
A Guide to Using

geomview and OOGL

Charlie Gunn

Revision: 1.3

Date: 1992/09/22 20:54:26

1 Introduction

This document will show you how to write programs using the Object Ori-

ented Graphics Library (OOGL). It will also give you an introduction to using

geomview|a 3-dimensional viewing program written using OOGL. By using

geomview, your application is freed from having to do any speci�c graphics

functions.

1

The OOGL routines are a high-level set of modules that let you specify

and display geometry. There are several types of geometric primitives which

OOGL can handle, including polygons, vectors, meshes, and parametric surfaces

patches. In addition, these primitives can be organized into a higher-order lists.

Also, multiple instances of the same geometry can be created by specifying

di�erent modeling transformations. Each sort of geometric object, whether low-

level or high-level, comes equipped with a standard set of operations. Examples

of these operations include loading from and saving to �les, drawing to a display

device, and computing a bounding box. This style of programming, which

combines data structures with operations which act on these data structures, is

known as object-oriented programming. Although currently OOGL only works

on SGI workstations, it has been designed to make it easy to port to other

environments.

It is assumed you know how to program in C. After reading this and looking

through the example programs you will be ready to create your own OOGL

applications.

1

References to �les in this document will use the symbol GEOM to refer to the directory

where the geomview distribution has been installed on your system.

1

2 Integrating your application and and geomview

2.1 Why Use geomview?

geomview is a program for the display and manipulation of OOGL objects. If

you haven't already done so, you should familiarize yourself with its capabililities

now. Consult the documents overview and oogltour in the doc directory, and

the man page for geomview, both sections 1 and 5. The section 1 manual

page describes the user interface of the program, while the section 5 manual

page describes the command language through which external programs can

communicate with geomview. It is this command language which this example

will use.

This corresponds to 2 di�erent ways to provide geomview with geometry for

viewing. The �rst reads descriptions of objects from a �le. geomview has a

�le browser from which users can choose �les to examine. This is appropriate

when the geometry is static. The second method is useful when you desire

to view a changing geometry. This second method uses 2-way pipes to update

the changing geometry from your application and to pass back information from

geomview to your application. This communication uses the command language

described in geomview(5). In this situation, your application is known as an

external module for geomview.

This document will show how to create and run an external module, in this

case one simply known as example. This and all the other �les involved in this

are to be found in the directory GEOM/src/bin/example.

3 How to Write an External Module

3.1 Structure of the OOGL Routines

OOGL stands for \Object-Oriented Graphics Library." The library de�nes a

class of \geometry objects." As indicated above, these are object-oriented in

the sense that a geometry object is a data structure plus a set of procedures,

often called \methods", which operate on the data. The object is accessible

only through its methods.

Another feature of object-oriented programming is the capacity to create

subclasses of a class. There are a number of subclasses of the generic geometry

class Geom. In practice, each instance of the Geom class is also an instance of a

speci�c subclass, but this isn't necessarily true in general. Example subclasses

include: vectors, polygons, meshes, parametric surface patches, and bounding

boxes. There are also composite subclasses built on these, such as lists and

instances. See oogl(5) for a description of the �le formats belonging to these

subclasses.

All subclasses of geometry objects have a set of standard methods used to

manipulate the objects. Some example methods are: Create, Delete, Draw,

2

Load, Save, and Print. The name of a subclass's methods begin with the name

of that subclass. For example, the Drawmethod for a mesh is namedMeshDraw.

In general a subclass can inherit methods from its superclasses; but in OOGL

almost all subclass methods are provided speci�cally for that subclass. These

methods behave di�erently because they are each customized to the particular

subclass of geometry object to which they belong. The details of the data

structures and existing methods for each subclass can be found in the include

�le for that subclass. These are kept in GEOM/include.

3.1.1 The Generic Class Geom

There is a type of programming task which is made much easier by the fact that

each instance of a subclass is also an instance of the generic class. In our case,

each instance of a geometry subclass is also an instance of the generic Geom

class. So if our program, like geomview, is designed to deal with many di�erent

types of geometry objects, we can simplify the program structure by always

working with the Geom class rather than the speci�c subclasses. GeomLoad

and GeomDraw, for example, work perfectly well to load and draw instances of

any subclass, too. Of course it takes some work to make sure this works, but

that work has already been done for you.

3.2 example: A Minimal OOGL Program

example demonstrates the use of the mesh OOGL object. It repeatedly com-

putes a changing function on a rectangular grid, or mesh, of (x; y) pairs. As

the mesh is changed by example over time, these changes dynamically appear

in the geomview window.

A second feature of example is the use of the Forms interface builder to

create the user interface. This is a public domain interface builder which has

been used to create geomview. It is included here because we have found it to

be an e�ective tool for creating interactive applications. The Forms package is

written by Mark Overmars of Utrecht University and is available via anonymous

ftp from archive.cs.ruu.nl.

3.2.1 Preparing to run example

First, check that GEOM/bin/sgi/example exists. If not, �rst change directory

to GEOM/src/bin/example and type

% make install

You'll next need to be sure that example is registered with geomview. To

do this, edit the �le .geomview in your home directory and add the line

(emodule-define "Example" "example")

3

This �le will be read by geomview when it starts up and the line you've

added tells it to register the external module example to its list of external mod-

ules, under the name "Example". As long as example exists in GEOM/bin/sgi,

geomview will �nd it there. Or, you can provide a full pathname for your ap-

plication, which will guarantee that it will be found. Also, if your application

has command line arguments, include them here.

Then, run geomview. On the main panel, under the "Modules", "Example"

should appear. Pick this entry. It should be highlighted in yellow, and you

should be prompted to place a small panel on the screen. This is the user-

interface panel create using the Forms designer. Soon after you place this panel,

you should see an object appear in the geomview viewing window. This is the

output from the example module. As you watch, the geometry should change.

If you want this change to be slower or faster, you can move the single slider in

the panel which controls the 'velocity' of the change.

3.2.2 The example Code

The �le main.c contains all of the non-OOGL code. The routine myfunc is the

function to be computed over the mesh. Its arguments are the x and y location

on the mesh and the time since the start of the program.

The main routine �rst performs a number of initialization steps. The call to

Begin OOGL essentially creates an empty geometry template and returns:

fprintf(f, "(geometry example { : exhandle })\n");

fflush(f);

This noti�es the viewer to create an object known as example. It gives it

the internal name, or handle, exhandle. More on this later when we come to

UpdateOOGL

After initializing everything, main enters an endless loop where it computes

the values of the function over each point in the mesh and then calls UpdateOOGL

to update the OOGL mesh in shared memory. User interface allows the user

to change the value of dt. The resulting data array and other parameters are

passed to UpdateOOGL.

UpdateOOGL's main task is to create a Mesh object from the data which has

been passed in. This is the one slightly tricky section of the program, since

the particular features of each subclass must be known in order to create an

instance.

All the Create routines are accessed through the generic GeomCreate rou-

tine. The �rst parameter is an ascii string identifying the subclass, in this

case "mesh". From then on, the Create routine expects a sequence of keys ac-

companied with optional key values. A complete list of these keys is given in

GEOM/include/create.h. There are a number of generic sorts of keys, such as

CR NOCOPY or CR POINT, which are valid for any subclass. CR NOCOPY

4

tells the create routines to use the data you have provided without copying it

over { so we are careful not to delete the data storage we are passing. CR POINT

identi�es an array of 3-dimensional vertices; CR POINT4 does the same for 4-

dimensional vertices.

Other of these keys, however, are speci�c to the Mesh subclass. For example,

CR NU and CR NV specify the dimensions of the mesh. Last and most di�cult,

CR FLAG identi�es a set of
ag values which vary with each subclass and can

only be fully learned by consulting the speci�c subclass.h �le. In this case, we

consult meshflag.h to �nd that we must use the MESH Z
ag for our data,

since we aren't providing explicit (x,y) data with the z-values.

The best way to become comfortable with this aspect of the Create routines

is to examine other examples in the GEOM/src/bin directory, and explore the

include �les corresponding to your favorite subclass.

GeomCreate returns a pointer to a Geom upon successful completion. It also

happens to be a pointer to a Mesh, but we don't care any more what kind of

Geom it is.

The �nal step is to put this mesh out onto the pipe. We do this by wrapping a

call to GeomFSavewithin a simple commandwhich connects this geometry to the

afore-mentioned handle exhandle. GeomFSave prints onto the given �le stream,

in this case, standard output, the value of the Geom. Then, when geomview

reads this stream, it will rede�ne exhandle to replace any old de�nitions.

4 Remarks

It is a good idea to use the OOGLNew routines and their variants for allocating

storage and OOGLFree for freeing it. See GEOM/include/ooglutil.h for details.

A good way to debug external modules is to run them stand-alone �rst, and

examine the ascii stream which they produce to check for obvious problems. Or

catch it this stream in a �le, edit the �le, and then read that into geomview to

see if it's making reasonable pictures.

The Make�le mechanism illustrated in this example is quite complex. The

basic structure is that the source code exists at the GEOM/src/bin level, but

there are multiple object directories corresponding to possibly di�erent archi-

tectures (in our case O.sgi is the one of interest). The parent Make�le then

descends into that directory and does the heart of the make. All the Make�les

include global make�les from GEOM/makefiles, which de�ne many macros that

you don't need to understand. The important ones are explained below. There

is a �le called Makedefs in the parent directory that de�nes the macros SRCS,

OBJS, and TARGET, which you will need to set to the appropriate �lenames.

(The DISTFILES macro can be safely ignored.) The only change you should

need to make to the Makefile in the parent directory is to set the GEOM vari-

able to the appropriate directory, which is the top of the geomview tree. This

change also should be made to O.sgi/Makefile, which you can then modify

5

as appropriate for your application. Remember that after modifying any of the

make�les you should type

% make depend

Enjoy.

5 Listings

These are the listings of all the demo code mentioned in this article.

5.1 example

5.1.1 File: main.c

/�

� �le: main.c:

� author: Charlie Gunn & Tamara Munzner

� date: September 1, 1992

�

� simple example of geomview external module and

� OOGL graphics library routines.

�

� The main program continually computes a function on a mesh of

� (x,y) pairs. The updated mesh is printed to stdout. When this

� program is invoked as a geomview external module, pipes are hooked

� up

�/

#include <math.h>

#include <stdio.h>

#include "forms.h"

#include "panel.h"

#include "ooglutil.h"

oat dt;

/� replace this with your favorite function �/

oat

myfunc(x,y,t)

oat x,y,t;

f

oat r;

6

r = sqrt(x�x+y�y) + .000001;

return(sin(r + t)�sqrt(r));

g

main(argc, argv)

char ��argv;

f

int xdim, ydim, i, j;

oat xmin, xmax, ymin, ymax, xsize, ysize, dx, dy, x, y, t, zscale;

oat �data;

xdim = 24;

ydim = 24;

xmin = �5;

xmax = 5;

ymin = �5;

ymax = 5;

zscale = 2.0;

dt = .1; /� initial velocity �/

/� geomview communications setup. �/

Begin OOGL();

/� If we don't foreground then the process forks and dies

as soon as we do graphics. This is bad.

�/

foreground();

/� This routine is de�ned in the code generated by

the forms designer.

�/

create the forms();

/� We set the slider and display the form. �/

 set slider bounds(VelocitySlider, 0.0, 1.0);

 set slider value(VelocitySlider, dt);

 show form(Example, FL PLACE SIZE, TRUE, "Example");

7

xsize = xmax�xmin;

ysize = ymax�ymin;

dx = xsize/(xdim�1);

dy = ysize/(ydim�1);

data = (
oat �) OOGLNewN(
oat, xdim � ydim);

for (t=0; ; t += dt)

f

/� Let forms library do its thing. �/

 check forms();

/� compute mesh of some function value �/

for (j=0, y = �ysize/2; j<ydim; ++j, y += dy)

f

for (i=0, x = �xsize/2; i<xdim; ++i, x += dx)

f

data[j�xdim + i] = myfunc(x,y,t);

g

g

/� geomview communications update �/

UpdateOOGL(xdim, ydim, zscale, data);

g

g

5.1.2 File: oogl.c

/� oogl.c �/

/� geomview communication code �/

/� Charlie Gunn & Tamara Munzner �/

/� 9/92 �/

#include <stdio.h>

#include "geom.h"

#include "meshflag.h"

FILE �f = stdout;

Begin OOGL()

f

fprintf(f, "(geometry example { : exhandle })\n");

�ush(f);

8

g

UpdateOOGL(x size, y size, gridunit, data)

int x size, y size;

oat gridunit;

oat data[];

f

register int x,y,k;

Point3 �points;

Geom �mesh;

points = OOGLNewN(Point3, x size�y size);

for (k = 0, y=0; y<y size; ++y)

f

for (x=0; x<x size; ++x, ++k)

f

points[k].x = x�gridunit;

points[k].y = y�gridunit;

points[k].z = data[k];

g

g

mesh = GeomCreate("mesh",

CR NOCOPY, /� don't copy the points �/

CR FLAG, MESH Z,

CR NU, x size,

CR NV, y size,

CR POINT, points,

CR END);

fprintf(f, "(read geometry { define exhandle \n");

GeomFSave(mesh, f, NULL);

fprintf(f, "})\n");

OOGLFree(mesh);

g

5.1.3 File: Makedefs

SRCS = main.c oogl.c callbacks.c

OBJS = main.o oogl.o callbacks.o

TARGETS = example

DISTFILES = panel.fd panel.c tutorial.tex tutorial.ps README

9

5.1.4 File: Makefile

GEOM = ../../..

include ${GEOM}/makefiles/Makedefs.global

include Makedefs

include ${GEOM}/makefiles/Makerules.src

5.1.5 File: O.sgi/Makefile

GEOM = ../../../..

include ${GEOM}/makefiles/Makedefs.global

include ../Makedefs

include ${GEOM}/makefiles/Makerules.obj

FORMSLIBS = -lforms -lfm_s

ALLLIBS = ${ALLOOGLLIBS} ${FORMSLIBS} -lgl_s -lm

example: ${OBJS}

rm -f example ../example

cc ${CFLAGS} ${OBJS} ${ALLLIBS} -o example

ln example ..

tutorial.dvi: tutorial.tex

latex tutorial

install: install_bin

install_bin: example

${INSTALL} -O -v -F ${GEOM}/bin/${MACHTYPE} example

strip ${GEOM}/bin/${MACHTYPE}/example

chmod 555 ${GEOM}/bin/${MACHTYPE}/example

10

