This is cm_geometry.c in view mode; [Download] [Up]
/* do the actual geometric computation parts of the "cmodel" program */ #include <math.h> #include "cmodelP.h" void projective_to_conformal(int curv, HPoint3 *proj, Transform T, Point3 *conf) { double norm, scale; HPoint3 pt; HPt3Transform(T, proj, &pt); norm = pt.x*pt.x + pt.y*pt.y + pt.z*pt.z; if (curv) { norm = curv*norm + pt.w*pt.w; norm = (norm < 0)? 0 : sqrt(norm); scale = pt.w-curv*norm; } else scale = -norm/pt.w; Pt3Mul(1 / scale, (Point3 *)&pt, conf); return; } void TgtTransform(Transform T, HPoint3 *p, Point3 *v, HPoint3 *tp, Point3 *tv) { HPoint3 hv, thp, thv; Pt3Copy(v, (Point3 *)&hv); hv.w = 0; HPt3Transform(T, p, tp); HPt3Transform(T, &hv, &thv); Pt3Comb(1/tp->w, (Point3 *)&thv, -thv.w/tp->w/tp->w, (Point3 *)tp, tv); return; } /* map a tangent vector from Projective model to Conformal model */ void projective_vector_to_conformal(int curv, HPoint3 *pt, Point3 *v, Transform T, Point3 *ppt, Point3 *pv) { HPoint3 tp; Point3 tv; double norm,scale; /* transform point */ TgtTransform(T, pt, v, &tp, &tv); norm = tp.x*tp.x + tp.y*tp.y + tp.z*tp.z; if (curv) { norm = curv*norm + tp.w*tp.w; norm = (norm < 0)? 0 : sqrt(norm); scale = tp.w-curv*norm; } else scale = -norm/tp.w; Pt3Mul(1 / scale, (Point3 *)&tp, ppt); if (curv) Pt3Comb(norm/scale, &tv, Pt3Dot(ppt, &tv), ppt, pv); else Pt3Comb(tp.w/scale, &tv, 2*Pt3Dot(ppt, &tv), ppt, pv); Pt3Unit(pv); return; } /* given three vertices of a triangle in the conformal model this computes the center of the sphere on which the triangle lies. */ void triangle_polar_point(int curv, const Point3 *a, const Point3 *b, const Point3 *c, HPoint3 *p) { Point3 ab, bc, ca; Pt3Cross(a, b, &ab); Pt3Cross(b, c, &bc); Pt3Cross(c, a, &ca); p->w = 2*Pt3Dot(a, &bc); Pt3Mul(Pt3Dot(a, a) - curv, &bc, &bc); Pt3Mul(Pt3Dot(b, b) - curv, &ca, &ca); Pt3Mul(Pt3Dot(c, c) - curv, &ab, &ab); Pt3Add(&ab, &bc, (Point3 *)p); Pt3Add(&ca, (Point3 *)p, (Point3 *)p); /*fprintf(stderr,"In triangle_polar got %f %f %f %f\n",p->x,p->y,p->z,p->w);*/ return; } /* given two points on a geodesic in the conformal model this computes the centre of the euclidean circle formed by the geodesic */ void edge_polar_point(int curv, const Point3 *a, const Point3 *b, HPoint3 *p) { double aa, ab, bb, ca, cb; aa = Pt3Dot(a, a); ab = Pt3Dot(a, b); bb = Pt3Dot(b, b); ca = (aa-ab)*bb + curv*(ab - bb); cb = (bb-ab)*aa + curv*(ab - aa); Pt3Comb(ca, a, cb, b, (Point3 *)p); p->w = 2 * (aa * bb - ab * ab); return; } struct vertex *edge_split(struct edge *e, double cosmaxbend) { double cosbend, w; Point3 m, mp, x, y, *a, *b, p; double aa,ab,bb,ma,mb; a = (Point3 *)&e->v1->V.pt; b = (Point3 *)&e->v2->V.pt; w = e->polar.w; /*fprintf(stderr,"In edge_split\n");*/ if (w < .001) return NULL; Pt3Mul(1./w, (Point3 *)&e->polar, &p); Pt3Sub(a, &p, &x); Pt3Sub(b, &p, &y); cosbend = Pt3Dot(&x,&y)/sqrt(Pt3Dot(&x,&x) * Pt3Dot(&y,&y)); if (cosmaxbend < cosbend) return NULL; /*fprintf(stderr,"end pts %f %f %f, %f %f %f, polar %f %f %f %f\n", a->x,a->y,a->z, b->x,b->y,b->z, e->polar.x,e->polar.y,e->polar.z,e->polar.w);*/ Pt3Add(&x, &y, &m); Pt3Mul(sqrt(Pt3Dot(&x, &x) / Pt3Dot(&m, &m)), &m, &m); Pt3Add(&p, &m, &mp); aa = Pt3Dot(a,a); ab = Pt3Dot(a,b); bb = Pt3Dot(b,b); ma = Pt3Dot(a,&mp); mb = Pt3Dot(b,&mp); if (aa*mb < ab*ma || bb*ma < ab*mb) Pt3Sub(&p,&m,&mp); /* to check we're doing the right thing we could do: ma = Pt3Dot(a,&mp); mb = Pt3Dot(b,&mp); if (aa*mb < ab*ma || bb*ma < ab*mb) fprintf(stderr,"Can't find right subdivision\n"); */ return new_vertex(&mp, e->v1, e->v2); }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.