3DKIT

A set of objects for displaying wireframe 3D graphics.
Daniel Mark Gessel

5 Roylencroft Ln.

Rose Valley, PA 19065

gessel @cs.swarthmore.edu untill Sept. 1990

I ntroduction

| have set out to create an example of how the AppKit's hierarchical View structure can be
adapted for displaying 3D graphics. Y ou will find the code for the classes | have created below.
It will be submitted, along with a copy of this article, and an example program created through
Interface Builder, to various ftp sites.

Please feel free to contact me at the above addresses about suggestions for additions,
modifications, successes and failures you have had with this kit, as well as any bugs that may
have crept in. | will submit this code along with an example created in Interface Builder to
various archive sites. If interest warrants, | will keep the kit up to date with suggestions and
modifications, to the best of my ability.

Core Structure
Thefile 3D. h declaresthe type vect or 3D. It is used throughout the kit as a primitive type.
There are three core objects for thiskit.

Context3D

Thisisasubclass of View. It holds unique information that is vital for the presentation of 3D
graphics on screen. In this simple case, it holds the distance from the viewer’s eye to the picture
plane, which the screen represents, in the instance variable pi ct ureDi stance. The
conversion of 3D coordinates to 2D coordinates is dependent on this distance. It also holds
distance to a z clipping plane. Any drawing that would be closer to the eye than clippingDistance
IS not drawn.

The negative z axisisinto the screen, the x axisistoward the right, and the y axis is upward.
This makes the coordinate system right handed. The clipping and picture planes are represented
as distances, however. This means that the picture plane has the implicit formula 0=-z-
pi ct ureDi st ance. Simalarly for the clipping plane.

View3D

This is a subclass of object. It is not a responder, since this 3D Kit assumes that the 3D
objects drawn by thiskit are purely graphical. Thisis not necessarilly how we would like it to be,
but, because this kit is slow, and only implements drawing routines for wireframe images,
making a Responder3D class seemes unnecessary. All drawing is done by View3D subclasses,
using novet o:, I i net o: and pol ygon: howany: messages sent to sel f or directly to



super vi ew, where super vi ew has a function identical to the superview in the View class.
Sending these messages directly to the supervi ew will avoid the View3D’s own
transformation object. This may be useful at times.

Transformation3D

This is aso a subclass of object. It implements the methods operateOn: and
oper at eOn: howvany: such that they do nothing. The methods are to be overwritten (as in
the subclass Linear3D) to perform transformations on vector3Ds, pointersto which are passed as
arguments to these methods. Linear3D implements many useful transformations, including
rotations, translations and combinations of these. There is a transformati on instance
variable in the View3D class. This can be assigned to an instance of a subclass of
Transformation3D, which will automatically be sent operateOn: messages with the
vector3Ds which are passed to the drawing messages mentioned above.

Comments

There is the Linear3D (mentioned above), a Transformation3D subclass, and Cube, a
View3D which draws a simple unit cube centered at the origin. The code is commented, with
instructions on how to use the classes in the interface files.

The drawing as implemented is slow. There is no attempt at optimization, just to create a
simple example of object oriented 3D drawing in astyle similar to the AppKit.



