itis not attached when an dbjdetlared. For example:

208 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

#declare My Object=
sphere{ <0,0,0>, 1 } // Default texture not applied
object { My Object } // Default texture added here

You may force a default texture to be added by using an emptyrte statement as
follows:

#declare My Thing =
sphere { <0,0,0>, 1 texture {} } // Default texture applied

The original POV-Ray defaults for all items are given thricogt the documentation
under each appropriate section.

7.2.4 \ersion Directive

While many language changes have been made for POV-RayIBdj, version 2.0
syntax and most of version 1.0 syntax still works. Whenewssible we try to maintain
backwards compatibility. One feature introduced in 2.@ thas incompatible with any
1.0 scene files is the parsing of float expressions. Setfifig1.0 command line switch
or the Version=1.0 INI option turns off expression parsing as well as marynwng
messages so that nearly all 1.0 files will still work. The desbetween 2.0 and 3.0
are not as extensive. Settiigrsion=2.0 is only necessary to eliminate some warning
messages. Naturally the default setting for this optioveision=3.0.

The #version language directive is used to change modes within scene files
switch or INI options only affects the initial setting.

Together with the built-inrersion identifier the#version directive allows you to
save and restore the previous values of this compatibiitirey. For example suppose
MYSTUFF.INC is in version 1.0 format. At the top of the file you could put:

#declare Temp Vers = version // Save previous value
#version 1.0 // Change to 1.0 mode

// Version 1.0 stuff goes here ...

#version Temp_Vers // Restore previous version

Previous versions of POV-Ray would not allow you to changsives inside an object
or declaration but that restriction has been lifted for PiR&4 3.0.

Future versions of POV-Ray may not continue to maintaindaltkward compatibility
even with thettversion directive. We strongly encourage you to phase in 3.0 syntax
as much as possible.

7.2. LANGUAGE DIRECTIVES 209

7.2.5 Conditional Directives

POV-Ray 3.0 allows a variety of new language directives tplément conditional
parsing of various sections of your scene file. This is eslgaiseful in describing
the motion for animations but it has other uses as well. Alsolable is atwhile
loop directive. You may nest conditional directives 20Celevdeep.

7.2.5.1 |IF ELSE Directives

The simplest conditional directive is a traditioral £ directive. It is of the form...

#if (COND)

// This section is

// parsed if COND is true
ftelse

// This section is

// parsed if COND is false
#end // End of conditional part

where (COND) is a float expression that evaluates to a boolean value. &\&l0.0 is
false and any non-zero value is true. Note that extremelyi sadaes of about &— 10
are considered zero in case of round off errors. The parsasharound the condition
are required. Thé&else directive is optional. Thétend directive is required.

7.2.5.2 |FDEF Directives

The #ifdef directive is similar to thetif directive however it is used to determine
if an identifier has been previously declared. After fief def directive instead of a
boolean expression you put a lone identifier enclosed imgaeses. For example:

#ifdef (User_Thing)

// This section is parsed if the

// identifier "User Thing" was

// previously declared

object {User_Thing} // invoke identifier
ftelse

// This section is parsed if the

// identifier "User_ Thing" was not

// previously declared

box{<0,0,0>,<1,1,1>} // use a default
#end

// End of conditional part

The #else directive is optional. Theétend directive is required.

210 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.2.5.3 IFNDEF Directives

The#ifndef directive is similar to theti fdef directive however itis used to deter-
mine if the given identifier isn't declared yet. For example:

#ifndef (User_Thing)

// This section is parsed if the

// identifier "User_ Thing" was not

// previously declared

box {<0,0,0>,<1,1,1>} // use a default
telse

// This section is parsed if the

// identifier "User_Thing" was

// previously declared

object{User Thing} // invoke identifier
#end

// End of conditional part

The #else directive is optional. Théend directive is required.

7.25.4 SWITCH CASE and RANGE Directives

A more powerful conditional is théswi tch directive. The syntax is as follows.

#switch (VALUE)
#case (TEST_ 1)
// This section is parsed if VALUE=TEST 1
#break //First case ends

#case (TEST_ 2)
// This section is parsed if VALUE=TEST 2
#break //Second case ends

#range (LOW_1,HIGH 1)

// This section is parsed if

// (VALUE >= LOW_1) and (VALUE <= HIGH 1)
#break //Third case ends

#range (LOW_2,HIGH 2)

// This section is parsed if

// (VALUE >= LOW_2) and (VALUE <= HIGH 2)
#break //Fourth case ends

telse
// This section is parsed if no other case or
// range is true.
#end // End of conditional part

7.2. LANGUAGE DIRECTIVES 211

The float expressiomALUE following the #switch directive is evaluated and com-
pared to the values in thiécase or #range directives. When usingcase, it is
followed by a float expressionEST 1 in parentheses. It is compared to theL.UE.
As usual in POV-Ray, float comparisons are considered et difference is under
le—10. If the values are equal, parsing continues normally aftbreak, #else or
#end directive is reached. If the comparison fails POV-Ray skiptil anothertcase
or #range is found.

If you use the#trange directive it is followed by two float expressionsw_1 and
HIGH_1 which are enclosed in parentheses and separated by a corfithea.sWitch
VALUE is in the range specified then parsing continues normallif anfbreak,
#else or #end directive is reached. If theALUE is outside the range the comparison
fails and POV-Ray skips until anothérase or #range is found.

If no #case or #range succeeds théelse section is parsed. Thee1se directive
is optional. If no#telse is specified and no match succeeds then parsing resumes after
the #end directive.

There may be any number dicase or #range directives in any order you want.
If a segment evaluates true but #ibreak is specified, the parsing will fall through
to the next#case or #range and will continue until atbreak, #else or #end.
Hitting a #break while parsing a successful section causes an immediatetuthe
#end without processing subsequent sections, even if a subsiegoedition would
also have been satisfied.

7.2.5.5 WHILE Directive

The#while directive is a looping feature that makes it easy to placdiptelobjects

in a pattern or other uses. THe/hile directive is followed by a float expression that
evaluates to a boolean value. A value of 0.0 is false and anyzewm value is true.
Note that extremely small values of aboa-110 are considered zero in case of round
off errors. The parentheses around the expression areredqulf the condition is
true parsing continues normally until @#=nd directive is reached. At the end, POV-
Ray loops back to th¢while directive and the condition is re-evaluated. Looping
continues until the condition fails. When it fails, parsiogntinues after thétend
directive. For example:

#declare Count=0

#while (Count < 5)
object {MyObject translate x*3*Count}
#declare Count=Count+1

#end

This example places five copiesiofObject in a row spaced three units apart in the
x-direction.

212 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.2.6 User Message Directives

With the addition of conditional and loop directives, the\RPRay language has the
potential to be more like an actual programming languagés fifeans that it will be
necessary to have some way to see what is going on when tryidghug loops and
conditionals. To fulfill this need we have added the abilitytint text messages to the
screen. You have a choice of five different text streams tdnaading the ability to
generate afatal error if you find it necessary. Limited fdting is available for strings
output by this method.

7.2.6.1 Text Message Streams

The syntax for a text message is any of the following:

#debug STRING
#error STRING
#error STRING
#render STRING
#statistics STRING
#warning STRING

WheresTRING s any valid string of text including string identifiers omfttions which
return strings. For example:

#switch (clock*360)
#range (0,180)
#render "Clock in 0 to 180 range\n"
#break

#range (180,360)
#render "Clock in 180 to 360 range\n"

#break
#else
#warning "Clock outside expected range\n"
#warning concat ("Value is:",str(clock*360,5,0),"\n")
#end

There are seven distinct text streams that POV-Ray useafputo You may output
only to five of them. On some versions of POV-Ray, each streadesignated by a
particular color. Text from these streams are displayedneter it is appropriate so
there is often an intermixing of the text. The distinctiomigy important if you choose
to turn some of the streams off or to direct some of the straartext files. On some
systems you may be able to review the streams separatelgiinahn scroll-back

buffer. See 6.2.5.2 on page 174 for details on re-directiegstreams to a text file.

7.2. LANGUAGE DIRECTIVES 213

Here is a description of how POV-Ray uses each stream. Youusayhem for what-
ever purpose you want except note that use offtheror stream causes a fatal error
after the text is displayed.

DEBUG: This stream displays debugging messages. It was primagiy d
signed for developers but this and other streams may alscdxt hy
the user to display messages from within their scene files.

FATAL: This stream displays fatal error messages. After disptayiis
text, POV-Ray will terminate. When the error is a scene pagrsiror,
you may be shown several lines of scene text that leads ug tertbr.

RENDER: This stream displays information about what options youehav
specified to render the scene. It includes feedback on atleita-
jor options such as scene name, resolution, animatiomgsttanti-
aliasing and others.

STATISTICS: This stream displays statistics after a frame is rendered. |
includes information about the number of rays traced, timgtle of
time of the processing and other information.

WARNING: This stream displays warning messages during the parsing of
scene files and other warnings. Despite the warning, PO\tRagon-
tinue to render the scene.

The BANNERandSTATUSstreams can not be accessed by the user.

7.2.6.2 Text Formatting

Some escape sequences are available to include non-graatitrol characters in your
text. These sequences are similar to those used in strémgl§itin the C programming
language. Note that these control characters only applgxhrhessage directives.
They are not implemented for other string usage in POV-Raly a8 text objects or file
names. Depending on what platform you are using, they mapadtlly supported
for console output. However they will appear in any text filgdu re-direct a stream
to a file. The sequences are:

"\a” Bellor alarm, 0x07

"\b" Backspace, 0x08

"\f’ Form feed, OxOC

"\n” New line (line feed) OX0A
"\ Carriage return 0x0D
"\t Horizontal tab 0x09

"\v" Vertical tab Ox0B

"\0” Null 0x00

"\\" Backslash 0x5C

"\ Single quote 0x27

214 CHAPTER 7. SCENE DESCRIPTION LANGUAGE
"\ Double guote 0x22

For example:

#debug "This is one line.\nBut this is another"

7.3 POV-Ray Coordinate System

Objects, lights and the camera are positioned using a tyglizaoordinate system. The
usual coordinate system for POV-Ray has the positagis pointing up, the positive
x-axis pointing to the right and the positizeaxis pointing into the screen. The negative
values of the axes point the other direction as shown in tlagés in section 4.1.1 on
page 33.

Locations within that coordinate system are usually spatifly a three component
vector. The three values correspond to ¥hg andz directions respectively. For ex-
ample, the vectofl,2,3) means the point that's one unit to the right, two units up and
three units in front of the center of thmiverseat (0,0,0).

Vectors are not always points though. They can also refen tan@ount to size, move
or rotate a scene element or to modify the texture pattertiegpi an object.

The supported transformations aretate, scale andtranslate. They are used
to turn, size and translate an object or texture. A transdition matrix may also be
used to specify complex transformations directly.

7.3.1 Transformations

The supported transformations are rotate, scale and atansThey are used to turn,
size and translate an object or texture.

rotate <VECTOR>
scale <VECTOR>
translate <VECTOR>

7.3.1.1 Translate

An object or texture pattern may be moved by addirigaaslateparameter. It consists
of the keywordt rans1ate followed by a vector expression. The terms of the vector
specify the number of units to move in each of they and z directions. Translate
moves the element relative to it's current position. Fomepie

7.3. POV-RAY COORDINATE SYSTEM 215

sphere { <10, 10, 10>, 1
pigment { Green }
translate <-5, 2, 1>

}

will move the sphere fron10, 10, 10) to (5,12, 11). It does not move it to the absolute
location (—5,2,1). Translating by zero will leave the element unchanged onétkia.
For example:

sphere { <10, 10, 10>, 1
pigment { Green }
translate 3*x // evaluates to <3,0,0> so move 3 units
// in the x direction and none along y Or z

7.3.1.2 Scale

You may change the size of an object or texture pattern byngdascaleparameter.
It consists of the keywordcale followed by a vector expression. The 3 terms of the
vector specify the amount of scaling in each of xhg andz directions.

Scale is used tetretchor squishan element. Values larger than one stretch the element
on that axis while values smaller than one are used to squiSitale is relative to the
current element size. If the element has been previousdyzest using scale then scale
will size relative to the new size. Multiple scale values magd.

For example

sphere { <0,0,0>, 1
scale <2,1,0.5>

}

will stretch and smash the sphere into an ellipsoid shagdgaice the original size
along thex-direction, remains the same size in tadirection and is half the original
size in thez-direction.

If a lone float expression is specified it is promoted to a tie@aponent vector whose
terms are all the same. Thus the item is uniformly scaled bysme amount in all
directions. For example:

object {
MyObject
scale 5 // Evaluates as <5,5,5> so uniformly scale
// by 5 in every direction.

216 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.3.1.3 Rotate

You may change the orientation of an object or texture patigradding aotate pa-
rameter. It consists of the keywottbtate followed by a vector expression. The
three terms of the vector specify the number of degrees &beratbout each of the,

y- andz-axes.

Note that the order of the rotations does matter. Rotationaraabout thec-axis first,
then they-axis, then thez-axis. If you are not sure if this is what you want then you
should only rotate on one axis at a time using multiple rotattatements to get a
correct rotation. As in

rotate <0, 30, 0> // 30 degrees around Y axis then,
rotate <-20, 0, 0> // -20 degrees around X axis then,
rotate <0, 0, 10> // 10 degrees around Z axis.

Rotation is always performed relative to the axis. Thus ibhject is some distance
from the axis of rotation it will not only rotate but it wibrbit about the axis as though
it was swinging around on an invisible string.

To work out the rotation directions you must perform the fas@@omputer Graphics
Aerobicsexercise as explained in the section 4.1.1 on page 33.

7.3.1.4 Matrix Keyword

Thematrix keyword can be used to explicitly specify the transfornratiatrix to
be used for objects or textures. Its syntax is:

matrix < m00, m0l, m02,
ml0, mll, ml2,
m20, m21, m22,
m30, m31, m32 >

Wherem00 throughm32 are float expressions that specify the elements ofxa44
matrix with the fourth column implicitly set t¢0,0,0,1). A pointP, P = (px, py, Pz),

is transformed int®, Q = (0, ay, 4,), by

Ox = Moo Px + My 0Py +MpoPz+M3o
Gy = Mo1 Px + My 1Py +Mp1 P, +Mgg (7.6)
Oz = Mo 2Px + My 2Py +1Mp 2 Pz + M3 2

Normally you won't use the matrix keyword because it’s lessatiptive than the trans-
formation commands and harder to visualize. There is ams@téing aspect of the
matrix command though. It allows more general transforomatike shearing. The
following matrix causes an object to be sheared along-#nas.

7.3. POV-RAY COORDINATE SYSTEM 217

object {
MyObject
matrix < 1,
0,
0,
0

’

o o -

o - O O
~

7.3.2 Transformation Order

Because rotations are always relative to the axis and gcairelative to the origin,

you will generally want to create an object at the origin andle and rotate it first.

Then you may translate it into its proper position. It is a coom mistake to carefully

position an object and then to decide to rotate it becaustatian of an object causes
it to orbit about the axis, the position of the object may g®so much that it orbits
out of the field of view of the camera!

Similarly scaling after translation also moves an objeetqoectedly. If you scale after
you translate the scale will multiply the translate amouia: example

translate <5, 6, 7>
scale 4

will translate t0(20,24,28) instead of(5,6,7). Be careful when transforming to get
the order correct for your purposes.

7.3.3 Transform ldentifiers

At times it is useful to combine together several transfdioms and apply them in
multiple places. Atransform identifier may be used for this purpose. Transform
identifiers are declared as follows:

#tdeclare IDENT = transform { TRANSFORMATION... }

WhereIDENT is the identifier to be declared amkANSFORMATION iS one or more
translate, rotate, scale or matrix specifications or a previously declared
transform identifier. A transform identifier is invoked byethransform keyword
without any brackets as shown here:

object {
MyObject // Get a copy of MyObject
transform MyTrans // Apply the transformation

218 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

translate -x*5 // Then move it 5 units left

}

object {
MyObject // Get another copy of MyObject
transform MyTrans // Apply the same transformation
translate -x*5 // Then move this one 5 units right

On extremely complex CSG objects with lots of componentsai speed up parsing if
you apply a declared transformation rather than the indalidranslate, rotate,
scale or matrix specifications. Theransform is attached just once to each
component. Applying each individualranslate, rotate, scale Ormatrix
specifications takes long. This only affects parsing — reindeworks the same either
way.

7.3.4 Transforming Textures and Objects

When an object is transformed all textures attached to tjeestdt that time are trans-
formed as well. This means that if you haveeaanslate, rotate, scale or
matrix in an objectbefore a texture the texture will not be transformed. If the trans-
formation isafter the texture then the texture will be transformed with thesobj If
the transformation ifmside the texture { ... } statement theonly the texture

is affected. The shape remains the same. For example:

sphere { 0, 1
texture { Jade } // texture identifier from TEXTURES.INC
scale 3 // this scale affects both the
// shape and texture

}

sphere { 0, 1
scale 3 // this scale affects the shape only
texture { Jade }

}

sphere { 0, 1
texture {
Jade
scale 3 // this scale affects the texture only

Transformations may also be independently applied to pigrpatterns and surface
normal patterns. Note that scaling a normal pattern affeulisthe width and spacing.
It does not affect the apparent height or depth of the bumpseXample:

7.4. CAMERA 219

box { <0, 0, 0>, <1, 1, 1>
texture {
pigment {
checker Red, White
scale 0.25 // This affects only the color pattern
}
normal {
bumps 0.3 // This specifies apparent height of bumps
scale 0.2 // Scales diameter and space between bumps
// but not the height. Has no effect on
// color pattern.
}
rotate y*45 // This affects the entire texture but
} // not the object.

7.4 Camera

The camera definition describes the position, projectipe gnd properties of the cam-
era viewing the scene. Its syntax is:

camera {

[perspective | orthographic | fisheye |
ultra _wide_angle | omnimax | panoramic |
cylinder FLOAT]

location <VECTOR>

look_at <VECTOR>

right <VECTOR>

up <VECTOR>

direction <VECTOR>

sky <VECTOR>

right <VECTOR>

angle FLOAT

blur_ samples FLOAT

aperture FLOAT

focal_point <VECTOR>

normal { NORMAL }

Depending on the projection type some of the parametersegréred, some are op-
tional and some aren't used. If no projection type is givenpbarspective camera will
be used (pinhole camera). If no camera is specified a defamléa is used.

Regardless of the projection type all cameras usd 8w tion, look_at, right,
up, direction andsky keywords to determine the location and orientation of the

220 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

camera. Their meaning differs with the projection type ugethore detailed explana-
tion of the camera placement follows later.

7.4.1 Type of Projection

The following list explains the different projection typé#isat can be used with the
camera. The most common types are the perspective and @iag projections.

up

image plane look_at

right
location

Figure 7.1: The perspective camera.

Perspective projection: This projection represents the classic pinhole cam-
era. The (horizontal) viewing angle is either determinedhsy ratio
between the length of the direction vector and the lengtthefright
vector or by the optional keyworgéng1e, which is the preferred way.
The viewing angle has to be larger than 0 degrees and sniaie180
degrees. See figure 7.1 for an overview of the perspectivesreesn
geometry.

Orthographic projection: This projection uses parallel camera rays to cre-
ate an image of the scene. The size of the image is determingeb
lengths of the right and up vectors.

If you add the orthographic keyword after all other paramseté a per-
spective camera you'll get an orthographic view with the samage

area, i. e. the size of the image is the same. In this case yanite
specify the lengths of the right and up vector because theg'talcu-

lated automatically. You should be aware though that thibleigarts

of the scene change when switching from perspective to grémiic

view. As long as all objects of interest are near the labkocation

they'll be still visible if the orthographic camera is useédbjects farer
away may get out of view while nearer objects will stay in view

7.4. CAMERA 221

Fisheye projection: This is a spherical projection. The viewing angle is
specified by theang1e keyword. An angle of 180 degrees creates the
standard fisheygvhile an angle of 360 degrees createsuper-fisheye
(I-see-everything-vielv If you use this projection you should get a
circular image. If this isn’t the case, i. e. you get an eitigk image,
you should read 7.4.4.5.1 on page 225.

Ultra wide angle projection: This projection is somewhat similar to the
fisheye but it projects the image onto a rectangle insteadaifcke.
The viewing angle can be specified using they1 e keyword.

Omnimax projection: The omnimax projection is a 180 degrees fisheye
that has a reduced viewing angle in the vertical directiom.relality
this projection is used to make movies that can be viewedemtme-
like Omnimax theaters. The image will look somewhat eltigti The
angle keyword isn't used with this projection.

Panoramic projection: This projection is calleadylindrical equirectangu-
lar projection It overcomes the degeneration problem of the perspec-
tive projection if the viewing angle approaches 180 degrétegses a
type of cylindrical projection to be able to use viewing awglarger
than 180 degrees with a tolerable lateral-stretching disto The
angle keyword is used to determine the viewing angle.

Cylindrical projection: Using this projection the scene is projected onto a
cylinder. There are four different types of cylindrical jections de-
pending on the orientation of the cylinder and the positibthe view-
point. The viewing angle and the length of the up or right sedeter-
mine the dimensions of the camera and the visible image. aher
to use is specified by a number. The types are:

1 vertical cylinder, fixed viewpoint

2 horizontal cylinder, fixed viewpoint

3 vertical cylinder, viewpoint moves along the cylinder's
axis

4 horizontal cylinder, viewpoint moves along the cylinder’
axis

If the perspective camera is used thegle keyword overrides the viewing angle
specified by thelirection keyword and vice versa. Each timegle is used the
length of the direction vector is adjusted to fit the new vigyangle.

There is no limitation to the viewing angle except for thespexctive projection. If you
choose viewing angles larger than 360 degrees you'll sesateg images of the scene
(the way the repetition takes place depends on the camehég.niight be useful for
special effects.

You should note that the vista buffer can only be used withprspective and ortho-
graphic camera.

222 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.4.2 Focal Blur

Simulates focal depth-of-field by shooting a number of samgys from jittered points
within each pixel and averaging the results.

The aperture setting determines the depth of the sharpoaess karge apertures give
a lot of blurring, while narrow apertures will give a wide zoof sharpness. Note that,
while this behaves as a real camera does, the values fouspare purely arbitrary

and are not related to f-stops.

The center of thezone of sharpnesss the focal point vector (the default
focal point is{0,0,0)).

The blur_samplesvalue controls the maximum number of rays to use for eacH.pixe
More rays give a smoother appearance but is slower, alththigis controlled some-
what by an adaptive mechanism that stops shooting rays wtemican degree of confi-
dence has been reached that shooting more rays would nbimesgignificant change.

Theconfidence andvariance keywords control the adaptive function. The con-
fidence value is used to determine when the samples seemdod#enougho the
correct color. The variance value specifies an acceptaldetwe on the variance of
the samples taken so far. In other words, the process ofisgosample rays is ter-
minated when the estimated color value is very likely (agrodied by the confidence
probability) near the real color value.

Since the confidence is a probability its values can range Bao 1 (the default is 0.9,
i. . 90%). The value for the variance should be in the randleso§mallest displayable
color difference (the default is 1/128).

Larger confidence values will lead to more samples, slovaes and better images.
The same holds for smaller variance thresholds.

By default no focal blur is used, i. e. the default aperturé &nd the default number
of samples is 0.

7.4.3 Camera Ray Perturbation

The optional keyworchormal may be used to assign a normal pattern to the camera.
All camera rays will be perturbed using this pattern. This {@u create special effects.
See the animated scen@MERAZ2.POV for an example.

7.4.4 Placing the Camera

In the following sections the placing of the camera will bettier explained.

7.4. CAMERA 223

7.4.4.1 Location and LookAt

Under many circumstances just two vectors in the camererstatt are all you need to
position the cameratocation andlook_at. For example:

camera {
location <3,5,-10>
look_at <0,2,1>

}

The location is simply the, y, z coordinates of the camera. The camera can be located
anywhere in the ray-tracing universe. The default locatofD,0,0). The look at
vector tells POV-Ray to pan and tilt the camera until it isdiog at the specified, y, z
coordinates. By default the camera looks at a point one nontitdz-direction from the
location.

The 1ook_at specification should almost always be the last item in theecarstate-
ment. If other camera items are placed afteritbek_at vector then the camera may
not continue to look at the specified point.

7.4.4.2 The Sky Vector

Normally POV-Ray pans left or right by rotating about traxis until it lines up with
the 1look_at point and then tilts straight up or down until the point is regactly.
However you may want to slant the camera sideways like ateagmmaking a banked
turn. You may change the tilt of the camera using ¢k vector. For example:

camera {
location <3,5,-10>
sky <1,1,0>
look_at <0,2,1>

}

This tells POV-Ray to roll the camera until the top of the cearis in line with the sky
vector. Imagine that the sky vector is an antenna pointirigobthe top of the camera.
Then it uses theky vector as the axis of rotation left or right and then to tilt ap
down in line with thesky vector. In effect you're telling POV-Ray to assume that the
sky isn't straight up. Note that the sky vector must appeforbehel ook at vector.

The sky vector does nothing on its own. It only modifies the waythek_at vector
turns the camera. The default value for sky@sl, 0).

7.4.4.3 The Direction Vector

Thedirection vector tells POV-Ray the initial direction to point the cambefore
moving itwith look_at or rotate vectors (the defaultidirection (0,0,1)). It

224 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

may also be used to control the (horizontal) field of view veitime types of projection.
This should be done using the easier to aisg 1 e keyword though.

If you are using the ultra wide angle, panoramic or cylinariprojection you should
use a unit length direction vector to avoid strange results.

The length of the direction vector doesn’t matter if one af fbllowing projection
types is used: orthographic, fisheye or omnimax.

7.4.4.4 Angle

The angle keyword specifies the (horizontal) viewing angle in degrddhe camera
used. Even though it is possible to use the direction vectaletermine the viewing
angle for the perspective camera it is much easier to usentile keyword.

The necessary calculations to convert from one method tottte are described be-
low. These calculations are used to determine the lengtheaodlirection vector when-
ever theangle keyword is encountered.

The viewing angle is converted to a direction vector lengitl wice versa using the
formula The viewing angle is given by the formula

|
o =2tan ! i (7.7)

wherel, andly are the lengths of the right and direction vector respelgtive

From this the length of the direction vector can be calcdl&be a given viewing angle
and right vector. From this the length of the directigrvector can be calculated for a
given viewing angleZ and right vector.

lg= '7“. (7.8)

7.4.4.5 Up and Right Vectors

The direction of thexp andright vectors (together with the direction vector) deter-
mine the orientation of the camera in the scene. They arenpdititly by their default
values of

right 4/3*x
up y

or the look_at parameter (in combination withocation). The directions of an
explicitly specified right and up vector will be overriddey ény following 1cok_at
parameter.

7.4. CAMERA 225

While some camera types ignore the length of these vectbersotise it to extract
valuable information about the camera settings. The fafigwist will explain the

meaning of the right and up vector for each camera type. Sirdirection the vectors
is always used to describe the orientation of the camerdlineti be explained again.

Perspective projection: The lengths of the up and right vectors are used to
set the size of the viewing window and the aspect ratio asritbesc
in detall in section 7.4.4.5.1. Since the field of view demeond the
length of the direction vector (implicitly set by themg1e keyword or
explicitly set by thedi rection keyword) and the lengths of the right
and up vectors you should carefully choose them in order tahge
desired results.

Orthographic projection: The lengths of the right and up vector set the
size of the viewing window regardless of the direction vedtmgth,
which is not used by the orthographic camera. Again theioglatf the
lengths is used to set the aspect ratio.

Fisheye projection: The right and up vectors are used to set the aspect ratio.

Ultra wide angle projection: The up and right vectors work in a similar
way as for the perspective camera.

Omnimax projection: The Omnimax projection is quite similar to the fish-
eye and thus the right and up vectors are also used to detetimn
aspect ratio of the resulting image.

Panoramic projection: The up and right vectors work in a similar way as
for the perspective camera.

Cylindrical projection: In cylinder type one and three the axis of the cylin-
der lies along thexp vector and the width is determined by the length
of right vector or it may be overridden with thengle vector. In
type three theip vector determines how many units high the image is.
For example if you havep 4+*y on a camera at the origin only points
fromy = —2 toy = 2 are visible. All viewing rays are perpendicular
to they-axis. For type two and four, the cylinder lies along theght
vector. Viewing rays for type four are perpendicular to theyht vec-
tor.

Note that the up, right and direction vectors should alwaysain perpendicular to
each other or the image will be distorted. If this is not theeca warning message will
be printed. The vista buffer will not work for non-perpendar camera vectors.

7.4.45.1 Aspect Ratio

Together the right and up vectors define #spect ratio(height to width ratio) of the
resulting image. The default valuep (0,1,0rangleandright (1.330,0) result
in an aspect ratio of 4 to 3. This is the aspect ratio of a tymioeputer monitor. If

226 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

you wanted a tall skinny image or a short wide panoramic in@ageperfectly square
image you should adjust the up and right vectors to the apiategproportions.

Most computer video modes and graphics printers use plrfegtiare pixels. For
example Macintosh displays and IBM S-VGA modes 640x480x800 and 1024x768
all use square pixels. When your intended viewing method sgeare pixels then the
width and height you set with theW and+H switches should also have the same ratio
as the right and up vectors. Note that 640/480 = 4/3 so theisgpiroper for this square
pixel mode.

Not all display modes use square pixels however. For exahiie VGA mode
320x200 and Amiga 320x400 modes do not use square pixelseTha modes still
produce a 4/3 aspect ratio image. Therefore images intetalbd viewed on such
hardware should still use 4/3 ratio on their up and right @ecbut the+W and +H
settings will not be 4/3.

For example:
camera {
location <3,5,-10>
up <0,1, 0>
right <1,0,0>

look_at <0,2,1>

This specifies a perfectly square image. On a square pixplagidike SVGA you
would usetW and+H settings such asW480+H480 or+W600+H600. However on
the non-square pixel Amiga 320x400 mode you would want tovagees of+W?240
+H400 to render a square image.

7.4.4.5.2 Handedness

Theright vector also describes the direction to the right of the camietells POV-
Ray where the right side of your screen is. The sign of the ightor can be used to
determine the handedness of the coordinate system in usedéefault right statement
is:

right <1.33, 0, 0>

This means that the-x-direction is to the right. It is called kft-handedsystem be-

cause you can use your left hand to keep track of the axes.dtiblgbur left hand with

your palm facing to your right. Stick your thumb up. Pointagght ahead with your
index finger. Point your other fingers to the right. Your bengéirs are pointing to the
+x-direction. Your thumb now points inte¢y-direction. Your index finger points into
the +z-direction.

7.4. CAMERA 227

To use a right-handed coordinate system, as is popular i <OAD programs and
other ray-tracers, make the same shape using your right hénol thumb still points
up in the+y-direction and your index finger still points forward in the-direction but
your other fingers now say thex-direction is to the left. That means that théght
side of your screen is now in thex-direction. To tell POV-Ray to act like this this you
can use a negativevalue in theright vector like this:

right <-1.33, 0, 0>

Sincex increasing to the left doesn’'t make much sense on a 2D sci@emgw ro-
tate the whole thing 180 degrees around by using a positkaue in your camera’s
location. You end up with something like this.

camera {
location <0,0,10>
up <0,1,0>
right <-1.33,0,0>
look_at <0,0,0>

Now when you do your ray-tracer’s aerobics, as explainechadection 4.1.1 on
page 33, you use your right hand to determine the directiontafions.

In a two dimensional gridx is always to the right ang is up. The two versions of
handedness arise from the question of whethmints into the screen or out of it and
which axis in your computer model relates to up in the realavor

Architectural CAD systems, like AutoCAD, tend to use thed's Eyeorientation that
the z-axis is the elevation and is the model’'s up direction. Tipigraach makes sense
if you're an architect looking at a building blueprint on amqauter screerz means up,
and it increases towards you, wixrandy still across and up the screen. This is the
basic right handed system.

Stand alone rendering systems, like POV-Ray, tend to cengiou as a participant.
You're looking at the screen as if you were a photographerditg in the scene. Up in
the model is nowy, the same as up in the real world ant still to the right, sa@ must
be depth, which increases away from you into the screen.iJlie basic left handed
system.

7.4.4.6 Transforming the Camera

The translate androtate commands can re-position the camera once you've
defined it. For example:

228 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

camera {
location < 0, 0, 0>
direction < 0, 0, 1>
up < 0, 1, 0>
right <1, 0, 0>
rotate <30, 60, 30>
translate < 5, 3, 4>

In this example, the camera is created, then rotated by 3feelegbout the-axis,
60 degrees about theaxis and 30 degrees about thaxis, then translated to another
point in space.

7.45 Camera ldentifiers

You may declare several camera identifiers if you wish. Thakes it easy to quickly
change cameras. For example:

#declare Long_Lens =
camera {
location -z*100
angle 3
}

#declare Short_Lens =

camera {
location -z*50
angle 15
}
camera {
Long_Lens // edit this line to change lenses

look_at Here

}

7.5 Objects

Objects are the building blocks of your scene. There are afldifferent types of
objects supported by POV-Ray: finite solid primitives, niatch primitives, infinite
solid polynomial primitives and light sources. ConstruetSolid Geometry (CSG) is
also supported.

The basic syntax of an object is a keyword describing its,tgoee floats, vectors
or other parameters which further define its location angf@pe and some optional

7.5. OBJECTS 229

object modifiers such as texture, pigment, normal, finiskinbong, clipping or trans-
formations.

The texture describes what the object looks like, i. e. itten. Textures are com-
binations of pigments, normals, finishes and halos. Pigrigetite color or pattern

of colors inherent in the material. Normal is a method of dating various patterns

of bumps, dents, ripples or waves by modifying the surfagenabvector. Finish de-

scribes the reflective and refractive properties of a malteFhe halo is used to describe
the interior of the object.

Bounding shapes are finite, invisible shapes which wraprafeomplex, slow render-

ing shapes in order to speed up rendering time. Clippingeshape used to cut away
parts of shapes to expose a hollow interior. Transformattefi the ray-tracer how to

move, size or rotate the shape and/or the texture in the scene

7.5.1 Empty and Solid Objects

It is very important that you know the basic concept behingtyrand solid objects in
POV-Ray to fully understand how features like halos andsitarency are used.

Objects in POV-Ray can either be solid, empty or filled witlng$) particles.

A solid object is made from the material specified by its pigtnd finish statements
(and to some degree its normal statement). By default alotbjare assumed to be
solid. If you assign a stone texture to a sphere you'll getlarbade completely of
stone. It's like you had cut this ball from a block of stone. lags ball is a massive
sphere made of glass.

You should be aware that solid objects are conceptual thitiggou e. g. clip away
parts of the sphere you'll see that the sphere is empty, iog'llclearly see that the
interior is empty and it just has a very thin surface.

This is not contrary to the concept of a solid object used iviRay. It is assumed that
all space inside the sphere is covered by the sphere’s @mlat€hus there is no room
for any other particles like those used by fog or halos.

Empty objects are created by adding thel 1 ow keyword (see 7.5.7.3 on page 276) to
the object statement. An empty (or hollow) object is assutodik made of a very thin
surface which is of the material specified by the pigmentsfimind normal statements.
The object’s interior is empty, i. e. it normally containg miolecules.

An empty object can be filled with particles by adding fog enasphere to the scene
or by adding a halo to the object. Itis very important to ustiard that in order to fill
an object with any kind of particles it first has to be madedwll

7.5.1.1 Halo Pitfall

There is a piftall in the current empty/solid object implertagion that you have to be
aware of.

230 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

In order to be able to put solid objects inside a halo (this alslds for fog and atmo-
sphere) a test has to be made for every ray that passes thiteeidgfalo. If this ray
travels through a solid object the halo will not be calcudat€his is what anyone will
expect.

The problem arises when the camera ray is inside any noovhalbject. In this case
the ray is already travelling through a solid object and eifeghe halo’s container
object is hit and it is hollow, the halo will not be calculatéthere is no way of telling
between these two cases.

POV-Ray has to determine wether the camera is inside angtopier to tracing a
camera ray in order to be able to correctly render halos wherdmera is inside the
container object. There’s no way around doing this.

The solution to this problem (that will often happen withmité objects like planes) is
to make those objects hollow too. Thus the ray will travebtigh a hollow object, will
hit the container object and the halo will be calculated.

Note that the above is also true for atmosphere and fog.

7.5.1.2 Refraction Pitfall

There is a pitfall in the way refractive (and non-refractikenslucent) objects are han-
dled.

Imagine you want to create an object that’s partially madglads and stone. You'd use
something like the following merge because you don’t warsie® any inside surfaces.

merge {
sphere { <-1,0,0>, 2 texture { Stone } }
sphere { <+1,0,0>, 2 texture { Glass } }
}

What's wrong with this, you may ask? The problem is that thenmo way of telling
what the interior of the actual object will look like. Thisnst a problem of POV-Ray,
it's a general problem. You can’t define the interior of anjeabin a surface based
model. You would have to create some (complex) rules to deettht the interior will
look like. Is it made of stone? Is it made of glass? Is it madsaoofie bizarre mixture
between glass and stone? Is it half stone and half glass?eWéitbe boundary between
the two materials and what does it look like?

You will not be able to answer any of the above questions bylguking at the above
object. You need more informations.

If you wanted to create an object made half of stone and hajfasfs you would have
used the following statements.

7.5. OBJECTS 231

union {
intersection {
sphere { <-1,0,0>, 2 1}
plane { x, 0 }
texture { Stone }
}
intersection {
sphere { <+1,0,0>, 2 }
plane { x, 0 inverse }
texture { Glass }
}
}

This example is correct because there is one object madeobstpne and one made
only of glass.

You should never use objects whose interior is not well ddfinee. there must not be
different textures for the object having different refraet(and translucent) properties.
You should be aware that this holds only for the lowest lafygoul use layered textures.

See also 7.5.1.1 on page 229 for a similar problem with halos.

7.5.2 Finite Solid Primitives

There are twelve different solid finite primitive shapesothlbox, cone, cylinder, frac-
tal, height field, lathe, sphere, superellipsoid, surfatceewolution, text object and
torus. These have a well-definesideand can be used in CSG (see section 7.5.5 on
page 261). They are finite and respond to automatic boundisgith all shapes they
can be translated, rotated and scaled.

75.2.1 Blob

Blobs are an interesting and flexible object type. Matheradii they are iso-surfaces
of scalar fields, i. e. their surface is defined by the strenfthe field in each point. If
this strength is equal to a threshold value you're on theaserbtherwise you're not.

Picture each blob component as an object floating in spacee. obfect isfilled with

a field that has its maximum at the center of the object andsdoffpto zero at the
object’s surface. The field strength of all those componarésadded together to form
the field of the blob. Now POV-Ray looks for points where thiddihas a given value,
the thresholdvalue. All these points form the surface of the blob objeaiin® with
a greater field value than the threshold value are considerbd inside while points
with a smaller field value are outside.

There's another, simpler way of looking at blobs. They carséen as a union of
flexible components that attract or repel each other to forbhoaby organic looking

232 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

shape. The components’ surfaces actually stretch out siyamtd connect as if they
were made of honey or something like that.

A blob is made up of spherical and cylindrical componentsianfined as follows:

blob {
threshold THRESHOLD_VALUE
cylinder { <END1>, <END2>, RADIUS, [strength] STRENGTH }
sphere { <CENTER>, RADIUS, [strength] STRENGTH }

[component STRENGTH, RADIUS, <CENTER>]
[hierarchy FLAG]
[sturm]

}

The threshold keyword determines the total field strength value that PQY-R
looking for. By following the ray out into space and lookinghew each blob compo-
nent affects the ray, POV-Ray will find the points in spacenshbe field strength is
equal to the threshold value. The following list shows sohiegs you should know
about the threshold value.

1. The threshold value must be positive.

2. A component disappears if the threshold value is gredwan its
strength.

3. As the threshold value gets larger the surface you seeclyetsr to
the centers of the components.

4. As the threshold value gets smaller the surface you seectpster to
the surface of the components.

Cylindrical components are specified by the keyweardl inder giving a cylinder
formed by the baséENDL), the apeXxEND2) and theradius The cylinder has hemi-
spherical caps at the base and apex. Spherical componesiseaified by the keyword
sphere forming a sphere afCENTER with the given radius. Each component can
be individually translated, rotated, scaled and texturEde complete syntax for the
cylindrical and spherical components is:

sphere { <CENTER>, RADIUS, [strength] STRENGTH
[translate <VECTOR>]
[rotate <VECTOR>]
[scale <VECTOR>]
TEXTURE_MODIFIERS
}

cylinder { <END1>, <END2>, RADIUS, [strength] STRENGTH
[translate <VECTOR>]
[rotate <VECTOR>]
[scale <VECTOR>]
TEXTURE_MODIFIERS
}

7.5. OBJECTS 233

By unevenly scaling a spherical component you can creapseital components. The
component keyword gives a spherical component and is only used for atitifity
with earlier POV-Ray versions.

The strength parameter is a float value specifying the field strength atémer of
the object. The strength may be positive or negative. A pesialue will make that
component attract other components while a negative vallienake it repel other
components. Components in different, separate blob stipast affect each other.

You should keep the following things in mind.

1. The strength value may be positive or negative. Zero iddavhhue,
as the net result is that no field was added — you might just &s we
have not used this component.

2. If strength is positive POV-Ray will add the componentddito the
space around the center of the component. If this adds erfaigh
strength to be greater than thereshold value you will see a sur-
face.

3. If the strength value is negative POV-Ray will subtrae ttompo-
nent’s field from the space around the center of the compoidg
will only do something if there happen to be positive comptse
nearby. What happens is that the surface around any neasdy po
tive components will be dented away from the center of thateg
component.

The components of each blob object are internally bounded $gherical bounding
hierarchy to speed up blob intersection tests and otheatipas. By using the optional
keywordhierarchy you can switch this hierarchy off.

An example of a three component blob is:

blob {
threshold 0.6
sphere { <.75, 0, 0>, 1, 1}
sphere { <-.375, .64952, 0>, 1, 1 }
sphere { <-.375, -.64952, 0>, 1, 1 }
scale 2

If you have a single blob component then the surface you skéuati look like the
object used, i. e. a sphere or a cylinder, with the surfacegbedmewhere inside the
surface specified for the component. The exact surfaceidocatin be determined
from the blob equation listed below (you will probably nevered to know this, blobs
are more for visual appeal than for exact modeling).

For the more mathematically minded, here’s the formula ustnally by POV-Ray
to create blobs. You don't need to understand this to usesblbhe formula used for a

234 CHAPTER 7. SCENE DESCRIPTION LANGUAGE
single blob component is:
density= strength(1— radiusz)2 (7.9)

This formula has the nice property that it is exactly equahestrengthparameter at
the center of the component and drops off to exactly 0 at amtist from the center of
the component that is equal to tfadiusvalue. The density formula for more than one
blob component is just the sum of the individual componensdies:

density= Z density. (7.10)
]

The calculations for blobs must be very accurate. If thipshanders improperly you
may add the keyword turm after the last component to use POV-Ray’s slower-yet-
more-accurate Sturmian root solver.

7.5.2.2 Box

A simple box can be defined by listing two corners of the bog tikis:

box { <CORNER1>, <CORNER2> }

corner 2

corner 1

Figure 7.2: The geometry of a box.
Where (CORNER) and (CORNER) are vectors defining the, y, z coordinates of
the opposite corners of the box. See figure 7.2 for detailatahe box geometry.

Note that all boxes are defined with their faces parallel éodbordinate axes. They
may later be rotated to any orientation using thecate keyword.

7.5. OBJECTS 235

Each element of CORNER) should always be less than the corresponding element
in (CORNER). If any elements of CORNER,) are larger thagCORNER) the box
will not appear in the scene.

Boxes are calculated efficiently and make good boundingesh@mmanually bounding
seems to be necessary).

7.5.2.3 Cone

A finite length cone or &ustum(a cone with the point cut off) may be defined by.

cone {
<BASE_POINT>, BASE RADIUS, <CAP_POINT>, CAP_RADIUS
[open]

}

cap point
cap radius

base radius
base point

Figure 7.3: The geometry of a cone.

Where(BASEPOINT) and (CAP_POINT) are vectors defining the y, z coordinates
of the center of the cone’s base and cap and B&A&HDIUS and CAPRADIUS are
float values for the corresponding radii. See figure 7.3 ftmilleabout the cone geom-
etry.

Normally the ends of a cone are closed by flat planes which aalel to each other
and perpendicular to the length of the cone. Adding the opti@eywordopen after
CAP_RADIUS will remove the end caps and results in a tapered Wwotldoe like a
megaphone or funnel.

7.5.2.4 Cylinder

A finite length cylinder with parallel end caps may be defingd b

236 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

cylinder {
<BASE_POINT>, <CAP_POINT>, RADIUS
[open]

/} cap point
w

%

radius

base point

(=7

Figure 7.4: The geometry of a cylinder.

Where(BASEPOINT) and (CAP_POINT) are vectors defining the y, z coordinates
of the cylinder's base and cap and RADIUS is a float value fer#dius. See figure 7.4
for details about the cylinder geometry.

Normally the ends of a cylinder are closed by flat planes wiiah parallel to each
other and perpendicular to the length of the cylinder. Addihe optional keyword
open after the radius will remove the end caps and results in awdilibe.

7.5.2.5 Height Field

Height fields are fast, efficient objects that are generallgduto create mountains or
other raised surfaces out of hundreds of triangles in a mEshheight field syntax is:

height_field {
FILE _TYPE "FILENAME"
[hierarchy BOOL]
[smooth BOOL]
[water_level FLOAT]

A height field is essentially a one unit wide by one unit longag with a mountainous
surface on top. The height of the mountain at each point extéiom the color number

7.5. OBJECTS 237

or palette index of the pixels in a graphic image file. The mmaxn height is one, which
corresponds to the maximum possible color or palette indkievin the image file. See
figure 7.5 for details about the height field geometry.

height
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

L L

Figure 7.5: The size and orientation of an un-scaled height. fi

The mesh of triangles corresponds directly to the pixelkénmage file. Each square
formed by four neighboring pixels is divided into two trideg. An image with a
resolution ofN x M pixels hagN — 1) x (M — 1) squares that are divided intodN —

1) x (M —1) triangles.

The resolution of the height field is influenced by two factdtse resolution of the
image and the resolution of the color/index values. The gizBe image determines
the resolution in the- andz-direction. A larger image uses more triangles and looks
smoother. The resolution of the color/index value deteewitihe resolution along the
y-axis. A height field made from an 8 bit image can have 256 diffe height levels
while one made from a 16 bit image can have up to 65536 diffdreight levels. Thus
the second height field will look much smoother in §hdirection if the height field is
created appropriately.

The size/resolution of the image does not affect the sizbeteight field. The un-
scaled height field size will always bex<11. Higher resolution image files will create
smaller triangles, not larger height fields.

There are six or possibly seven types of files which can defigitfield, as follows:

height_field
height_field
height_field
height_field
height_field
height_field
height_field

gif "filename.gif"
pom "filename.pgm"
png "filename.png"
pot "filename.pot"
ppm "filename.ppm"
sys "filename.???"

e e e T e e N
e e e e e

tga "filename.tga"

238 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The image file used to create a height field can be a GIF, TGA, PAG, PGM, PPM
and possibly a system specific (e. g. Windows BMP or Macint®iit) format file.
The GIF, PNG, PGM and possibly system format files are the ongs that can be
created using a standard paint program. Though there amegragrams for creating
TGA image files they won't be of much use for creating the self bit TGA files
used by POV-Ray (see below and 7.8.4 on page 359 for mordgjetai

In animage file like GIF that uses a color palette the colorimeinis the palette index at
a given pixel. Use a paint program to look at the palette ofRi@lage. The first color

is palette index zero, the second is index one, the thirddisxnwo and so on. The last
palette entry is index 255. Portions of the image that usepalstte entries will result

in lower parts of the height field. Portions of the image tred higher palette entries
will result in higher parts of the height field.

Height fields created from GIF files can only have 256 diffeteight levels because
the maximum number of colors in a GIF file is 256.

The color of the palette entry does not affect the height efgixel. Color entry O
could be red, blue, black or orange but the height of any phegl uses color entry 0
will always be 0. Color entry 255 could be indigo, hot pink,itetor sky blue but the
height of any pixel that uses color entry 255 will always be 1.

You can create height field GIF images with a paint programfoacal program like
FRACTINT. You can usually geFRACTINT from most of the same sources as POV-
Ray.

A POT file is essentially a GIF file with a 16 bit palette. The inaxm number of
colors in a POT file is 65536. This means a POT height field cae @ to 65536
possible height values. This makes it possible to have mouother height fields.
Note that the maximum height of the field is still 1 even thoumgtre intermediate
values are possible.

At the time of this writing the only program that created POédfiwas a freeware
IBM-PC program called=RACTINT. POT files generated with this fractal program
create fantastic landscapes.

The TGA and PPM file formats may be used as a storage devicesfbit humbers
rather than an image file. These formats use the red and gytes df each pixel to
store the high and low bytes of a height value. These filessastramoth as POT files
but they must be generated with special custom-made pragr@averal programs can
create TGA heightfields in the format POV uses, suct &SRGE andTerrain Maker.

PNG format heightfields are usually stored in the form of yggale image with black
corresponding to lower and white to higher parts of the heigld. Because PNG
files can store up to 16 bits in grayscale images they will bsnasoth as TGA and
PPM images. Since they are grayscale images you will be ableew them with a
regular image viewerGFORGE can create 16-bit heightfields in PNG format. Color
PNG images will be used in the same way as TGA and PPM images.

SYSformat is a platform specific file format. See your platf@pecific documentation
for details.

7.5. OBJECTS 239

An optionalwater_level parameter may be added after the file name. It consists
of the keywordwater_level followed by a float value telling the program to ignore
parts of the height field below that value. The default vakiegro and legal values
are between zero and one. For examplecer level .5 tells POV-Ray to only
render the top half of the height field. The other halbé&ow the wateand couldn’t
be seen anyway. This term comes from the popular use of héggds to render
landscapes. A height field would be used to create islandsaoither shape would be
used to simulate water around the islands. A large porticgheheight field would be
obscured by thevater so thewater level parameter was introduced to allow the
ray-tracer to ignore the unseen parts of the height fiedtter 1evel is also used to
cut away unwanted lower values in a height field. For example if youehavimage
of a fractal on a solid colored background, where the backutaolor is palette entry
0, you can remove the background in the height field by spegfywater_level
.001.

Normally height fields have a rough, jagged look because dheynade of lots of flat
triangles. Adding the keywordmooth causes POV-Ray to modify the surface normal
vectors of the triangles in such a way that the lighting aretisig of the triangles will
give a smooth look. This may allow you to use a lower resofufite for your height
field than would otherwise be needed. However, smooth tieangill take longer to
render.

In order to speed up the intersection tests an one-levelddogrhierarchy is avail-
able. By default it is always used but it can be switched offwentually improve the
rendering speed for small height fields (i. e. low resolutinages).

7.5.2.6 Julia Fractal

A julia fractal object is a 3-D slice of a 4-D object createdd®neralizing the process
used to create the classic Julia sets. You can make a widsyarf strange objects
usingjulia fractal, including some that look like bizarre blobs of twistedyaff

Thejulia_fractal syntax (with default values listed in comments) is:

julia_fractal {

4ADJULIA PARAMETER // default is <1,0,0,0>
[quaternion | hypercomplex] // default is quaternion
[sqr | cube | exp |

reciprocal | sin | asin |

sinh | asinh | cos | acos |

cosh | acosh | tan | atan |

tanh | atanh | log | pwr(X,Y)] // default is sqgr
[max_iteration MAX_ITERATION] // default value 20
[precision PRECISION] // default value 20

[slice 4DNORMAL, DISTANCE] // default <0,0,0,1>,0

240 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The 4-D vectodDJULIA_PARAMETERS the classic Julia parametpiin the iterated
formula f (h) + p.

The julia fractal object is calculated by using an algoritthat determines whether an
arbitrary pointh(0) in 4-D space is inside or outside the object. The algorithguires
generating the sequence of vectb(8), h(1), ... by iterating the formula

h(n+1) = f(h(n))+p, n=0,1,...,maxiteration— 1, (7.11)

where p is the fixed 4-D vector parameter of the julia fractal ahd is one of the
functions sqr, cube,.. specified by the presence of the corresponding keyword. The
point h(0) that begins the sequence is considered inside the julitafralgject if none

of the vectors in the sequence escapes a hypersphere of daalout the origin before
the iteration number reaches theaxiteration value. As you increasmax.iteration,
some points escape that did not previously escape, forrmegilia fractal. Depending
on theJULIA_ PARAMETERthe julia fractal object is not necessarily connected;aym
be scattered fractalust Using a lowmax.iteration can fuse together the dust to make
a solid object. A highmaxiterationis more accurate but slows rendering. Even though
it is not accurate, the solid shapes you get witbvdmaximumiteration value can be
guite interesting.

Since the mathematical object described by this algorithrfoirr-dimensional and
POV-Ray renders three dimensional objects, there must yaoveduce the number
of dimensions of the object from four dimensions to threeisTH accomplished by
intersecting the 4-D fractal with a 3-plane defined by thes11ce field and then pro-
jecting the intersection to 3-D space. The slice plane i8tbespace that is perpendic-
ular toNORMAL4Dand isDISTANCEunits from the origin. Zero lengtNORMAL4D
vectors or &NORMAL4Dvector with a zero fourth component are illegal.

You can get a good feel for the four dimensional nature ofia juhctal by using POV-
Ray’s animation feature to vary a slic®STANCEparameter. You can make the julia
fractal appear from nothing, grow, then shrink to nothin@#TANCEchanges, much
as the cross section of a 3-D object changes as it passesglihaqulane.

Theprecision parameter is a tolerance used in the determination of whptiets
are inside or outside the fractal object. Larger values giee accurate results but
slower rendering. Use as low a value as you can without yiglbgrading the fractal
object’s appearance.

The presence of the keywordsiaternion or hypercomplex determine which
4-D algebra is used to calculate the fractal. Both are 4-Ceggizations of the com-
plex numbers but neither satisfies all the field propertiésHe properties of real and
complex numbers that many of us slept through in high schoQiaternions have
non-commutative multiplication and hypercomplex humbeas fail to have a multi-
plicative inverse for some non-zero elements (it has beewvegrthat you cannot suc-
cessfully generalize complex numbers to four dimensiorth all the field properties
intact, so something has to break). Both of these algebras discovered in the 19th
century. Of the two, the quaternions are much better knowhobe can argue that

7.5. OBJECTS 241

hypercomplex numbers are more useful for our purposeseg simmplex valued func-
tions such as sin, cos, etc. can be generalized to work farbgmplex numbers in a
uniform way.

For the mathematically curious, the algebraic propertfebese two algebras can be
derived from the multiplication properties of the unit lsasectors 1= (1,0,0,0), i =
(0,1,0,0), j =(0,0,1,0) andk = (0,0,0,1). In both algebrasX= x1 = x for anyx (1

is the multiplicative identity). The basis vectors 1 afehave exactly like the familiar
complex numbers 1 anidn both algebras.

Quaternion basis vector multiplication rules:

ij =k k=i ki = j (7.12)
i = —k Ki=—i ik=—] (7.13)
i=jj=kk=-1 ijk=-1 (7.14)

Hypercomplex basis vector multiplication rules:

ij =k jk=—i ki=—j (7.15)
ji =k Ki=—i ik=—] (7.16)
i=jj=kk=-1 ijk=1 (7.17)

A distance estimation calculation is used with the quatercalculations to speed them
up. The proof that this distance estimation formula workssdaot generalize from two

to four dimensions but the formula seems to work well anywiag,absence of proof

notwithstanding!

The presence of one of the function keyworgdsr, cube, etc. determines which
function is used forf (h) in the iteration formulah(n+ 1) = f(h(n))+ p. Most of
the function keywords work only if the hypercomplex keywasdpresent. Only sqr
and cube work with quaternions. The functions are all faanitomplex functions
generalized to four dimensions. See table 7.1 on the fafigugage for a list of the
available functions.

A simple example of a julia fractal object is:

julia_fractal {
<-0.083,0.0,-0.83,-0.025>
quaternion
sqr
max_iteration 8
precision 15

}

The first renderings of julia fractals using quaternionsengone by Alan Norton and
later by John Hart in the '80’s. This new POV-Ray implemebptafollows FRACTINT
in pushing beyond what is known in the literature by usingdmgpmplex numbers

242 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Function Keyword Maps 4-D valukto

sqr h

cube h3

exp eraised to the poweh
reciprocal 1/h

sin sine ofh

asin arcsine ofh

sinh hyperbolic sine oh

asinh inverse hyperbolic sine df
cos cosine ofh

acos arccosine oh

cosh hyperbolic cos oh

acosh inverse hyperbolic cosine &f
tan tangent ot

atan arctangent oh

tanh hyperbolic tangent df

atanh inverse hyperbolic tangent bf
log natural logarithm oh

pwr (x,Vy) hraised to the complex powert 1y

Table 7.1: All available julia fractal functions.

and by generalizing the iterating formula to use a varietyrafiscendental functions
instead of just the classic Mandelbmt+- ¢ formula. With an extra two dimensions
and eighteen functions to work with, intrepid explorersidtidoe able to locate some
new fractal beasties in hyperspace, so have at it!

7.5.2.7 Lathe

The lathe is an object generated from rotating a two-dinmrasicurve about an axis.
This curve is defined by a set of points which are connectedneal, quadratic or
cubic spline curves. The syntax is:

lathe {
[linear_spline | quadratic_spline | cubic_spline]
NUMBER_OF_POINTS,
<POINT 1>, <POINT 2>, ..., <POINT n>
[sturm]

The parameteNUMBEROF_POINTSdetermines how many two-dimensional points
are forming the curve. These points are connected by lineagratic or cubic splines
as specified by an optional keyword (the defaultisiear_spline). Since the curve

7.5. OBJECTS 243

is not automatically closed, i. e. the firstand last poingsrmt automatically connected,
you'll have to do this by your own if you want a closed curve eTdurve thus defined
is rotated about thg-axis to form the lathe object which is centered at the origin

The following examples creates a simple lathe object thakddike athick cylinder,
i. e. a cylinder with a thick wall:

lathe {
linear_spline
5,
<2, 0>, <3, 0>, <3, 5>, <2, 5>, <2, 0>
pigment {Red}

The cylinder has an inner radius of 2 and an outer radius oivBygya wall width of
1. It's height is 5 and it's located at the origin pointing ipe. the rotation axis is the
y-axis. Note that the first and last point are equal to get sedasirve.

The splines that are used by the lathe and prism objects édtteedit difficult to un-
derstand. The basic concept of splines is to draw a curveghra given set of points
in a determined way. The linear spline is the simplest s@geause it's nothing more
than connecting consecutive points with a line. This melatthe curve that is drawn
between two points only depends on those two points. Noiadditinformation is
taken into account. Quadratic and cubic splines are differethat they do not only
take other points into account when connecting two pointghay also look smoother
and — in the case of the cubic spline — produce smoother transiat each point.

Quadratic splines are made of quadratic curves. Each of thamects two consecutive
points. Since those two points (call them second and thifdtparen't enough to
describe a quadratic curve the predecessor of the third jsdiaken into account when
the curve is drawn. Mathematically the relationship (thedation on the 2-D plane)
between the third and fourth point determines the slopeetthve at the third point.
The slope of the curve at the second point is out of controlisTduadratic splines look
much smootherthan linear splines but the transitions at each point arergéy not
smooth because the slopeshmth sidesf the point are different.

Cubic splines overcome the transition problem of quadisplines because they also
take the first point into account when drawing the curve betwtbe second and third
point. The slope at the second point is under control now odsaa smooth transition
at each point. Thus cubic splines produce the most flexildesamooth curves.

You should note that the number of spline segments, i. e.esupetween two points,
depends on the spline type used. For linear splines youn gdt segments connecting
the pointsP, i = 1,...,n. A quadratic spline gives yon — 2 segments because the
last point is only used for determining the slope as expthat®ve (thus you'll need at
least three points to define a quadratic spline). The sanus i cubic splines where
you getn — 3 segments with the first and last point used only for slopeutations
(thus needing at least four points).

244 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

If you want to get a closed quadratic and cubic spline withatimtransitions at the end
points you have to make sure that in the cubic d&se = P, (to get a closed curve),
P, = P; andP,_» = P; (to smooth the transition). In the quadratic c&e; = P; (to
close the curve) ang, = P, (for a smooth transition).

The slower but more accurate Sturmian root solver may be withdthe quadratic

spline lathe if the shape does not render properly. Sinceadrgtic polynomal has to
be solved for the linear spline lathe the Sturmian root sdk/@ot needed. In case of
cubic splines the Sturmian root solver is always used becawgth order polynomal
has to be solved.

7.5.2.8 Prism

The prism is an object generated from sweeping one or moralinensional, closed
curves along an axis. These curves are defined by a set ofpulith are connected
by linear, quadratic or cubic splines.

The syntax for the prism is:

prism {
[linear _sweep | conic_sweep]
[linear_spline | quadratic_spline | cubic_spline]
HEIGHT1,
HEIGHT2,
TOTAL_NUMBER_OF_POINTS,
<POINT 1>, <POINT 2>, ..., <POINT n>
[open]
[sturm]

The prism object allows you to use any number of sub-prisreigiénone prism state-
ment (they are of the same spline and sweep type). Wherevevean number of
sub-prisms overlaps a whole appears.

The syntax of the prism object depends on the type of splineecused. Below the
syntax of the linear spline prism is given.

prism {
linear_spline
HEIGHT1,
HEIGHT2,
TOTAL_NUMBER_OF_POINTS,
<A 1>, <A 2>, ..., <A na>, <A 1>,
<B_1>, <B_2>, ..., <B nb>, <B_1>,

<C_1>, <C_2>, ..., <C_nc>, <C_1>,

7.5. OBJECTS 245

Each of the sub-prisms has to be closed by repeating the diirst gf a sub-prism at
the end of the sub-prism’s point sequence. If this is not #ee@ warning is issued
and the prism is ignored (with linear splines automatic iolpss used). This implies
that all points of a prism are different (except the first et bf course). This applies
to all spline types though the control points of the quadratid cubic splines can be
arbitrarily chosen.

The last sub-prism of a linear spline prism is automaticalbsed — just like the last
sub-polygon in the polygon statement — if the first and lagttpaf the sub-polygon’s
point sequence are not the same. This make it very easy tertdretween polygons
and prisms. Quadratic and cubic splines are never autcaligiteiosed.

The syntax for quadratic spline prisms is:

prism {
quadratic_spline
HEIGHTI1,
HEIGHT2,
TOTAL_NUMBER_ OF_POINTS,
<CL_A>, <A 1>, <A 2>, ..., <A na>, <A 1>,
<CL_B>, <B_1>, <B_2>, ..., <B nb>, <B_ 1>,
<CL_C>, <C_1>, <C_ 2>, ..., <C_nc>, <C_1>,

Quadratic spline sub-prisms need an additional contraitpat the beginning of each
sub-prisms’ point sequence to determine the slope at thieo$te curve.

Last but not least the syntax for the cubic spline prism.

prism {
cubic_spline
HEIGHT1,
HEIGHT2,
TOTAL_NUMBER_OF_POINTS,
<CL_Al>, <A 1>, <A 2>, ..., <A na>, <A 1>, <CL_A2>,
<CL_Bl1l>, <B_ 1>, <B_2>, ..., <B_nb>, <B 1>, <CL_B2>,
<CL_Cl>, <C_1>, <C_2>, ..., <C_nc>, <C_ 1>, <CL_C2>,

In addition to the closed point sequence each cubic splingpgem needs two control
points to determine the slopes at the start and end of the.curv

The parameter TOTAINUMBER_OF POINTS determines how many two-
dimensional points (lying in thex-z-plane) form the curves (this includes all
control points needed for quadratic and cubic splines). durees are swept along
the y-axis from HEIGHT1 to HEIGHT2 to form the prism object. By deft linear

246 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

sweeping is used to create the prism, i. e. the prism's wadlparpendicular to the
x-z-plane (the size of the curve does not change during the 9w&ep can also use
conic sweepingdonic sweep that leads to a prism witbone-likewalls by scaling
the curve down during the sweep.

Like cylinders the prism is normally closed. You can remdwve taps on the prism
by using theopen keyword. If you do so you shouldn’t use it with CSG because the
results may get wrong.

The following example creates a simple prism object thatddike a piece of cake:

prism {
linear_sweep
linear_spline
0, 1,
4,
<-1, 0>, <1, 0>, <0, 5>, <-1, 0>
pigment {Red}
}

For an explanation of the spline concept read the desarnigtiohe lathe object.

The slower but more accurate Sturmian root solver may be wibdhe cubic spline
prisms if the shape does not render properly. The linear aadrgtic spline prisms do
not need the Sturmian root solver.

7.5.2.9 Sphere

The syntax of the sphere object is:

sphere {
<CENTER>, RADIUS
}

Where(CENTER is a vector specifying the, y, z coordinates of the center of the
sphere and RADIUS is a float value specifying the radius. fsheay be scaled
unevenly giving an ellipsoid shape. See figure 7.6 on the page for details about
the sphere geometry.

Because spheres are highly optimized they make good bayrstiapes (if manal
bounding seems to be necessary).

7.5.2.10 Superquadric Ellipsoid

The superquadric ellipsoid is an extension of the quadtipselid. It can be used to
create boxes and cylinders with round edges and other $titegeshapes. Mathemati-

7.5. OBJECTS 247

radius
center

Figure 7.6: The geometry of a sphere.

cally it is given by the equation:
e/n
fy2) = (XZe+y2e) " +[22"-1=0 (7.18)

The values of andn, called theeast-westnd north-southexponent, determine the
shape of the superquadric ellipsoid. Both have to be grélaser zero. The sphere is
e. g. given bye=1 andn=1.

The syntax of the superquadric ellipsoid, which is locatetthe origin, is:

superellipsoid { <e, n> }

Two useful objects are the rounded box and the rounded eylinthese are declared
in the following way.

#tdeclare Rounded_Box = superellipsoid { <r, r> }
#declare Rounded_Cylinder = superellipsoid { <1, r> }

The roundednessdetermines the roundedness of the edges and has to be gheater
zero and smaller than one. The smaller you choose the vafueshe smaller and
sharper the edges will get.

Very small values ok andn might cause problems with the root solver (the Sturmian
root solver cannot be used).

7.5.2.11 Surface of Revolution

The surface of revolution (SOR) object is generated byiraiehe graph of a function
about an axis. This function describes the dependence ohtles from the position
on the rotation axis. The syntax of the SOR object is:

248 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

sor {
NUMBER_OF_POINTS,
<POINTO>, <POINT1>, ..., <POINTn-1>
[open]
[sturm]

}

The points(POINTO) through(POINT n— 1) are two-dimensional vectors consisting
of the radius and the corresponding height, i. e. the posdiothe rotation axis. These
points are smoothly connected (the curve is passing thrtheylspecified points) and
rotated about the y-axis to form the SOR object. The first astipoints are only used
to determine the slopes of the function at the start and eimd. pche function used for
the SOR object is similar to the splines used for the latheatbjThe difference is that
the SOR object is less flexible because it underlies thectsirs of any mathematical
function, i. e. to any given poing on the rotation axis belongs at most one function
value, i. e. one radius value. You can't rotate closed cuwi#sthe SOR object.

The optional keywordpen allows you to remove the caps on the SOR object. If you
do this you shouldn’t use it with CSG anymore because thdtsasiay be wrong.

The SOR object is useful for creating bottles, vases, amgihike that. A simple vase
could look like this:

#declare Vase = sor {

7,

<0.000000, 0.000000>
<0.118143, 0.000000>
<0.620253, 0.540084>
<0.210970, 0.827004>
<0.194093, 0.962025>
<0.286920, 1.000000>
<0.468354, 1.033755>
open

}

One might ask why there is any need for a SOR object if therérégady a lathe ob-
ject which is much more flexible. The reason is quite simplée Intersection test
with a SOR object involves solving a cubic polynomial white test with a lathe ob-
ject requires to solve of a 6th order polynomial (you needlaacspline for the same
smoothnegs Since most SOR and lathe objects will have several segntlist will
make a great difference in speed. The roots of the 3rd ordgngmial will also be
more accurate and easier to find.

The slower but more accurate Sturmian root solver may be wsidthe surface of
revolution object if the shape does not render properly.

The following explanations are for the mathematically iegted reader who wants to
know how the surface of revolution is calculated. Though it necessary to read on
it might help in understanding the SOR object.

7.5. OBJECTS 249

The function that is rotated about the y-axis to get the fif@RQbject is given by
r? = f(h) = An® + B +Ch+D (7.19)

with radiusr and heighth. Since this is a cubic function imit has enough flexibility
to allow smooth curves.

The curve itself is defined by a setopointsR, i = 0...n— 1, which are interpolated
using one function for every segment of the curve. A segment=1...n— 3, goes
from pointP; to pointP;, 1 and uses point®;_; andPj ., to determine the slopes at
the endpoints. If there ampoints we will haven — 3 segments. This means that we
need at least four points to get a proper curve.

The coefficientsAj, Bj, C; andD; are calculated for every segment using the equation

b=M x (7.20)
that is

r2

2 h? R ho1 A|

j+1
2.r,-+11+—rj,1 | M M b 1 Bj
"R P 3 2y 10 f) G (7.21)
2rj+1}:i+2—LJ 3, 2 100 Dj

jr2 =N

wherer is the radius andh; is the height of poinP;.

Figure 7.7 on the following page shows the configuration efgintsP, the location
of segmentj and the curve that is defined by this segment.

7.5.2.12 Text

A text object creates 3-D text as an extruded block letterrrédtly only TrueType
fonts are supported but the syntax allows for other fontgytpebe added in the future.
The syntax is:

text {
ttf "FONTNAME.TTF",
"STRING_OF_TEXT",
THICKNESS_FLOAT, OFFSET VECTOR
}

Where FONTNAME.TTF is the name of the TrueType font file. It is a quoted string
literal or string expression. The string expression whigltovs is the actual text of
the string object. It too may be a quoted string literal angtexpression. See 7.1.6 on
page 196 for more on string expressions.

250 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

;
8.0 | I P
| e
| X
T
6.0 - %
RN
- \ Sy P
E / ! \
g 4.0 i " N,
T | Segment] H
i P
|
2.0 [' X
I N
1 \>I<P1
| 1
0.0 ‘ ‘ \ 5o ‘
-4.0 -2.0 0.0 2.0 4.0

Radius r

Figure 7.7: Segmerijtof n— 3 segments in a point configurationropoints. The points
describe the curve of a surface of revolution

The text will start with the origin at the lower left, front dfe first character and will
extend in thet+x-direction. The baseline of the text follows tkeaxis and decenders
drop into the—y-direction. The front of the character sits in thg-plane and the text
is extruded in ther-z-direction. The front-to-back thickness is specified byrdguired
value THICKNESSFLOAT.

Characters are generally sized so that 1 unit of verticatiepds correct. The charac-
ters are about 0.5 to 0.75 units tall.

The horizontal spacing is handled by POV-Ray internallyuding any kerning infor-

mation stored in the font. The required vector OFFSEHCTOR defines any extra
translation between each character. Normally you shouddifspa zero for this value.
Specifing0 . 1*x would put additional 0.1 units of space between each claract

Only printable characters are allowed in text objects. &ttars such as return, line
feed, tabs, backspace etc. are not supported.

7.5.2.13 Torus

A torus is a 4th order quartic polynomial shape that looke &kdonut or inner tube.
Because this shape is so useful and quartics are difficuéfine POV-Ray lets you
take a short-cut and define a torus by:

torus {
MAJOR, MINOR
[sturm]

7.5. OBJECTS 251

where MAJOR is a float value giving the major radius and MIN®R float specifying
the minor radius. The major radius extends from the centéneohole to the mid-line
of the rim while the minor radius is the radius of the crosstisa of the rim. The torus
is centered at the origin and lies in the-plane with they-axis sticking through the
hole. See fihure 7.8 for details about the torus geometry.

major radius

minor radius

center line

Figure 7.8: Major and minor radius of a torus.

The torus is internally bounded by two cylinders and twosifgming athickcylinder.
With this bounding cylinder the performance of the torusiséction test is vastly
increased. The test for a valid torus intersection, i. evisgla 4th order polynomial,

is only performed if the bounding cylinder is hit. Thus a Idtsbow root solving
calculations are avoided.

Calculations for all higher order polynomials must be varguaate. If the torus renders
improperly you may add the keyword:urm after the MINOR value to use POV-Ray’s
slower-yet-more-accurate Sturmian root solver.

7.5.3 Finite Patch Primitives

There are six totally thin, finite objects which have no wdgfined inside. They are
bicubic patch, disc, smooth triangle, triangle, polygod amesh. They may be com-
bined in CSG union but cannot be use in other types of CSG ¢aérac1ipped_ by
statement). Because these types are finite POV-Ray can t@aaic bounding on
them to speed up rendering time. As with all shapes they carabslated, rotated and
scaled.

252 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.5.3.1 Bicubic Patch

A bicubic patch is a 3D curved surface created from a meshiarigies. POV-Ray
supports a type of bicubic patch called a Bezier patch. Abdcpatch is defined as
follows:

bicubic_patch {
type PATCH_TYPE
flatness FLATNESS_VALUE
u_steps NUM_U_STEPS
v_steps NUM _V_STEPS
<Cp1>, <CP2>, <CP3>, <CP4>,
<CP5>, <CP6>, <CP7>, <CP8>,
<CP9>, <CP10>, <CP1l1l>, <CPl2>,
<CP13>, <Cpl1l4>, <CP15>, <CP1l6>
}

The keywordcype is followed by a float PATCHTYPE which currently must be either
0 or 1. For type 0 only the control points are retained withd\Ray. This means that
a minimal amount of memory is needed but POV-Ray will neecetfiggm many extra
calculations when trying to render the patch. Type 1 pregsses the patch into many
subpatches. This results in a significant speedup in rergletithe cost of memory.

The four parametersype, flatness, u_steps andv_steps may appear in any
order. They are followed by 16 vectors that define xhg, z coordinates of the 16
control points which define the patch. The patch touchesatinedorner pointgCP1),
(CP4), (CP13) and (CP16) while the other 12 points pull and stretch the patch into
shape. The Bezier surface is enclosed by the convex hullefbrby the 16 control
points, this is known as theonvex hull property

The keywordsu_steps andv_steps are each followed by float values which tell
how many rows and columns of triangles are the minimum to aisestate the surface.
The maximum number of individual pieces of the patch thatested by POV-Ray can
be calculated from the following:

pieces= 2!-StepspV-steps (7.22)

This means that you really should keeps teps andv_steps under 4. Most patches
look just fine withu_steps 3 andv_steps 3, which translates to 64 subpatches
(128 smooth triangles).

As POV-Ray processes the Bezier patch it makes a test of then¢ypiece of the patch
to see ifit is flat enough to just pretend it is a rectangle. tagement that controls this
testisf latness. Typical flatness values range from 0 to 1 (the lower the sipwe

If the value for flatness is 0 POV-Ray will always subdivide tatch to the extend
specified byu_steps andv_steps. If flatness is greater than 0 then every time the
patch is split, POV-Ray will check to see if there is any needdlit further.

7.5. OBJECTS 253

There are both advantages and disadvantages to using &mfladness. The advan-
tages include:

e |If the patch isn't very curved, then this will be detected d&dV-Ray
won't waste a lot of time looking at the wrong pieces.

e If the patch is only highly curved in a couple of places, PO&#Ruill
keep subdividing there and concentrate it's efforts on tirel ppart.

The biggest disadvantage is that if POV-Ray stops subdigidi a particular level on
one part of the patch and at a different level on an adjacehbpthe patch there is the
potential forcracking This is typically visible as spots within the patch where yan
see through. How bad this appears depends very highly omtile at which you are
viewing the patch.

Like triangles, the bicubic patch is not meant to be gendrbtehand. These shapes
should be created by a special utility. You may be able to iseaquilities to generate
these shapes from the same source from which you obtaineeRR@V

bicubic_patch {
type 1
flatness 0.01
u_steps 4
v_steps 4

<0, 0, 2>, <1, 0, 0>, <2, 0, 0>, <3, 0,-2>,
<0, 1 0>, <1, 1, 0>, <2, 1, 0>, <3, 1, 0>,
<0, 2, 0>, <1, 2, 0>, <2, 2, 0>, <3, 2, 0>,
<0, 3, 2>, <1, 3, 0>, <2, 3, 0>, <3, 3, -2>

}

The triangles in a POV-Rayicubic_patch are automatically smoothed using nor-
mal interpolation but it is up to the user (or the user’s ytiirogram) to create control
points which smoothly stitch together groups of patches.

7.5.3.2 Disc

One other flat, finite object available with POV-Ray is thecdi$he disc is infinitely
thin, it has no thickness. If you want a disc with true thicksigou should use a very
short cylinder. A disc shape may be defined by:

disc {
<CENTER>, <NORMAL>, RADIUS [, HOLE_RADIUS]
}

The vector(CENTER defines thex, y, z coordinates of the center of the disc. The
(NORMAL vector describes its orientation by describing its surfacemal vector.
This is followed by a float specifying the RADIUS. This may kationally followed
by another float specifying the radius of a hole to be cut froendenter of the disc.

254 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.5.3.3 Mesh

The mesh object can be used to efficiently store large nundférmngles. Its syntax
is:

mesh {

triangle {
<CORNER1>, <CORNER2>, <CORNER3>
[texture { STRING 1} 1]

}

smooth triangle {
<CORNER1>, <NORMALl>,
<CORNER2>, <NORMALZ2>,
<CORNER3>, <NORMAL3>
[texture { STRING 1} 1]

}
[hierarchy FLAG]

}

Any number of triangles and/or smooth triangles can be usé@ach of those triangles
can be individually textured by assigning a texture name.td e texture has to be
declared before the mesh is parsed. It is not possible toeutaré definitions inside

the triangle or smooth triangle statements. This is a &&ini that is necessary for an
efficient storage of the assigned textures.

The mesh'’s components are internally bounded by a boundirdnierarchy to speed
up intersection testing. The bounding hierarchy can bestuaff with thehierarchy
keyword. This should only be done if memory is short or the mamsists of only a
few triangles.

Copies of a mesh object refer to the same triangle data arddbrsume very lit-
tle memory. You can easily trace hundred copies of an 100806gle mesh without
running out of memory (assuming the first mesh fits into memory

The mesh object has two advantages over a union of trianigheseds less memory and
it is transformed faster. The memory requierements areceztiby efficiently storing
the triangles vertices and normals. The parsing time foisfamed meshes is reduced
because only the mesh object has to be transformed and ngtsiugle triangle as it
is necessary for unions.

The mesh object can currently only include triangle and ghmb@angle components.
That restriction is liable to change, allowing polygonahgmnents, at some point in
the future.

7.5.3.4 Polygon

Polygons are useful for creating rectangles, squares &ed ptanar shapes with more
than three edges. Their syntax is:

7.5. OBJECTS 255

polygon {
TOTAL_NUMBER_OF_POINTS,
<A_1>, <A_ 2>, ..., <A na>, <A 1>,
<B_1>, <B_2>, ..., <B nb>, <B 1>,
<C_1>, <C_ 2>, ..., <C_nc>, <C_1>,

}

The points (A1) through (A_.na) describe the first sub-polygon, the poinf3_1)
through (B_nb) describe the second sub-polygon, and so on. A polygon caaioon
any number of sub-polygons, either overlapping or not. &tes where an even num-
ber of polygons overlaps a whole appears. You only have tafzethat each of these
polygons is closed. This is insured by repeating the firsttpofi a sub-polygon at the
end of the sub-polygon’s point sequence. This implies thgoints of a sub-polygon
are different.

If the (last) sub-polygon is not closed a warning is issuetithe program automatically
closes the polygon. This is useful because polygons imgémben other programs may
not be closed, i. e. their first and last point are not the same.

All points of a polygon are three-dimensional vectors thatehto lay on one plane.
If this is not the case an error occurs. You can also use twesional vectors to
describe the polygon. POV-Ray assumes thaztaue is zero in this case.

A square polygon that matches the default planar imagemsimigy:

polygon {
4,
<0, 0>, <0, 1>, <1, 1>, <1, 0>
texture {
finish { ambient 1 diffuse 0 }
pigment { image _map { gif "test.gif" } }
}
//scale and rotate as needed here

}

The sub-polygon feature can be used to generate compleestip the letter "P”,
where a whole is cut into another polygon:

#tdeclare P = polygon {
12,
<0, 0>, <0, 6>, <4, 6>, <4, 3>, <1, 3>, <1, 0>, <0, 0>,
<1, 4>, <]_, 5>, <3, 5>, <3, 4>, <l, 4>

}

The first sub-polygon (on the first line) describes the oubaps of the letter "P”. The
second sub-polygon (on the second line) describes thenmrdta hole that is cut in

256 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

the top of the letter "P”. Both rectangles are closed, i. eirtfirst and last points are
the same.

The feature of cutting holes into a polygon is based on thegaol inside/outside test
used. A point is considerd to be inside a polygon if a strdigletdrawn from this point
in an arbitrary direction crosses an odd number of edges i&hknown aslordan’s
curve theorem

Another very complex example showing one large triangld witee small holes and
three seperate, small triangles is given below:

polygon {
28,
<0,0> <1,0> <0,1> <0,0> // large outer tri.
<.3,.7> <.4,.7> <.3,.8> <.3,.7> // small outer tri. #1
<.5,.5> <.6,.5> <.5,.6> <.5,.5> // small outer tri. #2
<.7,.3> <.8,.3> <.7,.4> <.7,.3> // small outer tri. #3
<.5,.2> <.6,.2> <.5,.3> <.5,.2> // inner tri. #1
<.2,.5> <.3,.5> <.2,.6> <.2,.5> // inner tri. #2
<.1,.1> <.2,.1> <.1,.2> <.1,.1> // inner tri. #3

7.5.3.5 Triangle and Smooth Triangle

The triangle primitive is available in order to make more ptem objects than the
built-in shapes will permit. Triangles are usually not ¢esbby hand but are converted
from other files or generated by utilities. A triangle is defirby

triangle {
<CORNER1>, <CORNER2>, <CORNER3>
}

where (CORNERM is a vector defining the, y, z coordinates of each corner of the
triangle.

Because triangles are perfectly flat surfaces it would regextremely large numbers
of very small triangles to approximate a smooth, curvedsserf However much of our
perception of smooth surfaces is dependent upon the wayalighshading is done. By
artificially modifying the surface normals we can simulasesanooth surface and hide
the sharp-edged seams between individual triangles.

The smooth triangle primitive is used for just such purpo3&e smooth triangles use
a formula called Phong normal interpolation to calculat shrface normal for any
point on the triangle based on normal vectors which you ddtin¢he three corners.
This makes the triangle appear to be a smooth curved surfacemooth triangle is

defined by

7.5. OBJECTS 257

smooth_triangle {
<CORNER1>, <NORMALl>,
<CORNER2>, <NORMAL2>,
<CORNER3>, <NORMAL3>
}

where the corners are defined as in regular triangles(BI@RMALDN is a vector de-
scribing the direction of the surface normal at each corner.

These normal vectors are prohibitively difficult to complyehand. Therefore smooth
triangles are almost always generated by utility prografiesachieve smooth results,
any triangles which share a common vertex should have the sarmal vector at that
vertex. Generally the smoothed normal should be the averagléthe actual normals
of the triangles which share that point.

7.5.4 Infinite Solid Primitives

There are five polynomial primitive shapes that are possitbigite and do not respond
to automatic bounding. They are plane, cubic, poly, quaalit quartic. They do have
a well defined inside and may be used in CSG and inside isoped_by statement.
As with all shapes they can be translated, rotated and scaled

75.41 Plane

The plane primitive is a simple way to define an infinite flatface. The plane is
specified as follows:

plane { <NORMAL>, DISTANCE }

The (NORMAL vector defines the surface normal of the plane. A surface aoisn
a vector which points up from the surface at a 90 degree anfdies is followed by
a float value that gives the distance along the normal thapltree is from the origin
(that is only true if the normal vector has unit length; sdewg For example:

plane { <0, 1, 0>, 4 }

This is a plane wherstraight upis defined in the positivg-direction. The plane is
4 units in that direction away from the origin. Because mdahgs are defined with
surface normals in the direction of an axis you will often ptmes defined using the
x, y Or z built-in vector identifiers. The example above could be #jgetas:

plane { vy, 4}

258 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The plane extends infinitely in the andz-directions. It effectively divides the world
into two pieces. By definition the normal vector points todside of the plane while
any points away from the vector are defined as inside. Thidefsutside distinction
is only important when using planes in CSG atidi pped by.

A plane is called golynomialshape because it is defined by a first order polynomial
equation. Given a plane:

plane { <A, B, C>, D }

it can be represented by the equation

Ax+By+Cz—Dv/A2+B2+C2 =0. (7.23)

Therefore our examplelane { y,4 }is actually the polynomial equation= 4.
You can think of this as a set of al| y, z points where all havg values equal to 4,
regardless of th& or zvalues.

This equation is &irst order polynomial because each term contains only single powers
of x, y or z. A second order equation has terms liey?, 2, xy, xzandyz Another
name for a 2nd order equation is a quadric equation. Thiréropdlys are called
cubics. A 4th order equation is a quartic. Such shapes azided in the sections
below.

7.5.4.2 Poly, Cubic and Quartic

Higher order polynomial surfaces may be defined by the usemflya shape. The
syntax is

poly { ORDER, <Tl, T2, T3, Tm> }

where ORDER is a whole number from 2 to 7 inclusively that gfgescthe order of the
equation.T1,T2,... Tmare float values for the coefficients of the equation. These ar
msuch terms where

((ORDERt1)(ORDERY+ 2)(ORDERY3))

m= 5 . (7.24)

An alternate way to specify 3rd order polys is:

cubic { <T1, T2,... T20> }

Also 4th order equations may be specified with:

7.5. OBJECTS 259

quartic { <T1, T2,... T35> }

Here’s a more mathematical description of quartics foréheko are interested. Quar-
tic surfaces are 4th order surfaces and can be used to descidinge class of shapes
including the torus, the lemniscate, etc. The general emuédr a quartic equation in
three variables is (hold onto your hat):

agoX" + a0y +802X°Z+ 803X + 204Xy’ +
a05X2YyZ+ 806X2Y + 8g7X2 7> + 8ggX°Z+ ageX’ +
10Xy’ + 81 1XYPZ+ QuoXY? + 13Xy Z + AuaXyz+
a15Xy+ a16XZ 4 a17XZ + agXz+ agoX +
agoy’ +a21y°Z+ agoy® + apay’Z + agay’z+
apsy’ + apeyZ + g7y Z + ApsyZ-+ apoy +
agoZ +a31Z° +agyZ2 +agsz+ag =0 (7.25)
To declare a quartic surface requires that each of the ciegftsayg . . . a34 be placed
in order into a single long vector of 35 terms.

As an example let’s define a torus the hard way. A Torus can flresented by the
equation:

Xy + 2+ 28 + 2P + 27 —
2rg+ i) +2rf — 1)y~ 2(rg + 1)+ (15 —1)* =0 (7.26)
Wherer is themajor radius of the torus, the distance from the hole of the donthdo
middle of the ring of the donut, and is theminor radius of the torus, the distance from
the middle of the ring of the donut to the outer surface. Thewang object declaration

is for a torus having major radius 6.3 minor radius 3.5 (Mgkihe maximum width
just under 20).

// Torus having major radius sqgrt(40), minor radius sqrt(12)

quartic {

<1, 0, 0, 0, 2, 0, 0, 2, 0,
-104, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 2, 0, 56, 0,
0, 0, 0, 1, 0, -104, 0, 784 >
sturm

bounded_by { // bounded by speeds up the render,
// see bounded_by
// explanation later
// in docs for more info.
sphere { <0, 0, 0>, 10 }
}

260 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Poly, cubic and quartics are just like quadrics in that yoo'tdmave to understand what
one is to use one. The fikHAPESQ.INC has plenty of pre-defined quartics for you to
play with. The syntax for using a pre-defined quartic is:

object { Quartic_Name }

Polys use highly complex computations and will not alwayslez perfectly. If the sur-
face is not smooth, has dropouts, or extra random pixelsising the optional keyword
sturmin the definition. This will cause a slower but more accuratiewation method
to be used. Usually, but not always, this will solve the peofl If sturm doesn’t work,
try rotating or translating the shape by some small amous.t8e sub-directoryATH
in the scene files directory for examples of polys in scenes.

There are really so many different quartic shapes, we caeit begin to list or describe
them all. If you are interested and mathematically incliredexcellent reference book
for curves and surfaces where you'll find more quartic shapadlas is:

The CRC Handbook of Mathematical Curves and Surfaces
David von Seggern
CRC Press, 1990

7.5.4.3 Quadric

Quadric surfaces can produce shapes like ellipsoids, ephearones, cylinders,

paraboloids (dish shapes) and hyperboloids (saddle oglaasr shapes). Note that
you do not confusquaDRicwith quaRTic A quadric is a 2nd order polynomial while
a quartic is 4th order. Quadrics render much faster and aseeleor-prone.

A quadric is defined in POV-Ray by

quadric { <A,B,C>, <D,E,F>, <G,H,I>, J }

whereA throughJ are float expressions that define a surface, of, z points which
satisfy the equation

AC + By + CZ + Dxy + Exz+ Fyz+ GXx+ Hy + 1z +J = 0 (7.27)

Different values ofA, B, C, ... J will give different shapes. If you take any three
dimensional point and use i¥s y andz coordinates in the above equation the answer
will be 0O if the point is on the surface of the object. The answil be negative if the
point is inside the object and positive if the point is outstbie object. Here are some
examples:

X?+Y?4+72-1=0 Sphere (7.28)
X24+Y2-1=0 Infinite cylinder along the z-axis (7.29)
X24+Y2-72=0 Infinite cone along the z-axis (7.30)

7.5. OBJECTS 261

The easiest way to use these shapes is to include the stdildas@iAPES.INC into
your program. It contains several pre-defined quadrics andcan transform these
pre-defined shapes (using translate, rotate and scalehmtanes you want. You can
invoke them by using the syntax:

object { Quadric_Name }

The pre-defined quadrics are centered about the offyi 0) and have a radius of 1.
Don't confuse radius with width. The radius is half the dideneor width making the
standard quadrics 2 units wide.

Some of the pre-defined quadrics are,

Ellipsoid

Cylinder_X, Cylinder_Y, Cylinder_ 7
QCone_X, QCone_Y, QCone 27

Paraboloid_ X, Paraboloid_Y, Paraboloid 2z

For a complete list, see the fiHAPES.INC.

7.5.5 Constructive Solid Geometry

POV-Ray support€onstructive Solid Geomet{€ SG) with five different operations:
difference, intersection, merge, union and negation (giga). While the first four
operations represent binary operators, i. e. they need figuoreents, the negation is a
unary operator, it takes only one argument.

7.5.5.1 AboutCSG

Constructive Solid Geometry is a technique for combining &wmore objects to create
a new object using the three boolean set operat@rson, intersection, and
negation. It only works with solid objects, i. e. objects that have dlwlefined
interior. This is the case for all objects described in thetiees 7.5.2 on page 231
and 7.5.4 on page 257.

CSG shapes may be used anywhere a standard shape can bevarddside other
CSG shapes. They can be translated, rotated or scaled imrtie way as any other
shape. The shapes making up the CSG shape may be individzaislated, rotated
and scaled as well.

7.5.5.2 Inside and Outside

Most shape primitives, like spheres, boxes and blobs dividevorld into two regions.
One region is inside the object and one is outside.

262 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Given any point in space you can say it’s either inside oridatany particular primitive
object. Well, it could be exactly on the surface but this dagather hard to determine
due to numerical problems.

Even planes have an inside and an outside. By definition,utiace normal of the
plane points towards the outside of the plane. You shoulé timit triangles and
triangle-based shapes cannot be used as solid objects irsit&&sthey have no well
defined inside and outside.

CSG uses the concepts of inside and outside to combine stumether as explained
in the following sections.

Imagine you have to objects that partially overlap like shawfigure 7.9. Four dif-
ferent areas of points can be distinguished: points thaheitber in object A nor in
object B, points that are in object A but not in object B, psititat are not in object A
but in object B and last not least points that are in object dalject B.

Figure 7.9: Two overlapping objects.

Keeping this in mind it will be quite easy to understand hoe/ @85G operations work.

7.5.5.3 Inverse

When using CSG it is often useful to invert an object so thlitbié inside-out. The
appearance of the object is not changed, just the way thatRg@\perceives it. When
theinverse keyword is used thansideof the shape is flipped to become thatside
and vice versa.

Note that the difference operation is performed by inteaimsgdhe first object with the
negation of the second object.

7.5.5.4 Union

Unions are simplyglue used to bind two or more shapes into a single entity that can
be manipulated as a single object. Figure 7.10 on the fachgg shows the union of

7.5. OBJECTS 263

Figure 7.10: The union of two objects.

A and B. The new object created by the union operation can dedctranslated and
rotated as a single shape. The entire union can share a siglee but each object
contained in the union may also have its own texture, whidhowerride any matching
texture statements in the parent object.

You should be aware that the surfaces inside the union wilbearemoved. As you
can see from the figure this may be a problem for transpareonsinif you want those
surfaces to be removed you'll have to use the merge opesatgplained in a later
section.

The following union will contain a box and a sphere.

union {
box { <-1.5, -1, -1>, <0.5, 1, 1> 1}
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1}
}

Earlier versions of POV-Ray placed restrictions on uniangai often had to combine
objects withcomposite statements. Those earlier restrictions have been lifted so
composite is no longer needed. Composite is still suppdaieldackwards compatibil-

ity but it is recommended that union is now used in it’s plaicee future support for

the composite keyword is not guaranteed.

7.5.5.5 Intersection

A point is inside an intersection if it is inside both objecésand B, as show in fig-
ure 7.11 on the next page.

For example:

intersection {

264 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Figure 7.11: The intersection between two objects.

box { <-1.5, -1, -1>, <0.5, 1, 1> }
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1}
}

7.5.5.6 Difference

The CSG difference operation takes the intersection betwlee first object and the
negation of the second object. Thus only points inside ¢ljeznd outside object B
belong to the difference of both objects.

The results is aubtractionof the 2nd shape from the first shape as shown in figure 7.12.

Figure 7.12: The difference between two objects.

For example:

difference {
box { <-1.5, -1, -1>, <0.5, 1, 1> 1}

7.5. OBJECTS 265

cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1}
}

7.5.5.7 Merge

The union operation just glues objects together, it doesambve the objects’ surfaces
inside the union. If a transparent union is used those saiMalt get visible.

The merge operations can be used to avoid this problem. ksyost like union but it
eliminates the inner surfaces like shown in figure 7.13.

Figure 7.13: Merge removes inner surfaces.

7.5.6 Light Sources

The last object covered is the light source. Light source® ha visible shape of their
own. They are just points or areas which emit light. Their $yhtax is:

light_source {

<LOCATION>

color <COLOUR>
spotlight]
point_at <POINT_ AT>]
radius RADIUS]
falloff FALLOFF]
tightness TIGHTNESS]
area_light <AXIS1>, <AXIS2>, SIZEl, SIZE2]
adaptive ADAPTIVE]
jitter JITTER]
looks_like { OBJECT } 1]
fade_distance FADE_DISTANCE]
fade_power FADE_POWER]
atmospheric_attenuation BOOL]

e B B B B e B e e B B B

266 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The different types of light sources and the optional modifiare described in the
following sections.

7.5.6.1 Point Lights

A point light source sends light of the specified color unifity in all directions. Its
location is described by theocation keyword and its color is given by theolor
keyword. The complete syntax is:

light_source {
<LOCATION>
color <COLOUR>
[looks_1like { OBJECT } 1]
[fade distance FADE_DISTANCE]
[fade _power FADE_POWER]
[atmospheric_attenuation BOOL]

The other keywords will be explained later.

7.5.6.2 Spotlights

A spotlight is a point light source where the rays of light eomstrained by a cone.

The light is bright in the center of this cone and falls off arkens at the edges of the
cone. The syntax is:

light_source {
<LOCATION>
color <COLOUR>
spotlight
point_at <POINT AT>
radius RADIUS
falloff FALLOFF
tightness TIGHTNESS
[looks_1like { OBJECT } 1]
[fade distance FADE DISTANCE]
[fade _power FADE_POWER]
[atmospheric attenuation BOOL]

The spotlight is identified by thepotlight keyword. Itis located at LOCATION
and points at POINTAT.

The spotlight's other parameters aredius, falloff andtightness.

7.5. OBJECTS 267

location

center line

radius angle

falloff angle

Figure 7.14: The geometry of a spotlight.

Think of a spotlight as two nested cones as shown in the figlitee inner cone is
specified by the radius parameter and is fully lit. The outarecis the falloff cone
beyond which there is no light. The values for these two patars are half the opening
angles of the corresponding cones, both angles have to Beesthan 90 degrees. The
light smoothly falls off between the radius and the falloffje like shown in the figures
in 7.15 on the following page (as long as the radius angletinegative).

The tightness value specifies how quickly the light dims,abisfoff, from the spot-
light's center line to the the falloff cone (full darknesstside). The default value for
tightness is 10. Lower tightness values will make the sgiatlbrighter, making the
spotwider and the edges sharper. Higher values will dim the spotlighking the spot
tighter and the edges softer. Values from 1to 100 are acceptable.

You should note from the figures that the radius and fallofjles interact with the
tightness parameter. Only negative radius angles will tieetightness value full con-
trol over the spotlight’s appearance as you can see fromdheefin 7.15 on the next
page. In that case the falloff angle has no effect and thedd & only determined by
the tightness parameter.

Spotlights may be used anyplace that a normal light sourcseasl. Like any light
sources, they are invisible. They are treated as shapes apdenincluded in CSG
shapes. They may also be used in conjunction with area lights

268 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

1.0 = T T 1.0
N
\ \ : radius = 0 falloff = 45
v [radus=15 | | e falloff = 60
\ \ | ---- radius = 30 ---- falloff = 75
3 | | ——- radius = 45 ——- falloff = 90
|
5 VoL 5
2 \ | 2
= § \ =
3 Vo H
E Vv £
205 Yooy 205
g v g
g \ 2
£ Vol £
g Lo 5
S \ =
= 1 | 3
Vol
VL]
\ |
W
A
A
W\ \
0.0 . . . NS 0.0 5 N N
0.0 100 200 300 400 500 600 700 80.0 90.0 0.0 100 200 30.0 400 500 600 700 800 90.0
Angle between light ray and spotlight's centerline Angle between light ray and spotlight's centerline
1.0 T T T
0
& 3
= g
g g 1
> >
E 205
3 3 2
< <
5 g :
= = 10
20
50
100
- 0.0 -
0.0 100 200 300 400 500 600 700 80.0 90.0 0.0 100 20.0 30.0 400 500 600 700 800 90.0
Angle between light ray and spotlight's centerline

Angle between light ray and spotlight's centerline

(d)

Figure 7.15: Different light intensity multiplier curvega) fixed falloff angle of 45
degrees; (b) fixed radius angle of 45 degrees; (c) fixed amgldaloff angles of 30

and 60 degrees respectively and different tightness valid@shegative radius angle
and different tightness values

(©)

7.5.6.3 Cylindrical Lights

Cylindrical light sources work pretty much like spotligleescept that the light rays are
constraint by a cylinder and not a cone. The syntax is:

light_source {
<LOCATION>
color <COLOUR>
cylinder
point_at <POINT AT>
radius RADIUS
falloff FALLOFF
tightness TIGHTNESS
[looks_1like { OBJECT } 1]

7.5. OBJECTS 269

[fade_distance FADE_DISTANCE]
[fade_power FADE_POWER]
[atmospheric_attenuation BOOL]

Theradius, falloff andtightness keywords control the same features as with
the spotlight.

You should keep in mind that the cylindrical light source tidl a point light source.
The rays are emitted from one point and are only constraird bylinder. The light
rays are not parallel.

7.5.6.4 Arealights

Area light sources occupy a finite, one- or two-dimensiomedaf space. They can
cast soft shadows because they can partially block light.

The area lights used in POV-Ray are rectangular in shapepfddee a flat panel light.
Rather than performing the complex calculations that wdnddrequired to model a
true area light, it is approximated as an array of point Igfrces spread out over the
area occupied by the light. The intensity of each individoaiht light in the array is
dimmed so that the total amount of light emitted by the lightqual to the light color
specified in the declaration. The syntax is:

light_source {

<LOCATION>

color <COLOUR>

area_light <AXIS1>, <AXIS2>, SIZEl, SIZE2

adaptive ADAPTIVE

jitter JITTER

[spotlight]
point_at <POINT_ AT>]
radius RADIUS]
falloff FALLOFF]
tightness TIGHTNESS]
looks_like { OBJECT } 1]
fade_distance FADE _DISTANCE]
fade_power FADE_POWER]
atmosphere BOOL]
atmospheric_attenuation BOOL]

e B B B B N B B]

The light's location and color are specified in the same wawg & a regular light
source.

Thearea_light command defines the size and orientation of the area lightels w
as the number of lights in the light source array. The vedkS1 and AXIS2 specify

270 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

the lengths and directions of the edges of the light. Sineatha lights are rectangular
in shape these vectors should be perpendicular to each dtetarger the size of the
light the thicker the soft part of shadows will be. The nunsb®lZE1 and SIZE2 spec-
ify the dimensions of the array of point lights. The more tigkiou use the smoother
your shadows will be but the longer they will take to render.

The jitter command is optional. When used it causes the positions oo
lights in the array to be randomly jittered to eliminate ahpdow banding that may
occur. The jittering is completely random from render tadesnand should not be used
when generating animations.

Note that it is possible to specify spotlight parameteraghwith the area light param-
eters to creatarea spotlights Using area spotlights is a good way to speed up scenes
that use area lights since you can confine the lengthy safioshaalculations to only

the parts of your scene that need them.

An interesting effect can be created using a linear lightrs®mu Rather than having
a rectangular shape, a linear light stretches along a lirteogtike a thin fluorescent
tube. To create a linear light just create an area light wikh of the array dimensions
setto 1.

Theadaptive command is used to enable adaptive sampling of the lightsol@y
default POV-Ray calculates the amount of light that reachasirface from an area
light by shooting a test ray at every point light within theagt As you can imagine
this is very slow. Adaptive sampling on the other hand attsnbp approximate the
same calculation by using a minimum number of test rays. Tineber specified after
the keyword controls how much adaptive sampling is used.hiditeer the number the
more accurate your shadows will be but the longer they wiié i render. If you're
not sure what value to use a good starting poitidaptive 1. Theadaptive
keyword only accepts integer values and cannot be set IhwaerQ.

When performing adaptive sampling POV-Ray starts by shgatitest ray at each of
the four corners of the area light. If the amount of light ieed from all four corners
is approximately the same then the area light is assumed édther fully in view or
fully blocked. The light intensity is then calculated as #werage intensity of the light
received from the four corners. However, if the light inignérom the four corners
differs significantly then the area light is partially bleck The area light is split into
four quarters and each section is sampled as described.aldugeallows POV-Ray to
rapidly approximate how much of the area light is in view with having to shoot a
testray at every light in the array. Visually the samplinggéke shown in 7.16 on the
facing page.

While the adaptive sampling method is fast (relatively &peg it can sometimes pro-
duces inaccurate shadows. The solution is to reduce therdarobadaptive sampling
without completely turning it off. The number after the atilepkeyword adjusts the
number of times that the area light will be split before thamive phase begins. For
example if you usedaptive 0 aminimum of 4 rays will be shot at the light. If you
useadaptive 1 a minimum of 9 rays will be shotadaptive 2 gives 25 rays,
adaptive 3 gives 81 rays, etc). Obviously the more shadow rays you stieot

7.5. OBJECTS 271

level O level 1 level 2
2Xx2 rays 3x3 rays 5x5 rays
([J [O @ O 000 O
000
o O o o0 O
[] [J O @ O o O O

@ new ray samples

O samples reused from the previous level

Figure 7.16: Area light adaptive sampling.

slower the rendering will be so you should use the lowestevéthat gives acceptable
results.

The number of rays never exceeds the values you specify ¥eg amd columns of
points. For examplarea_light x,y, 4, 4 specifies a 4 by 4 array of lights. If you
specifyadaptive 3 it would mean that you should start with a 9 by 9 array. In this
case no adaptive sampling is done. The 4 by 4 array is used.

7.5.6.5 Shadowless Lights

Using theshadowless keyword you can stop a light source from casting shadows.

7.5.6.6 Lookslike

Normally the light source itself has no visible shape. Tigatlisimply radiates from
an invisible point or area. You may give a light source anypshby adding a
looks_like { OBJECT } statement.

There is an implietho_shadow attached to theooks 1ike object so that light
is not blocked by the object. Without the automatis_shadow the light inside the
object would not escape. The object would, in effect, casialewv over everything.

If you want the attached object to block light then you shaitdch it with a union and
not alooks_like as follows:

union {
light_source { <100, 200, -300> color White }
object { My Lamp_Shape }

}

Presumably parts of the lamp shade are translucent to let Bght out.

272 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.5.6.7 Light Fading

By default POV-Ray does not diminish light from any light smias it travels through
space. In order to get a more realistic effeelde_distance andfade_power can
be used to model the distance based falloff in light intgnsit

The fade_distance keyword is used to specify the distance at which the fulltligh
intensity arrives, i. e. the intensity which was given by thelor keyword. The
actual attenuation is described by thede_power keyword, which determines the
falloff rate. E. g. linear or quadratic falloff can be useddstting FADEPOWER to

1 or 2 respectively. The complete formula to calculate tletofaby which the light is
attenuated is

. 2
attenuation= " FADE POWER (7.31)
1+ ()

FADE_DISTANCE
with d being the distance the light has traveled.

2.0

no fading

Y — fading power 1
“ M ---- fading power 2
Vi —-— fading power 3

=
5
T

1.0

Light intensity multiplier

o
2
T

0.0 e

Relative distance to light source

Figure 7.17: Light fading functions for different fadingvpers.

You should note two important facts: First, for FADBHSTANCES larger than one
the light intensity at distances smaller than FADESTANCE actually increases.
This is necessary to get the light source color if the distatmaveled equals the
FADE_DISTANCE. Second, only light coming directly from light soas is attenu-
ated. Reflected or refracted light is not attenuated by wlista

7.5.6.8 Atmosphere Interaction

By default light sources will interact with an atmospherelexdi to the scene. This

behaviour can be switched off by using themosphere keyword inside the light
source statement.

7.5. OBJECTS 273

light_source {

atmosphere off

}

7.5.6.9 Atmospheric Attenuation

Normally light coming from light sources is not influencedfog or atmosphere. This
can be changed by turning the atmospheric attenuation fimea tight source on. All
light coming from this light source will now be diminishediatravels through the fog
or atmosphere. This results in an distance-based, expahignensity falloff ruled by
the used fog or atmosphere. If there is no fog or atmosphechaage will be seen.

7.5.7 Object Modifiers

A variety of modifiers may be attached to objects. Transfdiona such as translate,
rotate and scale have already been discussed. Textures argection of their own
below. Here are three other important modifiets: i pped by, bounded by and
no_shadow. Although the examples below use object statements andtddgnti-
fiers, these modifiers may be used on any type of object sugbhases box etc.

7.5.7.1 ClippedBy

Theclipped by statement is technically an object modifier but it providegpe of
CSG similar to CSG intersection. You attach a clipping dbiige this:

object {

My_Thing

clipped by{plane{y,0}}
}

Every part of the objed¥ly Thingthat is inside the plane is retained while the remain-
ing part is clipped off and discarded. In an intersectioreobihe hole is closed off.
With clipped by it leaves an opening. For example the figure in 7.18 on the next
page shows object A being clipped by object B.

clipped_by may be used to slice off portions of any shape. In many casesl it
also result in faster rendering times than other method#terfireg a shape.

Often you will want to use the1ipped_by andbounded_by options with the same
object. The following shortcut saves typing and uses lesaong

274 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Figure 7.18: An object clipped by another object.

object {
My_Thing
bounded_by { box { <0,0,0>, <1,1,1> } }
clipped_by { bounded_by }

}

This tells POV-Ray to use the same box as a clip that was usadbasnds.

7.5.7.2 BoundedBy

The calculations necessary to test if a ray hits an objecbeaguite time consuming.
Each ray has to be tested against every object in the sceneRB@attempts so speed
up the process by building a set of invisible boxes, callachbiing boxes, which clus-
ter the objects together. This way a ray that travels in ome qdathe scene doesn't
have to be tested against objects in another, far away pénedcene. When large a
number of objects are present the boxes are nested insidetar. POV-Ray can use
bounding boxes on any finite object and even some clippedwrded quadrics. How-
ever infinite objects (such as a planes, quartic, cubic alyj pannot be automatically
bound. CSG objects are automatically bound if they contaitef(and in some cases
even infinite) objects. This works by applying the CSG setaiiens to the bounding
boxes of all objects used inside the CSG object. For diff@esnd intersection op-
erations this will hardly ever lead to an optimal bounding.btt's sometimes better
(depending on the complexity of the CSG object) to ussoanded_by Sstatement
with such shapes.

Normally bounding shapes are not necessary but there ae ahere they can be used
to speed up the rendering of complex objects. Bounding shisgiehe ray-tracer that

the object is totally enclosed by a simple shape. When tyaeiys, the ray is first tested
against the simple bounding shape. If it strikes the boundgimape the ray is further

tested against the more complicated object inside. Otlerthie entire complex shape
is skipped, which greatly speeds rendering.

7.5. OBJECTS 275

To use bounding shapes, simply include the following limethe declaration of your
object:

bounded_by {
object { ... }
}

An example of a bounding shape:

intersection {

sphere { <0,0,0>, 2 }

plane { <0,1,0>, 0 }

plane { <1,0,0>, 0 }

bounded_by {sphere { <0,0,0>, 2 } }
}

The best bounding shape is a sphere or a box since these stnaeghly optimized,
although, any shape may be used. If the bounding shape lisatieite shape which
responds to bounding slabs then the object which it enchasitalso be used in the
slab system.

CSG shapes can benefit from bounding slabs withaub@nded by statement how-
ever they may do so inefficiently in intersection, differerand merge. In these three
CSG types the automatic bound used covers all of the compoigercts in their en-
tirety. However the result of these intersections may tésa smaller object. Compare
the sizes of the illustrations for union and intersectiothimn CSG section above. It is
possible to draw a much smaller box around the intersecfidnamd B than the union
of A and B yet the automatic bounds are the size of the union afd\B regardless of
the kind of CSG specified.

While it is almost always a good idea to manually addcunded by to intersec-
tion, difference and merge, it is often bestrtot bound a union. If a union has no
bounded_by and noclippedby POV-Ray can internally split apart the compo-
nents of a union and apply automatic bounding slabs to artg ifiite parts. Note that
some utilities such asAw2pPov may be able to generate bounds more efficiently than
POV-Ray’s current system. However most unions you createsgf can be easily
bounded by the automatic system. For technical reasonsR&\¢annot split a merge
object. Itis probably best to hand bound a merge, espeditlis very complex.

Note that if bounding shape is too small or positioned irexdty it may clip the ob-
ject in undefined ways or the object may not appear at all. Tt clipping, use
clipped_by as explained above. Often you will want to use thei pped_by and

bounded_by options with the same object. The following shortcut saypsy and

uses less memory.

object {

276 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

My_Thing
clipped_by{ box { <0,0,0>,<1,1,1 > }}
bounded_by{ clipped_by 1}

}

This tells POV-Ray to use the same box as a bounds that wasasedip.

7.5.7.3 Hollow

POV-Ray by default assumes that objects are made of a sotatialghat completely
fills the interior of an object. By adding theol1low keyword to the object you can
make it hollow. That is very useful if you want atmospheriteefs to exist inside an
object. It is even required for objects containing a hale (86.4 on page 302 for
details).

In order to get a hollow CSG object you just have to make thdewegl object hollow.
All children will assume the sanaollow state except their state is explicitly set. The
following example will set both spheres inside the unioridwl

union {
sphere { -0.5*x,
sphere { 0.5*x,
hollow

11}
11}

while the next example will only set the second sphere hobewause the first sphere
was explicitly set to be not hollow.

union {
sphere { -0.5*x, 1 hollow off }
sphere { 0.5*x, 1 }
hollow

7.5.7.4 NaoShadow

You may specify theno_shadow keyword in an object to make that object cast no
shadow. This is useful for special effects and for creatiegltusion that a light source
actually is visible. This keyword was necessary in earl@sions of POV-Ray which
did not have théd ooks_1ike statement. Now it is useful for creating things like laser
beams or other unreal effects.

Simply attach the keyword as follows:

7.6. TEXTURES 277

object {
My_Thing
no_shadow

}

7.5.7.5 Sturm

Some of POV-Ray’s objects allow you to choose between a tastdmetimes inaccu-
rate root solver and a slower but more accurate one. Thigisabe for all objects that
involve the solution of a cubic or quartic polynomial. Thare analytic mathematical
solutions for those polynomals that can be used.

Lower order polynomals are trivial to solve while higher @rgolynomials require
iterative algorithms to solve them. One of those algoritligriee Sturmian root solver.

The following list shows all objects for which the Sturmiabot solver can be used.

blob
cubic
lathe (only with quadratic splines)

poly

prism (only with cubic splines)
quartic

sor

7.6 Textures

The texture describes what the object looks like, i. e. itten. Textures are com-
binations of pigments, normals, finishes and halos. Pignsetfite color or pattern of
colors inherent in the material. Normal is a method of sirtidpvarious patterns of
bumps, dents, ripples or waves by modifying the surface abractor. Finish de-
scribes the reflective and refractive properties of a natdtalo simulates effects like
clouds, fog, fire etc. by using a density field defined insidedbiject.

A plain textureconsists of a single pigment, an optional normal, a singlisHiand
optionally one or more halos. #pecial texture&eombines two or more textures using a
pattern or blending function. Special textures may be maile gomplex by nesting
patterns within patterns. Atthe innermost levels howethey are made up from plain
textures. Note that allthough we call a plain textptain it may be a very complex
texture. The ternplain only means that it has a single pigment, normal, finish and
halo.

The most complete form for defining a plain texture is as fetio

278 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

texture {
TEXTURE_IDENTIFIER
pigment {..}.
normal {..}.
finish {..}.
halo {..}.
TRANSFORMATIONS

Each of the items in a texture are optional but if they are qgareshe identifier
must be first and the transformations must be last. The pignmemmal and fin-

ish parameters modify any pigment, normal and finish alrespicified in the TEX-
TURE IDENTIFIER. Any halos are added to the already existing $albno texture

identifier is specified the pigment, normal and finish statégmeodify the current de-
fault values and any halo is added to the default halo, if SRANSFORMATIONS

are translate, rotate, scale and matrix statements. Thoeydshe specified last.

The sections below describe all of the options availabldgmpents, normals, finishes
and halos. Special textures are covered later.

7.6.1 Pigment

The color or pattern of colors for an object is defined byiament statement. All
plain textures must have a pigment. If you do not specify dwedefault pigment is
used. A pigment statement is part of a texture specificatitamvever it can be tedious
totypetexture { pigment { ... } }justtoadd a colorto anobject. Therefore
you may attach a pigment directly to an object without exihjicpecifying that it as
part of a texture. For example:

//this. .. //can be shortened to this...
object { object {

My_Object My_Object

texture { pigment {color Red}

pigment {color Red} '}
}
}

The color you define is the way you want the object to look ifyfilluminated. You
pick the basic color inherent in the object and POV-Ray liegh or darkens it de-
pending on the lighting in the scene. The parameter is caligmientbecause we are
defining the basic color the object actually is rather tham hdooks.

The most complete form for defining a pigment is as follows:

7.6. TEXTURES 279

pigment {
PIGMENT TIDENTIFIER
PATTERN_TYPE
PIGMENT MODIFIERS...
}

Each of the items in a pigment are optional but if they aregmesthey should be in
the order shown above to insure that the results are as expegny items after the
PIGMENT_IDENTIFIER modify or override settings given in the idereifi If no iden-
tifier is specified then the items modify the pigment valuethacurrent default tex-
ture. Valid PIGMENTMODIFIERS arecolor map, pigment_map, image map
andquick color statements as well as any of the generic PATTEHRODIFIERS
such astranslate, rotate, scale, turbulence, wave shape and warp state-
ments. Such modifiers apply only to the pigment and not torqibgs of the texture.
Modifiers should be specified last.

The various pattern types fall into roughly four categarigach category is discussed
below. They are solid color, color list patterns, color maghppatterns and image maps.

7.6.1.1 Solid Color Pigments

The simplest type of pigment is a solid color. To specify ésoblor you simply put a
color specification inside a pigment. For example:

pigment {color Orange}

A color specification consists of the option keywardl or followed by a color iden-

tifier or by a specification of the amount of red, green, bluégréd and unfiltered

transparency in the surface. See section 7.1.5 on page L&fe details about col-
ors. Any pattern modifiers used with a solid color are igndoedause there is no
pattern to modify.

7.6.1.2 Color List Pigments

There are three color list patternshecker, hexagon andbrick. The result is a
pattern of solid colors with distinct edges rather than adileg of colors as with color
mapped patterns. Each of these patterns is covered in mtai idea later section.
The syntax for each is:

pigment { brick COLOR1l, COLOR2 MODIFIERS ... }
pigment { checker COLOR1, COLOR2 MODIFIERS ... }
pigment { hexagon COLOR1, COLOR2, COLOR3 MODIFIERS ... }

Each COLORn is any valid color specification. There shouldalmmma between
each color or thezolor keyword should be used as a separator so that POV-Ray can
determine where each color specification starts and ends.

280 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.1.3 Color Maps

Most of the color patterns do not use abrupt color changessbftjvo or three colors
like those in the brick, checker or hexagon patterns. Thetead use smooth transi-
tions of many colors that gradually change from one poinhtortext. The colors are
defined in a pigment modifier calledcalor mapthat describes how the pattern blends
from one color to the next.

Each of the various pattern types available is in fact a nmasitieal function that takes
anyx, vy, z location and turns it into a number between 0.0 and 1.0 inausThat
number is used to specify what mix of colors to use from thercalap.

A color map is specified by..

pigment {
PATTERN_TYPE
color_map {
[NUM_1 COLOR_1]
[NUM_2 COLOR_2]
[NUM_3 COLOR_3]

}
PIGMENT_MODIFIERS.. .
}

Where NUM1, NUM_2, ... are float values between 0.0 and 1.0 inclusive. COLDR
COLOR2, ... are color specifications. Note that th& brackets are part of the actual
statement. They are not notational symbols denoting agitiparts. The brackets
surround each entry in the color map. There may be from 2 toe2fiGes in the map.
The alternate spellingolour map may be used.

For example

sphere {
<0,1,2>, 2
pigment {
gradient x //this is the PATTERN_TYPE
color_map {

[0.1 color Red]
[0.3 color Yellow]
[0.6 color Blue]
[0.6 color Green]
[0.8 color Cyan]

}

The pattern function is evaluated and the result is a valra §.0 to 1.0. If the value is
less than the first entry (in this case 0.1) then the first dotmt) is used. Values from

7.6. TEXTURES 281

0.1 to 0.3 use a blend of red and yellow using linear intetmmiaof the two colors.
Similarly values from 0.3 to 0.6 blend from yellow to blue. t&dhat the 3rd and 4th
entries both have values of 0.6. This causes an immediatgtashift of color from
blue to green. Specifically a value that is less than 0.6 wiblue but exactly equal to
0.6 will be green. Moving along, values from 0.6 to 0.8 will délend of green and
cyan. Finally any value greater than or equal to 0.8 will bercy

If you want areas of unchanging color you simply specify tams color for two adja-
cent entries. For example:

color_map {
[0.1 color Red]
[0.3 color Yellow]
[0.6 color Yellow]
[0.8 color Green]

In this case any value from 0.3 to 0.6 will be pure yellow.

The color_map keyword may be used with any pattern excepti ck, checker,
hexagon and image_map. You may declare and useclor_map identifiers. For
example:

#declare Rainbow_Colors=
color_map {
[0.0 color Magental
[0.33 color Yellow]
[0.67 color Cyan]
[1.0 color Magenta]
}

object {My_Object
pigment {
gradient x
color_map {Rainbow_Colors}

}

7.6.1.4 Pigment Maps

In addition to specifying blended colors with a color map yoay create a blend of
pigments using pigment map The syntax for a pigment map is identical to a color
map except you specify a pigment in each map entry (and ndbg.co

A pigment map is specified hy.

282 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

pigment {
PATTERN_TYPE
pigment_map {
[NUM_1 PIGMENT BODY 1]
[NUM_2 PIGMENT BODY 2]
[NUM_3 PIGMENT BODY 3]

}
PIGMENT_MODIFIERS.. .
}

Where NUM1, NUM_2, ... are float values between 0.0 and 1.0 inclusive. A PIG-
MENT_BODY is anything that would normally appear insideoagment { ... }
statement but theigment keyword and{} braces are not needed. Note that ffie
brackets are part of the actual statement. They are notiommthtsymbols denoting
optional parts. The brackets surround each entry in the mhpre may be from 2 to
256 entries in the map.

For example

sphere {
<0,1,2>, 2
pigment {
gradient x //this is the PATTERN_TYPE
pigment_map {
[0.3 wood scale 0.2]
[0.3 Jade] //this is a pigment identifier
[0.6 Jadel
[0.9 marble turbulence 1]

When thegradient x function returns values from 0.0 to 0.3 the scaled wood pig-
ment is used. From 0.3 to 0.6 the pigment identifier Jade id. Us®m 0.6 up t0 0.9 a
blend of Jade and a turbulent marble is used. From 0.9 on yptlomkurbulent marble

is used.

Pigment maps may be nested to any level of complexity youele$he pigments in
a map may have color maps or pigment maps or any type of piggpeenwant. Any
entry of a pigment map may be a solid color however if all estare solid colors you
should use a color map which will render slightly faster.

Entire pigments may also be used with the block patterns asichecker, hexagon and
brick. For example..

pigment {

7.6. TEXTURES 283

checker

pigment { Jade scale .8 }

pigment { White Marble scale .5 }
}

Note that in the case of block patterns thégment { ... } wrapping is required
around the pigment information.

A pigment map is also used with thererage pigment type. See 7.6.7.2 on page 319
for details.

You may not usepigment_map or individual pigments with animagemap.
See 7.6.5.1 on page 313 for an alternative way to do this.

7.6.1.5 Image Maps

When all else fails and none of the above pigment patterrstypeets your needs you
can use an image map to wrap a 2-D bit-mapped image aroun@yDwbjects.

7.6.1.5.1 Specifying an Image Map

The syntax for aimage maps. ..

pigment {
image_map {
FILE_TYPE "filename"
MODIFIERS...
}
}

Where FILETYPE is one of the following keywordgif, tga, iff, ppm, pgm, png
or sys. This is followed by the name of the file in quotes. Severaionyatl modifiers
may follow the file specification. The modifiers are describetbw. Note that earlier
versions of POV-Ray allowed some modifiers before the ETMPE but that syntax is
being phased out in favor of the syntax described here.

Filenames specified in themage map statements will be searched for in the home
(current) directory first and, if not found, will then be selaed for in directories spec-
ified by any—L (library path) options active. This would facilitate keegiall your
image maps files in a separate subdirectory and givingLaaption on the command
line to where your library of image maps are.

By default, the image is mapped onto thg-plane. The image iprojectedonto the
object as though there were a slide projector somewhere inztdirection. The image
exactly fills the square area frow,y) coordinates (0,0) to (1,1) regardless of the im-
age’s original size in pixels. If you would like to changesttiefault you may translate,
rotate or scale the pigment or texture to map it onto the ¢bjearface as desired.

284 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

In section 7.6.7.6 on page 322 the checker pigment pattegrpksined. The checks
are described as solid cubes of colored clay from which tbge carved. With image
maps you should imagine that each pixel is a long, thin, sjuatored rod that extends
parallel to thez-axis. The image is made from rows and columns of these raadléd
together and the object is then carved from the bundle.

If you would like to change this default orientation you megnislate, rotate or scale
the pigment or texture to map it onto the object’s surfaceessred.

7.6.1.5.2 The maptype Option

The default projection of the image onto tke/-plane is called alanar map type
This option may be changed by adding thep_t ype keyword followed by a number
specifying the way to wrap the image around the object.

A map type 0 gives the default planar mapping already described.

Amap_type 1 gives aspherical mapping. It assumes that the object isaesphany
size sitting at the origin. Thg-axis is the north/south pole of the spherical mapping.
The top and bottom edges of the image just touch the polediegarof any scaling.
The left edge of the image begins at the positexis and wraps the image around the
sphere fromwestto eastin a —y-rotation. The image covers the sphere exactly once.
The once keyword has no meaning for this mapping type.

With map_type 2 you get a cylindrical mapping. It assumes that a cylindernyf a
diameter lies along thgaxis. The image wraps around the cylinder just like the sphe
ical map but the image remains one unit tall frgra- 0 toy = 1. This band of color is
repeated at all heights unless thece keyword is applied.

Finally map_type 5 is a torus or donut shaped mapping. It assumes that a torus
of major radius one sits at the origin in tlxez-plane. The image is wrapped around
similar to spherical or cylindrical maps. However the top &nttom edges of the map
wrap over and under the torus where they meet each other danréserim.

Types 3 and 4 are still under development.

Note that the map type option may also be applied tdump map and
material map Statements.

7.6.1.5.3 The Filter and Transmit Bitmap Modifiers

To make all or part of an image map transparent you can spitéfiyand/or transmit
values for the color palette/registers of PNG, GIF or IFFuies (at least for the modes
that use palettes). You can do this by adding the keywfortiter or transmit
following the filename. The keyword is followed by two numbefThe first number
is the palette number value and the second is the amountnafptieency. The values
should be separated by a comma. For example:

7.6. TEXTURES 285

image map {
gif "mypic.gif"
filter 0, 0.5 // color 0 50% filtered transp.
filter 5, 1.0 // color 5 100% filtered transp.
transmit 8, 0.3 // color 8 30% non-filtered transp.

}

You can give the entire imagefilter or transmit value usingtilter all
VALUE Of transmit all VALUE. For example:

image _map {
gif "stnglass.gif™"
filter all 0.9

}

Note that early versions of POV-Ray used the keyworgha to specify filtered trans-
parency however that word is often used to describe nomeidteransparency. For this
reasoralpha is no longer used.

See 7.1.5 on page 192 and 7.1.5 on page 192 for details onftheedces between
filtered and non-filtered transparency.

7.6.1.5.4 Using the Alpha Channel

Another way to specify non-filtered transmit transparemcgin image map is by using
thealpha channel

PNG allows you to store a different transparency for eacbréotlex in the PNG file, if
desired. If your paint programs support this feature of PGgan do the transparency
editing within your paint program rather than specifyingnismit values for each color
in the POV file. Since PNG and TGA image formats can also stdlalpha channel
(transparency) information you can generate image mapbdiva transparency which
isn't dependent on the color of a pixel but rather its locaiiothe image.

Although POV uses transmit 0.0 to specify no transparenay @ to specify full
transparency, the alpha data ranges from 0 to 255 in the ppuliection. Alpha data
0 means the same as transmit 1.0 and alpha data 255 prodarsitr0.0.

7.6.1.6 Quick Color

When developing POV-Ray scenes its often useful to do lovitguast runs that render
faster. ThetQ command line switch can be used to turn off some time consyiootor
pattern and lighting calculations to speed things up. Hewel settings of+Q5 or
lower turns off pigment calculations and creates gray dabjec

By adding aguick_color to a pigment you tell POV-Ray what solid color to use for
quick renders instead of a patterned pigment. For example:

286 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

pigment {
gradient x
color_map{

[0. color Yellow]
color Cyan]
color Magental
color Cyan]

,_‘
o
o o w o

turbulence 0.5

lambda 1.5

omega 0.75

octaves 8

quick_color Neon_Pink

}

This tells POV-Ray to use solideonPink for test runs at quality-Q5 or lower but to
use the turbulent gradient pattern for rendering@6 and higher.

Note that solid color pigments such as

pigment {color Magenta}

automatically set theuick color to that value. You may override this if you want.
Suppose you have 10 spheres on the screen and all are ydlimu Want to identify
them individually you could give each a differestiick color like this:

sphere {
<1,2,3>, 4
pigment { color Yellow quick color Red }

}

sphere {
<-1,-2,-3>, 4
pigment { color Yellow quick color Blue }

}

and so on. AtQ6 or higher they will all be yellow but atQ5 or lower each would be
different colors so you could identify them.

7.6.2 Normal

Ray-tracing is known for the dramatic way it depicts refleatirefraction and lighting
effects. Much of our perception depends on the reflectivpgn@es of an object. Ray
tracing can exploit this by playing tricks on our perceptionmake us see complex
details that aren't really there.

7.6. TEXTURES 287

Suppose you wanted a very bumpy surface on the object. Itdamlery difficult to
mathematically model lots of bumps. We can however simutaevay bumps look
by altering the way light reflects off of the surface. Reflectcalculations depend on
a vector called aurface normaklector. This is a vector which points away from the
surface and is perpendicular to it. By artificially modifgifor perturbing) this normal
vector you can simulate bumps.

Thenormal { ... } statement is the part of a texture which defines the pattern of
normal perturbations to be applied to an object. Like thengigt statement, you can
omit the surrounding texture block to save typing. Do nog&rmhowever that there is

a texture implied. For example.

// this... // can be shortened to this...
object { object {
My_Object My_Object
texture { pigment { color Purple }
pigment { color Purple } normal { bumps 0.3 }
normal { bumps 0.3 } }

}

Note that attaching a normal pattern does not really motiiéysturface. It only affects
the way light reflects or refracts at the surface so that kddaumpy.

The most complete form for defining a normal is as follows:

normal {
NORMAL_IDENTIFIER
PATTERN_TYPE FloatValue
NORMAL_MODIFIERS
TRANSFORMATIONS.. .

Each of the items in a normal are optional but if they are preg®y should be in the
order shown above to insure that the results are as expeatgdtems after the NOR-
MAL _IDENTIFIER modify or override settings given in the idergifi If no identifier

is specified then the items modify the normal values in theeatirdefault texture. The
PATTERN.TYPE may optionally be followed by a float value that contrble appar-
ent depth of the bumps. Typical values range from 0.0 to 1tCaby value may be
used. Negative values invert the pattern. The default vidlhene is specified is 0.5.

Valid NORMAL_MODIFIERS are slopemap, normal_map, bump_map and
bump_size statements as well as any of the generic PATTEHRADIFIERS such
as translate, rotate, scale, turbulence, wave shape apdstadements. Such modifiers
apply only to the normal and not to other parts of the textuvndifiers should be
specified last.

288 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

There are three basic types of NORMAATTERN.TYPEs. They are pattern nor-
mals, specialized normals and bump maps. They differ inythest of modifiers you
may use with them. Originally POV-Ray had some patterns lwhiere exclusively
used for pigments while others were exclusively used fomads. Since POV-Ray
3.0 you can use any pattern for either pigments or normals.ekample it is now
valid to useripples as a pigment owood as a hormal type. The patterhsmps,
dents, ripples, waves, wrinkles andbump map were once exclusively nor-
mal patterns which could not be used as pigments. Because shetypes use special-
ized normal modification calculations they cannot havepe map, normal map Or
wave shape modifiers. All other normal pattern types may hesmt

7.6.2.1 Slope Maps

A slope mags a normal pattern modifier which gives the user a great dezbmtrol
over the exact shape of the bumpy features. It is best illtesdrwith a gradient normal
pattern. Suppose you have

plane{ z, O
pigment { White }
normal { gradient x }

}

This gives a ramp wave pattern that looks like small lineargs that climb from the
points atx = 0 to x = 1 and then abruptly drops to O again to repeat the ramp from
x=1tox= 2. Aslope map turns this simple linear ramp into almost anyershape
you want. The syntax is as follows.

normal {
PATTERN_TYPE Value
slope_map {
[NUM_1 POINT SLOPE_1]
[NUM 2 POINT SLOPE 2]
[NUM_3 POINT SLOPE_3]

}
NORMAL_MODIFIERS...
}

Note that the[] brackets are part of the actual statement. They are notioiat
symbols denoting optional parts. The brackets surrount eaty in the slope map.
There may be from 2 to 256 entries in the map.

The NUMI1, NUM.2, ... are float values between 0.0 and 1.0 inclusive.
POINT_SLOPE1, POINT_SLOPE2, ... are 2 component vectors such(8sl) where

7.6. TEXTURES 289

the first value represents the apparent height of the waveéhensiecond value repre-
sents the slope of the wave at that point. The height shoulgeraetween 0.0 and 1.0
but any value could be used.

The slope value is the change in height per unit of distanae.ekample a slope of
zero means flat, a slope of 1.0 means slope upwards at a 4%daggke and a slope
of -1 means slope down at 45 degrees. Theoretically a slopiglst up would have
infinite slope. In practice, slope values should be kepténrdnge -3.0 to +3.0. Keep
in mind that this is only the visually apparent slope. A ndrd@es not actually change
the surface.

For example here is how to make the ramp slope up for the filsahd back down on
the second half creating a triangle wave with a sharp pedheicénter.

normal {
gradient x // this is the PATTERN_ TYPE
slope_map {
[0 <0, 1> // start at bottom and slope up

[0.5 <1,-1> // abruptly slope down

]
[0.5 <1, 1>] // halfway through reach top still climbing
]
[1 <0,-1>] // finish on down slope at bottom

The pattern function is evaluated and the result is a valom 8.0 to 1.0. The first
entry says that at= 0 the apparent height is 0 and the slope is 1x At0.5 we are at
height 1 and slope is still up at 1. The third entry also spesitiat ak = 0.5 (actually
at some tiny fraction above 0.5) we have height 1 but slopehitiwis downwards.
Finally atx = 1 we are at height 0 again and still sloping down with slope -1.

Although this example connects the points using straigiaslithe shape is actually a
cubic spline. This example creates a smooth sine wave.

normal {

gradient x // this is the PATTERN_TYPE

slope map {
[0 <0.5, 1>] // start in middle and slope up
[0.25 <1.0, 0>] // flat slope at top of wave
[0.5 <0.5,-1>] // slope down at mid point
[0.75 <0.0, 0>] // flat slope at bottom
[1 <0.5, 1>] // finish in middle and slope up

This example starts at height 0.5 sloping up at slope 1. Augtoof the way through
we are at the top of the curve at height 1 with slope 0 which isTlae space between
these two is a gentle curve because the start and end slapdifarent. At half way

290 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

we are at half height sloping down to bottom out at 3/4ths. ligyend we are climbing
at slope 1 again to complete the cycle. There are more exarimg#e OPEMAP.POV in
the sample scenes.

A slope_map may be used with any pattern excéptick, checker, hexagon,
bumps, dents, ripples,waves, wrinkles andbump_map.

You may declare and use slope map identifiers. For example:

#declare Fancy_Wave =

slope_map { // Now let’s get fancy
[0.0 <0, 1>] // Do tiny triangle here
[0.2 <1, 1>] // down
[0.2 <1,-1>] // to
[0.4 <0,-1>] // here.
[0.4 <0, 0>] // Flat area
[0.5 <0, 0>] // through here.
[0.5 <1, 0>] // Square wave leading edge
[0.6 <1, 0>] // trailing edge
[0.6 <0, 0>] // Flat again
[0.7 <0, 0>] // through here.
[0.7 <0, 3>] // Start scallop
[0.8 <1, 0>] // flat on top
[0.9 <0,-3>] // finish here.
[0.9 <0, 0>] // Flat remaining through 1.0

}

object{ My Object
pigment { White }
normal {
wood
slope_map { Fancy Wave }

}

7.6.2.2 Normal Maps

Most of the time you will apply single normal pattern to aniensurface but you may
also create a pattern or blend of normals usimgrenal map The syntax for a normal
map is identical to a pigment map except you specify a normahch map entry.

A normal map is specified by. .

normal {
PATTERN_TYPE
normal_map {
[NUM_1 NORMAL_BODY_1]
[NUM_2 NORMAL_BODY_2]
[NUM_3 NORMAL_BODY_3]

7.6. TEXTURES 291

}
NORMAL_MODIFIERS. ..

}

Where NUM1, NUM_2, ... are float values between 0.0 and 1.0 inclusive. A NOR-
MAL _BODY is anything that would normally appear inside@rmal { ... } state-
ment but the normal keyword ard braces are not needed. Note that fhebrackets
are part of the actual statement. They are not notationabslgdenoting optional
parts. The brackets surround each entry in the map. Therebmdyom 2 to 256
entries in the map.

For example

normal {
gradient x //this is the PATTERN_TYPE
normal_map {
[0.3 bumps scale 2]
[0.3 dents]
[0.6 dents]
[0.9 marble turbulence 1]

}

When thegradient x function returns values from 0.0 to 0.3 then the scaled bumps
normal is used. From 0.3 to 0.6 dents are From 0.6 up to 0.9ral lWedents and a
turbulent marble is used. From 0.9 on up only the turbulenbieds used.

Normal maps may be nested to any level of complexity you dedihe normals in a
map may have slope maps or normal maps or any type of normakgoti

A normal map is also used with theverage normal type. See 7.6.7.2 on page 319
for details.

Entire normals may also be used with the block patterns ssichecker, hexagon and
brick. For example. .

normal {
checker

normal { gradient x scale .2 }
normal { gradient y scale .2 }
}
}
Note that in the case of block patterns thermal { ... } wrapping is required

around the normal information.

You may not usenormal_map or individual normals with &ump_map. See 7.6.5.1
on page 313 for an alternative way to do this.

292 CHAPTER 7. SCENE DESCRIPTION LANGUAGE
7.6.2.3 Bump Maps

When all else fails and none of the above normal pattern typests your needs you
can use a bump map to wrap a 2-D bit-mapped bump pattern ayoumd-D objects.

Instead of placing the color of the image on the shape likenaage map dump
map perturbs the surface normal based on the color of the imagmaapoint. The
result looks like the image has been embossed into the surfBg default, a bump
map uses the brightness of the actual color of the pixel. I€@oe converted to gray
scale internally before calculating height. Black is a Iguots white is a high spot.
The image’s index values may be used instead (see secti@373on the next page
below).

7.6.2.3.1 Specifying a Bump Map

The syntax for bumpnap is. ..

normal {
bump_map {
FILE_TYPE "filename"
BITMAP_MODIFIERS...

}
NORMAL_MODIFIERS...

}

Where FILETYPE is one of the following keywordgif, tga, iff, ppm, pgm,
png or sys. This is followed by the name of the file using any valid straxpres-
sion. Several optional modifiers may follow the file spectima The modifiers are
described below. Note that earlier versions of POV-Rayadtbsome modifiers before
the FILETYPE but that syntax is being phased out in favor of the sykescribed
here.

Filenames specified in theamp_map statement will be searched for in the home (cur-
rent) directory first and, if not found, will then be searcliedin directories specified
by any+L switches or_ibrary_Path options. This would facilitate keeping all your
bump maps files in a separate subdirectory, and specifyiitgeay path to them. Note
that any operating system default paths are not searchedsupbu also specify them
as alLibrary_Path.

By default, the bump pattern is mapped onto theplane. The bumps angrojected
onto the object as though there were a slide projector sosr@nih the—z-direction.
The bump pattern exactly fills the square area frogy) coordinates (0,0) to (1,1)
regardless of the bitmaps’s original size in pixels. If yoould like to change this
default, you may translate, rotate or scale the normal dutexo map it onto the
object’s surface as desired.

7.6. TEXTURES 293

The file name is optionally followed by one or more BITMARODIFIERS. The
bump size, use color anduse index modifiers are specific to bump maps and
are discussed in the following sections. See 7.6.8.9 on Bdgefor other general
bitmap modifiers.

After abump_map statement but still inside the normal statement you mayyagmy
legal normal modifiers exceptlope_map and pattern wave forms.

7.6.2.3.2 BumpSize

The relative bump size can be scaled usingidthep_size modifier. The bump size
number can be any number other than 0 but typical values@redbout 0.1 to as high
as 4.0 or 5.0.

normal {
bump_map {
gif "stuff.gif"
bump_size 5.0

}

Originally bump_size could only be used inside a bump map but it can now be used
with any normal. Typically it is used to override a previgudefined size. For example:

normal {
My_Normal //this is a previously defined normal identifier
bump_size 2.0

}

7.6.2.3.3 Usdndex and UseColor

Usually the bump map converts the color of the pixel in the toapgray scale intensity
value in the range 0.0 to 1.0 and calculates the bumps badbdtoralue. If you specify
use_index, the bump map uses the color's palette number to computesdwetght

of the bump at that point. So, color number 0 would be low anidraaumber 255
would be high (if the image has 256 palette entries). Theahatolor of the pixels
doesn’t matter when using the index. This option is only latdé on palette based
formats. Theuse_color keyword may be specified to explicitly note that the color
methods should be used instead. The alternate spelliRgcolour is also valid.
These modifiers may only be used inside thenp_map statement.

294 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.3 Finish

The finish properties of a surface can greatly affect its app®e. How does light
reflect? What happens when light passes through? What kinidlaights are visible.
To answer these questions you need a finish statement.

The finish { ... } statement is the part of a texture which defines the various
finish properties to be applied to an object. Like the pignm@mormal statement you
can omit the surrounding texture block to save typing. Ddoigiet however that there

is a texture implied. For example.

// this... // can be shortened to this...
object { object {
My Object My_Object
texture { pigment { color Purple }
pigment { color Purple } finish { phong 0.3 }
finish { phong 0.3 } }

}
}

The most complete form for defining a finish is as follows:

finish {

FINISH IDENTIFIER

[ambient COLOR]
diffuse FLOAT]
brilliance FLOAT]
phong FLOAT]
phong_size FLOAT]
specular FLOAT]
roughness FLOAT]
metallic [FLOAT]]
reflection COLOR]
refraction FLOAT]
ior FLOAT]
caustics FLOAT]
fade_distance FLOAT]
fade_power FLOAT]
irid { thickness FLOAT turbulence VECTOR } 1]
crand FLOAT]

L i B B B B B e B e I T R I R e

}

The FINISHIDENTIFIER is optional but should proceed all other itemayAtems
after the FINISHIDENTIFIER modify or override settings given in the IDENTER.

If no identifier is specified then the items modify the finishues in the current default
texture. Note that transformations are not allowed insifleish because finish items
cover the entire surface uniformly.

7.6. TEXTURES 295

7.6.3.1 Ambient

The light you see in dark shadowed areas comes from diffuectien off of other
objects. This light cannot be directly modeled using ragitig. However we can use
a trick calledambient lightingto simulate the light inside a shadowed area.

Ambient light is light that is scattered everywhere in themo It bounces all over
the place and manages to light objects up a bit even wherghbigi directly shining.
Computing real ambient light would take far too much timewsosimulate ambient
light by adding a small amount of white light to each textuttgether or not a light is
actually shining on that texture.

This means that the portions of a shape that are completslysidow will still have a
little bit of their surface color. It's almost as if the textuglows, though the ambient
light in a texture only affects the shape it is used on.

Usually a single float value is specified even though the sycadis for a color. For
example a float value of 0.3 gets promoted to the full colotarg©.3,0.3,0.3,0.3,0.3)
which is acceptible because only the red, green and blus aaatused.

The default value is very little ambient light (0.1). Theuwalcan range from 0.0 to
1.0. Ambient light affects both shadowed and non-shadowedsaso if you turn up
the ambient value you may want to turn down the diffuse value.

Note that this method doesn’t account for the color of surdiog objects. If you walk
into a room that has red walls, floor and ceiling then your ghibthing will look pink
from the reflected light. POV-Ray’s ambient shortcut doeaantount for this. There
is also no way to model specular reflected indirect illumorasuch as the flashlight
shining in a mirror.

You may color the ambient light using one of two methods. Yayrepecify a color
rather than a float after the ambient keyword in each finistestant. For example

finish { ambient rgb <0.3,0.1,0.1> } //a pink ambient

You may also specify the overall ambient light source usedmntalculating the am-
bient lighting of an object using the globalbient_1ight setting. The formula is
given by

ambient= ambientiyisn ambienfgnt source (7.32)
See section 7.8.2 on page 356 for details.

7.6.3.2 Diffuse Reflection Items

When light reflects off of a surface the laws of physics sayithehould leave the sur-
face at the exact same angle it came in. This is similar to tneanbilliard ball bounces

296 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

off a bumper of a pool table. This perfect reflection is calipdcularreflection. How-
ever only very smooth polished surfaces reflect light in thég. Most of the time,
light reflects and is scattered in all directions by thaghnessof the surface. This
scattering is callediffuse reflectiorbecause the light diffuses or spreads in a variety of
directions. It accounts for the majority of the reflectedtigre see.

POV-Ray and most other ray-tracers can only simulate djrece of these three types
of illumination. That is the light which comes directly froattual light sources. Light
coming from other objects such as mirrors via specular rifie¢shine a flashlight
onto a mirror for example). And last not least light comingnfr other objects via
diffuse reflections (look at some dark area under a desk orcor@er: even though
a lamp may not directly illuminate that spot you can still sdétle bit because light
comes from diffuse reflection off of nearby objects).

7.6.3.2.1 Diffuse

The keyworddiffuse is used in afinish statement to control how much of the
light coming directly from any light sources is reflected diffuse reflection. For
example

finish {diffuse 0.7}

means that 70% of the light seen comes from direct illumimafrom light sources.
The default value is diffuse 0.6.

7.6.3.2.2 Brilliance

The amount of direct light that diffuses from an object defsempon the angle at which
it hits the surface. When light hits at a shallow angle itrilinates less. When it is
directly above a surface it illuminates more. Theilliance keyword can be used
in a finish statement to vary the way light falls off depending upon thgla of
incidence. This controls the tightness of the basic diffillsenination on objects and
slightly adjusts the appearance of surface shininess.c8hjeay appear more metallic
by increasing their brilliance. The default value is 1.0.gl#r values from to about
10.0 cause the light to fall off less at medium to low anglelser€ are no limits to the
brilliance value. Experiment to see what works best for si@sar situation. This is
best used in concert with highlighting.

7.6.3.2.3 Crand Graininess

Very rough surfaces, such as concrete or sand, exhibit aydairkiness in their apparent
color. This is caused by the shadows of the pits or holes irstinface. Thezrand
keyword can be added to cause a minor random darkening iniffusedreflection

7.6. TEXTURES 297

of direct illumination. Typical values range fronwrand 0.01 to crand 0.5 or
higher. The default value is 0. For example:

finish { crand 0.05 }

The grain or noise introduced by this feature is applied oixel{by-pixel basis. This
means that it will look the same on far away objects as on abbgects. The effect
also looks different depending upon the resolution you anegufor the rendering. For
these reasons it is not a very accurate way to model the raudgce effect but some
objects still look better with a little crand thrown in.

Note that this should not be used when rendering animatibhis. is the one of a few
truly random features in POV-Ray and will produce an anngyiicker of flying pixels
on any textures animated withcarand value.

7.6.3.3 Highlights

Highlights are the bright spots that appear when a lighteoteflects off of a smooth
object. They are a blend of specular reflection and diffueaton. They are specular-
like because they depend upon viewing angle and illuminagiogle. However they
are diffuse-like because some scattering occurs. In ocdexdctly model a highlight
you would have to calculate specular reflection off of thowlseof microscopic bumps
called micro facets. The more that micro facets are faciegvibwer the shinier the
object appears and the tighter the highlights become. P@&W#es two different
models to simulate highlights without calculating micradts. They are thepecular
andPhongmodels.

Note that specular and Phong highlights aot mutually exclusive. It is possible to
specify both and they will both take effect. Normally, howgwou will only specify
one or the other.

7.6.3.3.1 Phong Highlights

Thephong keyword controls the amount of Phong highlighting on theobjlt causes
bright shiny spots on the object that are the color of thet liglurce being reflected.

The Phong method measures the average of the facets facthg mirror direction
from the light sources to the viewer.

Phong’s value is typically from 0.0 to 1.0, where 1.0 causespiete saturation to the
light source’s color at the brightest area (center) of tighlght. The default phong
0.0 gives no highlight.

The size of the highlight spot is defined by theong_size value. The larger the
phong size the tighter, or smaller, the highlight and thaishithe appearance. The

298 CHAPTER 7. SCENE DESCRIPTION LANGUAGE
smaller the phong size the looser, or larger, the highligiat the less glossy the ap-
pearance.

Typical values range from 1.0 (very dull) to 250 (highly stied) though any values
may be used. Default phong size is 40 (plastigbng_size is not specified. For
example:

finish { phong 0.9 phong_size 60 }

If phong is not specifiedhong_size has no effect.

7.6.3.3.2 Specular Highlight

A specular highlight is very similar to Phong highlightingtht uses slightly differ-
ent model. The specular model more closely resembles realigy reflection and
provides a more credible spreading of the highlights ooguniear the object horizons.

The specular value is typically from 0.0 to 1.0, where 1.0sesucomplete saturation
to the light source’s color at the brightest area (centerthefhighlight. The default
specular 0.0 gives no highlight.

The size of the spot is defined by the value givendfotnghness. Typical values range
from 1.0 (very rough — large highlight) to 0.0005 (very snfoet small highlight).
The default value, if roughness is not specified, is 0.05s(ja

It is possible to specify wrong values for roughness thak ggherate an error when
you try to render the file. Don’'t use 0 and if you get errors &hecsee if you are using
a very, very small roughness value that may be causing tbe &wor example:

finish { specular 0.9 roughness 0.02 }

If specular is not specified-oughness has no effect.

7.6.3.3.3 Metallic Highlight Modifier

The keywordmetallic may be used with Phong or specular highlights. This key-
word indicates that the color of the highlights will be cdtad by an empirical func-
tion that models the reflectivity of metallic surfaces.

White light relfected specularly from a metallic surfackemthe color of the surface,
except then the incidence angle approaches 90 degrees iwvhecomes white again.

Themetallic keyword may be follow by a numeric value to specify the infleeen
the above effect has (the default value is one). For example:

7.6. TEXTURES 299

finish {
phong 0.9
phong_size 60
metallic

If phong or specular is not specifieghetallic has no effect.

7.6.3.4 Specular Reflection

When light does not diffuse and dtoesreflect at the same angle as it hits an ob-
ject, it is calledspecular reflection Such mirror-like reflection is controlled by the
reflection keyword in a finish statement. For example:

finish { reflection 1.0 ambient 0 diffuse 0 }

This gives the object a mirrored finish. It will reflect all ethelements in the scene.
Usually a single float value is specified after the keyworchetb@ugh the syntax calls
for a color. For example a float value of 0.3 gets promoted ¢oftitl color vector
(0.3,0.3,0.3,0.3,0.3) which is acceptible because only the red, green and blus part
are used.

The value can range from 0.0 to 1.0. By default there is noctdie.

Adding reflection to a texture makes it take longer to rendmalise an additional ray
must be traced. The reflected light may be tinted by spegjfgirtolor rather than a
float. For example

finish { reflection rgb <1,0,0> }

gives areal red mirror that only reflects red light.

Note that although such reflection is callegecularit is not controlled by the
specular keyword. That keyword controlsspecular highlight

7.6.3.5 Refraction

When light passes through a surface either into or out of seleredium the path of the
ray of light is bent. Such bending is callegfraction Normally transparent or semi-
transparent surfaces in POV-Ray do not refract light. Addiefraction 1.0to
the finish statement turns on refraction.

Note that it is recommended that you only usefraction 0 or refraction
1 (or even bettefrefraction off andrefraction on). Values in between

300 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

will darken the refracted light in ways that do not corregphomany physical property.
Many POV-Ray scenes were created with intermediate réraghlues before thisug

was discovered so tHeaturehas been maintained. A more appropriate way to reduce
the brightness of refracted light is to change fhel ter or transmit value in the
colors specified in the pigment statement. Note also thaaaebdn does not cause
the object to be transparent. Transparency only occurseiitts a non-zero filter or
transmit value in the color.

The amount of bending or refracting of light depends upordtesity of the material.
Air, water, crystal and diamonds all have different demsitind thus refract differently.
Theindex of refractioror ior value is used by scientists to describe the relative density
of substances. Theor keyword is used in POV-Ray to specify the value. For example:

texture {
pigment { White filter 0.9 }
finish {
refraction 1
ior 1.5

The default ior value of 1.0 will give no refraction. The ixdef refraction for air is
1.0, water is 1.33, glass is 1.5 and diamond is 2.4. Thecii@sTS.INC pre-defines
several useful values for ior.

Note that if a texture has a filter component and no value forecton and ior are sup-

plied the renderer will simply transmit the ray through tlface with no bending. In

layered textures, the refraction and ior keywonadigst be in the last texture, otherwise
they will not take effect.

7.6.3.5.1 Light Attenuation

Light attenuation is used to model the decrease in lighhgitg as the light travels
through a translucent object. Its syntax is:

finish {
fade_distance FADE DISTANCE
fade power FADE POWER

}

Thefade_distance keyword determines the distance the light has to traveldohre
half intensity while thefade_power keyword describes how fast the light will fall
off. For realistic effects a fade power of 1 to 2 should be used

7.6. TEXTURES 301

The attenuation is calculated by a formula similar to thaduer light source attenua-
tion.

1

attenuation= " FADE POWER (7.33)
1)

*\ FADE DISTANCE

7.6.3.5.2 Faked Caustics

The syntax is:

finish {
caustics POWER
}

STILL BEING WRITTEN

7.6.3.6 Iridescence

Iridescenceor Newton's thin film interference, simulates the effectigiit on surfaces
with a microscopic transparent film overlay. The effect ke lan oil slick on a puddle
of water or the rainbow hues of a soap bubble (see also 7.8%agm 360).

The syntax is:

finish {
irid {
AMOUNT
thickness FLOAT
turbulence VECTOR

This finish modifies the surface color as a function of the abgltween the light source
and the surface. Since the effect works in conjunction withgosition and angle of
the light sources to the surface it does not behave in the seayge as a procedural
pigment pattern.

The AMOUNT parameter is the contribution of the iridesceeffect to the overall
surface color. As a rule of thumb keep to around 0.25 (25%ritmrtion) or less, but
experiment. If the surface is coming out tehite, try lowering the diffuse and possibly
the ambient values of the surface.

The thickness keyword represents the film's thickness. This is an awkwardip-
eter to set, since the thickness value has no relationshipetobject’'s scale. Changing

302 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

it affects the scale dsusy-nessf the effect. A very thin film will have a high frequency
of color changes while a thick film will have large areas ofocol

The thickness of the film can be varied with therbulence keyword. You can only
specify the amount of turbulence with iridescence. Thewestalambda, and omega
values are internally set and are not adjustable by the t$leisdaime.

In addition, perturbing the object’s surface normal thtotlge use of bump patterns
will affect iridescence.

For the curious, thin film interference occurs because, whemay hits the surface of
the film, part of the light is reflected from that surface, whal portion is transmitted
into the film. Thissubsurfaceray travels through the film and eventually reflects off
the opaque substrate. The light emerges from the film sjiglti of phase with the ray
that was reflected from the surface.

This phase shift creates interference, which varies wighwtavelength of the compo-
nent colors, resulting in some wavelengths being reinfhyradile others are cancelled
out. When these components are recombined, the resuldésagnce.

The concept used for this feature came from the béokdamentals of Three-
Dimensional Computer Graphidsy Alan Watt (Addison-Wesley).

7.6.4 Halo

A halo is used to simulate some of the atmospheric effectottar when small parti-
cles interact with light or radiate on their own. Those d8doclude clouds, fogs, fire,
etc.

Halos are attached to an object, the so caflextainer objegtwhich they completely
fill. If the object is partially or completely translucentdathe object is specified to be
hollow (see section 7.5.7.3 on page 276 for more detailshakewill be visible. Thus
the halo effects are limited to the space that the objectrsovihis should always be
kept in mind.

What the halo actually will look like depends on a lot of paedens. First of all you
have to specify which kind of effect you want to simulate.ekfthis you need to define
the distribution of the particles. This is basically donéi steps: a mapping function
is selected and a density function is chosen. The first fonetiaps world coordinates
onto a one-dimensional interval while the later describew this linear interval is
mapped onto the final density values.

The properties of the particles, such as their color and tn@nslucency, are given
by a color map. The density values calculated by the mappiogesses are used to
determine the appropriate color using this color map.

A ray marching process is used to volume sample the halo aadciamulate the in-
tensities and opacity of each interval.

The following sections will describe all of the halo paraewetin more detail. The
complete halo syntax is given by:

7.6. TEXTURES 303

halo {
attenuating | emitting | glowing | dust
[constant | linear | cubic | poly]

[planar_mapping | spherical mapping |
cylindrical_mapping | box mapping]
dust_type DUST TYPE]

eccentricity ECCENTRICITY]
max_value MAX_VALUE]

exponent EXPONENT]

samples SAMPLES]

aa_level AA LEVEL]

aa_threshold AA THRESHOLD]

jitter JITTER]

turbulence <TURBULENCE>]

octaves OCTAVES]

omega OMEGA]

lambda LAMBDA]

colour_map COLOUR_MAP]

frequency FREQUENCY]

phase PHASE]

scale <VECTOR>]

rotate <VECTOR>]

translate <VECTOR>]

B B e B e T e T B B B B e B e e B B e B W)

7.6.4.1 Halo Mapping

As described above the actual particle distribution and balpearance is influenced
by a lot of parameters. The steps that are performed durangdto calculation will be
explained below. It will also be noted where the differenibHeeywords will have an
effect on the calculations.

1. Depending on the current sampling position along the paynt
P (coordinatesx, y, 2) inside the halo container object is calcu-
lated. The actual location is influenced by thet ter keyword, the
number ofsamples and the use of anti-aliasingi¢ level and
aa threshold).

2. PointP is transformed into poin@ using the (current) halo’s trans-
formation. Here all local halo transformations come iniypl. e. all
transformations specified inside the (current) halo stateém

3. Turbulence is added to poi@® The amount of turbulence is given by
theturbulence keyword. The turbulence calculation is influenced
by theoctaves, omega andlambda keywords.

4. Radius r is calculated depending on the specified den-
sity mapping planar_mapping, spherical_mapping,
cylindrical mapping Or box_mapping). The radius is
clipped to the range from 0to 1, i.e.<0r < 1.

304 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

5. The densityd is calculated from the radiususing the specified den-
sity function constant, linear, cubic or poly) and the max-
imum value given bynax value. The density will be in the range
from O tomax_value.

6. The densityd is first multiplied by thef requency value, added to
thephase value and clipped to the range from 0 to 1 before it is used
to get the color from theolor map. If an attenuating halo is used
the color will be determined by the total density along theaad not
by the sum of the colors for each sample.

All steps are repeated for each sample point along the raydliaside the halo con-
tainer object. Steps 2 through 6 are repeated for all halastad to the halo container
object.

It should be noted that in order to get a finite particle disttion, i. e. a particle
distribution that vanishes outside a finite area, a finitesitgrmapping and a finite
density function has to be used.

A finite density mapping gives the constant value one forahts outside a finite area.
The box and spherical mappings are the only finite mappingstyp

A finite density function vanishes for all parameter valuesv@ one (there are no
negative parameter values). The only infinte density fancis the constant function.

Finite particle distributions are especially useful bessathey can always be trans-
formed to stay inside the halo container object. If paridiave the container object
they become invisible and the surface of the container wilisible due to the density
discontiniuty at the surface.

7.6.4.2 Multiple Halos

It is possible to put more than one halo inside a containexabbjThis is simply done
by putting more than one halo statement inside the contalrject statement like:

sphere { 0, 1
pigment { Clear }
halo { here comes halo nr. 1 }
halo { here comes halo nr. 2 }
halo { here comes halo nr. 3 }

}

The effects of the different halos are added. This is in fauntlar to the CSG union
operation.

You should note that currently multiple attenuating haldl wge the color map of the
last halo only. It is not possible to use different color mépsmultiple attenuating
halos.

7.6. TEXTURES 305

7.6.4.3 Halo Type

The type of the halo is defined by one of the following mutualglusive keywords (if
more than one is specified the last will be used). The defadlt tenuating.

halo {
attenuating | emitting | glowing | dust

}

The halo type determines how the light will interact with ffagticles inside the con-
tainer object. There are two basic categories of light atton: self-illuminated and
illuminated. The first type includes tlatenuating emittingandglowing effects while
the dusteffect is of the second type.

The four types will be covered in detail in the next sections.

7.6.4.3.1 Attenuating

The attenuating halo that only absorbs light passing thratig rendered by accumu-
lating the particle density along a ray. The total halo cadatetermined from the total,
accumulated density and the specified color map (see setoh6 on page 310 for
details about the color map). The background light, i. e.litii@ passing through the
halo, is attenuated by the total density and added to theHhaka color to get the final
color of the halo.

This model is suited to render particle distributions wittigh albedobecause the final
color does not depend on the transparency of single volueraegits but only on the
total transparency along the ray. The albedo of a partide/én by the amount of light
scattered by this particle in all directions in relationtie amount of incoming light. If
the particle doesn’t absorb any light the albedo is one.

Clouds and steams are two of the effects that can be rendaitedrealistic by adding
enough turbulence.

7.6.4.3.2 Dust

The dust halo consists of particles that do not emit any ligfttey only reflect and
absorb incoming light. Its syntax is:

halo {
dust
[dust_type DUST_TYPE]
[eccentricity ECCENTRICITY]

306 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

As the ray marches through the dust all light coming from agiytIsources is accumu-
lated and scattered according to the dust type and the tutushdensity. Since this
light accumulation includes a test for occlusion, otherotg§ may cast shadovisto
the dust.

The same scattering types that are used with the atmosphesection 7.7.1 on
page 347 can be used with the dust (the default type is iotsuyattering). They
are:

#declare ISOTROPIC_SCATTERING
#declare MIE HAZY_SCATTERING

#declare MIE MURKY_SCATTERING
#declare RAYLEIGH_ SCATTERING

#declare HENYEY GREENSTEIN_SCATTERING

[V|
U W

The Henyey-Greenstein function needs the additional patetaccentricity that
is described in the section about atmosphere. This keywaydapplies to dust type 5,
the Henyey-Greenstein scattering.

7.6.4.3.3 Emitting

Emitting halos only emit light. Every particle is a smallHigsource that emits some
light. This light is not attenuated by the other particlesaiese they are assumed to be
very small.

As the ray travels through the density field of an emittingohtak color of the particles
in each volume element and their differential transparesidgtermined from the color
map. These intensities are accumulated to get the total abtbe density field. This
total intensity is added to the light passing through th@.hahe background light is
attenuated by the total density of the halo.

Since the emitted light is not attenuated it can be used tceineifects like fire, ex-
plosions, light beams, etc. By choosing a well suited colaprthose effects can be
rendered with a high degree of realism.

Fire is best modeled using planar mapping. Spherical mgpaim high turbulence
values can be used to create explosions (it's best to useagljgecolor map and fre-
guencies larger than one).

Emitting halos do not cast any light on other objects likétligources do, even though
they are made up of small, light-emitting particles. In ordemake them actually emit
light hundreds or thousands of small light sources woulcehawe used. This would
slow down tracing by a degree that would make it useless.

7.6.4.3.4 Glowing

The glowing halo is similar to the emitting halo. The difface is that the light emitted
by the particles is attenuated by the other particles. Tdnishe seen as a combination

7.6. TEXTURES 307

of the attenuating and the emitting model.

7.6.4.4 Density Mapping

The density mapping is used to map points in space onto arlinea-dimensional
interval between 0.0 and 1.0, thus describing the appearsainihe three-dimensional
particle distribution. The different mapping types arecsfiped by:

halo {
planar_mapping | spherical_mapping |
cylindrical_mapping | box mapping

}

The default mapping type is planar mapping.

Since the mapping takes place in relation to the origin ofbdd coordinate system
the following rule must always be kept in minttalo container objects ought to be
unit sized objects centered at the origiThey can be transformed later to suit the
individuals needs.

The different mapping types are explained in more detaiénfollowing sections.
7.6.4.4.1 Box Mapping
The box mapping can be used to create a box-shaped parstidiion. The mapping

is calculated by getting the maximum of the absolute valfieach coordinate as given
by the formula:

f(x,¥,2) = max(|x], |y, |2]) (7.34)

Values larger than one are clipped to one.

7.6.4.4.2 Cylindrical Mapping

The distance (x,y, z) from they-axis given by
r(xy,z) =vx2+2z2 (7.35)

is used to get the interval values. Values larger than oneligged to one.

7.6.4.4.3 Planar Mapping

The distance (x,y, z) from thex-z-plane given by

r(xy,2) =1yl (7.36)

308 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

is used to get the interval values. Values larger than oneligged to one.

7.6.4.4.4 Spherical Mapping

The distance (x, Y, z) from the origin given by
r(x,y,z) = /X2 +y2 422 (7.37)

is used to get the interval values. Values larger than oneligged to one.

7.6.4.5 Density Function

The density function determines how the actual densityesmhre calculated from the
linear, one-dimensional interval that resulted from thesity mapping.

The density function is specified by the following keywords:

halo {
[constant | linear | cubic | poly]
[max_value MAX_ VALUE]
[exponent EXPONENT]

}

The exponent keyword is only used together with the 1y density function.

The individual functionsf (r) are described in the following sections. They all map the
valuer (x,Y,) calculated by the density mapping onto a suitable densityerdetween
0 and MAX_VALUE (specified with the keyworchax_value).

7.6.4.5.1 Constant

The constant function gives the constant valleX vV ALUE regardless of the interval
value and the type of density mapping. It is calculated bytiikial formula

f(r) = MAX VALUE. (7.38)

The constant density function can be used to create a comstditle distribution that
is only constrained by the container object. See figure 7rl¢he facing pagea for a
plot of the function.

7.6.4.5.2 Linear

A linear falloff from MAX_VALUE atr = 0 to zero ar = 1 is created with the linear
density function. Itis given by:

f(r) =MAXVALUE(1—r) (7.39)

7.6. TEXTURES 309

1.0 T 1.0

Eos} B Zost

0.0 . 0.0
0. 0.

(a) (b)

1.0

0.1
0.8

0.4
0.6 -

Eos5f

(r)

0.4 25

02 10

0.0 0.5 1.0 “0.0 0.2 0.4 0.6 0.8
r r

() (d)

Figure 7.19: The different halo density functions: (a) ¢ang (b) linear, (c) cubic,
and (d) polynomial

See figure 7.19b for a plot of the function.

7.6.4.5.3 Cubic

The cubic function gives a smooth blend between the maximalmeWIAX_VALUE
atr =0and 0 ar = 1. ltis given by:

f(r)=MAXVALUE (2r3-3r% +1) (7.40)

This is actually a cubic spline. See figure 7.19a for a ploheffunction.

7.6.45.4 Poly

A polynomial function can be used to get a large variety ofsitgrfunctions. All have
the maximum valusMAX_VALUE atr = 0 and the minimum value 0 at= 1. Itis

310 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

given by:

f(r) = MAX.VALUE (1—r)EXPONENT (7.41)

The exponent is given by thexponent keyword. In case oEXPONENT= 0 you'll
get a linear falloff. See figure 7.19 on the page beforea fdotagh the function.

7.6.4.6 Halo Color Map

The densityf (r), which ranges from 0 ttMAX_VALUE, is mapped onto the color
map to get the color and differential translucency for eadlime element as the ray
marches through the density field (the final color of attengatalos is calculated from
the total density; see section 7.6.4.1 on page 303 and 8et604.3.1 on page 305).
The differential translucency determines for each valud @) how much the total

opacity has to be increased (or decreased).

The color map is specified by:

halo {
[colour_map COLOUR_MAP]
}

The differential translucency is stored in the transmitanhannel of the map’s color
entries. A simple example is given by

colour_map {
[0 rgbt<l, 1, 1, 1>]
[1 rgbt<l, 1, 1, 0>]
}

In this example areas with a low density (smé{l)) will be translucent (large dif-
ferential translucency of £ 100%) and areas with a high density (largé)) will
be opaque (small differential translucency o£®%). You should note that negative
transmittance values can be used to create very dense fields.

In the case of the dust halo the filter channels of the colotisartolor map are used to
specify the amount of light that will be filtered by the copending color map entry.
For all other halo types the filter value is ignored.

There is no default color map.
7.6.4.7 Halo Sampling

The halo effects are calculated by marching through theityefisld along a ray. At
discrete steps samples are taken from the density field ahdaged according to the

7.6. TEXTURES 311

color map and all other parameters. The effects of all volalements are accumulated
to get the total effect.

The following parameters are used to tune the sampling psoce

halo {
[samples SAMPLES]
[aa_level AA LEVEL]
[aa_threshold AA THRESHOLD]
[jitter JITTER]
}

The individual sampling parameters are described in thiosscbelow.

7.6.4.7.1 Number of Samples

The number of samples that are taken along the ray insidedatloechntainer object
is specified by thesamples keyword. The greater the number of samples the more
denser the density field is sampled and the more accuratéoagrahe result will be.

The default number of samples is 10. This is sufficient forps@mdensity fields that
don't use turbulence.

High turbulence values and dust halos normally need a langebar of samples to
avoid aliasing artifacts.

7.6.4.7.2 Super-Sampling

The sampling is prone to alias (like the atmosphere samptingection 7.7.1 on
page 347). One way to reduce possible aliasing artifacts is¢ super-sampling. If
two neighboring samples differ too much an additional samggk taken in-between.
This process recurses until the values of the samples ase tb@ each other or the
maximum recursion level given lya LEVEL is reached. The threshold to kick super-
sampling in is given baA THRESHOLD.

By default super-sampling is not used. The default valuesxfo THRESHOLD and
AA LEVEL are 0.3 and 3 respectively.

7.6.4.7.3 litter

Jitter can be used to introduce some noise to the samplimgidos. This may help to
reduce aliasing artifacts at the cost of an increased neigt in the image. Since the
human visual system is much more forgiving to noise thanti iggular patterns this
is not much of a problem.

By default jittering is not used. The values should be smétien 1.0.

Note that jittering is used even if super-sampling is hoduse

312 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.4.8 Halo Modifiers

This section covers all general halo modifiers. They are:

halo {

turbulence <TURBULENCE>]
octaves OCTAVES]

omega OMEGA]

lambda LAMBDA]

frequency FREQUENCY]
phase PHASE]

scale <VECTOR>]

rotate <VECTOR>]
translate <VECTOR>]

e i B B N N N B R

***STILL BEING WRITTEN** [DB]

7.6.4.8.1 Turbulence Modifier

#*STILL BEING WRITTEN*** [DB]

7.6.4.8.2 Octaves Modifier

STILL BEING WRITTEN* [DB]

7.6.4.8.3 Omega Maodifier

#*STILL BEING WRITTEN*** [DB]

7.6.4.8.4 Lambda Modifier

STILL BEING WRITTEN* [DB]

7.6.4.8.5 Frequency Modifier

The frequency parameter adjusts the number of times the density intesvahpped
onto itself, i. e. the range from 0.0 to 1.0, before it is mappato the color map. The
formula doing this is:

f(r)= (frequency fr)+ phas¢ mod 1 (7.42)

7.6. TEXTURES 313

Thus the halo color map will be repeated by the specified &agu

7.6.4.8.6 Phase Modifier

The phase parameter determines the offset at which the ntappithe density field
onto itself starts. See equation 7.42 on the preceding madwiv the phase is used.

Thus the color entry for densitf(r) =0 can be moved tphasemod 1.

7.6.4.8.7 Transformation Modifiers

Halos can be transformed using the rotate, scale and ttark@gwords. You have to
be careful that you don’t move the density field out of the ar@r object though.

7.6.5 Special Textures

Special textures are complex textures made up of multipfeutes. The component
textures may be plain textures or may be made up of speciairésx A plain texture
has just one pigment, normal and finish statement (and mabg falo statements).
Even a pigment with a pigment map is still one pigment and twmsidered a plain
texture as are normals with normal map statements.

Special textures use eithercexture_map keyword to specify a blend or pattern of
textures or they use a bitmap similar to an image map caltedtarial map(specified
with thematerial_map keyword).

There are restrictions on using special textures. A sptsitiire may not be used as a
default texture (see section 7.2.3 on page 206). A specifdreecannot be used as a
layer in a layered texture however you may use layered testas any of the textures
contained within a special texture.

7.6.5.1 Texture Maps

In addition to specifying blended color with a color map origneent map you may
create a blend of textures usingxture map. The syntax for a texture map is iden-
tical to the pigment map except you specify a texture in eaap emtry.

A texture map is specified hy.

texture{
PATTERN_TYPE
texture map {
[NUM_1 TEXTURE_BODY_ 1]
[NUM_2 TEXTURE_BODY_ 2]
[NUM_3 TEXTURE_BODY_3]

314 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

}
TEXTURE_MODIFIERS...

}

Where NUM1, NUM_2, ... are float values between 0.0 and 1.0 inclusive. A TEX-
TURE_BODY is anything that would normally appear insidecaxture { ... }
statement but the texture keyword afil braces are not needed. Note that the
brackets are part of the actual statement. They are notiommahtsymbols denoting
optional parts. The brackets surround each entry in the Mhpre may be from 2 to
256 entries in the map.

For example:

texture {
gradient x //this is the PATTERN_TYPE
texture_map {
[0.3 pigment{Red} finish{phong 1}]
[0.3 T Woodll] //this 1is a texture identifier
[0.6 T Woodll]
[0.9 pigment{DMFWood4} finish{Shiny}]

}

When thegradient x function returns values from 0.0 to 0.3 the red highlighted
texture is used. From 0.3 to 0.6 the texture identifiaMood11lis used. From 0.6 up
to 0.9 a blend off_Wood1land a shinfDMFWood4is used. From 0.9 on up only the
shiny wood is used.

Texture maps may be nested to any level of complexity yourele3ihe textures in a
map may have color maps or texture maps or any type of texawrewant.

The blended area of a texture map works by fully calculatioigp lzontributing textures

in their entirety and then linearly interpolating the amgparcolors. This means that
reflection, refraction and lighting calculations are donéce for every point. This

is in contrast to using a pigment map and a normal map in a péaiture, where

the pigment is computed, then the normal, then reflectidraaon and lighting are

calculated once for that point.

Entire textures may also be used with the block patterns asichecker, hexagon and
brick. For example..

texture {
checker
texture { T Woodl2 scale .8 1}
texture { pigment { White_ Marble } finish { Shiny } scale .5
}

}

7.6. TEXTURES 315

Note that in the case of block patterns thexture { ... } wrapping is required
around the texture information. Also note that this synteohibits the use of a lay-
ered texture however you can work around this by declarirgxiate identifier for the
layered texture and referencing the identifier.

A texture map is also used with thererage pattern type. See 7.6.7.2 on page 319
for details.

7.6.5.2 Tiles

Earlier versions of POV-Ray had a special texture catikd texturethat created a
checkered pattern of textures. Although it is still suppedrtor backwards computabil-
ity you should use a checker block texture pattern describeskction 7.6.5.1 on
page 313 rather than tiles textures.

7.6.5.3 Material Maps

The material mapspecial texture extends the concept of image maps to applytie
textures rather than solid colors. A material map allows tpowrap a 2-D bit-mapped
texture pattern around your 3-D objects.

Instead of placing a solid color of the image on the shapedikemage map, an entire
texture is specified based on the index or color of the imadbatpoint. You must
specify a list of textures to be used liketexture paletterather than the usual color
palette.

When used with mapped file types such as GIF, and some PNG aAdri&yes, the

index of the pixel is used as an index into the list of texty@s supply. For unmapped
file types such as some PNG and TGA images the 8 bit value oétheamponent in

the range 0-255 is used as an index.

If the index of a pixel is greater than the number of texturegaur list then the index
is taken moduldN whereN is the length of your list of textures.

7.6.5.3.1 Specifying a Material Map

The syntax of a material map .s.

texture {
material map {
FILE_TYPE "filename"
BITMAP_MODIFIERS...
texture {..}. // First used for index 0
texture {..}. // Second texture used for index 1
texture {..}. // Third texture used for index 2

316 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

texture {..}. // Fourth texture used for index 3
// and so on for however many used.
}
TRANSFORMATION.. .
}

Where FILETYPE is one of the following keywordsgif, tga, iff, ppm, pgm,
png or sys. This is followed by the name of the file using any valid straxpres-
sion. Several optional modifiers may follow the file spectfima The modifiers are
described below. Note that earlier versions of POV-Raydtbsome modifiers before
the FILETYPE but that syntax is being phased out in favor of the sykescribed
here.

Filenames specified in theaterial map statements will be searched for in the
home (current) directory first and, if not found, will then $earched for in directories
specified by any-L switches orLibrary_Path options. This would facilitate keeping
all your material map files in a separate subdirectory andifyjieg a library path to
them. Note that any operating system default paths are aottsed unless you also
specify them as hibrary_Path.

By default, the material is mapped onto thg-plane. The material iprojectedonto
the object as though there were a slide projector somewhete i-z-direction. The
material exactly fills the square area frgmyy) coordinates (0,0) to (1,1) regardless of
the bitmap’s original size in pixels. If you would like to aige this default you may
translate, rotate or scale the texture to map it onto thectibjsurface as desired.

The file name is optionally followed by one or more BITMARODIFIERS.
See 7.6.8.9 on page 345 for other details.

After amaterial_map statement but still inside the texture statement you malyapp
any legal texture modifiers. Note that no other pigment, adriinish or halo state-
ments may be added to the texture outside the material mapfollbwing is illegal:

texture {
material_map {
gif "matmap.gif"
texture {T1l}
texture {T2}
texture {T3}
}
finish {phong 1.0}
}

The finish must be individually added to each texture.

Note that earlier versions of POV-Ray allowed such spetifina but they were ig-
nored. The above restrictions on syntax were necessaryaf@us bug fixes. This
means some POV-Ray 1.0 scenes using material maps many iredmodifications
that cannot be done automatically with the version compigilmmode.

7.6. TEXTURES 317

If particular index values are not used in an image then it bepecessary to supply
dummy textures. It may be necessary to use a paint prograther atility to examine
the map file’s palette to determine how to arrange the tekisire

The textures within a material map texture may be layerechiaitrial map textures
do not work as part of a layered texture. To use a layeredrextgide a material map
you must declare it as a texture identifier and invoke it inteheure list.

7.6.6 Layered Textures

It is possible to create a variety of special effects usingiad textures. A layered
texture consists of several textures that are partiallysfsarent and are laid one on top
of the other to create a more complex texture. The diffeexitite layers show through
the transparent portions to create the appearance of cnedéhat is a combination of
several textures.

You create layered textures by listing two or more texturesright after the other. The
last texture listed will be the top layer, the first one listeitl be the bottom layer. All
textures in a layered texture other than the bottom layauldHtave some transparency.
For example:

object {
My_Object
texture {T1l} // the bottom layer
texture {T2} // a semi-transparent layer
texture {T3} // the top semi-transparent layer

In this example T2 shows only where T3 is transparent and dWvstonly where T2
and T3 are transparent.

The color of underlying layers is filtered by upper layers tg results do not look
exactly like a series of transparent surfaces. If you hadekstf surfaces with the
textures applied to each, the light would be filtered twiceceoon the way in as the
lower layers are illuminated by filtered light and once onwlas out. Layered textures
do not filter the illumination on the way in. Other parts of fighting calculations
work differently as well. The results look great and allow fantastic looking textures
but they are simply different from multiple surfaces. Sg®NES.INC in the standard
include files directory for some magnificent layered texdure

Note layered textures must use thexture { ... } wrapped around any pigment,
normal or finish statements. Do not use multiple pigmentmabror finish statements
without putting them inside the texture statement.

Layered textures may be declared. For example

318 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

#declare Layered_Examp =
texture {T1}
texture {T2}
texture {T3}

may be invoked as follows:

object {
My_Object
texture {
Layer_ Examp
// Any pigment, normal or finish here
// modifies the bottom layer only.
}

If you wish to use a layered texture in a block pattern, sucbhegker, hexagon, or
brick, or in a material map, you must declare it first and thearence it inside a single
texture statement. A special texture cannot be used as milaygelayered texture
however you may use layered textures as any of the texturggioed within a special
texture.

7.6.7 Patterns

POV-Ray uses a method call¢iiree-dimensional solid texturing define the color,
bumpiness and other properties of a surface. You specifywie that the texture
varies over a surface by specifyingpattern Patterns are used in pigments, normals
and texture maps.

All patterns in POV-Ray are three dimensional. For everyipini space, each pattern
has a unique value. Patterns do not wrap around a surfaceuitieg wallpaper on an
object. The patterns exist in 3d and the objects are caread them like carving an
object from a solid block of wood or stone.

Consider a block of wood. It contains light and dark bandsaheconcentric cylinders
being the growth rings of the wood. On the end of the block yerithese concentric
circles. Along its length you see lines that are the veinswéi@r the pattern exists
throughout the entire block. If you cut or carve the wood Vesds the pattern inside.
Similarly an onion consists of concentric spheres that @ible only when you slice
it. Marble stone consists of wavy layers of colored sedimémdat harden into rock.

These solid patterns can be simulated using mathematioatidtns. Other random
patterns such as granite or bumps and dents can be genesatgchuandom number
system and a noise function.

In each case, thg, y, z coordinate of a point on a surface is used to compute some

mathematical function that returns a float value. When ustdaelor maps or pigment

7.6. TEXTURES 319

maps, that value looks up the color of the pigment to be usedotmal statements
the pattern function result modifies or perturbs the surfacenmal vector to give a
bumpy appearance. Used with a texture map, the functiorit @stermines which
combinations of entire textures to be used.

The following sections describe each pattern. See theosscli.6.1 on page 278
and 7.6.2 on page 286 for more details on how to use patterns.

7.6.7.1 Agate

The agate pattern is a banded pattern similar to marble but it usescajed built-

in turbulence function that is different from the traditédriurbulence. The traditional
turbulence can be used as well but it is generally not nepebsaause agate is already
very turbulent. You may control the amount of the built-imbwience by adding the
agate_turb keyword followed by a float value. For example:

pigment {
agate
agate turb 0.5
color_map {

}

The agate pattern uses thamp_wave wave type by default but may use any wave
type. The pattern may be used wittvlor_map, pigment_map, normal_map,
slope_map andtexture_map.

7.6.7.2 Average

Technicallyaverage is not a pattern type but it is listed here because the syntax
is similar to other patterns. Typically a pattern type sfiesihow colors or normals
are chosen from a pigment map or normal map, howeverrage tells POV-Ray to
average together all of the patterns you specify. Averageoniginally designed to be
used in a normal statement with a normal map as a method offfgpgomore than
one normal pattern on the same surface. However average enasell in a pigment
statement with a pigment map or in a texture statement widxtaite map to average
colors too.

When used with pigments, the syntax is:

pigment {
average
pigment_map

320 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

[WEIGHT 1 PIGMENT BODY_ 1]
[WEIGHT 2 PIGMENT_ BODY_2]

[WEIGHT n PIGMENT BODY n]

}
PIGMENT_ MODIFIER

}

Similarly you may use a texture map in a texture statement.tektures are fully
computed. The resulting colors are then weighted and asdrag

When used with a normal map in a normal statement, multipteesoof the original
surface normal are created and are perturbed by each patieenperturbed normals
are then weighted, added and normalized.

See the sections 7.6.1.4 on page 281, 7.6.2.2 on page 2906bd bn page 313 for
more information.

7.6.7.3 Bozo

The bozo pattern is a very smooth, random noise function that is ticadhlly used
with some turbulence to create clouds. The spotted patadentical to bozo but in
early versions of POV-Ray spotted did not allow turbulercéé added. Turbulence
can now be added to any pattern so these are redundant bwrbatétained for back-
wards compatibility. The bumps pattern is also identicdddeo when used anywhere
except in a normal statement. When used as a normal, bumps wlightly different
method to perturb the normal with a similar noise function.

The bozo noise function has the following properties:

1. It's defined over 3D space, i. e. it takes tg andz coordinates and
returns the noise value there.

2. Iftwo points are far apart the noise values at those paiatselatively
random.

3. If two points are close together the noise values at thoggspare
close to each other.

You can visualize this as having a large room and a thermantieé ranges from
0.0 to 1.0. Each point in the room has a temperature. Poiatsaite far apart have
relatively random temperatures. Points that are closdhiegbave close temperatures.
The temperature changes smoothly but randomly as we mawegtithe room.

Now let’s place an object into this room along with an artiBhe artist measures the
temperature at each point on the object and paints that adiifferent color depending
on the temperature. What do we get? A POV-Ray bozo texture!

Thebozo pattern uses theamp_wave wave type by default but may use any wave
type. The pattern may be used wittvlor_map, pigment_map, normal_map,
slopemap and texture.map.

7.6. TEXTURES 321

7.6.7.4 Brick

Thebrick pattern generates a pattern of bricks. The bricks are dffséalf a brick
length on every other row in the andz-directions. A layer of mortar surrounds each
brick. The syntax is given by

pigment {
brick COLOR_1, COLOR_2
brick size VECTOR
mortar FLOAT

where COLORL is the color of the mortar and COLORIs the color of the brick
itself. If no colors are specified a default deep red and deai¢ gre used. The default
size of the brick and mortar together (8 3,4.5) units. The default thickness of the
mortar is 0.5 units. These values may be changed using ti@napbrick size
andmortar pattern modifiers. You may also use pigment statements ae méathe
colors. For example:

pigment {
brick pigment {Jade}, pigment{Black Marble}
}

When used with normals, the syntax is

normal {
brick BUMP_FLOAT
}

Where BUMPFLOAT is an optional bump size float value. You may also usk ful
normal statements. For example:

normal {
brick normal { bumps 0.2 }, normal { granite 0.3 }

}

When used with textures, the syntax is

texture {
brick texture { T Gold_1A }, texture { Stonel2 }
}

This is a block pattern which cannot use wave types, color, oraglope map modifiers.

322 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.7.5 Bumps

Thebumps pattern was originally designed only to be used as a nornttdrpalt uses
a very smooth, random noise function that creates the loo&liafig hills when scaled
large or a bumpy orange peal when scaled small. Usually thgobuware about 1 unit
apart.

When used as a normaumps uses a specialized normal perturbation function. This
means that th&umps pattern cannot be used with normal map, slope map or wave
type modifiers in a normal statement.

When used as a pigment pattern or texture pattern, the buatpsrmpis identical to
bozo or spotted and is similar to normal bumps but is not idah&s are most normals
when compared to pigments. When used as pigment or texttensnts the bumps
pattern uses theamp wave wave type by default but may use any wave type. The
pattern may be used wittblor map, pigment map, andtexture map.

7.6.7.6 Checker

The checker pattern produces a checkered pattern consisting of aliegiequares
of COLOR 1 and COLOR2. If no colors are specified then default blue and green
colors are used.

pigment { checker COLOR_1, COLOR_2 }

The checker pattern is actually a series of cubes that areihén size. Imagine a
bunch of 1 inch cubes made from two different colors of madgtlay. Now imagine
arranging the cubes in an alternating check pattern andétistathem in layer after
layer so that the colors still alternate in every directi@ventually you would have a
larger cube. The pattern of checks on each side is what theRI\¢hecker pattern
produces when applied to a box object. Finally imagine wegtidway at the cube until
it is carved into a smooth sphere or any other shape. This & thle checker pattern
would look like on an object of any kind.

You may also use pigment statements in place of the colorsexample:

pigment { checker pigment { Jade }, pigment { Black Marble } }

When used with normals, the syntax is

normal { checker BUMP_FLOAT }

Where BUMRFLOAT is an optional bump size float value. You may also usk ful
normal statements. For example:

7.6. TEXTURES 323

normal {
checker normal { gradient x scale .2 }, normal { gradient y scale .2 }

}

When used with textures, the syntax is

texture { checker texture { T Wood 3A }, texture { Stonel2 } }

This use of checker as a texture pattern replaces the spiéesalexture in previous
versions of POV-Ray. You may still usei 1les but it may be phased out in future
versions so checker textures are best.

This is a block pattern which cannot use wave types, color, oraglope map modifiers.

7.6.7.7 Crackle

Thecrackle pattern is a set of random tiled polygons. With a large saadere tur-
bulence it makes a pretty good stone wall or floor. With a sswle and no turbulence
it makes a pretty good crackle ceramic glaze. Using highutarize it makes a good
marble that avoids the problem of apparent parallel layetsaditional marble.

Mathematically, the setracklgp) = 0 is a 3D Voronoi diagram of a field of semi
random points andracklg p) < 0 is the distance from the set along the shortest path
(a Voronoi diagram is the locus of points equidistant fromirttwo nearest neighbors
from a set of disjoint points, like the membranes in suds aithé centers of the bub-
bles).

The crackle pattern uses theamp_wave wave type by default but may use
any wave type. The pattern may be used withlor_map, pigment_map,
normal_map, slope_map andtexture_map.

7.6.7.8 Dents

The dents pattern was originally designed only to be used as a nornttérpa It is
especially interesting when used with metallic textureggiles impressions into the
metal surface that look like dents have been beaten intoutiace with a hammer.
Usually the dents are about 1 unit apart.

When used as a hormal pattern, dents uses a specializedl mparnuabation function.
This means that the dents pattern cannot be used with noramal stope map or wave
type modifiers in a normal statement.

When used as a pigment pattern or texture patternidhe: s pattern is similar to nor-
mal dents but is not identical as are most normals when ca@dgarpigments. When
used in pigment or texture statements thent s pattern uses theamp_wave wave
type by default but may use any wave type. The pattern maydewihcolor_ map,
pigment_map andtexture_map.

324 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.7.9 Gradient

ne of the simplest patterns is theadient pattern. It is specified as

pigment {gradient VECTOR}

where VECTOR is a vector pointing in the direction that thiosoblend. For example

pigment { gradient x } // bands of color vary as you move
// along the "x" direction.
LATEX -ONLY
\begin{QUOTE}
\begin{CF}

produces a series of smooth bands of color that look likeréag&colors next to each
other. Points ax = 0 are the first color in the color map. As thdocation increases
it smoothly turns to the last color at= 1. Then it starts over with the first again and
gradually turns into the last color at= 2. The pattern reverses for negative values. of
Usinggradient y orgradient z makes the colors blend along theor z-axis.
Any vector may be used buf y andz are most common.

As a normal pattern, gradient generates a saw-tooth or hmvpge appearance. The
syntax is

normal { gradient VECTOR, BUMP_FLOAT}

where the VECTOR giving the orientation is a required patamebut the
BUMP_FLOAT bump size which follows is optional.

The pattern uses theamp_wave wave type by default but may use any wave type. The
pattern may be used wittolor_map, pigment_map, normal_map, slope_map
andtexture.map.

7.6.7.10 Granite

This pattern uses a simplée fl fractal noise function to give a good granite pattern.
This pattern is used with creative color mapsSTONES.INC to create some gorgeous
layered stone textures.

As a normal pattern it creates an extremely bumpy surfadeldbés like a gravel
driveway or rough stone.

The pattern uses theamp_wave wave type by default but may use any wave type. The
pattern may be used wittolor_map, pigment_map, normal_map, slope_map
andtexture.map.

7.6. TEXTURES 325

7.6.7.11 Hexagon

Thehexagon pattern is a block pattern that generates a repeating pattéexagons
in thex-y—-plane. In this instance imagine tall rods that are hexagarshape and are
parallel to they-axis and grouped in bundles like shown in figure 7.20. Thegasate
colors should be specified as follows:

pigment { hexagon COLOR_1, COLOR_2, COLOR_3 }

@ color1
color 2
@ color 3

Figure 7.20: The hexagon pattern.

The three colors will repeat the hexagonal pattern with eraCOLOR1 centered at
the origin, COLOR?2 in the +z-direction and COLOR3 to either side. Each side of
the hexagon is one unit long. The hexagomals of color extend infinitely in thery-
and —y-directions. If no colors are specified then default blueggrand red colors are
used.

You may also use pigment statements in place of the colorseXample:

pigment {
hexagon pigment { Jade 1},
pigment { White Marble 1},
pigment { Black Marble }

When used with normals, the syntax is

normal { hexagon BUMP_FLOAT }

Where BUMPFLOAT is an optional bump size float value. You may also usk ful
normal statements. For example:

326 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

normal {
hexagon
normal { gradient x scale .2 1},
normal { gradient y scale .2 1},
normal { bumps scale .2 }

When used with textures, the syntax is

texture {
hexagon
texture { T _Gold 3A 1},
texture { T Wood 3A 1},
texture { Stonel2 }

This is a block pattern which cannot use wave types, color, mregiope map modifiers.

7.6.7.12 Leopard

Leopard creates regular geometric pattern of circularsspot

The pattern uses theamp_wave wave type by default but may use any wave type. The
pattern may be used wittolor_map, pigment_map, normal_map, slope_map
andtexturemap.

7.6.7.13 Mandel

Themandel pattern computes the standard Mandelbrot fractal pattetmpeojects it
onto thex-y-plane. It uses th& andy coordinates to compute the Mandelbrot set. The
pattern is specified with the keywontkndel followed by an integer number. This
number is the maximum number of iterations to be used to ctenime set. Typical
values range from 10 up to 256 but any positive integer maysked.uFor example:

pigment {
mandel 25
color_map {

[0.0 color Cyan]
[0.3 color Yellow]
[0.6 color Magental
[1.0 color Cyan]

7.6. TEXTURES 327

The value passed to the color map is computed by the formula:

numberof_iterations
value= g . (7.43)
max.iterations

When used as a normal pattern, the syntax.is

normal {
mandel ITER, BUMP_AMOUNT
}

where the required integer ITER value is optionally follaA® a float bump size.

The pattern extends infinitely in thedirection similar to a planar image map. The
pattern uses theamp wave wave type by default but may use any wave type. The
pattern may be used wittolor_map, pigment_map, normal_map, slope_map
andtexture_map.

7.6.7.14 Marble

Themarble pattern is very similarto thgradient x pattern. The gradient pattern
uses a defaultamp wave wave type which means it uses colors from the color map
from 0.0 up to 1.0 at locatio = 1 but then jumps back to the first color far>

1 and repeats the pattern again and again. Howevemndhé1e pattern uses the
triangle_wave wave type in which it uses the color map from 0 to 1 but then it
reverses the map and blends from 1 back to zero. For example:

pigment {
gradient x
color_map {
[0.0 color Yellow]
[1.0 color Cyan]

}

This blends from yellow to cyan and then it abruptly changasklio yellow and re-
peats. However replacingradient x with marble smoothly blends from yellow
to cyan as the coordinate goes from 0.0 to 0.5 and then smoothly blends fsank
cyan to yellow byx = 1.0.

Earlier versions of POV-Ray did not allow you to change waymes. Now that
wave types can be changed for most any pattern, the distmbiétweemmarble
andgradient xis only a matter of default wave types.

When used with turbulence and an appropriate color mapp#itern looks like veins
of color of real marble, jade or other types of stone. By défamarble has no turbu-
lence.

The pattern may be used witholor map, pigment_map, normal_map,
slope_map andtexture_map.

328 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.7.15 Onion

Onion is a pattern of concentric spheres like the layers araon. Each layer is one
unit thick.

The pattern uses theamp wave wave type by default but may use any wave type. The
pattern may be used wittolor map, pigment map, normal map, slope map
andtexture.map.

7.6.7.16 Quilted

The quilted pattern was originally designed only to be used as a norntédrpa
The quilted pattern is so named because it can create arpstteewhat like a quilt or
a tiled surface. The squares are actually 3-D cubes thatamé ih size.

When used as a normal pattern it uses a specialized norntatfpetion function. This
means that the quilted pattern cannot be used with normal stage map or wave type
modifiers in a normal statement.

When used as a pigment pattern or texture pattern, the djpiteern is similar to nor-
mal quilted but is not identical as are most normals when esegbto pigments. When
used in pigment or texture statements the quilted pattezs theeramp_wave wave
type by default but may use any wave type. The pattern maydwihcolor_map,
pigment_map andtexture_map.

The two parametersontrol0 andcontroll are used to adjust the curvature of
the seamor gougearea between thguilts. The syntax is:

normal {
quilted AMOUNT
control0 CO
controll C1

}

The values should generally be kept to around the 0.0 to hderaThe default value
is 1.0 if none is specified. Think of thigougebetween the tiles in cross-section as a
sloped line.

This straight slope can be made to curve by adjusting the omral values. The
control values adjust the slope at the top and bottom of tineecuA control values
of 0 at both ends will give a linear slope, as shown in figurd 2 the facing page,
yielding a hard edge. A control value of 1 at both ends wilkegan "s” shaped curve,
resulting in a softer, more rounded edge.

7.6.7.17 Radial

The radial pattern is a radial blend that wraps around theaxis. The color for
value 0.0 starts at thex-direction and wraps the color map around from east to west

7.6. TEXTURES 329

0.0 0.0
-0.5 0.0 05 -0.5 0.0 0.5

() (d)

Figure 7.21: Quilted pattern function for different valugfscy andc;: (&) cg = 0, (b)
co=0.33, (c)cg =0.67, and (dxp=1

with 0.25 in the—z-direction, 0.5 in—x, 0.75 at+z and back to 1.0 at-x. Typically
the pattern is used with Arequency modifier to create multiple bands that radiate
from they-axis.

The pattern uses theamp_wave wave type by default but may use any wave type. The
pattern may be used wittolor map, pigment map, normal map, slope map
andtexture_map.

7.6.7.18 Ripples

The ripples pattern was originally designed only to be used as a norntédrpa

It makes the surface look like ripples of water. The rippladiate from 10 random
locations inside the unit cube aré@ 0,0) to (1,1,1). Scale the pattern to make the
centers closer or farther apart.

Usually the ripples from any given center are about 1 unittap&he frequency

330 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

keyword changes the spacing between ripples. ghese keyword can be used to
move the ripples outwards for realistic animation.

The number of ripple centers can be changed with the globabnpeter
global settings { number of waves FLOAT } somewhere in the scene.
This affects the entire scene. You cannot change the nunfbgawe centers on in-
dividual patterns. See 7.8.8 on page 362 for details.

When used as a normal pattern, ripples uses a specializedhperturbation function.
This means that the ripples pattern cannot be used with nonaua slope map or wave
type modifiers in a normal statement.

When used in pigment or texture statements thepples pattern uses the
ramp_wave wave type by default but may use any wave type. The patternlbmay
used withcolor map, pigment map andtexture map.

7.6.7.19 Spirall

Thespirall pattern creates a spiral that winds aroundytais similar to a screw.
Its syntax is:

pigment {
spirall NUMBER_OF_ARMS
}

The NUMBEROF_ARMS value determins how magrms are winding around the
y-axis.
The pattern uses theriangle wave wave type by default but may use any wave

type. The pattern may be used wittvlor map, pigment map, normal map,
slopemap andtexture map.

7.6.7.20 Spiral2

Thespiral2 pattern is a modification of thepirall pattern with an extraordinary
look.

The pattern uses theriangle_wave wave type by default but may use any wave
type. The pattern may be used wittvlor_map, pigment_map, normal_map,
slopemap and texture.map.

7.6.7.21 Spotted

Thespotted pattern is identical to theozo pattern. Early versions of POV-Ray did
not allow turbulence to be used with spotted. Now that antepatan use turbulence
there is no difference between bozo and spotted. See 7dhpage 320 for details.

7.6. TEXTURES 331

7.6.7.22 Waves

Thewaves pattern was originally designed only to be used as a nornitdrpa The
waves pattern looks similar to the ripples pattern excepffi¢atures are rounder and
broader. The effect is to make waves that look more like deeprowaves. The waves
radiate from ten random locations inside the unit cube &¢@ 0) to (1,1,1). Scale
the pattern to make the centers closer or farther apart.

Usually the waves from any given center are about 1 unit aplne frequency
keyword changes the spacing between waves. ghwese keyword can be used to
move the waves outwards for realistic animation.

The number of ripple centers can be changed with the globahnpeter
global settings { number of waves FLOAT } somewhere in the scene.
This affects the entire scene. You cannot change the nunibgawe centers on in-
dividual patterns. See 7.8.8 on page 362 for details.

When used as a normal pattern, waves uses a specialized pamusbation function.
This means that the waves pattern cannot be used with noragglstope map or wave
type modifiers in a normal statement.

When used in pigment or texture statements the waves patt&s theramp_wave
wave type by default but may use any wave type. The pattern lmeaysed with
color_map, pigment_map andtexture_map.

7.6.7.23 Wood

The wood pattern consists of concentric cylinders centered orztheis. When ap-
propriately colored, the bands look like the growth ringd &eins in real wood. Small
amounts of turbulence should be added to make it look molistieaBy default, wood
has no turbulence.

Unlike most patterns, the wood pattern usestie angle wave wave type by de-
fault. This means that like marble, wood uses color map galu@ to 1.0 then repeats
the colors in reverse order from 1.0 to 0.0. However you mayamy wave type. The
pattern may be used wittolor map, pigment map, normal map, slope map
andtexture_map.

7.6.7.24 Wrinkles

Thewrinkles pattern was originally designed only to be used as a norntedrpa It
uses a 1f noise pattern similar to granite but the features in wrisldee sharper. The
pattern can be used to simulate wrinkled cellophane or fioéllso makes an excellent
stucco texture.

When used as a hormal pattern it uses a specialized norntathgeion function. This
means that the wrinkles pattern cannot be used with normpJ sl@pe map or wave
type modifiers in a normal statement.

332 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

When used as a pigment pattern or texture patternwthenkles pattern is similar
to normal wrinkles but is not identical as are most normalenwbompared to pig-
ments. When used in pigment or texture statementsithenkles pattern uses the
ramp wave wave type by default but may use any wave type. The patternbmay
used withcolor map, pigment map andtexture map.

7.6.8 Pattern Modifiers

Pattern modifiers are statements or parameters which mieoifya pattern is evaluated
or tells what to do with the pattern. The modifiers1or_map andpigment_ map
apply only to pigments. See section 7.6.1 on page 278. Théfierscboump_size,
slopemap andnormal_map apply only to normals. See section 7.6.2 on page 286.
The texture_map modifier can only be used with textures. See section 7.615.1 0
page 313.

The pattern modifiers in the following section can be usedh wigment, normal or
texture patterns.

7.6.8.1 Transforming Patterns

The most common pattern modifiers are the transformationiframmltranslate,
rotate, scale andmatrix. For details on these commands see 7.3.1 on page 214.

These modifiers may be placed inside pigment, normal andiree)dtatements to
change the position, size and orientation of the patterns.

In general the order of transformations relative to otheitepa modifiers such as
turbulence, color map and other maps is not important. For example scaling
before or after turbulence makes no difference. The turtmglés done first, then the
scaling regardless of which is specified first. However tleiom which transforma-
tions are performed relative tea rp statements is important. See 7.6.8.8 on page 336
for details.

7.6.8.2 Frequency and Phase

The frequency andphase modifiers act as a type of scale and translate modifiers
for color_map, pigment_map, normal_map, slope_map and texture_map.
This discussion uses a color map as an example but the sam@fas apply to pig-
ment maps, normal maps, slope maps and texture maps.

The frequency keyword adjusts the number of times that a color map repeats o
one cycle of a pattern. For exampleadient covers color map values 0 to 1 over
the range fromx =0 tox = 1. By addingfrequency 2.0 the color map repeats
twice over that same range. The same effect can be achievgfdausale 0.5*x so
the frequency keyword isn’t that useful for patterns likadjent.

7.6. TEXTURES 333

However the radial pattern wraps the color map aroundrjraxis once. If you wanted
two copies of the map (or 3 or 10 or 100) you'd have to build agéignap. Adding
frequency 2.0 causes the color map to be used twice per revolution. Try this

pigment {
radial
color _map{[0.5 color Red] [0.5 color White]}
frequency 6

}

The result is six sets of red and white radial stripes evep#ced around the object.

The float afterfrequency can be any value. Values greater than 1.0 causes more
than one copy of the map to be used. Values from 0.0 to 1.0 eafnaetion of the map
to be used. Negative values reverses the map.

The phase value causes the map entries to be shifted so that the m&p atar ends
at a different place. In the example above if you render sgiee frames at phase
0 then phase 0.1, phase 0.2 etc you could create an animhagibrotates the stripes.
The same effect can be easily achieved by rotating the rpijedent usingrotate
y*Angle but there are other uses where phase can be handy.

Sometimes you create a great looking gradient or wood coblgy but you want the
grain slightly adjusted in or out. You could re-order theotahap entries but that’s a
pain. A phase adjustment will shift everything but keep t@e scale. Try animating
a mandel pigment for a color palette rotation effect.

Frequency and phase have no effect on block patterns chéxlar and hexagon nor
do they effect image maps, bump maps or material maps. Tilseyhalve no effect
in normal statements when used with bumps, dents, quiltediokles because these
normal patterns cannot ug®rmal map Or slope map.

They can be used with normal patterns ripples and waves beegh these two pat-
terns cannot useormal_map Or slopemap either. When used with ripples or
waves, frequency adjusts the space between features ase pha be adjusted from
0.0 to 1.0 to cause the ripple or waves to move relative to taiter for animating the
features.

These values work by applying the following formula

newvalue= (old_valuex frequency+ phas¢ mod 10. (7.44)

7.6.8.3 Waveform

Most patterns that takeolor_map, pigment_map, slope_map, normal_map Of
texture_map use the entries in the map in order from 0.0 to 1.0. The wood and
marble patterns use the map from 0.0 to 1.0 and then revemes funs it from 1.0 to

334 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

0.0. The difference can easily be seen when these patternsed as normal patterns
with no maps.

Patterns such as gradient or onion generate a grove or atdbttks like a ramp that
drops off sharply. This is called Bamp_wave wave type. However wood and marble
slope upwards to a peak, then slope down againtrfangle wave. In previous
versions of POV-Ray there was no way to change the wave tyjoescould simulate a
triangle wave on a ramp wave pattern by duplicating the magesrin reverse, however
there was no way to use a ramp wave on wood or marble.

Now any pattern that takes a map can have the default waveaypeidden. For
example:

pigment { wood color_map { MyMap } ramp wave }

Also available aresine_wave andscallop_wave types. These types are of most
use in normal patterns as a type of built-in slope map. dhee wave takes the zig-
zag of a ramp wave and turns itinto a gentle rolling wave witlogth transitions. The
scallop_wave uses the absolute value of the sine wave which looks likeuroyd
when scaled small or like a stack of cylinders when scalagttar

Although any of these wave types can be used for pigmentsaisror textures, the
sine_wave andscallop_wave types are not as noticeable on pigments or textures
as they are for normals.

Wave types have no effect on block patterns checker, bridkngxagon nor do they
effect image maps, bump maps or material maps. They alsortwagéiect in normal
statements when used with bumps, dents, quilted or wrinbdéesuse these normal
patterns cannot useormal map Or slope_map.

7.6.8.4 Turbulence

he keywordturbulence followed by a float or vector may be used to stir up any
pigment, normal, texture, irid or halo. A number of optioparameters may be used
with turbulence to control how it is computed. For example:

pigment {
wood color_map { MyMap }
turbulence TURB_VECTOR
octaves FLOAT
omega FLOAT
lambda FLOAT

Typical turbulence values range from the default 0.0, wigato turbulence, to 1.0 or
more, which is very turbulent. If a vector is specified diffist amounts of turbulence
are applied in the-, y- andz-direction. For example

7.6. TEXTURES 335

turbulence <1.0, 0.6, 0.1>

has much turbulence in thedirection, a moderate amount in tlyedirection and a
small amount in the-direction.

Turbulence uses a random noise function cald®bise This is similar to the noise
used in the bozo pattern except that instead of giving aesiwajle it gives a direction.
You can think of it as the direction that the wind is blowingtladt spot. Points close
together generate almost the same value but points faragarandomly different.

In general the order of turbulence parameters relative Hergpattern modifiers such
as transformations, color maps and other maps is not imgorkor example scaling
before or after turbulence makes no difference. The turtmglés done first, then the
scaling regardless of which is specified first. See 7.6.8.8hemext page for a way to
work around this behavior.

Turbulence uses DNoise to push a point around in severa stdfedoctaves. We
locate the point we want to evaluate, then push it around ashity turbulence to get
to a different point then look up the color or pattern of thevmint.

It says in effectDon’t give me the color at this spot. take a few random steps in
different directions and give me that coloEach step is typically half as long as the
one before.

The magnitude of these steps is controlled by the turbulenatee. There are three
additional parameters which control how turbulence is attegh. They arectaves,
lambda andomega. Each is optional. Each is followed by a single float valuectEa
has no effect when there is no turbulence.

7.6.8.5 Octaves

heoctaves value controls the number of steps of turbulence that arepated. Legal
values range from 1 to 10. The default value of 6 is a fairlyhhiglue; you won't
see much change by setting it to a higher value because tteestgps are too small.
Float values are truncated to integer. Smaller numberstafes give a gentler, wavy
turbulence and computes faster. Higher octaves createjagged or fuzzy turbulence
and takes longer to compute.

7.6.8.6 Lambda

he 1ambda parameter controls how statistically different the randoiwve of an oc-
tave is compared to its previous octave. The default val@eisvhich is quite random.
Values close to lambda 1.0 will straighten out the randommédhe path in the di-
agram above. The zig-zag steps in the calculation are inyntrar same direction.
Higher values can look morgwirly under some circumstances.

336 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

7.6.8.7 Omega

he omega value controls how large each successive octave step isareohpo the
previous value. Each successive octave of turbulence igptedl by the omega value.
The defaultomega 0.5 means that each octave ig2lthe size of the previous one.
Higher omega values mean that 2nd, 3rd, 4th and up octavé&geoa more turbulence
giving a sharpergrinkly look while smaller omegas give a fuzzy kind of turbulence tha
gets blurry in places.

7.6.8.8 Warps

The warp statement is a pattern modifier that is similar to turbulen®arbulence

works by taking the pattern evaluation point and pushingpdiéin a series of random
steps. However warps push the point in very well-defined -namalom, geometric
ways. The warp statement also overcomes some limitatiotmditional turbulence
and transformations by giving the user more control oveotder in which turbulence,
transformation and warp modifiers are applied to the pattern

Currently there are three types of warps but the syntax waigiied to allow future
expansion. The first two, theepeat warp and thélack hole warp are new fea-
tures for POV-Ray that modify the pattern in geometric wayge other warp provides
an alternative way to specify turbulence.

The syntax for using &arp statement in a pigment is

pigment {
PATTERN_TYPE
PIGMENT MODIFIERS...
warp { WARP_ITEMS..}.
OTHER_PIGMENT MODIFIERS...

Similarly warps may be used in normals and textures. You naag las many sepa-
rate warp statements as you like in each pattern. The plateofievarp statements
relative to other modifiers such a®»lor map or turbulence is not important.
However placement of warp statements relative to each athérto transformations
is significant. Multiple warps and transformations are eatdd in the order in which
you specify them. For example if you translate, then warp ampwthen translate, the
results can be different.

7.6.8.8.1 Black Hole Warp

A black holeis sonamed because of its similarity to real black holest likesthe
real thing, you cannot actually see a black hole. The only teaetect its presence is
by the effect it has on things that surround it. Unlike thd thiag, however, it won't

7.6. TEXTURES 337

swallow you up and compress your entire body to a volume §f,2@10— 10 microns
in diameter if you get too close (We're working on that part).

Take, for example, a woodgrain. Using POV-Ray’s normalulgbce and other texture
modifier functions, you can get a nice, random appearancket@iain. But in its
randomness it is regular — it is regularly random! Adding ackl hole allows you
to create a localised disturbance in a woodgrain in either @nmultiple locations.
The black hole can have the effect of eitlseickingthe surrounding texture into itself
(like the real thing) ompushingit away. In the latter case, applied to a woodgrain, it
would look to the viewer as if there were a knothole in the wolpdthis text we use

a woodgrain regularly as an example, because it is idealgitda to explaining black
holes. However, black holes may in fact be used with any textu

The effect that the black hole has on the texture can be spegclly default, itsucks
with the strength calculated expotentially (inverse-sguaYou can change this if you
like.

Black holes may be used anywhere a Warp is permitted. Thesisit

warp

{
black hole <CENTER>, RADIUS
[falloff VALUE]
[strength VALUE]
[repeat <VECTOR>]
[turbulence <VECTOR>]
[inverse]

Some examples are given by

warp
{

black _hole <0, 0, 0>, 0.5
}

warp

{
black hole <0.15, 0.125, 0>, 0.5
falloff 7
strength 1.0
repeat <1.25, 1.25, 0>
turbulence <0.25, 0.25, 0>
inverse

warp

338 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

black _hole <0, 0, 0>, 1.0
falloff 2

strength 2

inverse

}

In order to fully understand how a black hole works, it is intpat to know the theory
behind it. A black hole (or any warp) works by taking a pointigeerturbingit to
another location. The amount of perturbation depends ostteagth of the black hole
at the original point passed in to it. The amount of pertudmatiirectly relates to the
amount of visual movement that you can see occur in a texiime stronger the black
hole at the input co-ordinate the more that original cofwaté is moved to another
location (either closer to or further away from the centethef black hole.)

Movement always occurs on the vector that exists betweerinthe point and the
center of the black hole.

Black holes are considered to be spheres. For a point to éetedf by a black hole, it
must be within the sphere’s volume.

Suppose you have a black hole(at1,1) and a point a{1,2,1). If this point is per-

turbed by a total amount of1 units its new location ig1,3,1), which is on a direct
line extrapolated from the vector betweéh1,1) and (1,2,1). In this case the point
is pushedaway from the black hole, which is noormal behaviour but is good for
demonstration purposes.

The internal properties of a black hole are as follows.

Center The center of the black hole.

Radius Its radius.

Falloff The power by which the effect falls off (default 2).

Strength The magnitude of the transformation effect (stmbe

Inverted If setpushpoints away instead gdulling them in.

Repeat If set we have many black holes instead of one.

Turbulence If set each new repeated black hole’s positioméer-
tain.

RepeatVector The(x,y, z) factor to repeat by.

TurbulenceVector The maximumyx,y,z) factor for turbulence random-
ness.

Each of these are discussed below.

Center: A vector defining the center of the sphere that represeatbltitk hole. If the
black hole hafkepeaset it is the offset within each block.

Radius: A number giving the length, in units, of the radius of theesghthat represents
the black hole.

7.6. TEXTURES 339

If a point is not within radius units ofcentel it cannot be affected by the black hole
and will not be perturbed.

Falloff: The power by which the effect of the black hole falls off. Tdefault is two.
The force of the black hole at any given point, before apgytime Strengthmaodifier,
is as follows.

First, convert the distance from the point to the center toopgrtion (0 to 1) that the
point is from the edge of the black hole. A point on the pereneif the black hole
will be 0.0; a point at the centre will be 1.0; a point exactyftvay will be 0.5, and so
forth.

Mentally you can consider this to beckbsenesgactor. A closeness of 1.0 is as close
as you can get to the center (i.a.the center), a closeness of 0.0 is as far away as you
can get from the center and still be inside the black hole acldseness of 0.5 means
the point is exactly halfway between the two.

Call this valuec. Raisec to the power specified iRalloff. By default Falloff is 2, so
this isc? or ¢ squared. The resulting value is the force of the black hotbaitexact
location and is used, after applying tBé&rengthscaling factor as described below, to
determine how much the point is perturbed in space.

For example, it is 0.5 the force is &2 or 0.25. If cis 0.25 the force is 0.125. Butdf
is exactly 1.0 the force is 1.0.

Recall that as gets smaller the point is farther from the center of the blaatk. Using
the default power of 2, you can see thatcagduces, the force reduces expotentially
in an inverse-square relationship. Put in plain englisméans that the force is much
stronger (by a power of two) towards the center than it isailtside.

By increasingralloff, you can increase the magnitude of the falloff. A large valile
mean points towards the perimeter will hardly be affectealland points towards the
center will be affected strongly.

A value of 1.0 forFalloff will mean that the effect is linear. A point that is exactly
halfway to the center of the black hole will be affected by céoof exactly 0.5.

A value of Falloff of less than one but greater than zero means that as you get clo
to the outside, the force increases rather than decreakescdn have some uses but
there is a side effect. Recall that the effect of a black hekses outside its perimiter.
This means that points just within the permiter will be atiéetstrongly and those just
outside not at all. This would lead to a visible border, skisgea sphere.

A value for Falloff of 0 would mean that the force would be 1.0 for all points withi
the black hole, since any number larger O raised to the pofs@isol.0.

The magnitude of the movement of the point is determinedcbégiby the value of
force after scaling. We'll consider scaling later. Letsetak example.

Suppose we have a black hole of radius 2.0 and a point thaficglgx..0 units from
the center. That means it is exactly half-way to the centdrthatc would be 0.5. If
we use the default falloff of 2 the force at that point i§%or 0.25. What this means

340 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

is that we must move the point by 0.25 of its distance from @mar. In this case it is
1.0 units from the center, so we move it byp£0.25 or 0.25 units. This gives a final
distance of 10— (1.0%0.25) or 0.75 units from the center, on a direct line in 3D space
between the original position and the center.

If the point were part of, say, a wood grain, the wood grain ld@appear to bend
towards the (invisible) center of the black hole. If fheerseflag were set, however, it
would bepushedaway, meaning its final position would be0}- (1.0 0.25) or 1.25
units from the center.

Strength: The Strengthgives you a bit more control over how much a point is perturbed
by the black hole. Basically, the force of the black hole (atedmined above) is
multipled by the value oBtrength which defaults to 1.0. If you set Strength to 0.5, for
example, all points within the black hole will be moved byyhklf as much as they
would have been. If you set it to 2.0 they will be moved twiceragh.

There is arider to the latter example, though — the movensasiigped to a maximum

of the original distance from the center. That is to say, atpibiat is 0.75 units from

the center may only be moved by a maximum of 0.75 units eitiveautds the center or
away from it, regardless of the value $frength The result of this clipping is that you
will have anexclusionarea near the centre of the black hole where all points whose
final force value exceeded or equalled 1.0 were moved by a éiRemlint.

Inverted: If Invertedis set points ar@ushedaway from the center instead of being
pulled in.

Repeat Repeatallows you to simulate the effect of many black holes withiaaving
to explicitly declare them. Repeat is a vector that tells FR3y to use this black hole
at multiple locations.

If you're not interested in the theory behind all this, jusipshe following text and use
the values given in the summary below.

Using Repeatlogically divides your scene up into cubes, the first beincpted at
(0,0,0) and going to(repea). Suppose your repeat vector wgk5,2). The first
cube would be from0,0,0) to (1,5,2). This cube repeats, so there would be one at
(—1,-5,-2), (1,5,2), (2,10,4) and so forth in all directions, ad infinitum.

When you us®epeatthe center of the black hole does not specify an absolusitoc
in your scene but an offset into each block. It is only pogstbluse positive offsets.
Negative values will produce undefined results.

Suppose your center wd6.5,1,0.25) and the repeat vector (&,2,2). This gives us

a block at(0,0,0) and (2,2,2), etc. The centers of the black hole’s for these blocks
would be(0,0,0) +(0.5,1.0,0.25), i. e. (0.5,1.0,0.25), and(2, 2,2) + (0.5,1.0,0.25),
i.e.(2,53.0,2.25).

Due to the way repeats are calculated internally, thereéstaiction on the values you
specify for the repeat vector. Basically, each black holstrba totally enclosed within
each block (or cube), with no part crossing into a neighbaudne. This means that,
for each of thex, y andz dimensions, the offset of the center may not be less than the

7.6. TEXTURES 341

radius, and the repeat value for that dimension musthibe center plus the radius
since any other values would allow the black hole to crossumdbary. Put another
way, for each ok, y andz

radius< offset or centek = repeat- radius (7.45)

If the repeat vector in any dimension is too small to fit thigecra, it will be increased
and a warning message issued. If the center is less thandie rawill also be moved
but no message will be issued.

Note that none of the above should be read to mean that yotiasamlap black holes.
You most certainly can and in fact this can produce some mesfulieffects. The
restriction only applies to elements of th@meblack hole which is repeating. You can
declare a second black hole that also repeats and its eleamtuite happily overlap
the first and causing the appropriate interactions.

It is legal for the repeat value for any dimension to be O, rirgathat POV-Ray will
not repeat the black hole in that direction.

Turbulence: Turbulencecan only be used witRepeat It allows an element of ran-
domness to be inserted into the way the black holes repeaguse a mor@atural
look. A good example would be an array of knotholes in wood +watild look rather
artificial if each knothole were an exact distance from thevious.

Theturbulence vectois a measurement that is added to each individual back hale in
array, after each axis of the vector is multipled by a différ@andom amount ranging
from Oto 1.

For example, suppose you have a repeating element of a btdekHhat is supposed to
be at(2,2,2). You have specified a turbulence vector(df5, 3), meaning you want
the position to be able to vary by no more than 1.0 units in thiiréction, 3.0 units in

the Y direction and 2.0 in Z. This means that the valid randalenew position are
as follows

x can be from 2 to 6.
ycan be from 2to 7.
zcan be from 2 to 5.

The resulting actual position of the black hole’s centettifat particular repeat element
is random (but consistent, so renders will be repeatabld)samewhere within the
above co-ordinates.

There is a rider on the use of turbulence, which basicallhésdame as that of the
repeat vector. Yyou can't specify a value which would causkaek hole to potentially
cross outside of its particular block.

Since POV-Ray doesn’'t know in advance how much a positiohbegilchanged due
to the random nature of the changes, it enforces a rule thgmigar to the one for

342 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Repeatexcept it adds the maximum possible variation for eachtaxike center. For
example, suppose you had a black hole with a centé&t.6f1.0,1.0), radius of 0.5 and
a turbulence 0f0.5,0.25,0) — normally, the mimimum repeat would §&.5,1.5,1.5).
However, now we take into account the turbulence, meanmgihimum repeat vector
is actually(2.0,1.75,1.5).

Repeat summarizedror each of, y andzthe offset of the center must beradius and
the value of the repeat must becenter + radius + turbulence. The exception being
that repeat may be 0 for any dimension, which means do noatrépéhat direction.

7.6.8.8.2 Repeat Warp

Therepeat warp causes a section of the pattern to be repeated over andtdakes
a slice out of the pattern and makes multiple copies of it-bigside. The warp has
many uses but was originally designed to make it easy to medetl veneer textures.
Veneer is made by taking very thin slices from a log and ptatdiem side-by-side on
some other backing material. You see side-by-side neadgtichl ring patterns but
each will be a slice perhapg32th of an inch deeper.

The syntax for a repeat warp is

warp { repeat VECTOR offset VECTOR flip VECTOR }

The repeat vector specifies the direction in which the pattepeats and the width of
the repeated area. This vector must lie entirely along & &xiother words, two of its
three components must be 0. For example

pigment {
wood
warp { repeat 2*x }

}

which means that from= 0 tox = 2 you get whatever the pattern usually is. But from
X = 2 tox = 4 you get the same thing exactly shifted two units over inairection.

To evaluate it you simply take thecoordinate modulo 2. Unfortunately you get exact
duplicates which isn’t very realistic. The optionaf fset vector tells how much to
translate the pattern each time it repeats. For example

pigment {
wood
warp { repeat 2*x offset 0.05*z }

}

means that we slice the first copy from=0tox=2 atz=0but atx =2 tox =4 we
offset toz= 0.05. In the 4 to 6 interval we slice at= 0.10. At then-th copy we slice

7.6. TEXTURES 343

at Q05nz Thus each copy is slightly different. There are no restict on the offset
vector.

Finally the £1ip vector causes the pattern to be flipped or mirrored every cihyy
of the pattern. The first copy of the pattern in the positiveation from the axis is not
flipped. The next farther is, the next is not, etc. The flip et a three component
y, z vector but each component is treated as a boolean valueettsaif {you should or
should not flip along a given axis. For example

pigment {

wood

warp { repeat 2*x flip <1,1,0> }
}

means that every other copy of the pattern will be mirroresbiathex- andy- axis but
not thez-axis. A non-zero value means flip and zero means do not fliptadbat axis.
The magnitude of the values in the flip vector doesn’t matter.

7.6.8.8.3 Turbulence Warp

The POV-Ray language contains an ambiguity and limitatiorthe way you specify

turbulence and transformations such as translate, rateéde and matrix transforms.
Usually the turbulence is done first. Then all translateategtscale and matrix oper-
ations are always done after turbulence regardless of ther an which you specify

them. For example this

pigment {
wood
scale .5
turbulence .2

works exactly the same as

pigment {
wood
turbulence .2
scale .5

The turbulence is always first. A better example of this latdn is with uneven tur-
bulence and rotations.

344 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

pigment {
wood
turbulence 0.5*y
rotate z*60

}
// as compared to

pigment {
wood
rotate z*60
turbulence 0.5*y

}

The results will be the same either way even though you'dtitishould look different.

We cannot change this basic behavior in POV-Ray now becats®fl scenes would
potentially render differently if suddenly the order treomsnation vs turbulence sud-
denly mattered when in the past, it didn't.

However, by specifying our turbulence inside warp statdrpen tell POV-Ray that the
order in which turbulence, transformations and other warpsapplied is significant.
Here’s an example of a turbulence warp.

warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

The significance is that this

pigment {
wood
translate <1,2,3> rotate x*45 scale 2
warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

}

producedifferent results than this.. .

pigment {
wood
warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }
translate <1,2,3> rotate x*45 scale 2

}

You may specify turbulence without using a warp statementwéver you cannot
control the order in which they are evaluated unless youlprmtin a warp.

The evaluation rules are as follows:

7.6. TEXTURES 345

e First any turbulence not inside a warp statement is appégdrdless of
the order in which it appears relative to warps or transfdiona.

e Next each warp statement, translate, rotate, scale onnwaig-by-one,
is applied in the order the user specifies. If you want turzéedone in
a specific order, you simply specify it inside a warp in thepgoplace.

7.6.8.9 Bitmap Modifiers

A bitmap modifier is a modifier used inside an 7.6.1.5 on pag; 28.2.3 on page 292
or 7.6.5.3 on page 315 to specify how the 2-D bitmap is to béexpio the 3-D surface.
Several bitmap modifiers apply to specific kinds of maps aeg Hre covered in the
appropriate sections. The bitmap modifiers discussed irfdll@ving sections are
applicable to all three types of bitmaps.

7.6.8.9.1 The once Option

Normally there are an infinite number of repeating image maypsip maps or material
maps created over every unit square of xheplane like tiles. By adding thence
keyword after a file name you can eliminate all other copiethefmap except the one
at (0,0) to (1,1). In image maps, areas outside this unit square are treatkdiyas
transparent. In bump maps, areas outside this unit squadefaflat with no normal
modification. In material maps, areas outside this unit sxjaee textured with the first
texture of the texture list.

For example:

image map {
gif "mypic.gif"
once

7.6.8.9.2 The "maptype” Option

The default projection of the bump onto tle/-plane is called glanar map type
This option may be changed by adding thep_t ype keyword followed by a number
specifying the way to wrap the bump around the object.

A map type 0 gives the default planar mapping already described.

Amap_type 1 gives aspherical mapping. It assumes that the object isaephany
size sitting at the origin. Thg-axis is the north/south pole of the spherical mapping.
The top and bottom edges of the bitmap just touch the poledégs of any scaling.
The left edge of the bitmap begins at the positivexis and wraps the pattern around

346 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

the sphere fronwestto eastin a —y-rotation. The pattern covers the sphere exactly
once. Theonce keyword has no meaning for this type.

With map_type 2 you get a cylindrical mapping. It assumes that a cylindernyf a
diameter lies along thg-axis. The bump pattern wraps around the cylinder just hiee t
spherical map but remains one unit tall frgma- 0 toy = 1. This band of the pattern is
repeated at all heights unless thece keyword is applied.

Finally map_type 5 is a torus or donut shaped mapping. It assumes that a torus of
major radius 1 sits at the origin in tixez-plane. The pattern is wrapped around similar
to spherical or cylindrical maps. However the top and botasiges of the map wrap
over and under the torus where they meet each other on therinne

Types 3 and 4 are still under development.

For example:

sphere{<0,0,0>,1
pigment {
image_map {
gif "world.gif"
map_type 1
}

7.6.8.9.3 The interpolate Option

Adding theinterpolate keyword can smooth the jagged look of a bitmap. When
POV-Ray asks an image map color or a bump amount for a bumpitadggn asks for

a point that is not directly on top of one pixel but sort of beém several differently
colored pixels. Interpolations returns imrbetweervalue so that the steps between the
pixels in the map will look smoother.

Althoughinterpolate is legal in material maps the color index is interpolated be-
fore the texture is chosen. It does not interpolate the fioklr@as you might hope it
would. In general, interpolation of material maps serveaseful purpose but this may
be fixed in future versions.

There are currently two types of interpolation:

Bilinear —interpolate 2
Normalized Distance —interpolate 4

For example:

7.7. ATMOSPHERIC EFFECTS 347

image_map {
gif "mypic.gif"
interpolate 2

}

Default is no interpolation. Normalized distance is thgldly faster of the two, bilin-
ear does a better job of picking the between color. Normaligdar is used.

If your map looks jaggy, try using interpolation instead ofrgy to a higher resolution
image. The results can be very good.

7.7 Atmospheric Effects

Atmospheric effects are a loosely-knit group of featurest thffect the background
and/or the atmosphere enclosing the scene. POV-Ray irscthéeability to render a
number of atmospheric effects, such as fog, haze, mishaoais and skies.

7.7.1 Atmosphere

Computer generated images normally assume a vacuum spacods not allow the
rendering of natural phenomena like smoke, light beams fet@ry simple approach
to add fog to a scene is explained in section 7.7.3 on page%4.kind of fog does

not interact with any light sources though. It will not shaght beams or other effects
and is therefore not very realistic.

The atmosphere effect overcomes some of the fog’s limitatiny calculating the inter-
action between light and the particles in the atmospherggusilume sampling. Thus
shaft of light beams will become visible and objects willtcsisadowsonto smoke or
fog.

The syntax of the atmosphere is:

atmosphere {

type TYPE

distance DISTANCE

[scattering SCATTERING]
eccentricity ECCENTRICITY]
samples SAMPLES]
jitter JITTER]
aa_threshold AA THRESHOLD]
aa_level AA LEVEL]
colour <COLOUR>]

— o/ s

348 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The type keyword determines the type of scattering model to be usdtkreTare
five different phase functions representing the differentets: isotropic, Rayleigh,
Mie (haze and murky atmosphere) and Henyey-Greenstein. diffiegent scattering
functions are shown in figure 7.22.

Isotropic scatterings the simplest form of scattering because it is independédi-
rection. The amount of light scattered by particles in tieasiphere does not depend
on the angle between the viewing direction and the incomigtd.|

Rayleigh scatteringmodels the scattering for extremely small particles such as
molecules of the air. The amount of scattered light dependieincident light angle.

It is largest when the incident light is parallel or anti-gi#el to the viewing direction
and smallest when the incident light is perpendicular toviesving direction. You
should note that the Rayleigh model used in POV-Ray doesaketthe dependency of
scattering on the wavelength into account.

05

0.0

The light is coming from here
°
S

The light is coming from here

05

10 . 10
-1.0 05 0.0 05 10 00 05 1.0
10 1.00
©
£ o5t £ o050
2 2
£ £
g g
=) D | T - T Tt~
£ o - E R
E 00 E 000 QD 3
o H R e DS -
z z
2 2 e=-06
° °
£ -05 £ -050 €=-03
= = e=00
——-e=03
—-— e=06
-10 ! -1.00 . .
00 05 10 -1.0 -05 00 05 10

Figure 7.22: The different atmospheric scattering fumstio(a) Rayleigh, (b) Mie
"haze”, (c) Mie "murky”, and (d) Heyney-Greenstein

Mie scatteringis used for relatively small particles such as minisculeaewdtoplets of
fog, cloud particles, and particles responsible for thdupedl sky. In this model the

7.7. ATMOSPHERIC EFFECTS 349

scattering is extremely directional in the forward direnti. e. the amount of scattered
light is largest when the incident light is anti-parallethe viewing direction (the light
goes directly to the viewer). It is smallest when the incidéght is parallel to the
viewing direction. The haze and murky atmosphere modeferdif their scattering
characteristics. The murky model is much more directionahtthe haze model.

The Henyey-Greenstein scatteriigbased on an analytical function and can be used
to model a large variety of different scattering types. Timecfion models an ellipse
with a given eccentricitye. This eccentricity is specified by the optional keyword
eccentricity which is only used for scattering type five. An eccentriciyue of
zero defines isotropic scattering while positive valuesl eascattering in the direc-
tion of the light and negative values lead to scattering endpposite direction of the
light. Larger values oé (or smaller values in the negative case) increase the iinadt
property of the scattering.

The easiest way to use the different scattering types witbleclare some constants
and use those in your atmosphere definition:

#declare ISOTROPIC_SCATTERING =
#declare MIE HAZY SCATTERING =
#declare MIE MURKY_ SCATTERING =
#declare RAYLEIGH SCATTERING =
#declare HENYEY GREENSTEIN_SCATTERING

uos W N

The distance keyword is used to determine the density of the particledhiénat-
mosphere. This density is constant for the whole atmospfiére distance parameter
works in the same way as the fog distance.

With the scattering keyword you can change the amount of light that is scattered
by the atmosphere, thus increasing or decreasing the beghtof the atmosphere.
Smaller scattering values decrease the brightness whijerlgalues increase it.

Thecolour or color keyword can be used to create a colored atsosphere, i. @. itca
be used to get particles that filter the light passing throdgie default color is black.

The light passing through the atmosphere (either coming fight sources or the back-
ground) is filtered by the atmosphere’s color if the specifieldr has a non-zero filter
value. In other words, the amount by which the light is filtely the atmosphere’s
color is given by the filter value (pretty much in the same wait & done for the fog).
Using a color ofrgbf (1,0,0,0.25) will result in a slightly reddish atmosphere be-
cause 25% of the light passing through the atmosphere ifiltey (multiplied with)
the color of the atmosphere, i. e. rgh 0,0) (and that's red).

The transmittance channel of the atmosphere’s color is tsegpecify a minimum
translucency. If a value larger than zero is used you'll gsvaee that amount of the
background through the atmosphere, regardless of how deesgmosphere is. This
works in the same way as it does for fogs.

Since the atmosphere is calculated by sampling along thveingeray and looking
for contributions from light sources, it is prone to aliggiust like any sampling

350 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

technique). There are four parameters to minimize theaattfthat may be visible:
samples, jitter,aa_level andaa_threshold.

The samples keyword determines how many samples are calculated in des/ah
along the viewing ray. The length of the interval is either thstance as given by the
distance keyword or the length of tlie part of the viewing ray, whichever is smaller.
This lit part is a section of the ray thatrisost likelylit by a light source. In the case of a
spotlight it is the part of the ray that lies in the cone of tigim other cases it becomes
more difficult. The only thing you should keep in mind is thhe tactual sampling
interval length is variable but there will never be fewerrthibe specified samples in
the specified distance.

One technique to reduce the visibility of sampling artiastto jitter the sample points,
i. . to add random noise to their location. This can be dotietivej i t ter keyword.

Another technique is super-sampling (an anti-aliasinghodt This helps to avoid
missing features by adding additional samples in place® Wigh intensity changes
occur (e. g. the edge of a shadow). The anti-aliasing is tuomeby theaa_level
keyword. If this is larger than zero super-sampling will sed. The additional samples
will be recursively placed between two samples with a higarisity change. The level
to which subdivision takes places is specified bydhelevel keyword. Level one
means one subdivision (one additional sample), level twan®déwo subdivisions (up
to three additional samples), etc.

The threshold for the intensity change is given bydhethreshold keyword. If the
intensity change is greater than this threshold antidalgawill be used for those two
samples.

With spotlights you'll be able to create the best resultsabse their cone of light will
become visible. Pointlights can be used to create effdatsstreet lights in fog. Lights
can be made to not interact with the atmosphere by addingosphere off to the
light source. They can be used to increase the overall leyle loff the scene to make
it look more realistic.

You should note that the atmosphere feature will not worlhéf tamera is inside a
non-hollow object (see 7.5.1 on page 229 for a detailed aggian).

7.7.2 Background

A background color can be specified if desired. Any ray thatsdd hit an object
will be colored with this color. The default background isdk. The syntax for
backgroundis:

background { colour <COLOUR> }

7.7. ATMOSPHERIC EFFECTS 351

7.7.3 Fog

Fog is defined by the following statement:

fog {

fog_type FOG_TYPE

distance DISTANCE

colour <COLOUR>

[turbulence <TURBULENCE>]
turb_depth TURB_DEPTH]
omega OMEGA]
lambda LAMBDA]
octaves OCTAVES]
fog_offset FOG_OFFSET]
fog_alt FOG_ALT]
up <FOG_UP>]
TRANSFORMATION]

— e e e

}

The optionalup vector specifies a direction pointing up, generally the sasi¢he
camera’s up vector. All calculations done during the grofoglevaluation are done
relative to this up vector, i. e. the actual heights are d¢ated along this vector.

The up vector can also be modified using any of the known toamesftions described
in 7.3.1 on page 214. Though it may not be a good idea to scaleglvector — the
results are hardly predictable — it is quite useful to be &bletate it. You should also
note that translations do not affect the up direction (and tion't affect the fog).

Currently there are two fog typespnstant focandground fog The constant fog has a
constant density everywhere while the ground fog has a aohdensity for all heights
below a given point on the up axis and thins out along this.aXise height below
which the fog has constant density is specified by fibg_of fset keyword. The
fog_alt keyword is used to specify the rate by which the fog fades awstyan
altitude offog.of fset+ fog alt the fog has a density of 25%. The density of the fog
at a given heighy is calculated by the formula:

1

, y> fogalt
. y— fog.of fset 2 Y g
denS|ty: 1+ W (746)
1, y < fog alt

The total density along a ray is calculated by integratiagnfthe height of the starting
point to the height of the end point.

Two constants are defined for easy use of the fog types in hediNsT.INC:

// FOG TYPE CONSTANTS
#declare Constant_Fog = 1
#declare Ground_Fog

Il
N

352 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The color of a pixel with an intersection depths calculated by

Colorpixel = e%d Colorgpject+ (1— e%) Colorfog (7.47)

whereD is the fog distance. At depth 0 the final color is the objectiorc If the
intersection depth equals the fog distance the final colesists of 64% of the object’s
color and 36% of the fog's color.

The fog color that is given by theolor keyword has three purposes. First it defines
the color to be used in blending the fog and the backgrouncorgkit is used to specify

a translucency threshold. By using a transmittance lakger zero one can make sure
that at least that amount of light will be seen through the fafith a transmittance of
0.3 you'll see at least 30% of the background. Third it cand®duo make a filtering
fog. With a filter value larger than zero the amount of backgiblight given by the
filer value will be multiplied with the fog color. A filter vakiof 0.7 will lead to a fog
that filters 70% of the background light and leaves 30% unéitte

Fogs may bdayered That is, you can apply as many layers of fog as you like. Gen-
erally this is most effective if each layer is a ground fog iffedent color, altitude and
with different turbulence values. To use multiple layerdanfs, just add all of them to
the scene.

You may optionally stir up the fog by adding turbulence. Eherbulence keyword
may be followed by a float or vector to specify an amount of ulebce to be used.
The omega, 1lambda and octaves turbulence parameters may also be specified.
See section 7.6.8 on page 332 for details on all of theselambe parameters.

Additionally the fog turbulence may be scaled along thedtiiog of the viewing ray
using theturb_depth amount. Typical values are from 0.0 to 1.0 or more. The
default value is 0.5 but any float value may be used.

You should note that the fog feature will not work if the camirinside a non-hollow
object (see 7.5.1 on page 229 for a detailed explanation).

7.7.4 Sky Sphere

The sky sphere is used create a realistic sky backgrounautithe need of an addi-
tional sphere to simulate the sky. Its syntax is:

sky_sphere {
pigment { PIGMENT1 }
pigment { PIGMENT2 }
pigment { PIGMENT3 }

[TRANSFORMATION]

7.7. ATMOSPHERIC EFFECTS 353

The sky sphere can contain several pigment layers with gteplgment being at the
top, i. e. itis evaluated last, and the first pigment being@bbttom, i. e. itis evaluated
first. If the upper layers contain filtering and/or transimgtcomponents lower layers
will shine through. If not lower layers will be invisible.

The sky sphere is calculated by using the direction vecttheparameter for evaluat-
ing the pigment patterns. This leads to results indeperfdemt the view point which
pretty good models a real sky where the distance to the sky&hrarger than the
distances between visible objects.

If you want to add a nice color blend to your background you easily do this by
using the following example.

sky_sphere {
pigment {

gradient y

color_map {
[0.5 color CornflowerBlue]
[1.0 color MidnightBlue]

}

scale 2

translate -1

}

This gives a soft blend fronCornflowerBlueat the horizon taMidnightBlue at the
zenith. The scale and translate operations are used to rajiréiction vector values,
which lie in the range from—1,—-1,—1) to (1,1,1), onto the range fron{0,0,0) to
(1,1,1). Thus a repetition of the color blend is avoided for partshef $ky below the
horizon.

In order to easily animate a sky sphere you can transforminguke known transfor-
mations described in 7.3.1 on page 214. Though it may not lb®a iglea to translate
or scale a sky sphere — the results are hardly predictableis-qitite useful to be able
to rotate it. In an animation the color blendings of the sky ba made to follow the
rising sun for example.

You should note that only one sky sphere can be used in ang.sdealso will not
work as you might expect if you use camera types like the gréqghic or cylindrical
camera. The orthographic camera uses parallel rays and/tils only see a very
small part of the sky sphere (you'll get one color skies in tuases). Reflections in
curved surface will work though, e. g. you will clearly see gky in a mirrored ball.

7.7.5 Rainbow

The rainbow is a fog-like, circular arc that can be used tatereainbows. The syntax
is:

354 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

rainbow {
direction <DIR>
angle ANGLE
width WIDTH
distance DISTANCE
color_map { COLOUR_MAP }
[jitter JITTER]
[up <UP>]
[arc_angle ARC_ANGLE]
[falloff_angle FALLOFF_ANGLE]
}

Thedirection vector determines the direction of the (virtual) light thetrespon-
sible for the rainbow. lIdeally this is an infinitely far awagHht source like the sun
that emits parallel light rays. The position and size of #ielyow are specified by the
angle andwidth keywords. To understand how they work you should first know
how the rainbow is calculated.

For each ray the angle between the rainbow’s direction veuid the ray’s direction
vector is calculated. If this angle lies in the interval frdfNGLE—WIDTH/2 to
ANGLE+WIDTH/2 the rainbow is hit by the ray. The color is then determined by
using the angle as an index into the rainbow’s colormap. rAfte color has been
determined it will be mixed with the background color in tlzar® way like it is done
for fogs.

Thus the angle and width parameters determine the angles widch the rainbow
will be seen. The optional i tter keyword can be used to add random noise to the
index. This adds some irregularity to the rainbow that matdesk more realistic.

Thedistance keyword is the same like the one used with fogs. Since th&oairs
a fog-like effect it's possible that the rainbow is notickabn objects. If this effect is
not wanted it can be avoided by using a large distance valyaleBault a sufficiently
large value is used to make sure that this effect does noteccu

The color_map keyword is used to assign a color map that will be mapped dwo t
rainbow. To be able to create realistic rainbows it is imgatrtto know that the index
into the color map increases with the angle between the emdsrainbow’s direction
vector. The index is zero at the innermasig and one at the outermasihg. The filter
and transmittance values of the colors in the color map Haveame meaning as the
ones used with fogs (see section 7.7.3 on page 351).

The default rainbow is a 360 degree arc that looks like aeirthis is no problem as
long as you have a ground plane that hides the lower, noblgipart of the rainbow. If

this isn’t the case or if you don’t want the full arc to be visilyou can use the optional
keywordsup, arc angle andfalloff angle to specify a smaller arc.

The arc_angle keyword determines the size of the arc in degrees (from 0 @ 36
degrees). A value smaller than 360 degrees results in arhatr@bruptly vanishes.
Since this doesn’t look nice you can use el 1of f_angle keyword to specify a

7.8. GLOBAL SETTINGS 355

region in which the rainbow will smoothly blend into the bgodund making it vanish
softly. The falloff angle has to be smaller or equal to theaargle.

The up keyword determines were tteero angleposition is. By changing this vector
you canrotate the rainbow about its direction. You should note that thegares from
—ARCANGLE/2 to +ARCANGLE/2. The soft regions go frormARCANGLE/2
to —FALLOFF_ANGLE/2 and from+FALLOFF_ANGLE/2 to +ARC ANGLE/2.

The following example generates a 120 degrees rainbow athés a falloff region of
30 degrees at both ends:

rainbow {
direction <0, 0, 1>
angle 42.5
width 5
distance 1000
jitter 0.01
color_map { Rainbow_Color Map }
up <0, 1, 0>
arc_angle 120
falloff_ angle 60

It is possible to use any number of rainbows and to combinm twith other atmo-
spheric effects.

7.8 Global Settings

The global_settings statement is &atch-all statement that gathers together a
number of global parameters. The statement may appear angvrha scene as long
as its not inside any other statement. You may have multplebal_settings
statements in a scene. Whatever values were specified iashhg bbal_settings
statement override any previous settings. Regardless efeyjou specify the state-
ment, the feature applies to the entire scene.

Note that some items which were language directives in pusviversions of POV-
Ray have been moved inside th@obal settings statement so that it is more
obvious to the user that their effect is global. The old symgermitted but generates
a warning.

global_settings {
adc_bailout FLOAT
ambient light COLOR
assumed_gamma FLOAT
hf_gray 16 BOOLEAN

356 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

irid_wavelength COLOR

max_intersections INTEGER

max_trace level INTEGER

number_ of_ waves INTEGER

radiosity { RADIOSITY ITEMS... }
}

Each item is optional and may appear in and order. If an itegpéified more than
once, the last setting overrides previous values. Detailsach item are given in the
following sections.

7.8.1 ADCBailout

In scenes with many reflective and transparent surfaces;R&\¢an get bogged down
tracing multiple reflections and refractions that contigbuery little to the color of a
particular pixel. The program uses a system calleldptive Depth Contro{ADC)
to stop computing additional reflected or refracted raysnaheir contribution is in-
significant.

You may use the global settingdc_bailout keyword followed by float value to
specify the point at which a ray’s contribution is considkisignificant.

global_settings { adc _bailout FLOAT }

The default value is 1/255, or approximately 0.0039, sinchange smaller than that
could not be visible in a 24 hit image. Generally this settigerfectly adequate and
should be left alone. Settirgdc_bailout to Owill disable ADC, relying completely

onmax_trace_level to set an upper limit on the number of rays spawned.

See 7.8.6 on page 360 for details on how ADC aa&k trace level interact.

7.8.2 Ambient Light

Ambient light is used to simulate the effect of interdiffusflection that is responsible
for lighting areas that partially or completely lie in shadoPOV-Ray provides an
ambient light source to let you easily change the brightreéghe ambient lighting
without changing every ambient value in all finish statersefit also lets you create
interesting effects by changing the color of the ambieritlgpurce. The syntax is:

global_settings { ambient_light COLOR }

The default is a white ambient light source set@b(1,1,1). The actual ambient used
is:

See section 7.6.3.1 on page 295 for more information.

7.8. GLOBAL SETTINGS 357

7.8.3 AssumedGamma

Many people may have noticed at one time or another that saoageis are too bright
or dim when displayed on their system. As a rule, Macintostraufind that images
created on a PC are too bright, while PC users find that imageaseti on a Macintosh
are too dim.

The assumed_gamma global setting works in conjunction with thgisplay_Gamma
INI setting (see section 6.2.2.2.1 on page 158) to ensutesttene files render the
same way across the wide variety of hardware platforms @&t Ray is used on. The
assumed gamma setting is used in a scene file by adding

global_settings { assumed_gamma FLOAT }

where the assumed gamma value is the correction factor tpfied before the pixels
are displayed and/or savedto disk. For scenes createdenwadsions of POV-Ray, the
assumed gamma value will be the same as the display gamn&ofatioe system the
scene was created on. For PC systems, the most common digptaya is 2.2, while
for scenes created on Macintosh systems should use a saangagaf 1.8. Another
gamma value that sometimes occurs in scenes is 1.0.

Scenes that do not have aBsumed gamma global setting will not have any gamma
correction performed on them, for compatibility reasofgol are creating new scenes
or rendering old scenes, it is strongly recommended thatprgun an appropriate
assumed_gamma global setting. For new scenes, you should use an assumedagam
value of 1.0 as this models how light appears in the real wodde realistically.

The following sections explain more thoroughly what gammiand why it is impor-
tant.

7.8.3.1 Monitor Gamma

The differences in how images are displayed is a result of @aaemputer actually
takes an image and displays it on the monitor. In the prodagmdering an image and
displaying it on the screen, several gamma values are iaprincluding the POV
scene file or image file gamma and the monitor gamma.

Most image files generated by POV-Ray store numbers in ttgeerimm 0 to 255 for
each of the red, green and blue components of a pixel. Theabara represent the
intensity of each color component, with 0 being black and &g the brightest color
(either 100% red, 100% green or 100% blue). When an imagsyitagied, the graphics
card converts each color component into a voltage whichristeghe monitor to light
up the red, green and blue phosphors on the screen. Theevgtagually proportional
to the value of each color component.

Gamma becomes important when displaying intensities tteat'tathe maximum or
minimum possible values. For example, 127 should repres@dit of the maximum

358 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

intensity for pixels stored as numbers between 0 and 255. y&ems that don't do

gamma correction, 127 will be converted to 50% of the maxinveitage, but because
of the way the phosphors and the electron guns in a monitok,vilis may be only

22% of the maximum color intensity on a monitor with a gamma&.@f To display a

pixel which is 50% of the maximum intensity on this monitog would need a voltage
of 73% of the maximum voltage, which translates to storingkalpalue of 186.

The relationship between the input pixel value and the diggl intensity can be ap-
proximated by an exponential function

obright = ibrightd'splay-gamma (7.49)

whereobright s the output intensity anitright is the input pixel intensity. Both values
are in the range from 0 to 1 (0% to 100%). Most monitors haveetfgamma value
in the range from 1.8 to 2.6. Using the above formula vditplay gammavalues
greater than 1 means that the output brightness will be fegsthe input brightness.
In order to have the output and input brightness be equal arathgystem gamma of
1is needed. To do this, we need to gamma correct the inputtbegs in the same
manner as above but with a gamma value (di&play gammabefore it is sent to the
monitor. To correct for a display gamma of 2.2, this pre-rmmgamma correction
uses a gamma value of0¥2.2 or approximately 0.45.

How the pre-monitor gamma correction is done depends on hdrdtvare and soft-
ware is being used. On Macintosh systems, the operatingmyss taken it upon itself
to insulate applications from the differences in displaydiare. Through a gamma
control panel the user may be able to set the actual monitongaand MacOS will
then convert all pixel intensities so that the monitor wipaar to have the specified
gamma value. On Silicon Graphics machines, the displaytadaps built-in gamma
correction calibrated to the monitor which gives the deboreerall gamma (the default
is 1.7). Unfortunately, on PCs and most UNIX systems, it isafhe application to do
any gamma correction needed.

7.8.3.2 Image File Gamma

Since most PC and UNIX applications and image file formatstdmmerstand display
gamma, they don't do anything to correct for it. As a resudgrs creating images on
these systems adjust the image in such a way that it has trecttrightness when
displayed. This means that the data values stored in theafgeismiade brighter to com-
pensate for the darkening effect of the monitor. In essehee).45 gamma correction
is built in to the image files created and stored on these migst&/hen these files are
displayed on a Macintosh system, the gamma correction ibuiti the file, in addi-
tion to gamma correction built into MacOS, means that thegenaill be too bright.
Similarly, files that look correct on Macintosh or SGI sysgehecause of the built-in
gamma correction will be too dark when displayed on a PC.

The new PNG format files generated by POV-Ray 3.0 overcom@ribt@em of too
much or not enough gamma correction by storing the image &itenga (which is

7.8. GLOBAL SETTINGS 359

1.0/displaygamma inside the PNG file when it is generated by POV-Ray. When
the PNG file is later displayed by a program that has been sebupctly, it uses
this gamma value as well as the current display gamma toatdioethe potentially
different display gamma used when originally creating thage.

Unfortunately, of all the image file formats POV-Ray supppRNG is the only one
that has any gamma correction features and is thereforerprdffor images that will
be displayed on a wide variety of platforms.

7.8.3.3 Scene File Gamma

The image file gamma problem itself is just a result of how esdhemselves are
generated in POV-Ray. When you start out with a new scene anglacing light
sources and adjusting surface textures and colors, youallsnmake several attempts
before the lighting is how you like it. How you choose thestisgs depends upon
the preview image or the image file stored to disk, which in fardependent upon the
overall gamma of the display hardware being used.

This means that as the artist you are doing gamma correctitimei POV-Ray scene
file for your particular hardware. This scene file will gerteran image file that is
also gamma corrected for your hardware and will displayemity on systems similar
to your own. However, when this scene is rendered on anotagopn, it may be
too bright or too dim, regardless of the output file formatdisBather than have you
change all the scene files to have a single fixed gamma valaeghdorbid!), POV-
Ray 3.0 allows you to specify in the scene file the display ganofithe system that
the scene was created on.

The assumed_gamma global setting, in conjunction with thBisplay_Gamma INI
setting lets POV-Ray know how to do gamma correction on angs@ene so that the
preview and output image files will appear the correct brighs on any system. Since
the gamma correction is done internally to POV-Ray, it witiguce output image files
that are the correct brightness for the current displayandigss of what output format
is used. As well, since the gamma correction is performethénhigh-precision data
format that POV-Ray uses internally, it produces bettenlteshan gamma correction
done after the file is written to disk.

Although you may not notice any difference in the output omrysystem with and
without anassumed_gamma setting, the assumed gamma is important if the scene is
ever rendered on another platform.

7.8.4 HFGray 16

The hf_gray_16 setting is useful when using POV-Ray to generate heigh¢fifdod
use in other POV-Ray scenes. The syntax is

global_settings { hf_gray 16 BOOLEAN }

360 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

The boolean value turns the option on or off. If the keywordpscified without the
boolean value then the option is turned on.hif gray 16 is not specified in any
global_settings statement in the entire scene then the default is off.

Whenhf_gray_16 is on, the output file will be in the form of a heightfield, withet
height at any point being dependent on the brightness ofiat The brightness of a
pixel is calculated in the same way that color images areartent to grayscale images:

height=0.3red+ 0.59 green+ 0.11 blue (7.50)

Setting thenf_gray_16 option will cause the preview display, if used, to be gralesca
rather than color. This is to allow you to see how the heiglatfiéll look because some
file formats store heightfields in a way that is difficult to emstand afterwards. See
section 7.5.2.5 on page 236 for a description of how POV-Ragtitfields are stored
for each file type.

7.8.5 Irid_Wavelength

Iridescence calculations depend upon the dominant wayisgrof the primary col-
ors of red, green and blue light. You may adjust the valuesgusiie global setting
iridwavelength as follows...

global_settings { irid wavelength COLOR }

The default value iggb(0.25,0.18,0.14) and any filter or transmit values are ignored.
These values are proportional to the wavelength of lighttoeyg represent no real world
units.

In general, the default values should prove adequate butrexéde this option as a
means to experiment with other values.

7.8.6 MaxTrace_Level

In scenes with many reflective and transparent surfaces R&\tan get bogged down
tracing multiple reflections and refractions that conti#buery little to the color of a
particular pixel. The global settingax_trace_level defines the maximum number
of recursive levels that POV-Ray will trace a ray.

global_settings { max trace_level INTEGER }

This is used when a ray is reflected or is passing through sgasent object and when
shadow rays are cast. When a ray hits a reflective surfacpavtrss another ray to
see what that point reflects. That is trace level one. If & hitother reflective surface

7.8. GLOBAL SETTINGS 361

another ray is spawned and it goes to trace level two. Thermarilevel by default is
five.

One speed enhancement added to POV-Ray in version A@aigtive Depth Control
(ADC). Each time a new ray is spawned as a result of reflectiaefoaction its con-
tribution to the overall color of the pixel is reduced by thmaunt of reflection or the
filter value of the refractive surface. At some point thistcitmtion can be considered
to be insignificant and there is no point in tracing any moses ra&daptive depth con-
trol is what tracks this contribution and makes the decigibawhen to bail out. On
scenes that use a lot of partially reflective or refractivéames this can result in a con-
siderable reduction in the number of rays fired and makeafédrto use much higher
max_trace_level values.

This reduction in color contribution is a result of scalingtbe reflection amount and/or
the filter values of each surface, so a perfect mirror or pyfelear surface will not

be optimizable by ADC. You can see the results of ADC by waighheRays Saved

andHighest Trace Levalisplays on the statistics screen.

The point at which a ray’s contribution is considered indigant is controlled by the
adc_bailout value. The default is 1/255 or approximately 0.0039 sincbange
smaller than that could not be visible in a 24 bit image. Galhethis setting is per-
fectly adequate and should be left alone. Settiig bailout to O will disable ADC,
relying completely omax_trace_level to setan upper limit on the number of rays
spawned.

If max_trace_level is reached before a non-reflecting surface is found and if ADC
hasn't allowed an early exit from the ray tree the color isime¢d as black. Raise
max_trace_level if you see black areas in a reflective surface where theredhou
be a color.

The other symptom you could see is with transparent objéctsinstance, try making
a union of concentric spheres with a clear texture on themkeMan of them in the
union with radius’s from 1 to 10 and render the scene. The énvaitj show the first
few spheres correctly, then black. This is because a newikused every time you
pass through a transparent surface. Raise trace_level to fix this problem.

Note that raisingnax_trace_level will use more memory and time and it could
cause the program to crash with a stack overflow error, afthADC will alleviate
this to a large extent. Values farax_trace_level are not restricted, so it can be
set to any number as long as you have the time and memory. ldowegreasing its
setting does not necessarily equate to increased imaggyquisless such depths are
really needed by the scene.

7.8.7 MaxIntersections

POV-Ray uses a set of internal stacks to collect ray/objgetrsection points. The
usual maximum number of entries in thdsstacksis 64. Complex scenes may cause
these stacks to overflow. POV-Ray doesn’'t stop but it mayriectly render your

362 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

scene. When POV-Ray finishes rendering, a number of statete displayed. If you
seel-Stack Overflowseported in the statistics you should increase the staek sidd
a global setting to your scene as follows:

global_settings { max_intersections INTEGER }

If the I-Stack Overflowsemain increase this value until they stop.

7.8.8 NumberOf_Waves

The wave and ripples pattern are generated by summing & séneaves, each with
a slightly different center and size. By default, ten wawessummed but this amount
can be globally controlled by changing thember_of_waves setting.

global_settings { number of_waves INTEGER }

Changing this value affects both waves and ripples alikdigratterns in the scene.

7.8.9 Radiosity

Radiosity is an extra calculation that more realisticathjputes the diffuse interreflec-
tion of light. This diffuse interreflection can be seen if yaace a white chair inaroom
full of blue carpet, blue walls and blue curtains. The chalfpick up a blue tint from
light reflecting off of other parts of the room. Also noticettthe shadowed areas of
your surroundings are not totally dark even if no light seushines directly on the
surface. Diffuse light reflecting off of other objects fills the shadows. Typically
ray-tracing uses a trick calleambientlight to simulate such effects but it is not very
accurate.

Radiosity is more accurate than simplistic ambient light ibtiakes much longer to
compute. For this reason, POV-Ray does not use radiosityefgull. Radiosity is
turned on using th&adiosity INI file option or the+QR command line switch.

The following sections describes how radiosity works, hoveantrol it with various
global settings and tips on trading quality vs. speed.

7.8.9.1 How Radiosity Works

The problem of ray-tracing is to figure out what the light légeat each point that you
can see in a scene. Traditionally, in ray tracing, this ikénointo the sum of these
components:

Diffuse The effect that makes the side of things facing tltlbrighter.

7.8. GLOBAL SETTINGS 363

Specular The effect that makes shiny things have dings aklsgaon
them.

Reflection The effect that mirrors give.

Ambient The general all-over light level that any scene dsch keeps
things in shadow from being pure black.

POV’s radiosity system, based on a method by Greg Ward, gesva way to replace
the last term — the constant ambient light value — with a ligkel which is based on
what surfaces are nearby and how bright in turn they are.

The first thing you might notice about this definition is thaisicircular: the light of
everything is dependent on everything else and vice versa. i$ true in real life but
in the world of ray-tracing, we can make an approximatione @pproximation that is
used is: the objects you are looking at have theibientvalues calculated for you by
checking the other objects nearby. When those objects arketi during this process,
however, a traditional constant ambient term is used.

How does POV-Ray calculate the ambient term for each pointzddding out more
rays, in many different directions, and averaging the tesW! typical point might use
200 or more rays to calculate its ambient light level cotyect

Now this sounds like it would make the ray-tracer 200 timesvel. This is true,
except that the software takes advantage of the fact thateaimlight levels change
quite slowly (remember, shadows are calculated separateharp shadow edges are
not a problem). Therefore, these extra rays are sent outomdg in a while(about 1
time in 50), then these calculated values are saved anddrémseearby pixels in the
image when possible.

This process of saving and reusing values is what causes#usfor a variety of tuning
parameters, so you can get the scene to look just the way yoti wa

7.8.9.2 Adjusting Radiosity

As described earlier, radiosity is turned on by usingRlaeliosity INI file option or the

+QR command line switch. However radiosity has many paramétetsare specified
inaradiosity { ... } statementinside global settings { ... } state-

ment as follows:

global_settings {
radiosity {

brightness FLOAT
count INTEGER
distance_maximum FLOAT
error_bound FLOAT
gray_threshold FLOAT
low_error_ factor FLOAT
minimum_ reuse FLOAT

364 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

nearest_count INTEGER
recursion_limit INTEGER
}
}

Each item is optional and may appear in and order. If an itespégified more than
once the last setting overrides previous values. Detailsamh item is given in the
following sections.

7.8.9.2.1 brightness

This is the degree to which ambient values are brightenearddfeing returned up-
wards to the rest of the system. If an object is (&d0, 0), with an ambient value
of 0.3, in normal situations a red component of 0.3 will beeatith. With radiosity
on, assume it was surrounded by an object of gra c{d@,0.6,0.6). The average
color returned by the gathering process will be the sames Wil be multiplied by
the texture’s ambient weight value of 0.3, returnifty18, 0.18,0.18). This is much
darker than the 0.3 which would be added in normally. Theegfall returned values
are brightened by the inverse of the average of the calcllskies, so the average
ambient added in does not change. Some will be higher thasifigole(higher than
0.3 in this example) and some will be lower but the overalhscbkrightness will be
unchanged.

The default value is 3.3.

7.8.9.2.2 count

The number of rays that are sent out whenever a new radiasitg has to be calculated
is given bycount. Values of 100 to 150 make most scenes look good. Higher ¥alue
might be needed for scenes with high contrast between lgyatid or small patches
of light causing the illumination. This would be used only &final rendering on an
image because it is very compute intensive. Since most saabeulate the ambient
value at 1% to 2% of pixels, as a rough estimate, your rengevitl take 1% to 2% of
this number times as long. If you set it to 300 your renderinightntake 3 to 6 times
as long to complete (1% to 2% times 300).

When this value is too low, the light level will tend to lookitle bit blotchy, as if the
surfaces you're looking at were slightly warped. If this & rmportant to your scene
(as in the case that you have a bump map or if you have a strahgegthen by all
means use a lower number.

The default value is 100.
7.8.9.2.3 distancanaximum

Thedistance maximum is the only tuning value that depends upon the size of the
objects in the scene. This omaust be set for scenes to render properly the rest

7.8. GLOBAL SETTINGS 365

can be ignored for a first try. It is difficult to describe theamimg simply but it sets
the distance in model units from a sample at which the errguésanteed to hit 100%
(radiosity error bound > 1): no samples are reused at a distance larger than
this from their original calculation point.

Imagine an apple at the left edge of a table. The goal is to reafethat samples on
the surface of the table at the right are not used too clogeetagple and definitely not
underneath the apple. If you had enough rays there wouldratfroblem since one of
them would be guaranteed to hit the apple and set the reusis @dperly for you. In
practice, you must limit this.

We use this technique: find the object in your scene which trighe the following
problem: a small object on a larger flatter surface that yontvgaod ambient light
near. Now, how far from this would you have to get to be suredha of your rays had
a good chance of hitting it? In the apple-on-the-table exapgssuming | used one
POV-Ray unit as one inch, | might use 30 inches. A theordficaund way (when you
are running lots of rays) is the distance at which this olgeop is 5 degrees above the
horizon of the sample point you are considering. This corresponddtnit 11 times
the height of the object. So, for a 3-inch apple, 33 inchesemakme sense. For good
behavior under and around a 1/3 inch pea, use 3 inches etcth&ndERY rough
estimate is one third the distance from your eye positioméopoint you are looking
at. The reasoning is that you are probably no more than 9@#from the apple on
the table, if you care about the shading underneath it.

The default value is 0.

7.8.9.2.4 errorbound

Theerror_bound is one of the two main speed/quality tuning values (the aghef
course the number of rays shot). In an ideal world, this wbeltheonly value needed.
It is intended to mean the fraction of error tolerated. Fa@meple, if it were set to 1 the
algorithm would not calculate a new value until the error lom last one was estimated
at as high as 100%. Ignoring the error introduced by rotdtorthe moment, on flat
surfaces this is equal to the fraction of the reuse distambigh in turn is the distance
to the closest item hit. If you have an old sample on the floointfes from a wall,
an error bound of 0.5 will get you a new sample at a distancéoifia5 inches from
the wall. 0.5 is a little rough and ready, 0.33 is good for figalderings. Values much
lower than 0.3 takéorever.

The default value is 0.4.

7.8.9.2.5 graythreshold

Diffusely interreflected light is a function of the object®and the point in question.
Since this is recursively defined to millions of levels ofuesion, in any real life scene,
every point is illuminated at least in part by every othert pérthe scene. Since we

366 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

can't afford to compute this, we only do one bounce and theutated ambient light
is very strongly affected by the colors of the objects neaiThis is known as color
bleed and it really happens but not as much as this calcnlatgthod would have you
believe. Thegray threshold variable grays it down a little, to make your scene
more believable. A value of .6 means to calculate the ambhiaiuie as 60% of the
equivalent grey value calculated, plus 40% of the actualevahlculated. At 0%, this
feature does nothing. At 100%, you always get white/greyianibdight, with no hue.
Note that this does not change the lightness/darknesstlanktrength of hue/grayness
(in HLS terms, it changes H only).

The default value is 0.5

7.8.9.2.6 lowerror _factor

If you calculate just enough samples, but no more, you willageimage which has

slightly blotchy lighting. What you want is just a few extnatérspersed, so that the
blending will be nice and smooth. The solution to this is thesaic preview: it goes

over the image one or more times beforehand, calculatinggiyl values. To ensure
that you get a few extra, the radiosity algorithm lowers th®rebound during the

pre-final passes, then sets it back just before the final gdss.tuning value sets the
amount that the error bound is dropped during the prelirgimaage passes. If your
low error factor is 0.8 and your error bound is set to 0.4 it wélly use an error bound

of 0.32 during the first passes and 0.4 on the final pass.

The default value is 0.8.

7.8.9.2.7 minimumreuse

The minimum effective radius ratio is set by nimum reuse. This is the fraction
of the screen width which sets the minimum radius of reusecrth sample point
(actually, it is the fraction of the distance from the eye that two are roughly equal).
For example, if the value is 0.02 the radius of maximum reasevery sample is set to
whatever ground distance corresponds to 2% of the widtheoktineen. Imagine you
sent a ray off to the horizon and it hits the ground at a digaficd 00 miles from your
eyepoint. The reuse distance for that sample will be set td&smAt a resolution of
300x 400 this will correspond to (very roughly) 8 pixels. The theis that you don't
want to calculate values for every pixel into every crevigergvhere in the scene, it
will take too long. This sets a minimum bound for the reusethif value is too low,
(which is should be in theory) rendering gets slow, and msidrners can get a little
grainy. If it is set too high, you don't get the natural darkenof illumination near
inside edges, since it reuses. At values higher than 2% wotigettting more just plain
errors, like reusing the illumination of the open table unéath the apple.

Remember that this is a unitless ratio.

The default value is 0.015.

7.8. GLOBAL SETTINGS 367

7.8.9.2.8 nearestount

Thenearest count value is the maximum number of old ambient values blended
together to create a new interpolated value. It will alwag#hien geometrically closest
reusable points that get used. If you go lower than 4, thilagsget pretty patchy. This
can be good for debugging, though. Must be no more than 1€e sivat is the size of
the array allocated.

The default value is 6.

7.8.9.2.9 radiosityquality

This feature is not yet implemented.

7.8.9.2.10 recursiodimit

This value determines how many recursion levels are usegl¢alate the diffuse inter-
reflection. Valid values are one and two.

The default value is 1.

7.8.9.3 Tipson Radiosity

If you want to see where your values are being calculated-sét osity_count
down to about 20, setradiosity_nearest_count to 1 and set
radiosity_grey to 0. This will make everything maximally patchy, so you't b
able to see the borders between patches. There will haveabesatiosity calculation

at the center of most patches. As a bonus, this is quick to Yon.can then change
theradiosity_error_bound up and down to see how it changes things. Likewise
modify radiosity_reuse_dist_min andmax.

One way to get extra smooth results: crank up the sample ¢aente gone as high as
1300) and drop theow error factor to something small like 0.6. Bump up the
reuse_count to 7 or 8. This will get better values, and more of them, théerpolate
among more of them on the last pass. This is not for people avitttk of patience
since it is like a squared function. If your blotchiness is/dn certain corners or near
certain objects try tuning the error bound instead. Nevep itrby more than a little at
a time, since the run time will get very long.

If your scene looks good but right near some objects you gas sy the right (usually
darker) color showing on a flat surface of the wrong color @sas far away from the
object), then try droppingeuse dist max. If that still doesn’'t work well increase
your ray count by 100 and drop the error bound just a bit. If gtllhave problems,
dropreuse_nearest_count to about 4.

368 CHAPTER 7. SCENE DESCRIPTION LANGUAGE

Part IV

Appendix

369

Appendix A

Copyright

The following sections contain the legal information armthise for the Persistence of
VisionO Ray-Tracer, also called POV-Ray

Before you use this program you have to read the sectiongrbelo

A.1 General License Agreement

THIS NOTICE MUST ACCOMPANY ALL OFFICIAL OR CUSTOM PERSIS-
TENCE OF VISION FILES. IT MAY NOT BE REMOVED OR MODIFIED.
THIS INFORMATION PERTAINS TO ALL USE OF THE PACKAGE WORLD-
WIDE. THIS DOCUMENT SUPERSEDES ALL PREVIOUS GENERAL LlI-
CENSES OR DISTRIBUTION POLICIES. ANY INDIVIDUALS, COMPANI ES
OR GROUPS WHO HAVE BEEN GRANTED SPECIAL LICENSES MAY CON-
TINUE TO DISTRIBUTE VERSION 2.x BUT MUST RE-APPLY FOR VER-
SION 3.00 OR LATER.

This document pertains to the use and distribution of theiftence of Visiodl Ray-
Tracer a. k. a POV-Ray. It applies to all POV-Ray program source files, executable
(binary) files, scene files, documentation files, help filenbps and INI files contained

in official POV-Ray Tearl archives. All of these are referred to heretfzes software

All of this software is Copyright 1991,1996 by the POV-Rayaif€l. Although it is
distributed as freeware, it SOT Public Domain.

The copyrighted package may ONLY be distributed and/or fremtliaccording to the
license granted herein. The spirit of the license is to pteniROV-Ray as a standard
ray-tracer, provide the full POV-Ray package freely to asynasers as possible, pre-
vent POV-Ray users and developers from being taken adwamtagenhance the life
quality of those who come in contact with POV-Ray. This lisemvas created so these
goals could be realized. You are legally bound to follow éhages, but we hope you
will follow them as a matter of ethics, rather than fear afhtion.

371

372 APPENDIX A. COPYRIGHT

A.2 Usage Provisions

Permission is granted to the user to use the software andiatesbfiles in this package
to create and render images. The use of this software foruttpmpe of creating images
is completely free. The creator of a scene file and the imagated from the scene
file, retains all rights to the image and scene file they cceatel may use them for any
purpose commercial or noncommercial.

The user is also granted the right to use the scenes files, foittnaps, and include
files distributed in theNcLUDE, TEXSAMPS andPOV3DEMO sub- directories in their
own scenes. Such permission does not extend to files irdivsCN sub-directory.
POVSCN files are for your enjoyment and education but may not be theslmf any
derivative works.

A.3 General Rules for All Distributions

The permission to distribute this package under certaiy gpecific conditions is
granted in advance, provided that the following conditians met.

These archives must not be re-archived using a differenhadetvithout the explicit
permission of the POV-Team. You may rename the archivestoriyeet the file name
conventions of your system or to avoid file name duplicatioatswe ask that you try
to keep file names as similar to the originals as possiblesffample:pPovsRc.zIpP to
POVSRC30.zIP)

Ready-to-run unarchived distribution on CD-ROM is alsonmigted if the files are
arranged in our standard directory or folder structure asgh it had been properly
installed on a hard disk.

You must distribute &ull packageof files as described in the next section. No portion
of this package may be separated from the package and disttilseparately other
than under the conditions specified in the provisions givelovi

Non-commercial distribution in which no money or compeitsats charged (such as a
user copying the software for a personal friend or colleagupermitted with no other
restrictions.

Teachers and educational institutions may also distritheéematerial to students and
may charge minimal copying costs if the software is to be us@dcourse.

A.4 Definition of Full Package

POV-Ray is contained in two sets of archives for each harelpkatform. Afull pack-
ageconsists of either:

A.5. CONDITIONS FOR SHAREWARE/FREEWARE DISTRIBUTION COMRIIES373

End user executable archives containing an executableggmglocumenta-
tion, and sample scenes but no source.

or

Programmer archives containing full source code but nowgabte. Also
you must include an archive containing documentation, amclte scenes.
On some platforms, the documentation and sample scenescaieed sep-
arately from the source. Source alone is not sufficient. Yostrhave docs
and scenes.

POV-Ray is officially distributed for MS-Dos; Windows 32tpbiLinux for Intel x86
series; Apple Macintosh; Apple PowerPC; SunOS; and AmigheGsystems may be
added in the future.

Distributors need not support all platforms but for eachifpten you support you must
distribute a full package. For example a Macintosh only BBS8chnot distribute the
Windows versions.

This software mayonly be bundled with other software packages according to the
conditions specified in the provisions below.

A.5 Conditions for Shareware/Freeware Distribution
Companies

Shareware and freeware distribution companies may distrithe software included
in software-only compilations using media such as, but moitéd to, floppy disk,
CD-ROM, tape backup, optical disks, hard disks, or memorgcaThis section only
applies to distributors of collected programs. Anyone wigho bundle the package
with a shareware product must use the commercial bundlileg.rény bundling with
books, magazines or other print media should also use thmeocral rules.

You must notify us that you are distributing POV-Ray and npustvide us with infor-
mation on how to contact you should any support issues arise.

No more than five dollars U.S. ($5) can be charged per diskhi@rcopying of this
software and the media it is provided on. Space on each disk Ipeuused as fully as
possible. You may not spread the files over more disks thanemessary.

Distribution on high volume media such as backup tape or @ARs permitted if
the total cost to the user is no more than $0.08 U.S. dollarsnpgabyte of data. For
example a CD-ROM with 600 meg could cost no more than $48.00.

374 APPENDIX A. COPYRIGHT

A.6 Conditions for On-Line Services and BBS’s Includ-
ing Internet

On-line services, BBS's and internet sites may distribhiteeROV-Ray software under
the conditions in this section. Sites which allow users to POV-Ray from remote
locations must use separate provisions in the section below

The archives must all be easily available on the service hadl@ be grouped together
in a similar on-line area.

It is strongly requested that sites remove prior versionB@¥/-Ray to avoid user con-
fusion and simplify or minimize our support efforts.

The site may only charge standard usage rates for the dosingpaf this software. A
premium may not be charged for this package. I. e. CompuS=r&enerica On-Line
may make these archives available to their users, but thgyamly charge regular
usage rates for the time required to download.

A.7 Online or Remote Execution of POV-Ray

Some internet sites have been set up so that remote userstoailyarun POV-Ray
software on the internet server. Other companies sell Cig fbr running POV-Ray
software on workstations or high-speed computers. SuclofuB®V-Ray software is
permitted under the following conditions.

Fees or charges, if any, for such services must be for cotinggtstorage or processor
usage ONLY. No premium charges may be assessed for use oRR@¥Yeyond that

charged for use of other software. Users must be clearlyiewtihat they are being
charged for use of the computer and not for use of POV-Raywaodt

Users must be prominently informed that they are using P@y$dftware, that such
software is free, and where they can find official POV-Raysgarfe. Any attempt to
obscure the fact that the user is running POV-Ray is exprgsshibited.

All files normally available in a full package distributioaspecially a copy of this li-
cense and full documentation must be available for downtwadadable online so that
users of an online executable have access to all of the mlavéa full user package.

If the POV-Ray software has been modified in any way, it musb &llow the provi-
sions for custom versions below.

A.8 Conditions for Distribution of Custom Versions

The user is granted the privilege to modify and compile themcode for their own
personal use in any fashion they see fit. What you do with tftevace in your own
home is your business.

A.8. CONDITIONS FOR DISTRIBUTION OF CUSTOM VERSIONS 375

If the user wishes to distribute a modified version of thevgafe, documentation or
other parts of the package (here after referred toastom versionthey must follow
the provisions given below. This includes any translatibthe documentation into
other languages or other file formats. These license pansshave been established
to promote the growth of POV-Ray and prevent difficulties deers and developers
alike. Please follow them carefully for the benefit of all cemed when creating a
custom version.

No portion of the POV-Ray source code may be incorporateal aniother program
unless itis clearly a custom version of POV-Ray that inctudkof the basic functions
of POV-Ray.

All executables, documentation, modified files and desoript of the same must
clearly identify themselves as a modified and unofficial ierof POV-Ray. Any
attempt to obscure the fact that the user is running POV-Ray obscure that this is
an unofficial version expressly prohibited.

You must provide all POV-Ray support for all users who use yustom version. You

must provide information so that user may contact you fompsetipfor your custom

version. The POV-Ray Team is not obligated to provide youwniryisers any technical
support.

Include contact information in the DISTRIBUTIQNIESSAGE macros in the source
file OPTOUT.H and insure that the program prominently displays this m&ttion. Dis-
play all copyright notices and credit screens for the offie@sion.

Custom versions may only be distributed as freeware. Yout make all of your
modifications to POV-Ray freely and publicly available withl source codeto the
modified portions of POV-Ray and must freely distribute &dlurce to any new parts
of the custom version. The goal is that users must be abled¢ompile the program
themselves and to be able to further improve the programtivéiin own modifications.

You must provide documentation for any and all modificatitivet you have made to
the program that you are distributing. Include clear andaiss/information on how to
obtain the official POV-Ray.

The user is encouraged to send enhancements and bug fixes ROWRay Team,
but the team is in no way required to utilize these enhanc&smarfixes. By sending
material to the team, the contributor asserts that he onmmtterials or has the right
to distribute these materials. He authorizes the team tthesmaterials any way they
like. The contributor still retains rights to the donatedtenal, but by donating, grants
unrestricted, irrevocable usage and distribution rightheé POV-Ray Team. The team
doesn’t have to use the material, but if we do, you do not aecary rights related to
POV-Ray. The team will give you credit as the creator of nedeci applicable.

Include a copy of the OVLEGAL.DOC document.

376 APPENDIX A. COPYRIGHT

A.9 Conditions for Commercial Bundling

Vendors wishing to bundle POV-Ray with commercial softwgineluding shareware)
or with publications must first obtain explicit permissioarh the POV-Ray Team. This
includes any commercial software or publications, suctbasnot limited to, maga-
zines, cover-disk distribution, books, newspapers, orstesters in print or machine
readable form.

The POV-Ray Team will decide if such distribution will beailed on a case-by-case
basis and may impose certain restrictions as it sees fit. Thienom terms are given
below. Other conditions may be imposed.

e Purchasers of your product must not be led to believe thatatepaying
for POV-Ray. Any mention of the POV-Ray bundle on the box,dwex-
tising or in instruction manuals must be clearly marked withisclaimer
that POV-Ray is free software and can be obtained for freeoorimal
cost from various sources.

e Include clear and obvious information on how to obtain tHiiaf POV-
Ray.

e You must provide all POV-Ray support for all users who aapiPOV-
Ray through your product. The POV-Ray Development Teamti®ho
ligated to provide you or your customers any technical sttppo
Include a credit page or pages in your documentation for IR@y-

If you modify any portion POV-Ray for use with your hardwaresoft-
ware, you must follow the custom version rules in additiothese rules.
Include contact and support information for your product.

Include a full user package as described above.

A.10 Other Provisions

The team permits and encourages the creation of prograrisiding commercial
packages, which import, export or translate files in the FRay-Scene Description
Language. There are no restrictions on use of the languseglé ¥Ve reserve the right
to add or remove or change any part of the language.

"POV-Ray”, "Persistence of Vision”, "POV-Ray Team” and "W&Help” are trade-
marks of the POV-Ray Team.

While we do not claim any restrictions on the letters "POMSra&d, we humbly request
that you not use POV in the name of your product. Such use tenofsply it is a
product of the POV-Ray Team. Existing programs which use@VPprior to the
publication of this document need not feel guilty for doirgpsovided that you make
it clear that the program is not the work of the team nor eratbisy us.

A.11. REVOCATION OF LICENSE 377

A.11 Revocation of License

VIOLATION OF THIS LICENSE IS A VIOLATION OF COPYRIGHT LAWS.
IT WILLRESULT IN REVOCATION OF ALL DISTRIBUTION PRIVILEGES
AND MAY RESULT IN CIVIL OR CRIMINAL PENALTY

Such violators who are prohibited from distribution will lseentified in this document.

In this regard, "PC Format”, a magazine published by FutureliBhing, Ltd. in the
United Kingdom, distributed incomplete versions of POWHRZ0 in violation the li-
cense which was effect at the time. They later attempteddiildite POV-Ray 2.2
without prior permission of the POV-Ray Team in violatiore titense which was in
effect at the time. There is evidence that other Future Bhiblj companies have also
violated our terms. Therefore "PC Format”, and any otheramamge, book or CD-ROM
publication owned by Future Publishing is expressly pritatbfrom any distribution
of POV-Ray software until further notice.

A.12 Disclaimer

This software is provided as is without any guarantees oramgy. Although the au-
thors have attempted to find and correct any bugs in the packiagy are not respon-
sible for any damage or losses of any kind caused by the usesasenof the package.
The authors are under no obligation to provide servicegctions, or upgrades to this
package.

A.13 Technical Support

We sincerely hope you have fun with our program. If you hawe@oblems with the
program, the team would like to hear about them. Also, if yanehany comments,
guestions or enhancements, please contact the POV-Ray deahe CompuServe
Information Service in the GO GRAPHICS forums, GRAPHDEWIimr. Also check
us out on the internet it t p: / / www. povray. org orftp. povray. org. The
USENET groupconp. gr aphi cs. rendering. raytraci ng is a great source
of information on POV-Ray and related topics.

License enquiries should be made via email and limited ieahsupport is available
via email to:

Chris Young

POV-Ray Team Coordinator

CIS: 76702,1655

Internet: 76702.1655compuserve.com

378 APPENDIX A. COPYRIGHT

The following postal address is only for official license imess and only if email is
impossible.

We do not provide technical support via regular mail, onlya@gmWe don’t care if
you don't have a modem or online access. We will not mail yakslwith updated
versions. Do not send money.

Chris Young
3119 Cossell Drive
Indianapolis, IN 46224 U.S.A.

The other authors’ contact information may be found in ad on the next page (see
also D on page 387).

Appendix B

Authors

Following is a list in alphabetic order of all people who hawer worked on the POV-
Ray Team or who have made a note-worthy contribution. If yaunto contact or
thank the authors read the sections C on page 385 and D on age 3

%

Steve Anger

(POV-Ray 2.0/3.0 developer)
CIS: 70714,3113

Internet: sanger@hookup.net

Randy Antler
(IBM-PC display code enhancements)

John Baily
(RLE targa code)

Eric Barish
(Ground fog code)

Dieter Bayer
(POV-Ray 3.0 developer and docs coordinator)
CIS: 100255,3074

Kendall Bennett
(PMODE library support)

Steve Bennett
(GIF support)

379

380 APPENDIX B. AUTHORS

Jeff Bowermaster
(Beta test)

David Buck
(Original author of DKBTrace)
(POV-Ray 1.0 developer)

Chris Cason

(POV-Ray 2.0/3.0 developer, POV-Help, Windows port)

Internet (preferred): Chris.Cason@oaks.com.au or @ason@povray.org
CIS: 100032,1644

Aaron Collins
(Co-author of DKBTrace 2.12)
(POV-Ray 1.0 developer)

Chris Dailey
(POV-Ray 3.0 developer)
CIS:

Steve Demlow
(POV-Ray 3.0 developer)
CISs:

Andreas Dilger

(POV-Ray 3.0 developer)

Internet: adilger@enel.ucalgary.ca
Http://www-mddsp.enel.ucalgary.ca/People/adilger/

Joris van Drunen Littel
(Mac beta tester)

Alexander Enzmann

(POV-Ray 1.0/2.0/3.0 developer)
CIS: 70323,2461

Internet: xander@mitre.com

Dan Farmer
(POV-Ray 1.0/2.0/3.0 developer)
CIS: 74431,1075

David Harr
(Mac balloon help and palette code)

Jimmy Hoeks
(Help file for Windows user interface)

Terry Kanakis
(Camera fix)

Kari Juharvi Kivisalo
(Ground fog code)

Adam Knight
(Mac beta tester, Mac Apple Guide developer)
ClS:

Lutz Kretzschmar
(IBM-PC display code [SS24 truecolor], part of the antieaing code)
CIS: 100023,2006

Charles Marslett
(IBM-PC display code)

Pascal Massimino
(Fractal objects)

Jim McElhiney
(POV-Ray 3.0 developer)
CIs:

Robert A. Mickelsen
(POV-Ray 3.0 docs)
CIS:

Mike Miller
(Artist, scene files, stones.inc)
CIS: 70353,100

Douglas Muir
(Bump maps, height fields)

Joel NewKirk
(Amiga Version)
CIS: 102627,1152

Jim Nitchals
(Mac version, scene files)

Paul Novak
(Texture contributions)

381

382 APPENDIX B. AUTHORS

Dave Park
(Amiga support, AGA video code)

David Payne
(RLE targa code)

Bill Pulver
(Time code, IBM-PC compile)

Anton Raves
(Beta tester, helping out on several Mac thingies)
CIS: 100022,2603

Dan Richardson
(Docs)
CIS:

Tim Rowley
(PPM and Windows-specific BMP image format support)
Internet: trowley@geom.umn.edu

Robert Schadewald
(Beta tester)
CIS:

Eduard Schwan
(Mac version, mosaic preview, docs)
CIS: 71513,2161

Robert Skinner
(Noise functions)

Erkki Sondergaard
(Scene files)
CIS:

Zsolt Szalavari
(Halo code)
Internet: zsolt@cg.tuwien.ac.at

Scott Taylor
(Leopard and onion textures)

Timothy Wegner
(Fractal objects, PNG support)
CIS: 71320,675

383

Internet: twegner@phoenix.net

Drew Wells
(POV-Ray 1.0 developer, POV-Ray 1.0 team coordinator)

Chris Young
(POV-Ray 1.0/2.0/3.0 developer, POV-Ray 2.0/3.0 tearrdauator)
CIS: 76702,1655

384 APPENDIX B. AUTHORS

Appendix C

Contacting the Authors

The POV-Team is a collection of volunteer programmers, gihess, animators
and artists meeting via electronic mail on Compuserve’s BRBEV forum (GO
GRAPHDEV).

The POV-Team’s goal is to create freely distributable, hdghlity rendering and ani-
mation software written in C that can be easily ported to ndiffgrent computers.

If you have any questions about POV-Ray, please contact

We love to hear about how you're using and enjoying the progi#/e also will do our
best try to solve any problems you have with POV-Ray and pa@te good sugges-
tions into the program.

If you have a question regarding commercial use of, digtiobuof, or anything particu-
larly sticky, please contact Chris Young, the developmeairt coordinator. Otherwise,
spread the mail around. We all love to hear from you!

The best method of contact is e-mail through CompuServe &t of us. America On-
Line and Internet can now send mail to CompuServe, alsougesthe Internet address
and the mail will be sent through to CompuServe where we readnail daily.

Please do not send large files to us through the e-mail withsking first. We pay for
each minute on CompuServe and large files can get expensarel é&query before
you send the file, thanks!

385

386 APPENDIX C. CONTACTING THE AUTHORS

Appendix D

Postcards for POV-Ray Team
Members

If you want to personally thank some of the POV-Ray Team mesjpeu can send
them a postcard from wherever you are. To avoid invalid axidre from floating
around (in case some of us move) the addresses listed baloaiptiabetical order)
are only valid until the given date.

Dieter Bayer
Taeublingstr. 26
91058 Erlangen

Germany (until 31. July 1997)
Chris Cason (Windows version)

PO Box 407

Williamstown

Victoria 3016

Australia (until 31. December 1998)
Joel NewKirk

255-9 Echelon Rd

Voorhees, NJ, USA, 08043 (until —)

Eduard Schwan (Macintosh version)

1112 Oceanic Drive
Encinitas, California, USA, 92024-4007 (until 30. June 899

You should also be aware that we do not answer any questites ay regular mail

or phone, we only reply to e-mails. Send any questions yoe tathe e-mail address
mentioned in section C on page 385.

387

388 APPENDIX D. POSTCARDS FOR POV-RAY TEAM MEMBERS

Appendix E

POV-Ray Output Messages

STILL BEING WRITTEN

E.1 Optionsin Use

STILL BEING WRITTEN*

E.2 Warning Messages
*»**STILL BEING WRITTEN***

E.2.1 Warnings during the Parsing Stage

STILL BEING WRITTEN

E.2.2 Other Warnings

*STILL BEING WRITTEN***

E.3 Error Messages

STILL BEING WRITTEN

389

390 APPENDIX E. POV-RAY OUTPUT MESSAGES

E.3.1 Scene File Errors

STILL BEING WRITTEN*

E.3.2 Other Errors

STILL BEING WRITTEN*

E.4 Statistics

***STILL BEING WRITTEN** [DB]

Appendix F

Tips and Hints

F.1 Scene Design Tips

There are a number of excellent shareware CAD style modai@itable on the DOS
platform now that will create POV-Ray scene files. The onkystems mentioned
elsewhere in this document are the best places to find these.

Hundreds of special-purpose utilities have been writteriPfOV-Ray: data conversion
programs, object generators, shell-stgenchersand more. It would not be possible
to list them all here, but again, the online systems listdboairy most of them. Most,
following the POV-Ray spirit, are freeware or inexpensihargware.

Some extremely elaborate scenes have been designed gglaaftgraph paper. Ray-
tracer Mike Miller recommends graph paper with a grid didide tenths, allowing
natural decimal conversions.

Start out with aboilerplate scene file, such as a copy BASICVUE.POvV, and edit

that. In general, place your objects near and arounatiiggn with the camera in the
negativez-direction, looking at the origin. Naturally, you will briedrom this rule

many times, but when starting out, keep things simple.

For basic, boring, but dependable lighting, place a lighirg® at or near the position
of the camera. Objects will look flat, but at least you will $kem. From there, you
can move it slowly into a better position.

F.2 Scene Debugging Tips

To see a quick version of your picture, render it very smallithvfewer pixels to
calculate the ray-tracer can finish more quickiyy160—H100 is a good size.

Use thet+Q quality switch when appropriate.

391

392 APPENDIX F. TIPS AND HINTS

If there is a particular area of your picture that you neede® m high resolution,
perhaps with anti-aliasing on (perhaps a fine-grained wextdite), use theSC, +EC,
+SR and+ER switches to isolate window

If your image contains a lot of inter-reflections, setx_trace_level to alow value
such as 1 or 2. Don’t forget to put it back up when you're finitthe

Turn off any unnecessary lights. Comment out extended light keysvaidoen not
needed for debugging. Again, don’t forget to put them badbeifore you retire for the
night with a final render running!

If you've run into an error that is eluding you by visual exaation it's time to start
bracketing your file. Use the block comment characfers... */ to disable most of
your scene and try to render again. If you no longer get am #reoproblem naturally
lies somewhere within the disabled area. Slow and methbtlsting like this will
eventually get you to a point where you will either be ablepmtshe bug, or go quietly
insane. Maybe both.

If you seem to havdost yourself or an object (a common experience for beginners)
there are a few tricks that can sometimes help:

1. Move your camera way back or increase the viewing angleotgige
a long range view. This may not help with very small objectscivh
tend to be less visible at a distance but it’s a nice trick &pkap your
sleeve.

2. Try setting the ambient value to 1.0 if you suspect thabtiject may
simply be hidden from the lights. This will make it self-ittunated
and you'll be able to see it even with no lights in the scene.

3. Replace the object with a larger, more obvistand-inobject like
a large sphere or box. Be sure that all the same transfomsadie
applied to this new shape so that it ends up in the same spot.

F.3 Animation Tips

When animating objects with solid textures, the texturestrmoove with the object,
i. e. apply the same rotate or translate functions to theitexas to the object itself.
This is now done automatically if the transformations aseptafter the texture block
like the following example

shape { ...
pigment { ... }
scale < ... >

will scale the shape and pigment texture by the same amount.

F.4. TEXTURE TIPS 393

shape { ...
scale < ... >
pigment { ... }
}

will scale the shape but not the pigment.

Constants can be declared for most of the data types in thlyggomincluding floats
and vectors. By writing these to include files you can easilyesate the parameters
for an animation into a separate file.

Some examples of declared constants would be:

#declare Y Rotation = 5.0 * clock
#tdeclare ObjectRotation = <0, Y_Rotation, 0>
#tdeclare MySphere = sphere { <0, 0, 0>, 1.1234 }

Other examples can be found scattered throughout the sacge files.

A tip for MS-Dos users: Get ahold afTA.EXE (Dave’s Targa Animator) for creating
.FLI/.FLC animations. AAPLAY.EXE andPLAY.EXE are common viewers for this type
of file.

When moving the camera in an animation (or placing one inlhisiage, for that
matter) avoid placing the camera directly over the origihiswill cause very strange
errors. Instead, move off center slightly and avoid howgedirectly over the scene.

F.4 Texture Tips

Wood is designed like g with growth rings aligned along theaxis. Generally these
will look best when scaled down by about a tenth (to a uniégiabject). Start out with
rather small value for the turbulence too (around 0.05 isidoo starters).

The marble texture is designed around a pigment primitia ik much like anx-
gradient. When turbulated, the effect is different wherweié from theside or from
theend Try rotating it by 90 degrees on tlyeaxis to see the difference.

You cannot get specular highlights on a totally black objé&cy using a very dark gray,
sayGrayl0or Gray15(from COLORS.IN), instead.

F.5 Height Field Tips

Try using POV-Ray itself to create images for height fields:

394 APPENDIX F. TIPS AND HINTS

camera { location <0, 0, -2> 1}

plane { z, 0
finish { ambient 1 } // needs no light sources
pigment { bozo } // or whatever. Experiment.

That's all you'll need to create arGA file that can then be used as a height field in
another image!

F.6 Converting "Handedness”

If you are importing images from other systems you may find tifva shapes are back-
wards (left-to-right inverted) and no rotation can makentteorrect.

Often, all you have to do is negate the terms in the right veaftthe camera to flip the
camera left-to-right (use theght-hand coordinate system). Some programs seem to
interpret the coordinate systems differently, howevery@ao may need to experiment
with other camera transformations if you want th@andz-vectors to work as POV-Ray
does.

Appendix G

Frequently Asked Questions

This is a collection of frequently asked questions and theswers taken directly
from messages posted in the Graphic Developer's Forum onpGsenve and the
conp. gr aphi cs. raytraci ng newsgroup.

This version of the FAQ is heavily biased towards the CompuSeaser of the IBM
PC version of POV-Ray. Hopefully later revisions will rengosome of this bias, but at
present time, that is the largest audience.

G.1 General Questions

Q: When will POV-Ray 3.0 be released?
A: It is already available.
Q: When will the source code be released?

A: The soruce code available too.

G.2 POV-Ray Option Questions

Q: How can | set mosaic preview to go fronx&traight to final render without going
to 4x and thert x first?

A: Use the+SPn or Preview_Start_Size option to set the starting resolution and the
+EPn orPreview_End_Size option to set the ending resolution. Wit&P8 and+EP8

it will go from 8 x 8 down to 8x 8 (just one pass) then immediately drop into the final
pass at k 1.

Q: Should thetMB switch be used in very small scenes, i. e. with a low number of
objects.

395

396 APPENDIX G. FREQUENTLY ASKED QUESTIONS

A: That depends on the number of objects and their type. Noyrialbesn't hurt to
always use the bounding box hierarciyMBO). If you have just one or two objects it
may be better to not use automatic bounding.

Q: Does the+MB switch affect the quality of the image&: No. It only affects the
speed of the intersection tests.

G.3 Atmosphere Questions

Q: Why is the atmosphere | added not visible?

A: The most common error made when adding an atmosphere to@istha missing
hollow keyword in all objects the camera currently is in. diyare inside a box that is
used to model a room you’ll have to add the hollow keyword tolibx statement. If a
plane is used to model the ground you’ll have to make it holjomly if you are inside
the plane, but to be sure you can always do it).

If this doesn’t help there may be other problems you'll havedrify. The distance and
scattering values of the atmosphere have to be larger tmanlzght sources that shall
interact with the atmosphere mustn’t containsatimosphere of £ statement.

Q: Why can't | see any atmosphere through my translucent dbject

A: If you have a translucent object you (almost) always have aganit hollow by
adding thehol1ow keyword. Whenever an intersection is found and the ray idéns
a solid object no atmospheric effects will be calculated.

If you have a partially transparent plane for example theoaphere on the other side
of the plane will only be visible through the plane if this ipéais hollow.

Q: Why do the lit parts of the atmosphere amplify the backgr@und

A: First, they don't.

Second, whenever parts of the background are visible thrthegatmosphere and those
areas of the atmosphere are lit by any light source, theesedttight is added to the
light coming from the background. This is the reason why thekround seems to be
amplified by the atmosphere. Just imagine the followoingrgta: you have a blue
background that is attenuated be the atmosphere in a wayhtaablor reaching the
viewer is{0,0,0.2). Now some light coming from a light source is attenuated aad-s
tered by the atmosphere and finally reaches the viewer witiica of (0.5,0.5,0.5).
Since we already have light coming from the background, bolibrs are added to give
(0.5,0.5,0.7). Thus the light gets a blue hue. As a result you think that #ukdépround
light is amplified but it isn't as the following scene cleasljows.

ersion 3.0
camera {
location <0, 6, -20>

G.3. ATMOSPHERE QUESTIONS

look_at <0,
angle 48

6,

atmosphere {
type 1
samples 10
distance 20
scattering 0.3
aa_level 3

aa_threshold 0.1

jitter 0.2

light_source { <0,

light_source {
<-5, 15,
spotlight
point_at <-5,
radius 10
falloff 15
tightness 1

0,

0>

15,

0> color rgb <1,

0>

0> color red

0, 0>

atmospheric_attenuation on

light_source {
<0, 15,
spotlight
point_at <0,
radius 10
falloff 15
tightness 1

0,

0> color rgb <0,

0>

1, 0>

atmospheric_attenuation on

light_source {
<5, 15,
spotlight
point_at <5,
radius 10
falloff 15
tightness 1

0,

0> color rgb <0,

0>

0, 1>

atmospheric_attenuation on

plane { z, 10

pigment { checker color rgb<l,

hollow

0,

.7 green .7 blue

0> color rgb<O0,

397

.7 shadowless 1}

0> 1}

398 APPENDIX G. FREQUENTLY ASKED QUESTIONS

In the background you see a red/green checkered plane. Thgrband color visible
through the atmosphere is added to the light scattered freragotlights. You'll notice
that even though the red squares behind the red spotligiriés are brighter than those
outside the cone the green ones are not. For the green spatiegsituation is turned
around: the green squares seem to be amplified while theeewarThe blue spotlight
doesn’t show this effect at all.

Appendix H

Suggested Reading

Beside the POV-Ray specific books mentioned in 2.4.6 on pagk&e are several
good books or periodicals that you should be able to locatgim local computer
book store or your local university library.

An Introduction to Ray-Tracing
Andrew S. Glassner (editor)
ISBN 0-12-286160-4
Academic Press

1989

3D Artist Newsletter

(The Only Newsletter about Affordable PC 3D Tools and Teghes)
Publisher: Bill Allen

P.O. Box 4787

Santa Fe, NM 87502-4787

(505) 982-3532

Image Synthesis: Theory and Practice

Nadia Magnenat-Thalman and Daniel Thalmann
Springer-Verlag

1987

The RenderMan Companion
Steve Upstill

Addison Wesley

1989

Graphics Gems

Andrew S. Glassner (editor)
Academic Press

1990

399

400 APPENDIX H. SUGGESTED READING

Fundamentals of Interactive Computer Graphics
J. D. Foley and A. Van Dam

ISBN 0-201-14468-9

Addison-Wesley

1983

Computer Graphics: Principles and Practice (2nd Ed.)
J. D. Foley, A. van Dam, J. F. Hughes

ISBN 0-201-12110-7

Addison-Wesley

1990

Computers, Pattern, Chaos, and Beauty
Clifford Pickover
St. Martin’s Press

SIGGRAPH Conference Proceedings
Assaociation for Computing Machinery
Special Interest Group on Computer Graphics

IEEE Computer Graphics and Applications
The Computer Society

10662, Los Vaqueros Circle

Los Alamitos, CA 90720

The CRC Handbook of Mathematical Curves and Surfaces
David von Seggern

CRC Press

1990

The CRC Handbook of Standard Mathematical Tables
CRC Press
The Beginning of Time

Index

#break,210
#case210
#debug212
#declare, 188, 190, 194, 197, 12805
206
#default,206
#else,209
#end, 211
#error,212
#if, 209
#ifdef, 209
#ifndef, 210
#include,204
#max.intersections361
#maxtracelevel, 360
#range210
#render,212
#statistics212
#switch,210
#version, 167208
#warning,212
#while, 211

aalevel, 311, 349, 350
aathreshold, 311, 349, 350
abs,199

acos,199

acosh, 241

adaptive, 270

adaptive samplingseesampling
adaptive super-samplingeesampling
adc bailout, 356, 361

agate 319

agateturb, 319

albedo,305

all, 285

alpha,192

alpha channel, 285
ambient, 295
ambientlight, 76,356
angle,221

aperture222

arcangle, 140354

area light, 79

arealight, 269

asc,202

asin,200 241

asinh, 241
assumedgamma,357
atan,200, 241

atan2,200

atanh, 241

atmosphere, 84, 131, 272
atmosphericattenuation273
attenuating, 112, 305
average319

background, 123
BANNER, seestreams
bicubic patch, 41252
bicubic_patch, 41252
black hole, 336

blob, 48,231

blue, 36,192
blur_samples222
box, 38,234
box_mapping, 307
bozo,320

break,210

brick, 88,321
brick_size,321
brilliance, 296
bump.map, 292,292
bumps,322

402

bumpy1,186
bumpy2,186
bumpy3,186

camera, 35

case210

caustics 301

CD, see The Official
CDROM

CD-ROM, seeThe Official POV-Ray
CDROM

CDROM, see The Official POV-Ray
CDROM

ceil, 200

checker322

chr,202

clock, 198

color, 192 279

color.map, 280

colour,192 279, 349

colour-map, 106280, 310

component, 232, 233

composite, 263

concat,202

cone, 39235

confidence222

conic.sweep, 245

constant, 308

constructive solid geometry, 70

control0,328

control1,328

€0s,200, 241

cosh, 241

crackle,323

crand,296

CSG, 70

cube, 241

cubic,258 309

cubic spline, 243

cubic_spline, 242, 245

cylinder, 39, 232235 268

cylindrical, 221, 225

cylindrical light, 79

cylindricaL mapping, 307

POV-Ray

DEBUG, seestreams

debug,212
default,206
degrees200
difference, 72
direction, 223
disc,253

distance, 349, 351
div, 200

dust, 115, 305
dusttype, 305

eccentricity, 305, 349
else,209

emitting, 104, 105, 306
end, 211

error, 212

exp, 200 241
exponent, 309

fadedistance, 83272 300
fade power, 83272
falloff, 77, 270

falloff _angle, 140354
false, 198

FATAL, seestreams
file_exists,203

filter, 192, 284

fisheye 221, 225
flatness, 252

flip, 342

floor, 200

focal_point, 222

fog, 127,351

fog_alt, 351

fog_offset, 351

fog_type, 351

frequency, 109, 312, 332

gif, 238 283, 292, 316
global settings 355
glowing, 111, 306
granite,324

green, 36,192

halo, 104, 302
aalevel, 311

INDEX

INDEX

aathreshold, 311
attenuating, 112, 305
box_mapping, 307
colour map, 310
constant, 308
cubic, 309
cylindrical mapping, 307
dust, 115, 305
dusttype, 305
eccentricity, 305
emitting, 104, 105, 306
exponent, 309
frequency, 109, 312
glowing, 111, 306
jitter, 311
lambda, 312
linear, 105, 308
max value, 308
multiple halos, 114, 304
octaves, 312
omega, 312
phase, 313
planarmapping, 307
poly, 309
samples, 106, 311
scale, 108, 113
sphericalmapping, 105, 308
turbulence, 107, 312
height field, 48236
heightfield, 48,236
hexagon, 88325
hf_gray 16, 359
hierarchy, 233, 239, 254
hollow, 105,276, 302
hypercomplex, 240

if, 209

ifdef, 209

iff, 283, 292, 316

ifndef, 210

imagemap, 283283, 292, 315
incidence 186

include, 34, 36, 40, 86

INI files, 148

int, 200

interpolate 346

403

intersection, 72
inverse, 262

ior, 300

irid, 301
irid_wavelength3360

jitter, 180, 270, 311, 349, 350
julia fractal, 50,239
julia_fractal, 50,239

lambda, 312, 351
lathe, 50,242
leopard,326
light_source, 37265
linear, 105, 308
linear spline, 243
linear_spline, 242, 244
linear_sweep, 245
location, 223

log, 200, 241
look_at, 223

looks like, 81

mandel,326
map.type, 345
marble,327
materialmap,315
matrix, 216

max, 200
max.intersections361
max iteration, 240
max tracelevel, 360
max.value, 308
merge, 74265
mesh, 50254
metallic,298

min, 200

mod, 200
mortar,321

no, 198

non-adaptive samplingeesampling

non-adaptive super-samplinggesam-
pling

normal,286

normalmap,290

404

numberof_waves,362

0,324

object,228

octaves, 312, 351
off, 198

offset, 342

omega, 312, 351
Omnimax, 225
omnimax,221

on, 198

once,345

onion, 328
open, 235, 236, 248
orthographic220, 225

panoramic221, 225

pgm, 238 292, 316
phase, 313, 332
phong,297
phongsize,297

pi, 198

pigment, 87278
pigmentmap, 92,281
planarmapping, 307
plane, 40257

png, 238, 283, 292, 316

point.at, 77, 270
pointlight, 76
poly, 258 309
polygon, 52254
pot, 238

pow, 200

ppm, 238, 283, 292, 316

INDEX

pattern,323 precision, 240

:g::géglglg prism, 54,244

\Y ; wr, 241

bozo, 320 P

brick, 321 guadratic spline, 243

bumps, 322 quadraticspline, 242, 245

checker, 322 guadric,260

crackle, 323 quartic,258

dents, 323 guaternion, 240

gradient, 324 quick color, 285

granite, 324 quick_colour, 285

hexagon, 325 quilted, 328

leopard, 326

mandel, 326 radial, 328

marble, 327 radians 200

onion, 328 radiosity, 362

quilted, 328 brightness, 364

radial, 328 count, 364

ripples, 329 distancemaximum, 364

spirall, 330 error_bound, 365

spiral2, 330 gray_threshold, 365

spotted, 330 low_error_factor, 366

waves, 331 minimum.reuse, 366

wood, 331 nearestcount, 367

wrinkles, 331 radiosity quality, 367
pattern1,186 recursionlimit, 367
pattern2,186 radius, 77, 232, 235, 236, 243, 246,
pattern3,186 247, 251, 253, 259, 266, 284

perspective22Q 225 rainbow, 137

INDEX 405

rampwave, 333 spotted,330
rand,201 sqr, 241
range,210 sqrt, 201
ray-tracing, 5 STATISTICS,seestreams
reciprocal, 241 statistics 212
red, 36,192 STATUS, seestreams
reflection,299 str, 203
RENDER,seestreams strcmp,203
render,212 streams
repeat342 BANNER, 173, 213
rgb, 193 DEBUG, 173, 213
rgbf, 193 FATAL, 173, 213
rgbft, 193 RENDER, 173, 213
rgbt, 193 STATISTICS, 173, 213
right, 34,224 394 STATUS, 173, 213
ripples,329 WARNING, 173, 213
roughness, 296, 298 strength, 233
strlen,203

samples, 106, 311, 349, 350 strlwr, 203
sampling strupr,204

adaptive, 180 sturm, 234, 244, 246, 248, 251, 260

non-adaptine, 179 substr203
scale, 108, 113 super-samplingseesampling
scallopwave, 333 superellipsoid246
scattering, 349 superquadric ellipsoid, 54
seed201 surface of revolution, 5947
shadowless, 8271 switch, 210
sin, 201, 241 sys, 238, 283, 292, 316
sinewave, 333
sinh, 241 T, 334-336
sky, 223 t, 198
sky sphere, 123 tan,201, 241
sky_sphere, 123352 tanh, 241
slice, 239, 240 testcameral, 186
slope map,288 testcamera2, 186
smooth, 239 testcamera3, 186
smooth triangle256 testcamera4, 186
smoothtriangle,256 text, 60
sor, 59,247 texture, 36, 37, 40, 84, 86, 22977,
specular, 296298 392
sphere, 33, 35, 23246 bump map, 292
sphericalmapping, 105, 308 image map, 283, 315
spiral, 186 layered, 317
spirall,330 material map, 315
spiral2,330 normal map, 290

spotlight, 77,266, 270 pigment map, 281

406

slope map, 288
texture map, 313
texturemap, 313
tga, 238, 283, 292, 316
The Official POV-Ray CDROM, 20
thickness 301
threshold, 232
tightness, 77, 267, 270
tile2, 315
tiles, 315
torus, 64,250
track, 186
transform, 217
transmit,192, 284
triangle,256
triangle wave, 333
true, 198
ttf, 249
turb_depth,351
turbulence, 107, 312, 351
type, 252, 348

u, 198

u_steps, 252

ultra wide angle,221, 225
union, 70

up, 224, 351

usecolor, 293

usecolour, 293

useindex, 293

v, 198

v_steps, 252

val, 204

variance 222
vaxis_rotate,201
vcross,201

vdot, 202
version,208
vlength, 202
vnormalize,202
vol_with_light, 186
volume object, 186
volume rendered186
vrotate,202

WARNING, seestreams

warning,212
warp, 336
waterlevel, 238
waves 331
while, 211
width, 354
wood, 331
wrinkles, 331

X, 198

y, 198
yes, 198

z,198

INDEX

