
Geomview Manual

Geomview Version 1.5

for Silicon Graphics Workstations

October 21, 1993

Mark Phillips

Copyright

c

 1993, The Geometry Center

What Is Geomview? 1

What Is Geomview?

Geomview is an interactive program for viewing and manipulating geometric objects, written

by sta� members of the Geometry Center. It can be used as a standalone viewer for static objects

or as a display engine for other programs which produce dynamically changing geometry. It runs

on Silicon Graphics (SGI) IRIS workstatons and NeXT workstations, and on a variety of systems

using generic X graphics and Motif interface. This manual describes SGI Geomview version 1.5.

Although we do not yet have a manual for the NeXT and X versions, much this of manual applies

to them as well as to the SGI version.

Geomview and this manual are available for free via anonymous ftp on the Internet from host

`geom.umn.edu' (IP address 128.101.25.35). Permission is granted to make copies of this manual.

If you have questions or comments about Geomview or this manual, you can email them to

`software@geom.umn.edu'. We are always glad to hear from users. There is also a `geomview-

users' mailing list for announcements regarding Geomview and for Geomview users to commu-

nicate with each other. If you use Geomview please send an email note to `geomview-users-

request@geom.umn.edu' requesting to be added to this mailing list.

Authors

Tamara Munzner, Stuart Levy, and Mark Phillips are the original authors of Geomview. Celeste

Fowler, Charlie Gunn, and Nathaniel Thurston also made signi�cant contributions. Daniel Krech

and Scott Wisdom did the NeXTStep and RenderMan port, and Daeron Meyer and Tim Rowley

did the port to X windows.

Mark Phillips wrote this manual, with substantial help from Stuart Levy and Tamara Munzner.

Countless Geomview users have also been of great help by reading it and pointing out mistakes.

Let Us Hear From You 2

Let UsHear FromYou

We are very interested in hearing about how you are using Geomview. Think of Geometry

Center software as a new kind of shareware: you share your science and successes with us, and we

share our software and support with you. The Geometry Center is funded by the National Science

Foundation, and it is important that we be able to report to NSF the ways in which our software

is being used.

If you use Geomview, please send us a letter telling us what you are doing with it. We need to

know:

1. What you are working on - an abstract of your work would be �ne.

2. How Geomview has helped you, for example, by increasing your productivity or allowing you

to do things you could not do before. In particular, if you feel that Geomview has had a direct

bearing on your work, please tell us about this.

Please send the letter either via email to register@geom.umn.edu, or via regular mail to the

address below.

Moreover, if you use Geomview or other Geometry Center software in your work, we encourage

you to cite its use in your publications.

Thank you!

Software Development Group

Geometry Center

1300 South 2nd St, Suite 500

Minneapolis, MN 55454

USA

Chapter 1: Overview 3

1 Overview

Geomview's main purpose is to display objects whose geometry is given, allowing interactive

control over details such as point of view, speed of movement, appearance of surfaces and lines,

and so on. Geomview can handle any number of objects and allows both separate and collective

control over them.

The simplest way to use Geomview is as a standalone viewer to see and manipulate objects. It

can display objects described in a variety of �le formats. It comes with a wide variety of example

objects, and you can create your own objects.

You can also use Geomview to handle the display of data coming from another program that is

running simultaneously. As the other program changes the data, the Geomview image reects the

changes. Programs that generate objects and use Geomview to display them are called external

modules. External modules can control almost all aspects of Geomview. The idea here is that many

aspects of the display and interaction parts of geometry software are independent of the geometric

content and can be collected together in a single piece of software that can be used in a wide

variety of situations. The author of the external module can then concentrate on implementing the

desired algorithms and leave the display aspects to Geomview. Geomview comes with a collection

of sample external modules, and this manual describes how to write your own.

Geomview represents the current state of an ongoing e�ort at the Geometry Center to provide

interactive geometry software that is particularly appropriate for mathematics research and edu-

cation. In particular, Geomview can display things in hyperbolic and spherical space as well as

Euclidean space.

Geomview allows multiple independently controllable objects and cameras. It provides inter-

active control for motion, appearances (including lighting, shading, and materials), picking on an

object, edge or vertex level, snapshots in SGI image �le or Renderman RIB format, and adding

or deleting objects is provided through direct mouse manipulation, control panels, and keyboard

shortcuts.

Geomview supports the following simple data types: polyhedra with shared vertices (.o�),

quadrilaterals, rectangular meshes, vectors, and Bezier surface patches of arbitrary degree including

rational patches. Object hierarchies can be constructed with lists of objects and instances of

object(s) transformed by one or many 4x4 matrices. Arbitrary portions of changing hierarchies

may be transmitted by creating named references.

Geomview can display Mathematica graphics output.

Chapter 2: Tutorial 4

2 Tutorial

This chapter leads you through some of the basics of using Geomview. Work through this

chapter in front of a workstation where you can try out the examples given here to get a feel for

what you can do with Geomview.

To start Geomview, login to the computer and get a shell window. A shell window is a window

in which you can type unix commands; the prompt in the window usually ends with a '%'. In the

shell window (the mouse cursor must be in the window) type the following (RET here means hit the

"Enter" key):

geomview tetra dodec RET

This command starts up Geomview and loads two example objects, a tetrahedron and a dodec-

ahedron. After a few seconds three windows should appear as shown in Figure 1.

Figure 1: Initial Geomview display

The panel on the left is Geomview's main control panel; it's called the Main panel. The skinny

panel in the middle is the Tools panel and is for selecting di�erent kinds of motions. The window

on the right is the camera window and in it you see a large tetrahedron and a dodecahedron which

is partially obscured by the tetrahedron.

Chapter 2: Tutorial 5

Geomview has lots of panels but by default it displays only these three. We'll describe some

aspects of these and a couple of the others in this tutorial. You can read more about these and

other panels in the later chapters of this manual.

Put the mouse cursor in the camera window and press down and hold the left mouse button.

Now, while holding down the button, slowly move the mouse around. You should see the picture

rotate in the direction you move the mouse. If you lift up on the mouse button while moving the

mouse, the picture continues rotating. To stop it, hold the mouse very still and click down and up

on the left mouse button.

Geomview uses the glass sphere model for mouse-based motion. This means you are supposed

to think of the object as being inside an invisible sphere and the mouse cursor is a gripper outside

the sphere. When you hold down the left mouse button, the gripper grabs the sphere; when you

let go of the button, the gripper releases the sphere. Moving the mouse while holding the button

down causes the sphere (and hence the object) to move in the same direction as the mouse.

In addition to the two solids you should also see two wireframe boxes in the camera window.

These are the "bounding boxes" of the two objects. By default Geomview puts a bounding box

around each object that it displays so that you have an idea of how large it is.

Notice that as you move the mouse around the tetrahedron and dodecahedron move as a unit.

That is because by default what you are actually moving is the "World". To move an individual

object instead of the whole world, move the mouse cursor to the TARGET browser in the Main

panel. Click (any button) on the word tetra. This makes the tetrahedron be the "target object".

Now move the cursor back to the camera window and you can rotate just the tetrahedron.

The motion that you have been applying up to now has been rotation, because that is the

motion mode that is selected in the Tools panel. To translate instead, click on the Translate

button. Now when you move the mouse in the camera window while holding down the left button,

the tetrahedron (which should still be the target object from before) will translate in the direction

you move the mouse. Notice that you can translate it beyond the edge of the window as long as

you keep holding the left mouse button down. If you lift up on the mouse button while moving the

mouse, the tetrahedron will keep going. It moves rather rapidly so it is very easy to lose track of

where it is.

If you accidentally lose the tetrahedron by translating it too far out of the view of the window,

you can get it back by clicking on the Center button in the Tools panel. This causes it to come

back to its initial position.

Chapter 2: Tutorial 6

Click on the Center button to bring the tetrahedron home, and then translate it o� to one side

so that you can completely see the dodecahedron.

Your world now has two objects in it that are beside each other. You should see the dodecahedron

in the middle of the window and maybe part of the tetrahedron o� to one side. Go back to the

TARGET browser in the Main panel and click on "World" to select the whole world again. Now

click on the Look At button in the Tools panel. You should see something like Figure 2 | the

dodecahedron and the tetrahedron in the middle of the window next to each other. The Look At

button positions the camera in such a way that the target object is centered in the window.

Figure 2: Looking at the world

Now put the cursor over the middle of the dodecahedron and double-click the right mouse button.

This means click it down-and-up two times in rapid succession. Notice that the dodecahedron

becomes the target object; you can see this in the TARGET browser in the Main panel. Double-

clicking the right mouse button on an object is another way to make it the target object.

Chapter 2: Tutorial 7

Figure 3: The Appearance Panel

Go to the PANELS browser in the Main panel and click on the word Appearance. This brings

up the Appearance panel. When it appears, if it partially obscures another Geomview window you

can move it o� to one side by dragging its frame with the middle mouse button down.

The Appearance panel lets you control various things about the way Geomview draws objects. In

the upper right corner, under the Done button are buttons labeled [af] Faces and [ae] Edges. Click

on the [ae] Edges one, and notice that Geomview is now drawing the edges of the dodecahedron.

Click on it again and the edges go away. Click several times and watch the edges come and go.

When you've had enough of this, leave the edges on and click the [af] Faces button. This toggles

the faces on and o�. Click the button again to turn them back on.

Now click on the [Cf] Faces button under the word COLOR. A color chooser panel like the one

in Figure 4 should appear.

Put the cursor in the color hexagon in this panel and hold down the left mouse button. Slowly

move the mouse around. This drags the little black point around to choose a new color for the

dodecahedron. The previous colors were speci�ed in the �le `dodec' that you loaded when we

started Geomview. The color that you specify with the color panel overrides the old colors. You

can adjust the intensity of the color with the Intensity slider. When you �nd a color that you like,

click the OK button.

Chapter 2: Tutorial 8

Figure 4: Color Chooser Panel

Now put the cursor somewhere over the gray background and double-click the right mouse

button; this picks "World" as the target object. Click the Look At button to look at the world

again.

Notice that in the Appearance panel the settings of the buttons have changed from the way

you left them with the dodecahedron. That's because the Appearance panel always displays the

settings for the target object, which is now the world, which still has its default settings.

Click on the [ab] BBox button under the word Draw. The bounding boxes go away. Now

put the cursor back in the camera window. At the keyboard, type the keys a b. Notice that the

bounding boxes come back. a b is the keyboard shortcut for the bounding box toggle button; the

string "[ab]" appears on the button to indicate this. Most of Geomview's buttons have keyboard

shortcuts that you can use instead if you want. This is useful once you are familiar with Geomview

and don't want to have to move around among lots of panels.

Now select the tetrahedron, either by double-clicking the right mouse button on it, or by selecting

"tetra" in the TARGET browser. Then click on the Delete button in the Main panel. The

tetrahedron should disappear. This is how you get rid of an object.

You can also load objects from within Geomview. Click on the Load button in the main panel.

The Files panel will appear.

Near the top of this panel is a browser with three lines in it; the second line is a directory with

lots of Geomview example �les in it. Click on that second line. Your Files panel should then look

something like Figure 5. Scroll down in the list of �les until you see `tref.off'. Click on that line,

Chapter 2: Tutorial 9

Figure 5: The Files Panel

and then click on the Add button. A large trefoil-shaped tube will appear in your window. Click

the Done button in the Files panel to dismiss the panel.

Now click on the Reset button in the Tools panel. This causes everything to return to its home

position. You should see something like Figure 6 at this point: a dodecahedron and a trefoil knot.

Play around with the trefoil knot and the dodecahedron. Experiment with some of the other

buttons in the Tools panel. Try coloring the trefoil knot with the Appearance panel.

For a tutorial on how to create your own objects to load into Geomview, see �le `doc/oogltour'

distributed with Geomview (`/u/gcg/ngrap/doc/oogltour' on the Geometry Center system). The

things in that �le will be incorporated into a future version of this manual.

Chapter 2: Tutorial 10

Figure 6: Trefoil and Dodecahedron

Chapter 3: Interaction 11

3 Interaction

This chapter describes how you interact with Geomview through the mouse and keyboard.

3.1 Starting Geomview

The usual way to start Geomview is to type geomview RET in a shell window (RET means hit

the "Enter" key). It may take Geomview a few seconds to start up; one or more windows will

appear and you can begin interacting with Geomview immediately.

It is also possible to specify actions for Geomview to perform at startup time by giving arguments

in the shell command line. See Section 3.2 [Command Line Options], page 11.

3.2 Command Line Options

Here are the command line options that Geomview allows:

`-b r g b' Set the window background color to the given r g b values.

`-c �le' Interpret the gcl commands in �le, which may be the special symbol `-' for standard

input. For a description of gcl, See Chapter 7 [GCL], page 89.

`-c command'

Commands may also be supplied literally, as in

-c "(ui-panel main off)"

Since command includes parentheses, which have special meaning to the shell, com-

mand must be quoted.

`-wins nwins'

Causes Geomview to initially display nwins camera windows.

`-wpos width,height[@xmin,ymin]'

Speci�es the initial location and size of the �rst camera window. The values for width,

height, xmin, and ymin are in screen (pixel) coordinates.

`-wpos -' You are prompted for placement of the �rst camera window.

`-M objectname'

Display (possibly dynamically changing) geometry sent from the programs geomstuff

or togeomview. This actually listens to the named pipe `/tmp/geomview/objectname';

you can achieve the same e�ect with the shell commands:

Chapter 3: Interaction 12

mkdir /tmp/geomview

mknod /tmp/geomview/objectname p

(assuming the directory and named pipe don't already exist), then executing the gcl

command: (geometry objectname < /tmp/geomview/objectname)

`-Mc pipename'

Like `-M' above, but expects gcl commands, rather than OOGL geometry data, on the

connection.

`-nopanels'

Start up displaying no panels, only graphics windows. Panels may be invoked later as

usual with the Px keyboard shortcuts or with the ui-panel command.

`-e module'

Start an external module; module is the name associated with the module, appearing

in the main panel's Applications browser, as de�ned by the emodule-define command.

`-start module args : : :'

Like -e but allows you to pass arguments to the external module. "{" signals the end

of the argument list; the "{" may be omitted if it would be the last argument on the

Geomview command line.

`-run shell-command args : : :'

Like -start but takes the pathname of executable of the external module instead of the

module's name. The pathnames of all known module directories are appended to the

UNIX seearch path when invoking shell-command.

3.3 Basic Interaction: The Main Panel

Normally when you invoke Geomview, three windows appear: the Main panel, the Tools panel,

and one camera window. Geomview has many other windows but most things can be done with

these three and so by default the others do not appear. This section of the manual introduces some

basic concepts that are used throughout the rest of the manual and describes the Main panel.

Geomview can display an arbitrary number of objects simultaneously. The TARGET browser

in the Main panel displays a list of all the objects that Geomview currently knows about. This

browser has a line for each object that you have loaded, plus some lines for other objects. One of

the other objects is called World and corresponds to the all the currently loaded objects, treated

as if they were one object. Most of the operations that you can do to one object, such as applying

a motion or changing a color, can also be done to the "World" object.

Chapter 3: Interaction 13

The Main Panel

The TARGET browser also has an entry for each camera. By default there is only one camera;

it is possible to add more of them via the Camera panel. Geomview treats cameras in much the

same way as it does geometric objects. For example, you can move cameras around and add them

and delete them just as with geometric objects. Cameras do not usually show up in the display

as an object that you see. Each camera has a separate camera window which displays the view as

seen by that camera. (It is possible for each camera to display a geometric representation of other

cameras; See Section 3.7 [Cameras], page 28.)

Because Geomview treats cameras and geometric objects very similarly, the term object in this

documentation is used to refer to either one. When we need to distinguish between the two kinds

of objects, we use the term geom to denote a geometric object and the word camera to denote a

camera.

The object which is selected (highlighted) in the TARGET browser is called the target object.

This is the object that receives any actions that you do with the mouse or keyboard. You can

change the target object by selecting a di�erent line in the TARGET browser. Another way to

change the target object is to put the mouse cursor directly over a geom in a camera window

and rapidly double-click the right mouse button. This process is called picking; the picked object

becomes the new target.

Geomview objects are all known by two names, both of which are shown in the TARGET

browser. The �rst name given there, which appears in square brackets ([]), is a short name

Chapter 3: Interaction 14

assigned by Geomview when you load the object. It consists of the letter `g' for geoms and `c' for

cameras, followed by a number. The second name is a longer more descriptive name; by default

this is the name of the �le that the object was loaded from. The two names are equivalent as far

as Geomview is concerned; at any point where you need to specify a name you can give either one.

To manipulate an object, make sure you that the object you want to move is the target object,

and put the mouse cursor in a camera window. Motions are applied by holding down either the

left or middle mouse button and moving the mouse. There are several di�erent motion "modes",

each for applying a di�erent kind of motion. The MOTION MODE browser in the Main panel

indicates the current motion mode. The default is "Rotate". You can change the current motion

mode by selecting a new one in the MOTION MODE browser, or by using the Tools panel. For

more information about motion modes, See Section 3.5 [Mouse Motions], page 17.

The Load button on the Main panel brings up the Files panel for loading a �le. The �le can

contain either a geom, a camera, or gcl commands. For details, See Section 3.4 [Loading], page 15.

The Delete button causes the target object to be deleted. Geomview selects another object to

be the new target. You can delete cameras as well as geoms in this way. If you hit the Delete

button while the target object is "World", Geomview deletes all geoms.

The Panels browser on the Main panel lists all the Geomview panels. Click on a panel's entry

to bring that panel up.

The Modules browser lists Geomview external modules. An external module is a separate

program that interacts with Geomview to extend its functionality. For information on external

modules, See Chapter 6 [Modules], page 67.

The three buttons at the bottom of the Main panel, labeled Euclidean, Hyperbolic, and Spher-

ical, allow you to change the geometry of the space that Geomview displays. By default Euclidean

is selected. For details about using Hyperbolic and Spherical spaces, See Chapter 8 [Non-Euclidean

Geometry], page 108.

Most actions that you can do through Geomview's panels have equivalent keyboard shortcuts

so that you can do the same action by typing a sequence of keys on the keyboard. This is useful for

advanced users who are familiar with Geomview's capabilities and want to work quickly without

having to have lots of panels cluttering up the screen. Keyboard shortcuts are usually indicated in

square brackets ([]) near the corresponding item in a panel. For example, the keyboard shortcut for

Rotate mode is 'r'; this is indicated by "[r]" appearing before the word "Rotate" in the MOTION

Chapter 3: Interaction 15

MODE browser. To use this keyboard shortcut, just hit the r key while the mouse cursor is in any

Geomview window. Do not hit the RET key afterwards.

Some keyboard shortcuts consist of more than one key. In these cases just type the keys one

after the other, with no RET afterwards. Keyboard shortcuts are case sensitive.

The keyboard �eld in the upper left corner of theMain panel echos the current state of keyboard

shortcuts.

The button labeled ? near the top right corner of the Main panel causes Geomview to print out

a list of all keyboard shortcuts to standard output.

The Quit button on the main panel terminates Geomview.

3.4 Loading Objects Into Geomview

There are several ways to load an object into Geomview.

the Files panel

If you click the Load button in Geomview's Main panel, the Files panel will appear.

This panel lets you select a �le from a variety of directories. The short browser at

the top of the panel shows the selected directory, and the longer browser beneath it

shows the �les in that directory. To select a �le, click on it. After a �le is selected,

you can load it into Geomview by clicking either the Add or Replace button. The Add

button causes Geomview to load the �le as a new object; a new entry will appear in

the Objects browser in the Main panel, and all objects currently loaded will remain

unchanged. The Replace button causes Geomview to replace the current object with

the object in the selected �le. If the current object is the World, Geomview deletes all

objects and loads the one in the �le as a new object. If the current object is a camera,

the Replace button has no e�ect.

If the �le that you select contains gcl commands rather than an OOGL object, the Add

and Replace buttons both cause Geomview to interpret the commands in the �le. For

more information about this, See Chapter 7 [GCL], page 89.

When the Files panel �rst appears, the directory selected in the directory browser is

the current directory | the one from which you invoked Geomview. The �le browser

shows all the �les in this directory, including ones that are not Geomview �les. If you

Chapter 3: Interaction 16

The Files Panel

try to load a �le that doesn't contain either an OOGL object or Geomview commands,

Geomview will print out an error message.

The directory browser also lists a second and third directory in addition to the current

directory. The second one, which ends in `data/geom', is the Geomview example data

directory. This contains a wide variety of sample objects. It also contains several

subdirectories. In particular, the `hyperbolic' and `spherical' subdirectories have

sample hyperbolic and spherical objects, respectively. Directory entries in the browser

look just like �le entries; to view a subdirectory, click on it.

The third directory shown in the directory browser, which ends in `geom', contains

several subdirectories with other Geomview �les in them. These are used less frequently

than the ones in the `data/geom' directory.

You can change the list of directories shown the Files panel's directory browser by

using the set-load-path command; see Chapter 7 [GCL], page 89.

Chapter 3: Interaction 17

the < keyboard shortcut:

If you type < in any Geomview window, the Load panel will appear. This is a small

version of the Files panel; it contains a text �eld in which you can enter the name of a

�le to load. After typing the name of the �le to load, type RET; Geomview will load the

�le as if you had loaded it with the Add button in the Files panel. If, after bringing

up the small load panel with <, you decide you want to use the larger Files panel after

all, press the Files Browser button.

The Load Panel

geometry loading commands:

The load, geometry, new-geometry, and read gcl commands allow you to load an

object into Geomview; See Chapter 7 [GCL], page 89.

3.5 Using the Mouse to Manipulate Objects

Geomview lets you manipulate objects with the mouse. There are six di�erent mouse motion

modes: Rotate, Translate, Cam Fly, Cam Zoom, Geom Scale, and Cam Orbit. The tools panel

has a button for each of these modes; to switch modes, click on the corresponding button. You can

also select these through the Motion Mode browser on the Main panel.

This section describes basic mouse interaction. There are some more advanced features available

on the Obscure panel. For details, see Section 3.9 [Command Obscure], page 32.

Each of the motion modes uses a common paradigm for how the motion is applied. In particular,

each depends on the current target object and the current center object. These are explained in

the following paragraphs.

The current target object is shown in the Target �eld in the Tools panel. This is the same as

the selected object in the TARGET OBJECTS browser in the Main panel, and you can change it

by either selecting a new object in the browser, by typing a new entry in the �eld, or by picking

an object in a camera window by double-clicking the right mouse button with the cursor over the

object.

Chapter 3: Interaction 18

The Tools Panel

The current center object is shown in the Center �eld in the Tools panel. Its default value is

the special word "target", which means that the center object is whatever the target object is. You

can change the center to any object by typing it in the Center �eld. The origin of the center object

is held �xed in Rotate and Orbit modes. Normally the center object is one of the existing geoms

listed in the TARGET OBJECTS browser, and the actual center of rotations is the origin of that

object's coordinate system. It is possible, however, to select an arbitrary point of interest on an

object as the center. For details, see Section 3.5.1 [Point of Interest], page 21.

You apply a mouse motion by holding down either the left or middle mouse button with the

cursor in a camera window and moving the mouse. Most of the modes have inertia, which means

that if you let go of the button while moving the mouse, the motion will continue. It may be helpful

to imagine the mouse cursor as being a gripper; when you hold a mouse button down, it grips the

Chapter 3: Interaction 19

target object and you can move it. When you let go of the mouse button, the gripper releases the

object. Letting go of the mouse button while moving the mouse is like throwing the object | the

object continues moving independent of the mouse. Inertia can be turned o�; see the button on

the Obscure panel.

Most of the mouse motions have a slow motion version which you get by holding down the shift

key while doing the motion as usual. This is useful for �ner control.

You can pick any point on an object (not just its origin) as the center of motion by holding

down the shift key while clicking the right mouse button; this chooses a point of interest.

Rotate In Rotate mode, hold the left mouse button down to rotate the target object about the

center object. Rotation proceeds in the direction that you move the mouse. Speci�cally,

the axis of rotation passes through the origin of the center object, is parallel to the

camera view plane, and is perpendicular to the direction of motion of the mouse. When

the center is "target", this means that the target object rotates about its own origin.

The middle mouse button in Rotate mode rotates the target object about an axis

perpendicular to the view plane.

Translate In Translate mode, hold the left mouse button down to translate the target object in

the direction of mouse motion. The middle mouse button translates the target along

an axis perpendicular to the view plane.

In Euclidean space, the center object is essentially irrelevant for translations. In hy-

perbolic and spherical spaces, where translations have a unique axis, this axis is chosen

to go through the origin of the center object.

Cam Fly Cam Fly is a crude ight simulator that lets you y around the scene. It works by

moving the camera. Move the mouse while holding the left mouse button down to

point the camera in a di�erent direction. To move forward or backward, hold down

the middle button and move the mouse vertically. Both of these motions have inertia;

typically the easiest way to y around a scene is to give the camera a slight forward

push by letting go of the middle button while moving the mouse upward, and then

using the left button to steer.

Cam Fly a�ects the camera window that the mouse is in; it ignores the target object

and the center object.

Cam Orbit

Cam Orbit mode lets you rotate the current camera around the current center. The

left mouse button does this rotation. The middle mouse button in Cam Orbit mode is

the same as it is in Cam Fly mode: it moves the camera forward or backward.

Chapter 3: Interaction 20

In general Cam Orbit does not move the target object, although if the current camera

is selected as the target and the center is also the target, it will rotate that camera

about itself just as in Cam Fly mode.

Cam Zoom

Cam Zoom mode lets you change the current camera's �eld of view with the mouse;

hold the left mouse button down and move the mouse to change it. The numeric value

of the �eld of view is shown in the FOV �eld in the Camera panel.

Geom Scale

Geom Scale mode lets you enlarge or shrink a geom. It operates on the target object

if that object is a geom. If the target is a camera, Geom Scale operates on the geom

that was most recently the target object. Moving the mouse while holding down the

left mouse button scales the object either up or down, depending on the direction of

mouse motion. The center of the applied scaling transformation is the center object.

Scaling is meaningful only in Euclidean space; attempts to scale are ignored in other

spaces.

Geom Scale mode does not have inertia.

The Stop, Look At, Center, and Reset buttons on the Tools panel perform actions related to

motions but do not change the current motion mode.

Stop The Stop button causes all motions to stop. It a�ects all moving objects; not just the

target object. It's keyboard shortcut is H.

The keyboard command h, which does not correspond to a panel button, stops the

current motion for the target object only.

Look At The Look At button causes the current camera to be moved to a position such that

it is looking at the target object, and such that the target object more or less �lls the

window.

The Look At command is unreliable in non-Euclidean spaces.

Center The Center button undoes the target object's transformation, moving it back to its

home position, which is where it was when you originally loaded it into Geomview.

Reset The Reset button stops all motion and causes all objects to move back to their home

positions.

The other four buttons on the Tools panel are:

Chapter 3: Interaction 21

MAIN This button brings up the Main panel in case you have dismissed it or in case it is

buried underneath other panels.

Done This button dismisses the Tools panel. You can bring the panel back by selecting it in

the More Panels browser in the Main panel, or via the P t keyboard shortcut.

Load This is the same as the Load button on the Main panel; it brings up the Files panel.

Save This is the same as the Save button on the Main panel; it brings up the Save panel.

3.5.1 Selecting a Point of Interest

It is sometimes useful to specify a particular point on some object in a geomview window as the

center point for mouse motions. You can do this by shift-clicking the right mouse button (i.e. click

it once while holding down the shift key on the keyboard) with the cursor over the desired point.

This point then becomes the point of interest. The point of interest must be on an existing object.

Selecting a point of interest simpli�es examining a small portion of a larger object. Shift-right-

click on an interesting point, and select Orbit mode. Use the middle mouse button to approach,

and the left mouse to orbit the point, examining the region from di�erent directions.

When you have selected a point of interest, the current center object changes to an object named

"CENTER", which is an invisible object located at the point of interest. In addition, mouse motions

for the window in which you made the selection are adjusted so that the point of interest follows

the mouse.

You can change the point of interest at any time by selecting a new one by shift-clicking the

right mouse button again. You can cancel the point of interest altogether by shift-clicking the right

mouse button with the cursor on the background (i.e. not on any object). This changes the center

object back to its default value, "target".

The object named "CENTER", which serves as the center object for the point of interest, is a

special kind of geom called an "alien". It does not appear in the TARGET OBJECTS browser. By

default it has no geometry associated with it and hence is invisible. You can, however, explicitly give

it some geometry using a GCL command, causing it to appear. Use the geometry command for this:

(geometry CENTER geometry), where geometry is any valid geometry. For example, (geometry

CENTER { < xyz.vect }) causes the �le `xyz.vect', which is one of the standard example �les

distributed with geomview, to be used at the geometry for CENTER.

What actually happens internally when you select a point of interest is that the center is set to

the object called CENTER, and that object is positioned at the point of interest. In addition, in

Chapter 3: Interaction 22

order for mouse motions to track the point of interest, the current camera's focal length is set to

be the distance from the camera to the point of interest. You can accomplish this via GCL with

the following commands:

(if (real-id CENTER) nil (new-alien CENTER))

(ui-center CENTER)

(transform-set CENTER universe universe translate x y z)

(merge camera cam-id { focus d })

where (x,y,z) are the (universe) coordinates of the point of interest, and d is the distance from

that point to the current camera, cam-id. The �rst command above creates the "alien" CENTER

if it does not yet exist.

3.6 Changing theWay Things Look

Geomview uses a hierarchy of appearances to control the way things look. An appearance is a

speci�cation of information about how something should be drawn. This can include many things

such things as color, lighting, material properties, and more. Appearances work in a hierarchal

manner: if a certain appearance property, for example face color, is not speci�ed in a particular

object's appearance, that object is drawn using that property from the parent appearance. If both

the parent and the child appearance specify a property, the child's setting takes precedence unless

the parent appearance is set to override.

Every geom in Geomview has an appearance associated with it. There is also an appearance

associated with the "World" geom, which serves as the parent of each individual geom's appearance.

Finally, there is an global "base" appearance, which is the parent of the World appearance.

The base appearance speci�es reasonable values for all appearance information, and by default

none of the other appearances specify anything, which means they inherit their values from the

base appearance. This means that by default all objects are drawn using the base appearance.

If you change a certain appearance property for a geom, that property is used in drawing that

geom. The parent appearance is used for any properties that you do not explicitly set.

Geomview has three panels which let you modify appearances.

Chapter 3: Interaction 23

The Appearance Panel

3.6.1 The Appearance Panel

The Appearance panel lets you change most common appearance properties of the target object.

If the target is an individual geom, then changes you make in the appearance panel apply to

that geom's appearance. If the target is the World, then appearance panel changes apply to the

World appearance and to all individual geom appearances. (Users have found that this is more

desirable than having the changes only apply to the World appearance.) If the target is a camera,

then appearance panel changes apply to the geom that was most recently the target.

The �ve buttons near the upper right corner under the word Draw control what parts of the

target geom are drawn.

Faces This button speci�es whether faces are drawn.

Edges This button speci�es whether edges are drawn.

BBox This button speci�es whether the bounding box is drawn.

Vects This button speci�es whether VECT objects are drawn. VECTs are a type of OOGL

object that represent points and line segments in 3-space; they are distinct from edges

of other kinds of objects, and it is sometimes desirable to have separate control over

whether they are drawn.

Normals This button speci�es whether surface normal vectors are drawn.

Chapter 3: Interaction 24

Color Chooser Panel

The four buttons under COLOR labeled Faces, Edges, Normals, and BBox let you specify the

color of the corresponding aspect of the target geom. Clicking on one of them brings up a color

chooser panel.

The black dot in the center of the hexagon represents the current color; you can move it around

by dragging it with the left mouse button down. The slider speci�es the intensity. To accept the

color that you have chosen, click the OK button. To cancel your color selection and return to the

previous color, click the Cancel button.

The SHADING browser lets you specify the shading model that Geomview uses to paint the

target geom.

Constant Every face of the object is drawn with a constant color which does not depend on the

location of the face, the camera, or the light sources. If the object does not contain

per-face or per-vertex colors, the di�use color of the object's appearance is used. If the

object contains per-face colors, they are used. If the object contains per-vertex colors,

each face is painted using the color of its �rst vertex.

Flat Each face of the object is drawn with a color that depends on the relative location of

the face, the camera, and the light sources. The color is constant across the face but

may change as the face, camera, or lights move.

Smooth Each face of the object is drawn with smoothly interpolated colors based on the normal

vectors at each vertex. If the object does not contain per-vertex normals, this has the

same e�ect as at shading. If the object has reasonable per-vertex normals, the e�ect

is to smooth over the edges between the faces.

CSmooth Each face of the object is drawn with exactly the speci�ed color(s), independent of

lighting, orientation, and material properties. If the object is de�ned with per-vertex

Chapter 3: Interaction 25

colors, the colors are interpolated smoothly across the face; otherwise the e�ect is the

same as in Constant shading style.

The Facing Normals button on the Appearance panel indicates whether or not Geomview should

arrange that normal vectors always face the viewer. If a normal vector points away from the viewer

the color of the corresponding face or vertex usually is darker than is desired. Geomview can avoid

this by using the opposite normal in shading calculations. This is the default. To change it so that

the actual normals are used, press this button. This has no e�ect in constant shading mode.

The three text �elds in the lower left corner of the Appearance panel are:

Line Width

The width, in pixels, for lines drawn by Geomview.

Normal Length

This is actually a scale factor; when normal vectors are drawn, Geomview draws them

to have a length that is their natural length times this number.

Patch Dicing

Geomview draws Bezier patches by �rst converting them to meshes. This parameter

speci�es the resolution of the mesh: if Patch Dicing is n, then an n by n mesh is used

to draw each Bezier patch. if Patch Dicing is 1, the resolution reverts to a built-in

default value.

The Revert button on the Appearance panel undoes all settings in the target appearance. This

causes the target geom to inherit all its appearance properties from its parent.

The Appearance panel's Override button determines whether appearance controls should over-

ride settings in the objects themselves { for example, setting the face color will a�ect all faces

of objects with multi-colored facets. Otherwise, appearance controls only provide settings which

the objects themselves do not specify. By default, Override is enabled. This button applies to all

objects, and to all appearance-related panels.

3.6.2 The Materials Panel

The Materials panel controls material properties of surfaces. It works with the target object in

the same way that the Appearance panel does.

Chapter 3: Interaction 26

The Materials Panel

Transparent

This button determines whether transparency is enabled. Geomview itself does not

fully support transparency yet and on some machines it does not work at all. More

speci�cally, the X, NextStep, and some SGI platforms ignore alpha information entirely,

while other SGI platforms use the alpha information but the picture is guaranteed to

be incorrect. Use RenderMan if you want real transparency: when transparency is

enabled, a RenderMan snapshot will contain the alpha information.

Alpha This slider determines the opacity/transparency when transparency is enabled. 0 means

totally transparent, 1 means totally opaque.

Di�use Reectance

This slider controls the di�use reectance of a surface. This has to do with how much

the surface scatters light that it reects.

Shininess This slider controls how shiny a surface is. This determines the size of specular high-

lights on the surface. Lower values give the surface a duller appearance.

Ambient Reectance

This slider controls how much of the ambient light a surface reects.

Specular Reectance

This slider controls the specular reectance of a surface. This has to do with how

directly the surface reects light rays. Higher values give brighter specular highlights.

Done This button dismisses the Materials panel.

3.6.3 The Lighting Panel

The Lighting panel controls the number, position, and color of the light sources used in shading.

Chapter 3: Interaction 27

The Lighting Panel

The Lighting panel is di�erent from the Appearance andMaterial panels in that it always works

with the base appearance. This is because it usually makes sense to use the same set of lights for

drawing all objects in your scene.

LIGHTS The LIGHTS browser shows the currently selected light. Changes made using the other

widgets on this panel apply to this light. There is always at least one light, the ambient

light.

Intensity This slider controls the intensity of the current light.

Color This button brings up a color chooser which lets you select the color of the current

light.

Add This button adds a light.

Delete This button deletes the current light.

Show Lights

This button lets you see and change the positions of the light sources in a camera

window. Each light is drawn as long cylinder which is supposed to remind you of a

light beam. When you click on the Show Lights button Geomview goes into "light

edit" mode, during which you can rotate current light by holding down the left mouse

button and moving the mouse. Lights placed in this way are in�nitely distant, so what

you are changing is the angular position. Click on the Show Lights button again to

return to the previous motion mode and to quit drawing the light beams.

Done This button dismisses the Lighting panel.

Geomview's Appearance, Materials, and Lighting panels are constructed to allow you to easily

do most of the appearance related things that you might want to do. The appearance hierarchy that

Geomview supports internally, however, is very complex and there are certain operations that you

cannot do with the panels. The Geomview command language (gcl) provides complete support for

appearance operations. In particular, the merge-baseap command can be used to change the base

appearance (which, except for lighting, cannot be changed by Geomview's panels). The merge-

Chapter 3: Interaction 28

ap command can be used to change an individual geom's appearance. Appearances can also be

speci�ed in OOGL �les; for details, see Section 4.1.8 [Appearances], page 43.

3.7 Cameras

A camera in Geomview is the object that corresponds to a camera window. By default there is

only one camera, but it is possible to have as many as you want. You can control certain aspects

of the way the world is drawn in each camera window via the Cameras panel.

The Cameras Panel

If the target object is a camera, the Cameras panel a�ects that camera. If the target object is

not a camera, the Cameras panel a�ects the current camera. The current camera is the camera of

the window that the mouse cursor is in, or was in most recently if the cursor is not in a camera

Chapter 3: Interaction 29

window. Thus, if you use the keyboard shortcuts for the actions in the Cameras panel while the

cursor is in a camera window, the actions apply to that camera, unless you have explicitly selected

another camera.

Add Camera

Clicking on this button causes Geomview to create a new camera. The new camera's

window appears, and an entry for it appears in the TARGET browser of the Main

panel.

Software Shading

This button controls whether Geomview does shading calculations in software. The

default is to let the hardware handle them, and in Euclidean space this is almost

certainly best because it is faster. In hyperbolic and spherical space, however, the

shading calculations that the hardware does are incorrect. Click this button to turn

on correct but slower software shading.

Background Color

This button brings up a color chooser which you can use to set the background color

of the camera's window.

PROJECTION

This browser lets you pick between perspective and orthogonal projection for this cam-

era.

Near clip This determines the distance in world coordinates of the near clipping plane from the

eye point. It must be a positive number.

Far clip This determines the distance in world coordinates of the far clipping plane from the

eye point. It must be a positive number and in general should be larger than the Near

clip value.

FOV This is the camera's �eld of view, measured in its shorter direction. In perspective

mode, it is an angle in degrees. In orthographic mode, it is the linear size of the �eld

of view. This number can be modi�ed with the mouse in Cam Zoom mode.

Focal Length

The focal length is intended to suggest the distance from the camera to an imaginary

plane of interest. Its value is used when switching between orthographic and perspective

views (and during stereo viewing), so as to preserve apparent size of objects lying at

the focal distance from the camera.

Lines Closer

This number has to do with the way lines are drawn. Normally Geomview's z-bu�ering

algorithm can get confused when drawing lines that lie exactly on surfaces (such as the

edges of an object); due to machine round-o� error, sometimes the lines appear to be

in front of the surface and sometimes they appear behind it. The Lines Closer value is

Chapter 3: Interaction 30

a fudge factor | Geomview nudges all the lines that it draws closer to the camera by

this amount. The number should be a small integer; try 5 or 10. 0 turns this feature o�

completely. Choosing too large a value will make lines visible even though they should

be hidden.

SPACE MODEL

This determines the model used to draw the world. It is most useful in hyperbolic

and spherical spaces. You probably don't need to touch this browser if you stay in Eu-

clidean space. For more information about these models, see Chapter 8 [Non-Euclidean

Geometry], page 108.

Virtual This is the default model and represents the natural view from inside the

space.

Projective The projective model of hyperbolic and spherical space. Geoms move un-

der isometries of the space, and cameras move by Euclidean motions. By

default in the projective model, the Euclidean unit sphere is drawn. In

hyperbolic space this is the sphere at in�nity. In Euclidean space the pro-

jective model is the same as the virtual model except that the sphere is

drawn by default.

Conformal

The conformal model of hyperbolic and spherical space. Geoms move un-

der isometries of the space, and cameras move by Euclidean motions. In

Euclidean space, the conformal model amounts to inverting everything in

the unit sphere.

Draw Sphere

This controls whether Geomview draws the unit sphere. By default the unit sphere

appears in the projective and conformal models. In hyperbolic space this is the sphere

at in�nity. In spherical space it is the equatorial sphere.

Done This button dismisses the Cameras panel.

3.8 Saving your work

Geomview's Save panel lets you store Geomview objects and other information in �les that you

can read back into Geomview or other programs.

To use the Save panel you select the desired format in the browser next to the word Save, enter

the name of the object you want to save in the text �eld next to the word for, and enter the name

of the �le you wish to save to in the long text �eld next to the word in. You can then either hit

Chapter 3: Interaction 31

The Save Panel

RET or click on the OK button. When the �le has been written, the Save panel disappears. If you

want to dismiss the Save panel without writing a �le, click the Cancel button.

If you specify `-' as the �le name, Geomview will write the �le to standard output, i.e. in the

shell window from which you invoked Geomview.

The possible formats are given below. The kind of object that can be written with each format

is given in parentheses.

Commands (any object)

This write a �le of gcl commands containing all information about the object. Loading

this �le later will restore the object as well as all other information about it, such as

appearance, transformations, etc.

Geometry alone (geom)

This writes an OOGL �le containing just the geometry of the object.

Geometry [in world] (geom)

This writes an OOGL �le containing just the geometry of the object, transformed

under Geomview's current transformation for this object. Use this if you have moved

the object from its initial position and want to save the new position relative to the

world.

Geometry [in universe] (geom)

This writes an OOGL �le containing just the geometry of the geom, transformed under

both the object's transformaton and the world's transformation.

RMan [->ti�] (camera)

Writes a RenderMan �le which when rendered creates a ti� image.

RMan [->frame] (camera)

Writes a RenderMan �le which when rendered causes an image to appear in an Iris

window.

Chapter 3: Interaction 32

SGI snapshot (camera)

Write an SGI raster �le. A bell rings when the snapshot is complete.

Camera (camera)

Writes an OOGL �le of a camera.

Transform [to world] (any object)

Writes an OOGL transform �le giving Geomview's transform for the object.

Transform [to universe] (any object)

Writes an OOGL transform �le giving a transform which is the composition of Ge-

omview's transform for the object and the transform for the world.

Window (camera)

Writes an OOGL window �le for a camera.

Panels Writes a gcl �le containing commands which record the state of all the Geomview

panels. Loading this �le later will restore the positions of all the panels.

3.9 The Commands and Obscure Panels

The Commands panel lets you type in a gcl command. When you hit RET, Geomview interprets

the command and prints any resulting output or error messages on standard output. You can edit

the text and hit RET as many times as you like, in general, whenever you hit RET with the cursor in

the Commands panel, Geomview tries to interpret whatever text you have typed in the text �eld

as a command.

The Commands Panel

The Obscure panel is for relatively obscure things that don't really belong on any of the other

panels. In the present version of Geomview, the Obscure panel includes the NORMALIZE GE-

OMETRY browser, which controls the kind of geometry normalization that Geomview does, and

several buttons a�ecting motion style.

Normalization is a kind of scaling; Geomview can scale an object so that it �ts within a certain

region. The main point of normalization is to allow you to easily view all of an object without

Chapter 3: Interaction 33

The Obscure Panel

having to worry about how big it is. We are gradually replacing Geomview's normalization feature

with more robust camera positioning features. In general, the best way to make sure you are seeing

all of an object is to use the Look At button on the Tools panel. Normalization may be completely

replaced by this and other features in a future version of Geomview.

Normalization is a property that applies to each geom separately. The NORMALIZE GEOM-

ETRY browser a�ects the normalization property of target geom. If the target geom is "World",

it a�ects all geoms.

None Do no normalization.

Individual Normalize this geom to �t within a unit sphere.

Sequence This resembles "Individual", except when an object is changing. Then, "Individual"

tightly �ts the bounding box around the object whenever it changes and normalizes

accordingly, while "Sequence" normalizes the union of all variants of the object and

normalizes accordingly.

Keep This leaves the current normalization transform unchanged when the object changes.

It may be useful to apply "Individual" or "Sequence" normalization to the �rst version

of a changing object to bring it in view, then switch to "Keep".

The Motion Style controls include the following buttons.

Chapter 3: Interaction 34

[ui] Inertia

Normally, moving objects have inertia: if the mouse is still moving when the button is

released, the selected object continues to move. When Inertia is o�, objects cease to

move as soon as you release the mouse.

[uc] Constrain Motion

It's sometimes handy to move an object in a direction aligned with a coordinate axis:

exactly horizontally or vertically. Selecting Constrain Motion changes the interpreta-

tion of mouse motions to allow this; approximately-horizontal or approximately-vertical

mouse dragging becomes exactly horizontal or vertical motion. Note that the motion is

still along the X or Y axes of the camera in which you move the mouse, not necessarily

the object's own coordinate system.

[uo] Own Coordinates

It's sometimes handy to move objects with respect to the coordinate system where

they were de�ned, rather than with respect to some camera. While Own Coordinates

is selected, all motions are interpreted that way: dragging the mouse rightward in

translate mode moves the object in its own +X direction, and so on. May be especially

useful in conjunction with the Constrain Motion button.

3.10 Keyboard Shortcuts

Most actions that you can do through Geomview's panels have equivalent keyboard shortcuts

so that you can do the same action by typing a sequence of keys on the keyboard. This is useful for

advanced users who are familiar with Geomview's capabilities and want to work quickly without

having to have lots of panels cluttering up the screen. Keyboard shortcuts usually are indicated in

square brackets ([]) near the corresponding item in a panel. For example, the keyboard shortcut for

Rotate mode is 'r'; this is indicated by "[r]" appearing before the word "Rotate" in the MOTION

MODE browser. To use this keyboard shortcut just hit the r key while the mouse cursor is in any

Geomview window. Do not hit the RET key afterwards.

Some keyboard shortcuts consist of more than one key. In these cases just type the keys one

after the other, with no RET afterwards. Keyboard shortcuts are case sensitive. You can cancel a

multi-key keyboard shortcut that you have started by typing any invalid key, for example ^.

Keyboard commands apply while the cursor is in any camera window and most control panels.

Many keyboard shortcuts allow numeric arguments which you type as a pre�x to the command

key(s). For example, the shortcut for Near clip in the camera panel is v n. To set the near clip plane

Chapter 3: Interaction 35

to "0.5", type 0.5 v n. Commands that don't take a numeric pre�x toggle or reset the current

value.

Most commands allow one of the following selection pre�xes. If none is provided the command

applies to the target object.

g world geom

g# #'th geom

g* All geoms

c current camera

c# #'th camera

c* All cameras

For example, g 4 a f means toggle the face drawing of object g4.

The text �eld in the upper left corner of the Main panel shows the state of the current keyboard

shortcut.

In addition to the keyboard shortcuts for the panel commands, there is also a shortcut for

picking a target object: type the short name of the object followed by p. For example, to select

object g3, type g 3 p. This only works with the short names | the ones that appear in square

brackets ([]) in the TARGET browser of the Main panel.

Below is a summary of all keyboard shortcuts.

Draw

af Faces

ae Edges

an Normals

ab Bounding Boxes

aV Vectors

Shading

0as Constant

1as Flat

2as Smooth

Chapter 3: Interaction 36

3as Smooth, non-lighted

aT allow transparency

Other

av eVert normals: always face viewer

#aw Line Width (pixels)

#ac edges Closer than faces (try 5-100)

Color

Cf faces

Ce edges

Cn normals

Cb bounding boxes

CB background

Motions

r rotate

t translate

z zoom FOV

f y

o orbit

s scale

w recenter target

W recenter all

h halt

H halt all

@ select center of motion (e.g. g 3 @)

L Look At object

Viewing

0vp Orthographic view

1vp Perspective view

vd Draw other views' cameras

#vv �eld of View

#vn near clip distance

#vf far clip distance

v+ add new camera

vx cursor on/o�

Chapter 3: Interaction 37

vb backfacing poly cull on/o�

#vl focal length

v~ Software shading on/o�

Panels

Pm Main

Pa Appearance

Pl Lighting

Po Obscure

Pt Tools

Pc Cameras

PC Commands

Pf Files

Ps Save

P- read commands from tty

Lights

ls show lights

le edit lights

Space

me Euclidean

mh Hyperbolic

ms Spherical

Model

mv Virtual

mp Projective

mc Conformal

Other

0N normalizaton: none

1N normalization: each

2N all normalization: all

ui motion: Inertia

uc motion: Constrain to axis

uo motion: object's Own coordinates

<

Pf load geometry/command �le

Chapter 3: Interaction 38

dd delete target object

>

Ps save state to �le

TV NTSC mode toggle

p pick as target object (e.g. g 3 p) With no pre�x, selects the object under

the mouse cursor (like double-clicking the right mouse)

Chapter 4: OOGL File Formats 39

4 OOGLFile Formats

The objects that you can load into Geomview are called OOGL objects. OOGL stands for

\Object Oriented Graphics Library"; it is the library upon which Geomview is built.

There are many di�erent kinds of OOGL objects. This chapter gives syntactic descriptions of

�le formats for OOGL objects.

Examples of most �le types live in Geomview's `data/geom' directory.

4.1 Conventions

4.1.1 Syntax Common to All OOGL File Formats

Most OOGL object �le formats are free-format ASCII | any amount of white space (blanks,

tabs, newlines) may appear between tokens (numbers, key words, etc.). Line breaks are almost

always insigni�cant, with a couple of exceptions as noted. Comments begin with # and continue

to the end of the line; they're allowed anywhere a newline is.

Binary formats are also de�ned for several objects; See Section 4.1.6 [Binary format], page 41,

and the individual object descriptions.

Typical OOGL objects begin with a key word designating object type, possibly with modi�ers

indicating presence of color information etc. In some formats the key word is optional, for com-

patibility with �le formats de�ned elsewhere. Object type is then determined by guessing from the

�le su�x (if any) or from the data itself.

Key words are case sensitive. Some have optional pre�x letters indicating presence of color or

other data; in this case the order of pre�xes is signi�cant, e.g. CNMESH is meaningful but NCMESH is

invalid.

4.1.2 File Names

When OOGL objects are read from disk �les, the OOGL library uses the �le su�x to guess at

the �le type.

Chapter 4: OOGL File Formats 40

If the su�x is unrecognized, or if no su�x is available (e.g. for an object being read from a

pipe, or embedded in another OOGL object), all known types of objects are tried in turn until one

accepts the data as valid.

4.1.3 Vertices

Several objects share a common style of representing vertices with optional per-vertex surface-

normal and color. All vertices within an object have the same format, speci�ed by the header key

word.

All data for a vertex is grouped together (as opposed to e.g. giving coordinates for all vertices,

then colors for all vertices, and so on).

The syntax is

`x y z' (3-D oating-point vertex coordinates) or

`x y z w' (4-D oating-point vertex coordinates)

optionally followed by

`nx ny nz' (normalized 3-D surface-normal if present)

optionally followed by

`r g b a' (4-component oating-point color if present, each component in range 0..1. The a

(alpha) component represents opacity: 0 transparent, 1 opaque.)

Values are separated by white space, and line breaks are immaterial.

4.1.4 Surface normal directions

Geomview uses normal vectors to determine how an object is shaded. The direction of the

normal is signi�cant in this calculation.

Chapter 4: OOGL File Formats 41

When normals are supplied with an object, the direction of the normal is determined by the

data given.

When normals are not supplied with the object, Geomview computes normal vectors automati-

cally; in this case normals point toward the side from which the vertices appear in counterclockwise

order.

On parametric surfaces (Bezier patches), the normal at point P(u,v) is in the direction dP/du

cross dP/dv.

4.1.5 Transformation matrices

Some objects incorporate 4x4 real matrices for homogeneous object transformations. These

matrices act by multiplication on the right of vectors. Thus, if p is a 4-element row vector repre-

senting homogeneous coordinates of a point in the OOGL object, and A is the 4x4 matrix, then

the transformed point is p' = p A. This matrix convention is common in computer graphics; it's

the transpose of that often used in mathematics, where points are column vectors multiplied on

the right of matrices.

Thus for Euclidean transformations, the translation components appear in the fourth row (last

four elements) of A. A's last column (4th, 8th, 12th and 16th elements) are typically 0, 0, 0, and 1

respectively.

4.1.6 Binary format

Many OOGL objects accept binary as well as ASCII �le formats. These �les begin with the

usual ASCII token (e.g. CQUAD) followed by the word BINARY. Binary data begins at the byte

following the �rst newline after BINARY. White space and a single comment may intervene, e.g.

OFF BINARY # binary-format "OFF" data follows

Binary data comprise 32-bit integers and 32-bit IEEE-format oats, both in big-endian format

(i.e., with most signi�cant byte �rst). This is the native format for 'int's and 'oat's on Sun-3's,

Sun-4's, and Irises, among others.

Chapter 4: OOGL File Formats 42

Binary data formats resemble the corresponding ASCII formats, with ints and oats in just the

places you'd expect. There are some exceptions though, speci�cally in the QUAD, OFF and COMMENT

�le formats. Details are given in the individual �le format descriptions. See Section 4.2.1 [QUAD],

page 46, See Section 4.2.4 [OFF], page 50, and See Section 4.2.13 [COMMENT], page 60.

Binary OOGL objects may be freely mixed in ASCII object streams:

LIST

{ = MESH BINARY

: : : binary data for mesh here : : :

}

{ = QUAD

1 0 0 0 0 1 0 1 0 0 1 0

}

Note that ASCII data resumes immediately following the last byte of binary data.

Naturally, it's impossible to embed comments inside a binary-format OOGL object, though

comments may appear in the header before the beginning of binary data.

4.1.7 Embedded objects and external-object references

Some object types (LIST, INST) allow references to other OOGL objects, which may appear

literally in the data stream, be loaded from named disk �les, or be communicated from elsewhere

via named objects. Gcl commands also accept geometry in these forms.

The general syntax is

<oogl-object> ::=

["{"]

["define" symbolname]

["appearance" appearance]

[["="] object-keyword : : :

| "<" filename

| ":" symbolname]

["}"]

Chapter 4: OOGL File Formats 43

where "quoted" items are literal strings (which appear without the quotes), [bracketed] items

are optional, and | denotes alternatives. Curly braces, when present, must match; the outermost

set of curly braces is generally required when the object is in a larger context, e.g. when it is part

of a larger object or embedded in a Geomview command stream.

For example, each of the following three lines:

{ define fred QUAD 1 0 0 0 0 1 0 1 0 1 0 0 }

{ appearance { +edge } LIST { < "file1" } { : fred } }

VECT 1 2 0 2 0 0 0 0 1 1 2

is a valid OOGL object. The last example is only valid when it is delimited unambiguously by

residing in its own disk �le.

The "<" construct causes a disk �le to be read. Note that this isn't a general textual "include"

mechanism; a complete OOGL object must appear in the referenced �le.

Files read using "<" are sought �rst in the directory of the �le which referred to them, if any;

failing that, the normal search path (set by Geomview's load-path command) is used. The default

search looks �rst in the current directory, then in the Geomview data directories.

The ":" construct allows references to symbols, created with define. A symbol's initial value

is a null object. When a symbol is (re)de�ned, all references to it are automatically changed;

this is a crucial part of the support for interprocess communication. Some future version of the

documentation should explain this better: : :

Again, white space and line breaks are insigni�cant, and "#" comments may appear anywhere.

4.1.8 Appearances

Geometric objects can have associated "appearance" information, specifying shading, lighting,

color, wireframe vs. shaded-surface display, and so on. Appearances are inherited through object

hierarchies, e.g. attaching an appearance to a LIST means that the appearance is applied to all the

LIST's members.

Chapter 4: OOGL File Formats 44

Some appearance-related properties are relegated to "material" and "lighting" substructures.

Take care to note which properties belong to which structure.

Here's an example appearance structure including values for all attributes. Order of attributes

is unimportant. As usual, white space is irrelevant. Boolean attributes may be preceded by "+"

or "-" to turn them on or o�; "+" is assumed if only the attribute name appears. Other attributes

expect values.

A "*" pre�x on any attribute, e.g. "*+edge" or "*linewidth 2", selects "override" status for

that attribute.

appearance {

+face # draw faces of polygons

-edge # don't draw edges of polygons

-transparent # disable transparency. enabling transparency

does NOT result in a correct Geomview picture,

but alpha values are used in RenderMan snapshots.

+normal # do draw surface-normal vectors

normscale .25 # : : : with length .25 in object coordinates

+evert # do evert polygon normals where needed so as

to always face the camera

shading smooth # or ``shading constant'' or ``shading flat''.

smooth = Gouraud shading; flat = faceted.

linewidth 3 # lines & edges are 3 pixels wide.

material { # Here's a material definition;

it could also be read from a file as in

``material < file.mat''

ka 1.0 # ambient reflection coefficient.

ambient .3 .5 .3 # ambient color (red, green, blue components)

The ambient contribution to the shading is

the product of ka, the ambient color,

and the color of the ambient light.

kd 0.8 # diffuse-reflection coefficient.

diffuse .9 1 .4 # diffuse color.

(In ``shading constant'' mode, the surface

is colored with the diffuse color.)

ks 1.0 # specular reflection coefficient.

specular 1 1 1 # specular (highlight) color.

shininess 25 # specular exponent; larger values give

sharper highlights.

Chapter 4: OOGL File Formats 45

backdiffuse .7 .5 0 # back-face color for two-sided surfaces

If defined, this field determines the diffuse

color for the back side of a surface.

It's implemented by the software shader, and

by hardware shading on SGI systems which support

two-sided lighting.

alpha 1.0 # opacity; 0 = transparent (invisible)

ignored when transparency is disabled.

edgecolor 1 1 0 # line & edge color

normalcolor 0 0 0 # color for surface-normal vectors

}

lighting { # Lighting model

ambient .3 .3 .3 # ambient light

replacelights # ``Use only the following lights to

illuminate the objects under this

appearance.''

Without "replacelights", any lights

are added to those already in the scene.

Now a collection of real lights

light {

color 1 .7 .6 # light color

position 1 0 .5 0 # light position [distant light]

given in homogeneous coordinates.

With fourth component = 0,

this means a light coming from

direction (1,0,.5).

}

light { # Another light.

color 1 1 1

position 0 0 .5 1 # light at finite position : : :

location camera # specified in camera coordinates.

(Since the camera looks toward -Z,

this example places the light

.5 unit behind the eye.)

Possible "location" keywords:

global light position is in world coordinates

This is the default if no location specified.

camera position is in the camera's coordinate system

local position is in the coordinate system where

the appearance was defined

}

Chapter 4: OOGL File Formats 46

} # end lighting model

} # end appearance

There are rules for inheritance of appearance attributes when several are imposed at di�erent

levels in the hierarchy.

For example, Geomview installs a backstop appearance which provides default values for most

parameters; its control panels install other appearances which supply new values for a few attributes;

user-supplied geometry may also contain appearances.

The general rule is that the child's appearance (the one closest to the geometric primitives)

wins. So setting an appearance attribute in an object's de�nition will prevent the viewer controls

from a�ecting that object's display.

4.2 Object File Formats

4.2.1 QUAD: collection of quadrilaterals

The conventional su�x for a QUAD �le is `.quad'.

The �le syntax is

[C][N][4]QUAD -or- [C][N][4]POLY # Key word

vertex vertex vertex vertex # 4*N vertices for some N

vertex vertex vertex vertex

: : :

The leading key word is [C][N][4]QUAD or [C][N][4]POLY, where the optional C and N pre�xes

indicate that each vertex includes colors and normals respectively. That is, these �les begin with

one of the words

QUAD CQUAD NQUAD CNQUAD POLY CPOLY NPOLY CNPOLY

(but not NCQUAD or NCPOLY). QUAD and POLY are synonymous; both forms are allowed just for

compatibility with ChapReyes.

Chapter 4: OOGL File Formats 47

Following the key word is an arbitrary number of groups of four vertices, each group describing

a quadrilateral. See the Vertex syntax above. The object ends at end-of-�le, or with a closebrace

if incorporated into an object reference (see above).

A QUAD BINARY �le format is accepted; See Section 4.1.6 [Binary format], page 41. The �rst

word of binary data must be a 32-bit integer giving the number of quads in the object; following

that is a series of 32-bit oats, arranged just as in the ASCII format.

4.2.2 MESH: rectangularly-connected mesh

The conventional su�x for a MESH �le is `.mesh'.

The �le syntax is

[C][N][Z][4][U][u][v][n]MESH # Key word

[Ndim] # Space dimension, present only if nMESH

Nu Nv # Mesh grid dimensions

Nu*Nv vertices, in format specified

by initial key word

vertex(u=0,v=0) vertex(1,0) : : : vertex(Nu-1,0)

vertex(0,1) : : : vertex(Nu-1,1)

: : :

vertex(0,Nv-1) : : : vertex(Nu-1,Nv-1)

The key word is [C][N][Z][4][U][u][v][n]MESH. The optional pre�x characters mean:

`C' Each vertex (see Vertices above) includes a 4-component color.

`N' Each vertex includes a surface normal vector.

`Z' Of the 3 vertex position values, only the Z component is present; X and Y are omitted,

and assumed to equal the mesh (u,v) coordinate so X ranges from 0 .. (Nu-1), Y from

0 .. (Nv-1) where Nu and Nv are the mesh dimensions { see below.

`4' Vertices are 4D, each consists of 4 oating values. Z and 4 cannot both be present.

`U' Each vertex includes a 3-component texture space parameter. This is not yet imple-

mented and should not be used.

`u' The mesh is wrapped in the u-direction, so the (0,v)'th vertex is connected to the

(Nu-1,v)'th for all v.

Chapter 4: OOGL File Formats 48

`v' The mesh is wrapped in the v-direction, so the (u,0)'th vertex is connected to the

(u,Nv-1)'th for all u. Thus a u-wrapped or v-wrapped mesh is topologically a cylinder,

while a uv-wrapped mesh is a torus.

`n' Speci�es a mesh whose vertices live in a higher dimensional space. The dimension

follows the "MESH" keyword. Each vertex then has Ndim components.

Note that the order of pre�x characters is signi�cant; a colored, u-wrapped mesh is a CuMESH

not a uCMESH.

Following the mesh header are integers Nu and Nv, the dimensions of the mesh.

Then follow Nu*Nv vertices, each in the form given by the header. They appear in v-major

order, i.e. if we name each vertex by (u,v) then the vertices appear in the order

(0,0) (1,0) (2,0) (3,0) : : : (Nu-1,0)

(0,1) (1,1) (2,1) (3,1) : : : (Nu-1,1)

: : :

(0,Nv-1) : : : (Nu-1,Nv-1)

A MESH BINARY format is accepted; See Section 4.1.6 [Binary format], page 41. The values of

Nu and Nv are 32-bit integers; all other values are 32-bit oats.

4.2.3 Bezier Surfaces

The conventional �le su�xes for Bezier surface �les are `.bbp' or `.bez'. A �le with either su�x

may contain either type of patch.

Syntax:

[ST]BBP -or- [C]BEZ<Nu><Nv><Nd>[_ST]

Nu, Nv are u- and v-direction

polynomial degrees in range 1..6

Nd = dimension: 3->3-D, 4->4-D (rational)

(The '<' and '>' do not appear in the input.)

Nu,Nv,Nd are each a single decimal digit.

BBP form implies Nu=Nv=Nd=3 so BBP = BEZ333.

Chapter 4: OOGL File Formats 49

Any number of patches follow the header

(Nu+1)*(Nv+1) patch control points

each 3 or 4 floats according to header

vertex(u=0,v=0) vertex(1,0) : : : vertex(Nu,0)

vertex(0,1) : : : vertex(Nu,1)

: : :

vertex(0,Nv) : : : vertex(Nu,Nv)

ST texture coordinates if mentioned in header

S(u=0,v=0) T(0,0) S(0,Nv) T(0,Nv)

S(Nu,0) T(Nu,0) S(Nu,Nv) T(Nu,Nv)

4-component float (0..1) R G B A colors

for each patch corner if mentioned in header

RGBA(0,0) RGBA(0,Nv)

RGBA(Nu,0) RGBA(Nu,Nv)

These formats represent collections of Bezier surface patches, of degrees up to 6, and with 3-D

or 4-D (rational) vertices.

The header keyword has the forms [ST]BBP or [C]BEZ<Nu><Nv><Nd>[_ST] (the '<' and '>' are

not part of the keyword.

The ST pre�x on BBP, or _ST su�x on BEZuvn, indicates that each patch includes four pairs of

oating-point texture-space coordinates, one for each corner of the patch.

The C pre�x on BEZuvn indicates a colored patch, including four sets of four-component oating-

point colors (red, green, blue, and alpha) in the range 0..1, one color for each corner.

Nu and Nv, each a single digit in the range 1..6, are the patch's polynomial degree in the u and

v direction respectively.

Nd is the number of components in each patch vertex, and must be either 3 for 3-D or 4 for

homogeneous coordinates, that is, rational patches.

BBP patches are bicubic patches with 3-D vertices, so BBP = BEZ333 and STBBP = BEZ333_ST.

Any number of patches follow the header. Each patch comprises a series of patch vertices,

followed by optional (s,t) texture coordinates, followed by optional (r,g,b,a) colors.

Chapter 4: OOGL File Formats 50

Each patch has (Nu+1)*(Nv+1) vertices in v-major order, so that if we designate a vertex by its

control point indices (u,v) the order is

(0,0) (1,0) (2,0) : : : (Nu,0)

(0,1) (1,1) (2,1) : : : (Nu,1)

: : :

(0,Nv) : : : (Nu,Nv)

with each vertex containing either 3 or 4 oating-point numbers as speci�ed by the header.

If the header calls for ST coordinates, four pairs of oating-point numbers follow: the texture-

space coordinates for the (0,0), (Nu,0), (0,Nv), and (Nu,Nv) corners of the patch, respectively.

If the header calls for colors, four four-component (red, green, blue, alpha) oating-point colors

follow, one for each patch corner.

The series of patches ends at end-of-�le, or with a closebrace if incorporated in an object

reference.

4.2.4 OFF Files

The conventional su�x for OFF �les is `.off'.

Syntax:

[C][N][4][n]OFF # Header keyword

[Ndim] # Space dimension of vertices, present only if nOFF

NVertices NFaces NEdges # NEdges not used or checked

x[0] y[0] z[0] # Vertices, possibly with colors

and/or normals if COFF or NOFF

If 4OFF, each vertex has 4 components,

including a final homogeneous component.

If nOFF, each vertex has Ndim components.

If 4nOFF, each vertex has Ndim+1 components.

: : :

x[NVertices-1] y[NVertices-1] z[NVertices-1]

Faces

Nv = # vertices on this face

Chapter 4: OOGL File Formats 51

v[0] : : : v[Nv-1]: vertex indices

in range 0..NVertices-1

Nv v[0] v[1] : : : v[Nv-1] colorspec

: : :

colorspec continues past v[Nv-1]

to end-of-line; may be 0 to 4 numbers

nothing: default

� integer: colormap index

3 or 4 integers: RGB[A] values 0..255

3 or 4 floats: RGB[A] values 0..1

OFF �les (name for "object �le format") represent collections of planar polygons with possibly

shared vertices, a convenient way to describe polyhedra. The polygons may be concave but there's

no provision for polygons containing holes.

An OFF �le may begin with the keyword OFF; it's recommended but optional, as many existing

�les lack this keyword.

Three ASCII integers follow: NVertices, NFaces, and NEdges. Thse are the number of vertices,

faces, and edges, respectively. Current software does not use nor check NEdges; it needn't be

correct but must be present.

The vertex coordinates follow: dimension * Nvertices oating-point values. They're implicitly

numbered 0 through NVertices-1. dimension is either 3 (default) or 4 (speci�ed by the key character

4 directly before OFF in the keyword).

Following these are the face descriptions, typically written with one line per face. Each has the

form

N Vert1 Vert2 : : : VertN [color]

Here N is the number of vertices on this face, and Vert1 through VertN are indices into the list of

vertices (in the range 0..NVertices-1).

The optional color may take several forms. Line breaks are signi�cant here: the color description

begins after VertN and ends with the end of the line (or the next # comment). A color may be:

nothing the default color

Chapter 4: OOGL File Formats 52

one integer

index into "the" colormap; see below

three or four integers

RGB and possibly alpha values in the range 0..255

three or four oating-point numbers

RGB and possibly alpha values in the range 0..1

For the one-integer case, the colormap is currently read from the �le `cmap.fmap' in Geomview's

`data' directory. Some better mechanism for supplying a colormap is likely someday.

The meaning of "default color" varies. If no face of the object has a color, all inherit the

environment's default material color. If some but not all faces have colors, the default is gray

(R,G,B,A=.666).

A [C][N]OFF BINARY format is accepted; See Section 4.1.6 [Binary format], page 41. It resembles

the ASCII format in almost the way you'd expect, with 32-bit integers for all counters and vertex

indices and 32-bit oats for vertex positions (and vertex colors or normals if COFF/NOFF/CNOFF

format).

Exception: each face's vertex indices are followed by an integer indicating how many color

components accompany it. Face color components must be oats, not integer values. Thus a

colorless triangular face might be represented as

int int int int int

3 17 5 9 0

while the same face colored red might be

int int int int int float float float float

3 17 5 9 4 1.0 0.0 0.0 1.0

4.2.5 VECT Files

The conventional su�x for VECT �les is `.vect'.

Chapter 4: OOGL File Formats 53

Syntax:

[4]VECT

NPolylines NVertices NColors

Nv[0] : : : Nv[NPolylines-1] # number of vertices

in each polyline

Nc[0] : : : Nc[NPolylines-1] # number of colors supplied

in each polyline

Vert[0] : : : Vert[NVertices-1] # All the vertices

(3*NVertices floats)

Color[0] : : : Color[NColors-1] # All the colors

(4*NColors floats, RGBA)

VECT objects represent lists of polylines (strings of connected line segments, possibly closed). A

degenerate polyline can be used to represent a point.

A VECT �le begins with the key word VECT or 4VECT and three integers: NLines, NVertices, and

NColors. Here NLines is the number of polylines in the �le, NVertices the total number of vertices,

and NColors the number of colors as explained below.

Next come NLines integers

Nv[0] Nv[1] Nv[2] : : : Nv[NLines-1]

giving the number of vertices in each polyline. A negative number indicates a closed polyline; 1

denotes a single-pixel point. The sum (of absolute values) of the Nv[i] must equal NVertices.

Next come NLines more integers Nc[i]: the number of colors in each polyline. Normally one of

three values:

0 No color is speci�ed for this polyline. It's drawn in the same color as the previous

polyline.

1 A single color is speci�ed. The entire polyline is drawn in that color.

abs(Nv[i]) Each vertex has a color. Either each segment is drawn in the corresponding color,

or the colors are smoothly interpolated along the line segments, depending on the

implementation.

Chapter 4: OOGL File Formats 54

The sum of the Nc[i] must equal NColors.

Next come NVertices groups of 3 or 4 oating-point numbers: the coordinates of all the vertices.

If the keyword is 4VECT then there are 4 values per vertex. The �rst abs(Nv[0]) of them form the

�rst polyline, the next abs(Nv[1]) form the second and so on.

Finally NColors groups of 4 oating-point numbers give red, green, blue and alpha (opacity)

values. The �rst Nc[0] of them apply to the �rst polyline, and so on.

A VECT BINARY format is accepted; See Section 4.1.6 [Binary format], page 41. The binary

format exactly follows the ASCII format, with 32-bit ints where integers appear, and 32-bit oats

where real values appear.

4.2.6 SKEL Files

SKEL �les represent collections of points and polylines, with shared vertices. The conventional

su�x for SKEL �les is `.skel'.

Syntax:

[4][n]SKEL

[NDim] # Vertex dimension, present only if nSKEL

NVertices NPolylines

x[0] y[0] z[0] # Vertices

(if nSKEL, each vertex has NDim components)

: : :

x[NVertices-1] y[NVertices-1] z[NVertices-1]

Polylines

Nv = # vertices on this polyline (1 = point)

v[0] : : : v[Nv-1]: vertex indices

in range 0..NVertices-1

Nv v[0] v[1] : : : v[Nv-1] [colorspec]

: : :

colorspec continues past v[Nv-1]

to end-of-line; may be nothing, or 3 or 4 numbers.

nothing: default color

3 or 4 floats: RGB[A] values 0..1

Chapter 4: OOGL File Formats 55

The syntax resembles that of OFF �les, with a table of vertices followed by a sequence of polyline

descriptions, each referring to vertices by index in the table. Each polyline has an optional color.

For nSKEL objects, each vertex has NDim components. For 4nSKEL objects, each vertex has

NDim+1 components; the �nal component is the homogeneous divisor.

No BINARY format is implemented as yet for SKEL objects.

4.2.7 SPHERE Files

The conventional su�x for SPHERE �les is `.sph'.

SPHERE

Radius

Xcenter Ycenter Zcenter

Sphere objects are drawn using rational Bezier patches, which are diced into meshes; their

smoothness, and the time taken to draw them, depends on the setting of the dicing level, 10x10

by default. From Geomview, the (dice N) GCL command or <N>ad keyboard command sets this;

within the OOGL libraries, use GeomDice().

4.2.8 INST Files

The conventional su�x for a INST �le is `.inst'.

An INST applies a 4x4 transformation to another OOGL object. It begins with INST followed

by these sections which may appear in any order:

geom oogl-object

speci�es the OOGL object to be instantiated. See Section 4.1.7 [References], page 42, for the syntax

of an oogl-object. The keyword unit is a synonym for geom.

transform ["{"] 4x4 transform ["}"]

Chapter 4: OOGL File Formats 56

speci�es a single transformation matrix. Either the matrix may appear literally as 16 numbers, or

there may be a reference to a "transform" object, i.e.

"<" file-containing-4x4-matrix

or

":" symbol-representing-"transform"-object>

Another way to specify the transformation is

transforms

oogl-object

The oogl-object must be a TLIST object (list of transformations) object, or a LIST whose mem-

bers are ultimately TLIST objects. In e�ect, the transforms keyword takes a collection of 4x4

matrices and replicates the geom object, making one copy for each 4x4 matrix.

If no transform nor transforms keyword appears, no transformation is applied (actually the

identity is applied). This might be useful, e.g., for wrapping an appearance around an externally-

supplied object.

See Section 4.1.5 [Transformation matrices], page 41, for the matrix format.

There is no INST BINARY format.

4.2.8.1 INST Examples

Here are some examples of INST �les

INST

unit < xyz.vect

transform {

1 0 0 0

Chapter 4: OOGL File Formats 57

0 1 0 0

0 0 1 0

1 3 0 1

}

{ appearance { +edge material { edgecolor 1 1 0 } }

INST geom < mysurface.quad }

{INST transform {: T} geom {<dodec.off}}

{ INST

transforms

{ LIST

{ < some-matrices.prj }

{ < others.prj }

{ TLIST <still more of them> }

}

geom

{ # stuff replicated by all the above matrices

: : :

}

}

4.2.9 LIST Files

The conventional su�x for a LIST �le is `.list'.

A list of OOGL objects

Syntax:

LIST

oogl-object

oogl-object

: : :

Note that there's no explicit separation between the oogl-objects, so they should be enclosed

in curly braces ({ }) for sanity. Likewise there's no explicit marker for the end of the list; unless

appearing alone in a disk �le, the whole construct should also be wrapped in braces, as in:

Chapter 4: OOGL File Formats 58

{ LIST { QUAD : : : } { < xyz.quad } }

A LIST with no elements, i.e. { LIST }, is valid, and is the easiest way to create an empty

object. For example, to remove a symbol's de�nition you might write

{ define somesymbol { LIST } }

4.2.10 TLIST Files

The conventional su�x for a TLIST �le is `.grp' ("group") or or `.prj' ("projective" matrices).

Collection of 4x4 matrices, used in the transforms section of and INST object.

Syntax:

TLIST # key word

<4x4 matrix (16 floats)>

: : : # Any number of 4x4 matrices

TLISTs are used only within the transforms clause of an INST object. They cause the INSTs

geom object to be instantiated once under each of the transforms in the TLIST. The e�ect is like

that of a LIST of INSTs each with a single transform, and all referring to the same object, but is

more e�cient.

Be aware that a TLIST is a kind of geometry object, distinct from a transform object. Some

contexts expect one type of object, some the other. For example in

INST transform { : myT } geom { : : : }

myT must be a transform object, which might have been created with the gcl

(read transform { define myT 1 0 0 1 : : : })

Chapter 4: OOGL File Formats 59

while in

INST transforms { : myTs } geom { : : : }

or INST transforms { LIST {: myTs} {< more.prj} } geom { : : : }

myTs must be a geometry object, de�ned e.g. with

(read geometry { define myTs { TLIST 1 0 0 1 : : : } })

A TLIST BINARY format is accepted. Binary data begins with a 32-bit integer giving the number

of transformations, followed by that number of 4x4 matrices in 32-bit oating-point format. The

order of matrix elements is the same as in the ASCII format.

4.2.11 GROUP Files

This format is obsolete, but is still accepted. It combined the functions of INST and TLIST,

taking a series of transformations and a single Geom (unit) object, and replicating the object

under each transformation.

GROUP : : : < matrices > : : : unit { oogl-object }

is still accepted and e�ectively translated into

INST

transforms { TLIST : : : <matrices> : : : }

unit { oogl-object }

4.2.12 DISCGRP Files

This format is for discrete groups, such as appear in the theory of manifolds or in symmetry

patterns. This format has its own man page. See discgrp(5).

Chapter 4: OOGL File Formats 60

4.2.13 COMMENT Objects

The COMMENT object is a mechanism for encoding arbitrary data within an OOGL object.

It can be used to keep track of data or pass data back and forth between external modules.

Syntax:

COMMENT # key word

name type # individual name and type specifier

: : : # arbitrary data

The data, which must be enclosed by curly braces, can include anything except unbalanced curly

braces. The type �eld can be used to identify data of interest to a particular program through

naming conventions.

COMMENT objects are intended to be associated with other objects through inclusion in a LIST

object. (See Section 4.2.9 [LIST], page 57.) The "#" OOGL comment syntax does not su�ce for

data exchange since these comments are stripped when an OOGL object is read in to Geomview.

The COMMENT object is preserved when loaded into Geomview and is written out intact.

Here is an example associating a WorldWide Web URL with a piece of geometry:

LIST

< Tetrahedron

COMMENT GCHomepage HREF http://www.geom.umn.edu/

A binary COMMENT format is accepted. Its format is not consistent with the other OOGL binary

formats. See Section 4.1.6 [Binary format], page 41. The name and type are followed by

N Byte1 Byte2 : : : ByteN

instead of data enclosed in curly braces.

Chapter 4: OOGL File Formats 61

4.3 Non-geometric objects

The syntax of these objects is given in the form used in See Section 4.1.7 [References], page 42,

where "quoted" items should appear literally but without quotes, square bracketed ([]) items are

optional, and | separates alternative choices.

4.3.1 Transform Objects

Where a single 4x4 matrix is expected { as in the INST transform �eld, the camera's camtoworld

transform and the Geomview xform* commands { use a transform object.

Note that a transform is distinct from a TLIST, which is a type of geometry. TLISTs can contain

one or more 4x4 transformations; "transform" objects must have exactly one.

Why have both? In many places { e.g. camera positioning { it's only meaningful to have a

single transform. Using a separate object type enforces this.

Syntax for a transform object is

<transform> ::=

["{"] (curly brace, generally needed to make

the end of the object unambiguous.)

["transform"] (optional keyword; unnecessary if the type

is determined by the context, which it

usually is.)

["define" <name>]

(defines a transform named <name>, setting

its value from the stuff which follows)

<sixteen floating-point numbers>

(interpreted as a 4x4 homogeneous transform

given row by row, intended to apply to a

row vector multiplied on its LEFT, so that e.g.

Euclidean translations appear in the bottom row)

|

"<" <filename> (meaning: read transform from that file)

|

":" <name> (meaning: use variable <name>,

defined elsewhere; if undefined the initial

value is the identity transform)

["}"] (matching curly brace)

Chapter 4: OOGL File Formats 62

The whole should be enclosed in { braces }. Braces are not essential if exactly one of the above

items is present, so e.g. a 4x4 array of oats standing alone may but needn't have braces.

Some examples, in contexts where they might be used:

Example 1: A gcl command to define a transform

called "fred"

(read transform { transform define fred

1 0 0 0

0 1 0 0

0 0 1 0

-3 0 1 1

}

)

Example 2: A camera object using transform

"fred" for camera positioning

Given the definition above, this puts the camera at

(-3, 0, 1), looking toward -Z.

{ camera

halfyfield 1

aspect 1.33

camtoworld { : fred }

}

4.3.2 cameras

A camera object speci�es the following properties of a camera:

position and orientation

speci�ed by either a camera-to-world or world-to-camera transformation; this transfor-

mation does not include the projection, so it's typically just a combination of translation

and rotation. Speci�ed as a transform object, typically a 4x4 matrix.

"focus" distance

Intended to suggest a typical distance from the camera to the object of interest; used for

default camera positioning (the camera is placed at (X,Y,Z) = (0,0,focus) when reset)

and for adjusting �eld-of-view when switching between perspective and orthographic

views.

Chapter 4: OOGL File Formats 63

window aspect ratio

True aspect ratio in the sense <Xsize>/<Ysize>. This normally should agree with the

aspect ratio of the camera's window. Geomview normally adjusts the aspect ratio of

its cameras to match their associated windows.

near and far clipping plane distances

Note that both must be strictly greater than zero. Very large <far>/<near> distance

ratios cause Z-bu�ering to behave badly; part of an object may be visible even if

somewhat more distant than another.

�eld of view

Speci�ed in either of two forms.

`fov' is the �eld of view { in degrees if perspective, or linear distance if ortho-

graphic { in the shorter direction.

`halfyfield'

is half the projected Y-axis �eld, in world coordinates (not angle!), at unit

distance from the camera. For a perspective camera, halfy�eld is related

to angular �eld:

halfy�eld = tan(Y axis angular �eld / 2)

while for an orthographic one it's simply:

halfy�eld = Y axis linear �eld / 2

This odd-seeming de�nition is (a) easy to calculate with and (b) well-de�ned in both

orthographic and perspective views.

The syntax for a camera is:

<camera> ::=

["camera"] (optional keyword)

["{"] (opening brace, generally required)

["define" <name>]

"<" <filename>

|

":" <name>

|

(or any number of the following,

in any order: : :)

"perspective" {"0" | "1"} (default 1)

(otherwise orthographic)

Chapter 4: OOGL File Formats 64

"stereo" {"0" | "1"} (default 0)

(otherwise mono)

"worldtocam" <transform> (see transform syntax above)

"camtoworld" <transform>

(no point in specifying both

camtoworld and worldtocam; one is

constrained to be the inverse of the other)

"halfyfield" <half-linear-Y-field-at-unit-distance>

(default tan 40/2 degrees)

"fov" (angular field-of-view if perspective,

linear field-of-view otherwise.

Measured in whichever direction is smaller,

given the aspect ratio. When aspect ratio

changes -- e.g. when a window is reshaped --

"fov" is preserved.)

"frameaspect" <aspect-ratio> (X/Y) (default 1.333)

"near" <near-clipping-distance> (default 0.1)

"far" <far-clipping-distance> (default 10.0)

"focus" <focus-distance> (default 3.0)

["}"] (matching closebrace)

4.3.3 window

A window object speci�es size, position, and other window-system related information about a

window in a device-independent way.

The syntax for a window object is:

window ::=

["window"] (optional keyword)

["{"] (curly brace, often required)

(any of the following, in any order)

"size" <xsize> <ysize>

Chapter 4: OOGL File Formats 65

(size of the window)

"position" <xmin> <xmax> <ymin> <ymax>

(position & size)

"noborder"

(specifies the window should

have no window border)

"pixelaspect" <aspect>

(specifies the true visual aspect ratio

of a pixel in this window in the sense

xsize/ysize, normally 1.0.

For stereo hardware which stretches the

display vertically by a factor of 2,

``pixelaspect 0.5'' might do.

The value is used when computing the

projection of a camera associated with

this window.)

["}"] (matching closebrace)

Window objects are used in the Geomview window and ui-panel commands to set default

properties for future windows or to change those of an existing window.

Chapter 5: Customization: `.geomview' �les 66

5 Customization: `.geomview' �les

When Geomview is started, it loads and executes commands in a system-wide startup �le

named `.geomview'. This �le is in the `data' subdirectory of the Geomview distribution directory

`/u/gcg/ngrap/data' on the Geometry Center's computer system) and contains gcl commands to

con�gure Geomview in a way common to all users on the system.

Next, Geomview looks for the �le `~/.geomview' (`~' stands for your home directory). You can

use this to con�gure your own default Geomview behavior to suit your tastes.

After reading `~/.geomview', Geomview looks for a �le named `.geomview' in the current direc-

tory. If such a �le exists Geomview reads it, unless it is the same as `~/.geomview' (which would

be the case if you are running Geomview from your home directory). You can use the current

directory's `.geomview' to create a Geomview customization speci�c to a certain project.

You can use `.geomview' �les to control all kinds of things about Geomview. They can contain

any valid gcl statements. Especially useful is the ui-panel command which controls the initial

placement of Geomview's panels. For an example see the system-wide `.geomview' �le mentioned

above. For details of gcl, See Chapter 7 [GCL], page 89.

It is a good idea to enclose all the commands you put in a `.geomview' �le in a progn statement

in order to cause Geomview to execute them all at once. Otherwise Geomview might execute them

sequentially over the �rst few refresh cycles after starting up.

Chapter 6: External Modules 67

6 ExternalModules

An external module is a program that interacts with Geomview. A module communicates with

Geomview through gcl and can control any apsect of Geomview that you can control through

Geomview's user interface.

In many cases an external module is a specialized program that implements some mathematical

algorithm that creates a geometric object that changes shape as the algorithm progresses. The

module informs Geomview of the new object shape at each step, so the object appears to evolve

with time in the Geomview window. In this way Geomview serves as a display engine for the

module.

An external module may be interactive. It can respond to mouse and keyboard events that take

place in a Geomview window, thus extending the capability of Geomview itself.

6.1 How External Modules Interface with Geomview

External modules appear in the Modules browser in Geomview's Main panel. To run a module,

click the left mouse button on the module's entry in the browser. While the module is running, an

additional line for that module will appear in red in the browser. This line begins with a number

in brackets, which indicates the instace number of the module. (For some modules it makes sense

to have more than one instance of the module running at the same time.) You can kill an external

module by clicking on its red instance entry.

By default when Geomview starts, it displays all the modules that have been installed on your

system.

For instructions on installing a module on your system so that it will appear in the Modules

browser every time Geomview is run by anyone on your system, See Section 6.6 [Module Installa-

tion], page 86.

When Geomview invokes an external module, it creates pipes connected to the module's standard

input and output. (Pipes are like �les except they are used for communication between programs

rather than for storing things on a disk.) Geomview interprets anything that the module writes

to its standard output as a gcl command. Likewise, if the exernal module requests any data from

Geomview, Geomview writes that data to the module's standard input. Thus all a module has to

do in order to communicate with Geomview is write commands to standard output and (optionally)

Chapter 6: External Modules 68

receive data on standard input. Note that this means that the module cannot use standard input

and output for communicating with the user. If a module needs to communicate with the user it

can do so either through a control panel of its own or else by responding to certain events that it

�nds out about from Geomview.

6.2 Example 1: Simple External Module

This section gives a very simple external module which displays an oscillating mesh. To try out

this example, make a copy of the �le `example1.c' (it is distributed with Geomview in the `doc'

subdirectory) in your directory and compile it with the command

cc -o example1 example1.c -lm

Then put the line

(emodule-define "Example 1" "./example1")

in a �le called `.geomview' in your current directory. Then invoke Geomview; it is important that

you compile the example program, create the `.geomview' �le, and invoke Geomview all in the

same directory. You should see "Example 1" in the Modules browser of Geomview's Main panel;

click on this entry in the browser to start the module. A surface should appear in your camera

window and should begin oscillating. You can stop the module by clicking on the red "[1] Example

1" line in the Modules browser.

/*

* example1.c: oscillating mesh

*

* This example module is distributed with the Geomview manual.

* If you are not reading this in the manual, see the "External

* Modules" chapter of the manual for more details.

*

* This module creates an oscillating mesh.

*/

#include <math.h>

#include <stdio.h>

/* F is the function that we plot

Chapter 6: External Modules 69

*/

float F(x,y,t)

float x,y,t;

{

float r = sqrt(x*x+y*y);

return(sin(r + t)*sqrt(r));

}

main(argc, argv)

char **argv;

{

int xdim, ydim;

float xmin, xmax, ymin, ymax, dx, dy, t, dt;

xmin = ymin = -5; /* Set x and y */

xmax = ymax = 5; /* plot ranges */

xdim = ydim = 24; /* Set x and y resolution */

dt = 0.1; /* Time increment is 0.1 */

/* Geomview setup. We begin by sending the command

* (geometry example { : foo})

* to Geomview. This tells Geomview to create a geom called

* "example" which is an instance of the handle "foo".

*/

printf("(geometry example { : foo })\n");

fflush(stdout);

/* Loop until killed.

*/

for (t=0; ; t+=dt) {

UpdateMesh(xmin, xmax, ymin, ymax, xdim, ydim, t);

}

}

/* UpdateMesh sends one mesh iteration to Geomview. This consists of

* a command of the form

* (read geometry { define foo

* MESH

* ...

* })

* where ... is the actual data of the mesh. This command tells

* Geomview to make the value of the handle "foo" be the specified

* mesh.

*/

UpdateMesh(xmin, xmax, ymin, ymax, xdim, ydim, t)

float xmin, xmax, ymin, ymax, t;

int xdim, ydim;

{

int i,j;

float x,y, dx,dy;

Chapter 6: External Modules 70

dx = (xmax-xmin)/(xdim-1);

dy = (ymax-ymin)/(ydim-1);

printf("(read geometry { define foo \n");

printf("MESH\n");

printf("%1d %1d\n", xdim, ydim);

for (j=0, y = ymin; j<ydim; ++j, y += dy) {

for (i=0, x = xmin; i<xdim; ++i, x += dx) {

printf("%f %f %f\t", x, y, F(x,y,t));

}

printf("\n");

}

printf("})\n");

fflush(stdout);

}

The module begins by de�ning a function F(x,y,t) that speci�es a time-varying surface. The

purpose of the module is to animate this surface over time.

The main program begins by de�ning some variables that specify the parameters with which

the function is to be plotted.

The next bit of code in the main program prints the following line to standard output

(geometry example { : foo })

This tells Geomview to create a geom called example which is an instance of the handle foo.

Handles are a part of the OOGL �le format which allow you to name a piece of geometry whose

value can be speci�ed elsewhere (and in this case updated many times); for more information on

handles, See Chapter 4 [OOGL File Formats], page 39 In this case, example is the title by which

the user will see the object in Geomview's object browser, and foo is the internal name of the

handle that the object is a reference to.

We then do fflush(stdout) to ensure that Geomview receives this command immediately. In

general, since pipes may be bu�ered, an external module should do this whenever it wants to be

sure Geomview has actually received everything it has printed out.

The last thing in the main program is an in�nite loop that cycles through calls to the procedure

UpdateMesh with increasing values of t. UpdateMesh sends Geomview a command of the form

Chapter 6: External Modules 71

(read geometry { define foo

MESH

24 24

: : :

})

where : : : is a long list of numbers. This command tells Geomview to make the value of the handle

foo be the speci�ed mesh. As soon as Geomview receives this command, the geom being displayed

changes to reect the new geometry.

The mesh is given in the format of an OOGL MESH. This begins with the keyword MESH. Next

come two numbers that give the x and y dimensions of the mesh; in this case they are both 24.

This line is followed by 24 lines, each containing 24 triples of numbers. Each of these triples is a

point on the surface. Then �nally there is a line with "})" on it that ends the "{" which began

the define statement and the "(" that began the command. For more details on the format of

MESH data, see Section 4.2.2 [MESH], page 47.

This module could be written without the use of handles by having it write out commands of

the form

(geometry example {

MESH

24 24

: : :

})

This �rst time Geomview receives a command of this form it would create a geom called example

with the given MESH data. Subsequent (geometry example : : :) commands would cause Geomview

to replace the geometry of the geom example with the new MESH data. If done in this way there

would be no need to send the initial (geometry example { : foo }) command as above. The

handle technique is useful, however, because it can be used in more general situations where a

handle represents only part of a complex geom, allowing an external module to replace only that

part without having to retransmit the entire geom. For more information on handles, See Chapter 7

[GCL], page 89.

The module loops through calls to UpdateMesh which print out commands of the above form one

after the other as fast as possible. The loop continues inde�nitely; the module will terminate when

Chapter 6: External Modules 72

the user kills it by clicking on its instance line in the Modules browser, or else when Geomview

exits.

Sometimes when you terminate this module by clicking on its instance entry the Modules

browser, Geomview will kill it while it is in the middle of sending a command to Geomview.

Geomview will then receive only a piece of a command and will print out a cryptic but harmless

error message about this. When a module has a user interface panel it can use a "Quit" button to

provide a more graceful way for the user to terminate the module. See the next example.

You can run this module in a shell window without Geomview to see the commands it prints

out. You will have to kill it with ctrl-C to get it to stop.

6.3 Example 2: Simple External Module with FORMS Control

Panel

This section gives a new version of the above module | one that includes a user interface panel

for controlling the velocity of the oscillation. We use the FORMS library by Mark Overmars for

the control panel. The FORMS library is a public domain user interface toolkit for IRISes; for

more information See Section 6.4 [Forms], page 77.

To try out this example, make a copy of the �le `example2.c' (distributed with Geomview in

the `doc' subdirectory) in your directory and compile it with the command

cc -I/u/gcg/ngrap/include -o example2 example2.c \

-L/u/gcg/ngrap/lib/sgi -lforms -lfm_s -lgl_s -lm

If you are not using the Geometry Center's computer system you should replace the string

`/u/gcg/ngrap' above with the pathname of the Geomview distribution directory on your system.

(The forms library is distributed with Geomview and the -I and -L options above tell the compiler

where to �nd it.)

Then put the line

(emodule-define "Example 2" "./example2")

Chapter 6: External Modules 73

in a �le called `.geomview' in the current directory and invoke Geomview from that directory. Click

on the "Example 2" entry in the Modules browser to invoke the module. A small control panel

should appear. You can then control the velocity of the mesh oscillation by moving the slider.

/*

* example2.c: oscillating mesh with FORMS control panel

*

* This example module is distributed with the Geomview manual.

* If you are not reading this in the manual, see the "External

* Modules" chapter of the manual for an explanation.

*

* This module creates an oscillating mesh and has a FORMS control

* panel that lets you change the speed of the oscillation with a

* slider.

*/

#include <math.h>

#include <stdio.h>

#include <sys/time.h> /* for struct timeval below */

#include "forms.h" /* for FORMS library */

FL FORM *OurForm;

FL OBJECT *VelocitySlider;

float dt;

/* F is the function that we plot

*/

float F(x,y,t)

float x,y,t;

{

float r = sqrt(x*x+y*y);

return(sin(r + t)*sqrt(r));

}

/* SetVelocity is the slider callback procedure; FORMS calls this

* when the user moves the slider bar.

*/

void SetVelocity(FL OBJECT *obj, long val)

{

dt = fl get slider value(VelocitySlider);

}

/* Quit is the "Quit" button callback procedure; FORMS calls this

* when the user clicks the "Quit" button.

*/

void Quit(FL OBJECT *obj, long val)

{

exit(0);

Chapter 6: External Modules 74

}

/* create form OurForm() creates the FORMS panel by calling a bunch of

* procedures in the FORMS library. This code was generated

* automatically by the FORMS designer program; normally this code

* would be in a separate file which you would not edit by hand. For

* simplicity of this example, however, we include this code here.

*/

create form OurForm()

{

FL OBJECT *obj;

FL FORM *form;

OurForm = form = fl bgn form(FL NO BOX,380.0,120.0);

obj = fl add box(FL UP BOX,0.0,0.0,380.0,120.0,"");

VelocitySlider = obj = fl add valslider(FL HOR SLIDER,20.0,30.0,

340.0,40.0,"Velocity");

fl set object lsize(obj,FL LARGE FONT);

fl set object align(obj,FL ALIGN TOP);

fl set call back(obj,SetVelocity,0);

obj = fl add button(FL NORMAL BUTTON,290.0,75.0,70.0,35.0,"Quit");

fl set object lsize(obj,FL LARGE FONT);

fl set call back(obj,Quit,0);

fl end form();

}

main(argc, argv)

char **argv;

{

int xdim, ydim;

float xmin, xmax, ymin, ymax, dx, dy, t;

int fdmask;

static struct timeval timeout = {0, 200000};

xmin = ymin = -5; /* Set x and y */

xmax = ymax = 5; /* plot ranges */

xdim = ydim = 24; /* Set x and y resolution */

dt = 0.1; /* Time increment is 0.1 */

/* Forms panel setup.

*/

foreground();

create form OurForm();

fl set slider bounds(VelocitySlider, 0.0, 1.0);

fl set slider value(VelocitySlider, dt);

fl show form(OurForm, FL PLACE SIZE, TRUE, "Example 2");

/* Geomview setup.

*/

printf("(geometry example { : foo })\n");

Chapter 6: External Modules 75

fflush(stdout);

/* Loop until killed.

*/

for (t=0; ; t+=dt) {

fdmask = (1 << fileno(stdin)) | (1 << qgetfd());

select(qgetfd()+1, &fdmask, NULL, NULL, &timeout);

fl check forms();

UpdateMesh(xmin, xmax, ymin, ymax, xdim, ydim, t);

}

}

/* UpdateMesh sends one mesh iteration to Geomview

*/

UpdateMesh(xmin, xmax, ymin, ymax, xdim, ydim, t)

float xmin, xmax, ymin, ymax, t;

int xdim, ydim;

{

int i,j;

float x,y, dx,dy;

dx = (xmax-xmin)/(xdim-1);

dy = (ymax-ymin)/(ydim-1);

printf("(read geometry { define foo \n");

printf("MESH\n");

printf("%1d %1d\n", xdim, ydim);

for (j=0, y = ymin; j<ydim; ++j, y += dy) {

for (i=0, x = xmin; i<xdim; ++i, x += dx) {

printf("%f %f %f\t", x, y, F(x,y,t));

}

printf("\n");

}

printf("})\n");

fflush(stdout);

}

The code begins by including some header �les needed for the event loop and the FORMS library.

It then declares global variables for holding a pointer to the slider FORMS object and the velocity

dt. These are global because they are needed in the slider callback procedure SetVelocity, which

forms calls every time the user moves the slider bar. SetVelocity sets dt to be the new value of

the slider.

Quit is the callback procedure for the Quit button; it provides a graceful way for the user to

terminate the program.

Chapter 6: External Modules 76

The procedure create_panel calls a bunch of FORMS library procedures to set up the control

panel with slider and button. For more information on using FORMS to create interface panels

see the FORMS documentation. In particular, FORMS comes with a graphical panel designer that

lets you design your panels interactively and generates code like that in create_panel.

This example's main program is similar to the previous example, but includes extra code to deal

with setting up and managing the FORMS panel.

To set up the panel we call the GL procedure foreground to cause the process to run in the

foreground. By default GL programs run in the background, and for various reasons external

modules that use FORMS (which is based on GL) need to run in the foreground. We then call

create_panel to create the panel and fl_set_slider_value to set the initial value of the slider.

The call to fl_show_form causes the panel to appear on the screen.

The �rst three lines of the main loop, starting with

fdmask = (1 << fileno(stdin)) | (1 << qgetfd());

check for and deal with events in the panel. The call to select imposes a delay on each pass

through the main loop. This call returns either after a delay of 1/5 second or when the next

GL event occurs, or when data appears on standard input, whichever comes �rst. The timeout

variable speci�es the amount of time to wait on this call; the �rst member (0 in this example)

gives the number of seconds, and the second member (200000 in this example) gives the number of

microseconds. Finally, fl_check_forms() checks for and processes any FORMS events that have

happened; in this case this means calling SetVelocity if the user has moved the slider or calling

Quit if the user has clicked on the Quit button.

The purpose of the delay in the loop is to keep the program from using excessive amounts

of CPU time running around its main loop when there are no events to be processed. This is

not so crucial in this example, and in fact may actually slow down the animation somewhat, but

in general with external modules that have event loops it is important to do something like this

because otherwise the module will needlessly take CPU cycles away from other running programs

(such as Geomview!) even when it isn't doing anything.

The last line of the main loop in this example, the call to UpdateMesh, is the same as in the

previous example.

Chapter 6: External Modules 77

6.4 The FORMS Library

Geomview itself is written using Mark Overmar's public domain FORMS library. FORMS is a

handy and relatively simple user interface toolkit for IRISes. Many Geomview external modules,

including the examples in this manual, use FORMS to create and manage control panels.

We distribute a version of the FORMS library with Geomview because it is necessary in order

to compile Geomview and many of our modules. If you use FORMS to write Geomview modules

(or anything else, for that matter) you may use this copy. The header �le `forms.h' is in the

`include' subdirectory, and the library �le `libforms.a' is in the `lib/sgi' subdirectory (these are

subdirectories of the Geomview distribution directory, `/u/gcg/ngrap' on the Geometry Center's

system). In particular, you can link the example modules in this manual using this copy.

FORMS is available via ftp on the Internet from a variety of sites, including cs.ruu.nl or

glaurung.physics.mcgill.ca. It comes with source code and extensive documentation.

If you wish you may use any other interface toolkit instead of FORMS in an external module.

We chose FORMS because it is free and relatively simple.

6.5 Example 3: External Module with Bi-Directional

Communication

The previous two example modules simply send commands to Geomview and do not receive

anything from Geomview. This section describes a module that communicates in both directions.

There are two types of communication that can go from Geomview to an external module. This

example shows asynchronous communication | the module needs to be able to respond at any

moment to expressions that Geomview may emit which inform the module of some change of state

within Geomview.

(The other type of communication is synchronous, where a module sends a request to Geomview

for some piece of information and waits for a response to come back before doing anything else.

The main gcl command for requesting information of this type is write. This module does not do

any synchronous communication.)

In ansynchronous communication, Geomview sends expressions that are essentially echoes of

gcl commands. The external module sends Geomview a command expressing interest in a certain

command, and then every time Geomview executes that command, the module receives a copy of

it. This happens regardless of who sent the command to Geomview; it can be the result of the user

Chapter 6: External Modules 78

doing something with a Geomview panel, or it may have come from another module or from a �le

that Geomview reads. This is how a module can �nd out about and act on things that happen in

Geomview.

This example uses the OOGL lisp library to parse and act on the expressions that Geomview

writes to the module's standard input. This library is actually part of Geomview itself | we

wrote the library in the process of implementing gcl. It is also convenient to use it in external

modules that must understand a of subset of gcl | speci�cally, those commands that the module

has expressed interest in.

This example shows how a module can receive user pick events, i.e. when the user clicks the

right mouse button with the cursor over a geom in a Geomview camera window. When this happens

Geomview generates an internal call to a procedure called pick; the arguments to the procedure

give information about the pick, such as what object was picked, the coordinates of the picked point,

etc. If an external module has expressed interest in calls to pick, then whenever pick is called

Geomview will echo the call to the module's standard input. The module can then do whatever it

wants with the pick information.

This module is the same as the Nose module that comes with Geomview. Its purpose is to

illustrate picking. Whenever you pick on a geom by clicking the right mouse button on it, the

module draws a little box at the spot where you clicked. Usually the box is yellow. If you pick a

vertex, the box is colored magenta. If you pick a point on an edge of an object, the module will

also highlight the edge by drawing cyan boxes at its endpoints and drawing a yellow line along the

edge.

Note that in order for this module to actually do anything you must have a geom loaded into

Geomview and you must click the right mouse button with the cursor over a part of the geom.

/*

* example3.c: external module with bi-directional communication

*

* This example module is distributed with the Geomview manual.

* If you are not reading this in the manual, see the "External

* Modules" chapter of the manual for an explanation.

*

* This module is the same as the "Nose" program that is distributed

* with Geomview. It illustrates how a module can find out about

* and respond to user pick events in Geomview. It draws a little box

* at the point where a pick occurrs. The box is yellow if it is not

* at a vertex, and magenta if it is on a vertex. If it is on an edge,

* the program also marks the edge.

*

Chapter 6: External Modules 79

* To compile:

*

* cc -I/u/gcg/ngrap/include -g -o example3 example3.c \

* -L/u/gcg/ngrap/lib/sgi -loogl -lm

*

* If you are not on the Geometry Center's system you should replace

* "/u/gcg/ngrap" above with the pathname of the Geomview distribution

* directory on your system.

*/

#include <stdio.h>

#include "lisp.h" /* We use the OOGL lisp library */

#include "pickfunc.h" /* for PICKFUNC below */

#include "3d.h" /* for 3d geometry library */

/* boxstring gives the OOGL data to define the little box that

* we draw at the pick point. NOTE: It is very important to

* have a newline at the end of the OFF object in this string.

*/

char boxstring[] = "\

INST\n\

transform\n\

.04 0 0 0\n\

0 .04 0 0\n\

0 0 .04 0\n\

0 0 0 1\n\

geom\n\

OFF\n\

8 6 12\n\

\n\

-.5 -.5 -.5 # 0 \n\

.5 -.5 -.5 # 1 \n\

.5 .5 -.5 # 2 \n\

-.5 .5 -.5 # 3 \n\

-.5 -.5 .5 # 4 \n\

.5 -.5 .5 # 5 \n\

.5 .5 .5 # 6 \n\

-.5 .5 .5 # 7 \n\

\n\

4 0 1 2 3\n\

4 4 5 6 7\n\

4 2 3 7 6\n\

4 0 1 5 4\n\

4 0 4 7 3\n\

4 1 2 6 5\n";

progn()

{

printf("(progn\n");

}

Chapter 6: External Modules 80

endprogn()

{

printf(")\n");

fflush(stdout);

}

Initialize()

{

extern LObject *Lpick(); /* This is defined by PICKFUNC below but must */

/* be used in the following LDefun() call */

LInit();

LDefun("pick", Lpick, NULL);

progn(); {

/* Define handle "littlebox" for use later

*/

printf("(read geometry { define littlebox { %s }})\n", boxstring);

/* Express interest in pick events; see Geomview manual for explanation.

*/

printf("(interest (pick world * * * * nil nil nil nil nil))\n");

/* Define "pick" object, initially the empty list (= null object).

* We replace this later upon receiving a pick event.

*/

printf("(geometry \"pick\" { LIST })\n");

/* Make the "pick" object be non-pickable.

*/

printf("(pickable \"pick\" no)\n");

/* Turn off normalization, so that our pick object will appear in the

* right place.

*/

printf("(normalization \"pick\" none)\n");

/* Don't draw the pick object's bounding box.

*/

printf("(bbox-draw \"pick\" off)\n");

} endprogn();

}

/* The following is a macro call that defines a procedure called

* Lpick(). The reason for doing this in a macro is that that macro

* encapsulates a lot of necessary stuff that would be the same for

* this procedure in any program. If you write a Geomview module that

* wants to know about user pick events you can just copy this macro

* call and change the body to suit your needs; the body is the last

Chapter 6: External Modules 81

* argument to the macro and is delimited by curly braces.

*

* The first argument to the macro is the name of the procedure to

* be defined, "Lpick".

*

* The next two arguments are numbers which specify the sizes that

* certain arrays inside the body of the procedure should have.

* These arrays are used for storing the face and path information

* of the picked object. In this module we don't care about this

* information so we declare them to have length 1, the minimum

* allowed.

*

* The last argument is a block of code to be executed when the module

* receives a pick event. In this body you can refer to certain local

* variables that hold information about the pick. For details see

* Example 3 in the Extenal Modules chapter of the Geomview manual.

*/

PICKFUNC(Lpick, 1, 1,

{

handle pick(pn>0, &point, vn>0, &vertex, en>0, edge);

})

handle pick(picked, p, vert, v, edge, e)

int picked; /* was something actually picked? */

int vert; /* was the pick near a vertex? */

int edge; /* was the pick near an edge? */

HPoint3 *p; /* coords of pick point */

HPoint3 *v; /* coords of picked vertex */

HPoint3 e[2]; /* coords of endpoints of picked edge */

{

Normalize(&e[0]); /* Normalize makes 4th coord 1.0 */

Normalize(&e[1]);

Normalize(p);

progn(); {

if (!picked) {

printf("(geometry \"pick\" { LIST })\n");

} else {

/*

* Put the box in place, and color it magenta if it's on a vertex,

* yellow if not.

*/

printf("(xform-set pick { 1 0 0 0 0 1 0 0 0 0 1 0 %g %g %g 1 })\n",

p->x, p->y, p->z);

printf("(geometry \"pick\"\n");

if (vert) printf("{ appearance { material { diffuse 1 0 1 } }\n");

else printf("{ appearance { material { diffuse 1 1 0 } }\n");

printf(" { LIST { :littlebox }\n");

/*

* If it's on an edge and not a vertex, mark the edge

Chapter 6: External Modules 82

* with cyan boxes at the endpoins and a black line

* along the edge.

*/

if (edge && !vert) {

e[0].x -= p->x; e[0].y -= p->y; e[0].z -= p->z;

e[1].x -= p->x; e[1].y -= p->y; e[1].z -= p->z;

printf("{ appearance { material { diffuse 0 1 1 } }\n\

LIST\n\

{ INST transform 1 0 0 0 0 1 0 0 0 0 1 0 %f %f %f 1 geom :littlebox }\n\

{ INST transform 1 0 0 0 0 1 0 0 0 0 1 0 %f %f %f 1 geom :littlebox }\n\

{ VECT\n\

1 2 1\n\

2\n\

1\n\

%f %f %f\n\

%f %f %f\n\

1 1 0 1\n\

}\n\

}\n",

e[0].x, e[0].y, e[0].z,

e[1].x, e[1].y, e[1].z,

e[0].x, e[0].y, e[0].z,

e[1].x, e[1].y, e[1].z);

}

printf(" }\n }\n)\n");

}

} endprogn();

}

Normalize(HPoint3 *p)

{

if (p->w != 0) {

p->x /= p->w;

p->y /= p->w;

p->z /= p->w;

p->w = 1;

}

}

main()

{

Lake *lake;

LObject *lit, *val;

extern char *getenv();

Initialize();

lake = LakeDefine(stdin, stdout, NULL);

Chapter 6: External Modules 83

while (!feof(stdin)) {

/* Parse next lisp expression from stdin.

*/

lit = LSexpr(lake);

/* Evaluate that expression; this is where Lpick() gets called.

*/

val = LEval(lit);

/* Free the two expressions from above.

*/

LFree(lit);

LFree(val);

}

}

The code begins by de�ning procedures progn() and endprogn() which begin and end a Ge-

omview progn group. The purpose of the Geomview progn command is to group commands to-

gether and cause Geomview to execute them all at once, without refreshing any graphics windows

until the end. It is a good idea to group blocks of commands that a module sends to Geomview

like this so that the user sees their cumulative e�ect all at once.

Procedure Initialize() does various things needed at program startup time. It initializes the

lisp library by calling LInit(). Any program that uses the lisp library should call this once before

calling any other lisp library functions. It then calls LDefun to tell the library about our pick

procedure, which is de�ned further down with a call to the DEFPICKFUNC macro. Then it sends a

bunch of setup commands to Geomview, grouped in a progn block. This includes de�ning a handle

called littlebox that stores the geometry of the little box. Next it sends the command

(interest (pick world * * * * nil nil nil nil nil))

which tells Geomview to notify us when a pick event happens.

The syntax of this interest statement merits some explanation. In general interest takes one

argument which is a (parenthesized) expression representing a Geomview function call. It speci�es

a type of call that the module is interested in knowing about. The arguments can be any particular

argument values, or the special symbols * or nil. For example, the �rst argument in the pick

expression above is world. This means that the module is interested in calls to pick where the

�rst argument, which speci�es the coordinate system, is world. A * is like a wild-card; it means

Chapter 6: External Modules 84

that the module is interested in calls where the corresponding argument has any value. The word

nil is like *, except that the argument's value is not reported to the module. This is useful for

cutting down on the amount of data that must be transmitted in cases where there are arguments

that the module doesn't care about.

The second, third, fourth, and �fth arguments to the pick command give the name, pick point

coordinates, vertex coordinates, and edge coordinates of a pick event. We specify these by *'s

above. The remaining �ve arguments to the pick command give other information about the pick

event that we do not care about in this module, so we specify these with nil's. For the details of

the arguments to pick, See Chapter 7 [GCL], page 89.

The geometry statement de�nes a geom called pick that is initially an empty list, speci�ed as {

LIST } ; this is the best way of specifying a null geom. The module will replace this with something

useful by sending Geomview another geometry command when the user picks something. Next we

arrange for the pick object to be non-pickable, and turn normalization o� for it so that Geomview

will display it in the size and location where we put it, rather than resizing and relocating it to �t

into the unit cube.

The next function in the �le, Lpick, is de�ned with a strange looking call to a macro called

PICKFUNC, de�ned in the header �le `pickfunc.h'. This is the function for handling pick events.

The reason we provide a macro for this is that that macro encapsulates a lot of necessary stu� that

would be the same for the pick-handling function in any program. If you write a Geomview module

that wants to know about user pick events you can just copy this macro call and change it to suit

yours needs.

In general the syntax for PICKFUNC is

PICKFUNC(name, maxfaceverts, maxpathlen, block)

where name is the name of the procedure to be de�ned, in this case Lpick. The next two arguments,

maxfaceverts and maxpathlen, give the sizes to be used for declaring two local variable arrays in

the body of the procedure. These arrays are for storing information about the picked face and

the picked primitive's path. In this module we don't care about this information (it corresponds

to some of the things masked out by the nil's in the interest call above) so we specify 1, the

minimum allowable, for both of these. The last argument, block, is a block of code to be executed

when a pick event occurs. The block should be delimited by curly braces. The code in your block

should not include any return statements.

Chapter 6: External Modules 85

PICKFUNC declares certain local variables in the body of the procedure. When the module

receives a (pick : : :) statement from Geomview, the procedure assigns values to these variables

based on the information in the pick call. (Variables corresponding to nil's in the (interest

(pick : : :)) are not given values.) These variables are:

char *coordsys;

A string specifying the coordinate system in which coordinates are given. In this

example, this will always be world because of the interest call above.

char *id; A string specifying the name of the picked geom.

HPoint3 point; int pn;

point is an HPoint3 structure giving the coordinates of the picked point. HPoint3 is

a homogeneous point coordinate representation equivalent to an array of 4 oats. pn

tells how many coordinates have been written into this array; it will always be either 0

or 4. A value of zero means no point was picked, i.e. the user clicked the right mouse

button while the cursor was not pointing at a geom.

HPoint3 vertex; int vn;

vertex is an HPoint3 structure giving the coordinates of the picked vertex, if the pick

point was near a vertex. vn tells how many coordinates have been written into this

array; it will always be either 0 or 4. A value of zero means the pick point was not

near a vertex.

HPoint3 edge[2]; int en;

edge is an array of two HPoint3 structures giving the coordinates of the endpoints of

the picked edge, if the pick point was near an edge. en tells how many coordinates

have been written into this array; it will always be either 0 or 8. A value of zero means

the pick point was not near an edge.

In this example module, the remaining variables will never be given values because their values

in the interest statement were speci�ed as nil.

HPoint3 face[maxfaceverts]; int fn;

face is an array of maxfaceverts HPoint3's; maxfaceverts is the value speci�ed in the

PICKFUNC call. face gives the coordinates of the vertices of the picked face. fn tells

how many coordinates have been written into this array; it will always be a multiple

of 4 and will be at most 4*maxfaceverts. A value of zero means the pick point was not

near a face.

Chapter 6: External Modules 86

HPoint3 ppath[maxpathlen; int ppn;

ppath is an array of maxpathlen int's; maxpathlen is the value speci�ed in the

PICKFUNC call. ppath gives the path through the OOGL heirarchy to the picked prim-

itive. pn tells how many integers have been written into this array; it will be at most

maxpathlen. A path of 3,1,2, for example, means that the picked primitive is "subob-

ject number 2 of subobject number 1 of object 3 in the world".

int vi; vi gives the index of the picked vertex in the picked primitive, if the pick point was

near a vertex.

int ei[2]; int ein

The ei array gives the indices of the endpoints of the picked edge, if the pick point was

near a vertex. ein tells how many integers were written into this array. It will always

be either 0 or 2; a value of 0 means the pick point was not near an edge.

int fi; fi gives the index of the picked face in the picked primitive, if the pick point was near

a face.

The handle_pick procedure actually does the work of dealing with the pick event. It begins

by normalizing the homogeneous coordinates passed in as arguments so that we can assume the

fourth coordinate is 1. It then sends gcl commands to de�ne the pick object to be whatever is

appropriate for the kind of pick recieved. See see Chapter 4 [OOGL File Formats], page 39, and

see Chapter 7 [GCL], page 89, for an explanation of the format of the data in these commands.

The main program, at the bottom of the �le, �rst calls Initialize(). Next, the call to

LakeDefine de�nes the Lake that the lisp library will use. A Lake is a structure that the lisp

library uses internally as a type of communiation vehicle. (It is like a unix stream but more gen-

eral, hence the name.) This call to LakeDefine de�nes a Lake structure for doing I/O with stdin

and stdout. The third argument to LakeDefine should be NULL for external modules (it is used

by Geomview). Finally, the program enters its main loop which parses and evaluates expressions

from standard input.

6.6 Module Installation

This section tells how to install an external module so you can invoke it within Geomview. There

are two ways to install a module: you can install a private module so that the module is available

to you whenever you run Geomview, or you can install a system module so that the module is

available to all users on your system whenever they run Geomview.

Chapter 6: External Modules 87

6.6.1 Private Module Installation

The emodule-define command arranges for a module to appear in Geomview's Modules

browser. emodule-define takes two string arguments; the �rst is the name that will appear

in the Modules browser. The second is the shell command for running the module; it may include

arguments. Geomview executes this command in a subshell when you click on the module's entry

in the browser. For example

(emodule-define "Foo" "/u/home/modules/foo -x")

adds a line labeled "Foo" to theModules browser which causes the command "/u/home/modules/foo

-x" to be executed when selected.

You may put emodule-define commands in your `~/.geomview' �le to arrange for certain

modules to be available every time you run Geomview; See Chapter 5 [Customization], page 66.

You can also execute emodule-define commands from the Commands panel if you want to add a

module to an already running copy of Geomview.

There are several other gcl commands for controlling the entries in the Modules browser; for

details, See Chapter 7 [GCL], page 89.

6.6.2 System Module Installation

To install a module so that it is available to all Geomview users do the following

1 Create a �le called `.geomview-module' where `module' is the name of the module.

This �le should contain a single line which is an emodule-define command for that

module:

(emodule-define "New Module" "newmodule")

The �rst argument, "New Module" above, is the string that will appear in the Modules

browser. The second string, "newmodule" above, is the shell command for invoking

the module. It may include arguments, and you may assume that the module is on the

$path searched by the shell.

2 Put a copy of the `.geomview-module' and the module executable itself in Geomview's

`modules/sgi' directory. This is a subdirectory of the Geomview distribution directory

(on the Geometry Center's system the pathname is `/u/gcg/ngrap/modules/sgi'.

Chapter 6: External Modules 88

After these steps, the new module should appear, in alphabetical position, in the Modules

browser of Geomview's Main panel next time Geomview is run. The reason this works is that

when Geomview is invoked it processes all the `.geomview-*' �les in its `modules' directory. It

also remembers the pathname of this directory and prepends that path to the $path of the shell in

which it invokes such a module.

Chapter 7: gcl: the Geomview Command Language 89

7 gcl: theGeomviewCommandLanguage

Gcl has the syntax of lisp { i.e. an expression of the form (f a b : : :) means pass the values

of a, b, : : : to the function f. Gcl is very limited and is by no means an implementation of lisp.

It is simply a language for expressing commands to be executed in the order given, rather than a

programming language. It does not support variable or function de�nition.

Gcl is the language that Geomview understands for �les that it loads as well as for communication

with other programs. If you want to execute a gcl command interactively, you can bring up the

Command panel which lets you type in a command; Geomview executes the command when you

hit the return key. Output from such commands is printed to standard output. Alternately, you

can invoke Geomview as geomview -c - which causes it to read gcl commands from standard input.

Gcl functions return a value, and you can nest function calls in ways which use this returned

value. For example

(f (g a b))

evaluates (g a b) and then evaluates (f x) where x is the result returned by (g a b). Geomview

maintains these return values internally but does not normally print them out. If you want to print

out a return value pass it to the echo function. For example the geomview-version function

returns a string representing the version of Geomview that is running, and

(echo (geomview-version))

prints out this string.

Many functions simply return t for success or nil for failure; this is the case if the documen-

tation for the function does not indicate otherwise. These are the lisp symbols for true and false,

respectively. (They correspond to the C variables Lt and Lnil which you are likely to see if you

look at the source code for Geomview or some of the external modules.)

In the descriptions of the commands below several references are made to "OOGL" formats.

OOGL is the data description language that Geomview uses for describing geometry, cameras,

appearances, and other basic objects. For details of the OOGL formats, See Chapter 4 [OOGL

Chapter 7: gcl: the Geomview Command Language 90

File Formats], page 39. (Or equivalently, see the oogl(5) manual page, distributed with Geomview

in the �le man/cat5/oogl.5.

The gcl commands and argument types are listed below. Most of the documentation in this

section of the manual is available within Geomview via the ? and ?? commands. The command

(? command) causes Geomview to print out a one-line summary of the syntax of command, and

(?? command) prints out an explanation of what command does. You can include the wild-card

character * in command to print information for a group of commands matching a pattern. For

example, (?? *emodule*) will print all information about all commands containing the string

emodule. (? *) will print a short list of all commands.

7.1 Conventions Used In Describing Argument Types

The following symbols are used to describe argument types in the documentation for gcl func-

tions.

appearance

is an OOGL appearance speci�cation.

cam-id is an id that refers to a camera.

camera is an OOGL camera speci�cation.

geom-id is an id that refers to a geometry.

geometry is an OOGL geometry speci�cation.

id is a string which names a geometry or camera. Besides those you create, valid ones

are:

World, world, worldgeom, g0

the collection of all geom's

target selected target object (cam or geom)

center selected center-of-motion object

targetcam

last selected target camera

targetgeom

last selected target geom

focus camera where cursor is (or most recently was)

allgeoms all geom objects

allcams all cameras

Chapter 7: gcl: the Geomview Command Language 91

default, defaultcam, prototype

future cameras inherit default's settings

The following ids are used to name coordinate systems, e.g. in pick and write com-

mands:

World, world, worldgeom, g0

the world, within which all other geoms live.

universe the universe, in which the World, lights and cameras live. Cameras'

world2cam transforms might better be called universe2cam, etc.

self "this Geomview object". Transform from an object to self is the identity;

writing its geometry gives the object itself with no enclosing transform;

picked points appear in the object's coordinates.

primitive

(for pick only) Picked points appear in the coordinate system of the lowest-

level OOGL primitive.

A name is also an acceptable id. Given names are made unique by appending numbers

if necessary (i.e. "foo<2>"). Every geom is also named g[n] and every camera is also

named c[n] ("g0" is always the worldgeom): this name is used as a pre�x to keyboard

commands and can also be used as a gcl id. Numbers are reused after an object is

deleted. Both names are shown in the Object browser.

statement represents a function call. Function calls have the form (func arg1 arg2 : : :), where

func is the name of the function and arg1, arg2, : : : are the arguments.

transform is an OOGL 4x4 transformation matrix.

window is an OOGL winddow speci�cation.

7.2 Gcl Reference Guide

! ! is a synonym for shell

? ? is a synonym for help

?? ?? is a synonym for morehelp

| | is a synonym for emodule-run

(< expr1 expr2)

Returns t if expr1 is less than expr2. expr1 and expr2 should be either both integers

or oats, or both strings.

(= expr1 expr2)

Returns t if expr1 is equal to expr2. expr1 and expr2 should be either both integers

or oats, or both strings.

Chapter 7: gcl: the Geomview Command Language 92

(> expr1 expr2)

Returns t if expr1 is greater than expr2. expr1 and expr2 should be either both integers

or oats, or both strings.

(all geometry)

returns a list of names of all geometry objects. Use e.g. \(echo (all geometry))" to

print such a list.

(all camera)

returns a list of names of all cameras.

(all emodule defined)

returns a list of all de�ned external modules.

(all emodule running)

returns a list of all running external modules.

(ap-override [on|off])

Selects whether appearance controls should override objects' own settings. On by

default. With no arguments, returns current setting.

(backcolor cam-id r g b)

Set the background color of cam-id; r g b are numbers between 0 and 1.

(bbox-color geom-id r g b)

Set the bounding-box color of geom-id; r g b are between 0 and 1.

(bbox-draw geom-id [yes|no])

Say whether geom-id's bounding-box should be drawn; yes if omitted.

(camera cam-id [camera])

Specify data for cam-id; camera is a string giving an OOGL camera speci�cation. If

no camera cam-id exists, it is created; in this case, the second argument is optional,

and if omitted, a default camera is used. See also: new-camera.

(camera-draw cam-id [yes|no])

Say whether or not cameras should be drawn in cam-id; yes if omitted.

(camera-prop geometry [projective])

Specify the object to be shown when drawing other cameras. By default, this object is

drawn with its origin at the camera, and with the camera looking toward the object's

-Z axis. With the "projective" keyword, the camera's viewing projection is also applied

to the object; this places the object's Z=-1 and Z=+1 at near and far clipping planes,

with the viewing area -1<=X,Y<=+1. Example: (camera-prop < cube projective)

(camera-reset cam-id)

Reset cam-id to its default value.

Chapter 7: gcl: the Geomview Command Language 93

(car LIST)

returns the �rst element of LIST.

(cdr LIST)

returns the list obtained by removing the �rst element of LIST.

(clock) Returns the current time, in seconds, as shown by this stream's clock. See also set-clock

and sleep-until.

(command INFILE [OUTFILE])

Read commands from INFILE; send corresponding responses (e.g. anything written to

�lename `-') to OUTFILE, stdout by default.

(copy [id] [name])

Copies an object or camera. If id is not speci�ed, it is assumed to be targetgeom. If

name is not speci�ed, it is assumed to be the same as the name of id.

(cull-backface [on|off])

Select whether back-facing polygons should be displayed. Initially on: all polygons are

displayed. When o�, polygons whose vertices are arranged clockwise on the screen are

hidden. Useful for simulating two-sided surface coloring.

(cursor cam-id {on|off} [pbmfile xorigin yorigin])

Turns the given window's graphics cursor on or o�. Optionally sets the 16x16 pixel

cursor glyph from the given �le, which must be in binary (P4) PBM format. Can only

be applied to actual windows, not e.g. allcams or default. Sorry.

(cursor-still [INT])

Sets the number of microseconds for which the cursor must not move to register as

holding still. If INT is not speci�ed, the value will be reset to the default.

(cursor-twitch [INT])

Sets the distance which the cursor must not move (in x or y) to register as holding still.

If INT is not speci�ed, the value will be reset to the default.

(delete id)

Delete object or camera id.

(dither CAM-ID on|off|toggle)

Turn dithering on or o� in that camera.

(dimension [N])

Sets or reads the space dimension for N-dimensional viewing. (Since calculations are

done using homogeneous coordinates, this means matrices are (N+1)x(N+1).) With no

arguments, returns the current dimension, or 0 if N-dimensional viewing has not been

enabled.

(dice geom-id N)

Dice any Bezier patches within geom-id into NxN meshes; default 10.

Chapter 7: gcl: the Geomview Command Language 94

(draw cam-id)

Draw the view in cam-id, if it needs redrawing. See also redraw.

(echo : : :)

Write the given data to the special �le `-'. Strings are written literally; lisp expressions

are evaluated and their values written. If received from an external program, echo

sends to the program's input. Otherwise writes to Geomview's own standard output

(typically the terminal).

(emodule-clear)

Clears the Geomview application (external module) browser.

(emodule-define name shell-command : : :)

De�ne an external module called name, which then appears in the external-module

browser. The shell-command string is a UNIX shell command which invokes the mod-

ule. See emodule-run for discussion of external modules.

(emodule-defined modulename)

If an external module named modulename is known, returns the name of the program

invoked when it's run as a quoted string; otherwise returns nil. (echo (emodule-

defined modulename)) prints the string.

(emodule-isrunning name)

Returns Lt if the emodule name is running, or Lnil if it is not running. name is

searched for in the names as they appear in the browser and in the shell commands

used to execute the external modules (not including arguments).

(emodule-path)

Returns the current search path for external modules. Note: to actually see the value

returned by this function you should wrap it in a call to echo: (echo (emodule-path)).

See also set-emodule-path.

(emodule-run shell-command args : : :)

Runs the given shell-command (a string containing a UNIX shell command) as an

external module. The module's standard output is taken as gcl commands; responses

(written to �lename `-' are sent to the module's standard input. The shell command is

interpreted by /bin/sh, so e.g. I/O redirection may be used; a program which prompts

the user for input from the terminal could be run with: (emodule-run yourprogram

<&2). If not already set, the environment variable $MACHTYPE is set to the name

of the machine type. Input and output connections to Geomview are dropped when

the shell command terminates. Clicking on a running program's module-browser entry

sends the signal SIGHUP to the program. For this to work, programs should avoid

running in the background; those using FORMS or GL should call foreground() before

the �rst FORMS or winopen() call. See also emodule-de�ne, emodule-start.

Chapter 7: gcl: the Geomview Command Language 95

(emodule-sort)

Sorts the modules in the Modules browser alphabetically.

(emodule-start name)

Starts the external module name, de�ned by emodule-de�ne. Equivalent to clicking on

the corresponding module-browser entry.

(emodule-transmit name LIST)

Places LIST into external module name's standard input. name is searched for in the

names of the modules as they appear in the External Modules browser and then in the

shell commands used to execute the external modules. Does nothing if modname is

not running.

(escale geom-id factor)

Same as scale but multiplies by exp(scale). Obsolete.

(event-keys on|off)

Turn keyboard events on or o� to enable/disable keyboard shortcuts.

(event-pick on|off)

Turn picking on or o�.

(event-mode modestring)

Set the mouse event (motion) mode; modestring should be one of the strings that ap-

pears in the motion mode browser (including the keyboard shortcut, e.g. "[r] Rotate").

(evert geom-id [yes|no])

Set the normal eversion state of geom-id. If the second argument is omitted, toggle the

eversion state.

(exit) Terminates Geomview.

(ezoom geom-id factor)

Same as zoom but multiplies by exp(zoom). Obsolete.

(freeze cam-id)

Freeze cam-id; drawing in this camera's window is turned o� until it is explicitly

redrawn with (redraw cam-id), after which time drawing resumes as normal.

(geometry geom-id [geometry])

Specify the geometry for geom-id. geometry is a string giving an OOGL geometry

speci�cation. If no object called geom-id exists, it is created; in this case the geom-

etry argument is optional, and if omitted, the new object geom-id is given an empty

geometry.

(geomview-version)

Returns a string representing the version of Geomview that is running.

Chapter 7: gcl: the Geomview Command Language 96

(hdefine geometry|camera|transform|window name value)

Sets the value of a handle of a given type. (hde�ne type name value) is generally

equivalent to (read type { define name value }) except that the assignment is done

when hde�ne is executed, (possibly not at all if inside a conditional statement), while

(read : : : define : : :) performs assignment as soon as the text is read.

(help [command])

Command may include "*"s as wildcards; see also morehelp. One-line command help;

lists names only if multiple commands match. ? is a synonym for help.

(hmodel cam-id {virtual|projective|conformal})

Set the model used to display geometry in this camera; see also space.

(hsphere-draw cam-id [yes|no])

Say whether to draw a unit sphere: the sphere at in�nity in hyperbolic space, and a

reference sphere in Euclidean and spherical spaces. If the second argument is omitted,

"yes" is assumed.

(if test expr1 [expr2])

Evaluates test; if test returns a non-nil value, returns the value of expr1. If test returns

nil, returns the value of expr2 if expr2 is present, otherwise returns nil.

(inhibit-warning string)

Inhibit warning inhbits Geomview from displaying a particular warning message deter-

mined by string. At present there are no warning messages that this applies to, so this

command is rather useless.

(interest (command [args]))

Allows you to express interest in a command. When Geomview executes that command

in the future it will echo it to the communication pool from which the interest command

came. command can be any command. Args specify restrictions on the values of the

arguments; if args are present in the interest command, Geomview will only echo calls

to the command in which the arguments match those given in the interest command.

Two special argument values may appear in the argument list. * matches any value.

nil matches any value but supresses the reporting of that value; its value is reported

as nil.

The purpose of the interest command is to allow external modules to �nd out about

things happening inside Geomview. For example, a module interested in knowing when

a geom called "foo" is deleted could say (interest (delete foo)) and would receive

the string (delete foo) when foo is deleted.

Picking is a special case of this. For most modules interested in pick events the com-

mand (interest (pick world)) is su�cient. This causes Geomview to send a string

of the form (pick world : : :) every time a pick event (right mouse double click). See

the pick command for details.

Chapter 7: gcl: the Geomview Command Language 97

(lines-closer cam-id DIST)

Draw lines (including edges) closer to the camera than polygons by DIST / 10^5 of the

Z-bu�er range. DIST = 3.0 by default. If DIST is too small, a line lying on a surface

may be dotted or invisible, depending on the viewpoint. If DIST is too large, lines may

appear in front of surfaces that they actually lie behind. Good values for DIST vary

with the scene, viewpoint, and distance between near and far clipping planes. This

feature is a kludge, but can be helpful.

(load filename [command|geometry|camera])

Loads the given �le into Geomview. The optional second argument speci�es the type of

data it contains, which may be command (gcl commands), geometry (OOGL geometric

data), or camera (OOGL camera de�nition). If omitted, attempts to guess about the

�le's contents. Loading geometric data creates a new visible object; loading a camera

opens a new window; loading a gcl �le executes the commands in the �le.

(load-path)

Returns the current search path for command, geometry, etc. �les. Note: to actually

see the value returned by this function you should wrap it in a call to echo: (echo

(load-path)). See also set-load-path.

(look [geom-id] [cam-id])

Rotates the named camera to point toward the center of the bounding box of the named

object (or the origin in hyperbolic or sphereical space). In Euclidean space, moves the

camera forward or backward until the object appears as large as possible while still

being entirely visible. Equivalent to

progn (

(look-toward [geom-id] [cam-id] {center | origin})

[(look-encompass [geom-id] [cam-id])]

)

If geom-id is not speci�ed, it is assumed to be World. If cam-id is not speci�ed, it is

assumed to be targetcam.

(look-encompass [geom-id] [cam-id])

Moves cam-id backwards or forwards until its �eld of view surrounds geom-id. This

routine works only in Euclidean space. If geom-id is not speci�ed, it is assumed to

be the world. If cam-id is not speci�ed, it is assumed to be the targetcam. See also

(look-encompass-size).

(look-encompass-size [view-fraction clip-ratio near-margin far-margin])

Sets/returns parameters used by (look-encompass). view-fraction is the portion of the

camera window �lled by the object, clip-ratio is the max allowed ratio of near-to-far

clipping planes. The near clipping plane is 1/near-margin times closer than the near

edge of the object, and the far clipping plane is far-margin times further away. Returns

the list of current values. Defaults: .75 100 0.1 4.0

Chapter 7: gcl: the Geomview Command Language 98

(look-recenter [geom-id] [cam-id])

Translates and rotates the camera so that it is looking in the -z direction (in geom-

id's coordinate system) at the center of geom-id's bounding box (or the origin of the

coordinate system in non-Eudlidean space). In Euclidean space, the camera is also

moved as close as possible to the object while allowing the entire object to be visible.

Also makes sure that the y-axes of geom-id and cam-id are parallel.

(look-toward [geom-id] [cam-id] [origin | center])

Rotates the named camera to point toward the origin of the object's coordinate system,

or the center of the object's bounding box (in non-Euclidean space, the origin will be

used automatically). Default geom-id is the world, default camera is targetcam, default

location to point towards is the center of the bounding box.

(merge {window|camera} cam-id { window or camera : : : })

Modify the given window or camera, changing just those properties speci�ed in the

last argument. E.g. (merge camera "Camera" { far 20 }) sets Camera's far clipping

plane to 20 while leaving other attributes untouched.

(merge-ap geom-id appearance)

Merge in some appearance characteristics to geom-id. Appearance parameters include

surface and line color, shading style, line width, and lighting.

merge-base-ap

is a synonym for merge-baseap.

(merge-baseap appearance)

Merge in some appearance characteristics to the base default appearance (applied to

every geom before its own apperance). Lighting is typically included in the base ap-

pearance.

(morehelp command)

command may include "*" wildcards. Prints more info than (help command). ?? is

a synonym for morehelp

(name-object id name)

Assign a new name (a string) to id. A number is appended if that name is in use (for

example, "foo" -> "foo<2>"). The new name, possibly with number appended, may be

used as object's id thereafter.

(new-alien name [geometry])

Create a new alien (geom not in the world) with the given name (a string). geometry is

a string giving an OOGL geometry speci�cation. If geometry is omitted, the new alien

is given an empty geometry. If an object with that name already exists, the new alien

is given a unique name. The light beams that are used to move around the lights are

an example of aliens. They're drawn but are not controllable the way ordinary objects

Chapter 7: gcl: the Geomview Command Language 99

are: they don't appear in the object browser and the user can't move them with the

normal motion modes.

(new-camera name [camera])

Create a new camera with the given name (a string). If a camera with that name

already exists, the new object is given a unique name. If camera is omitted a default

camera is used.

(new-center [id])

Stop id, then set id's transform to the identity. Default id is target. Also, if the id is a

camera, calls (look-recenter World id). The main function of the call to (look-recenter)

is to place the camera so that it is pointing parallel to the z axis toward the center of

the world.

(new-geometry name [geometry])

Create a new geom with the given name (a string). geometry is a string giving an

OOGL geometry speci�cation. If geometry is omitted, the new object is given an

empty geometry. If an object with that name already exists, the new object is given a

unique name.

(new-reset)

Equivalent to (progn (new-center ALLGEOMS)(new-center ALLCAMS))

(ND-axes cam-id [clustername [Xindex Yindex Zindex]])

In our model for N-D viewing (enabled by (dimension)), objects in N-space are viewed

by N-dimensional "camera clusters". Each real camera window belongs to some cluster,

and shows & manipulates a 3-D axis-aligned projected subspace of the N-space seen

by its cluster. Moving one camera in a cluster a�ects its siblings.

The ND-axes command con�gures all this. It speci�es a camera's cluster membership,

and the set of N-space axes which become the 3-D camera's X, Y, and Z axes. Axes

are speci�ed by their indices, from 0 to N-1 for an N-dimensional space. Cluster

CLUSTERNAME is implicitly created if not previously known. To read a camera's

con�guration, use "(echo (ND-axes CAMID))".

(ND-color cam-id [(([ID] (x0 x1 x2 ... xn) v r g b a v r g b a ...)

((x0 ... xn) v r g b a v r g b a ...) ...)]) Speci�es a function, applied to each N-

D vertex, which determines the colors of N-dimensional objects as shown in camera

CAMID. Each coloring function is de�ned by a vector (in ID's coordinate system) [x0

x1 ... xn] and by a sequence of value (v)/color(r g b a) tuples, ordered by increasing

v. The inner product v = P.[x] is linearly interpolated in this table to give a color. If

ID is omitted, the (xi) vector is assumed to be in universe coordinates. The ND-color

command speci�es a list of such functions; each vertex is colored by their sum (so e.g.

green intensity could indicate projection along one axis while red indicated another. An

empty list, as in (ND-color CAMID ()), suppresses coloring. With no second argument,

Chapter 7: gcl: the Geomview Command Language 100

(ND-color CAMID) returns that camera's color-function list. Even when coloring is

enabled, objects tagged with the "keepcolor" appearance attribute are shown in their

natural colors.

(ND-xform object-id [ntransform idim odim ...])

Sets or returns the N-D transform of the given object. In dimension N, this is an

(N+1)x(N+1) matrix. Note that all cameras in a camera-cluster have the same N-D

transform.

(ND-xform-get ID [from-ID])

Returns the N-D transform of the given object in the coordinate system of from-ID

(default "universe"), in the sense <point-in-ID-coords> * Transform = <point-in-from-

ID-coords>.

(NeXT) Returns t if running on a NeXT, nil if not

(normalization geom-id {each|none|all|keep})

Set the normalization status of geom-id.

none suppresses all normalization.

each normalizes the object's bounding box to �t into the unit sphere, with the

center of its bounding box translated to the origin. The box is scaled

such that its long diagonal, sqrt((xmax-xmin)^2 + (ymax-ymin)^2 + (zmax-

zmin)^2), is 2.

all resembles each, except when an object is changing (e.g. when its geom-

etry is being changed by an external program). Then, each tightly �ts

the bounding box around the object whenever it changes and normalizes

accordingly, while all normalizes the union of all variants of the object

and normalizes accordingly.

keep leaves the current normalization transform unchanged when the object

changes.

It may be useful to apply each or all normalization apply to the �rst version of a

changing object to bring it in view, then switch to keep.

(pick COORDSYS GEOMID G V E F P VI EI FI)

The pick command is executed internally in response to pick events (right mouse double

click).

COORDSYS coordinate system in which coordinates of the following arguments are

speci�ed. This can be:

world world coord sys

self coord sys of the picked geom (GEOMID)

primitive

coord sys of the actual primitive within the picked geom where

the pick occurred.

Chapter 7: gcl: the Geomview Command Language 101

GEOMID id of picked geom

G picked point (actual intersection of pick ray with object)

V picked vertex, if any

E picked edge, if any

F picked face

P path to picked primitive [0 or more]

VI index of picked vertex in primitive

EI list of indices of endpoints of picked edge, if any

FI index of picked face

External modules can �nd out about pick events by registering interest in calls to pick

via the interest command.

(pickable geom-id {yes|no})

Say whether or not geom-id is included in the pool of objects that could be returned

from the pick command.

(position objectID otherID)

Set the transform of objectID to that of otherID.

(position-at objectID otherID [center | origin])

Translate objectID to the center of the bounding box or the origin of the coordinate

system of otherID (parallel translation). Default is center.

(position-toward objectID otherID [center | origin])

Rotate objectID so that the center of the bounding box or the origin of the coordinate

system of the otherID lies on the positive z-axis of the �rst object. Default is the center

of the bounding box.

(progn STATEMENT [: : :])

evaluates each STATEMENT in order and returns the value of the last one. Use progn

to group a collection of commands together, forcing them to be treated as a single

command.

quit is a synonym for exit.

(quote EXPR)

returns the symbolic lisp expression EXPR without evaluating it.

(rawevent dev val x y t)

Enter the speci�ed raw event into the event queue. The arguments directly specify the

members of the event structure used internally by Geomview. This is the lowest level

event handler and is not intended for general use.

(rawpick cam-id X Y)

Process a pick event in camera cam-id at location (X,Y) given in integer pixel coordi-

nates. This is a low-level procedure not intended for external use.

Chapter 7: gcl: the Geomview Command Language 102

(read {geometry|camera|transform|command} {geometry or camera or : : :})

Read and interpret the text in : : : as containing the given type of data. Useful for

de�ning objects using OOGL reference syntax, e.g.

(geometry thing { INST transform : T geom : fred })

(read geometry { define fred QUAD 1 0 0 0 1 0 0 0 1 1 0 0 })

(read transform { define T <myfile})

(real-id id)

Returns a string canonically identifying the given id, or nil if the object does not exist.

Examples:

(if (real-id fred) (delete fred))

deletes "fred" if it exists but reports no error if it doesn't, and

(if (= (real-id targetgeom) (real-id World)) () (delete targetgeom))

deletes "targetgeom" if it is di�erent from the World.

(redraw cam-id)

States that the view in cam-id should be redrawn on the next pass through the main

loop or the next invocation of draw.

(regtable)

shows the internal interest table; for debugging only.

(rehash-emodule-path)

Rebuilds the application (external module) browser by reading all .geomview-* �les in

all directories on the emodule-path. Primarily intended for internal use; any applica-

tions de�ned by (emodule-de�ne : : :) commands outside of the .geomview-* �les on the

emodule-path will be lost. Does not sort the entries in the brower; see (emodule-sort)

for that.

(replace-geometry geom-id PART-SPECIFICATION geometry)

Replace a part of the geometry for geom-id.

(rib-display [frame|tiff] FILEPREFIX)

Set Renderman display to framebu�er (popup screen window) or a TIFF format disk

�le. FILEPREFIX is used to construct names of the form "pre�xNNNN.su�x". (i.e.

foo0000.rib) The number is incremented on every call to rib-snapshot and reset to

0000 when rib-display is called. TIFF �les are given the same pre�x and number

as the RIB �le (i.e. foo0004.rib generates foo0004.ti�). The default FILEPREFIX is

"geom" and the default format is TIFF. (Note that Geomview just generates a RIB

�le, which must then be rendered.)

(rib-snapshot cam-id [�lename])

Write Renderman snapshot (in RIB format) of cam-id to �lename. If no �lename

speci�ed, see rib-display for explanation of the �lename used.

Chapter 7: gcl: the Geomview Command Language 103

(scale geom-id factor [y-factor z-factor])

Scale geom-id, multiplying its size by factor. The factors should be positive numbers.

If y-factor and z-factor are present and non-zero, the object is scaled by factor in x,

by y-factor in y, and by z-factor in z. If only factor is present, the object is scaled by

factor in x, y, and z. Scaling only really makes sense in Euclidean space. Mouse-driven

scaling in other spaces is not allowed; the scale command may be issued in other spaces

but should be used with caution because it may cause the data to extend beyond the

limits of the space.

(scene cam-id [geometry])

Make cam-id look at geometry instead of at the universe.

(set-clock time)

Adjusts the clock for this command stream to read time (in seconds) as of the moment

the command is received. See also sleep-until, clock.

(set-conformal-refine cmx [n [showedges]])

Sets the parameters for the re�nement algorithm used in drawing in the conformal

model. cmx is the cosine of the maximum angle an edge can bend before it is re�ned.

Its value should be between -1 and 1; the default is 0.95; decreasing its value will

cause less re�nement. n is the maximum number of iterations of re�ning; the default

is 6. showedges, which should be no or yes, determines whether interior edges in the

re�nement are drawn.

(set-emodule-path (path1 : : : pathn))

Sets the search path for external modules. The pathi should be pathnames of di-

rectories containing, for each module, the module's executable �le and a .geomview-

<modulename> �le which contains an (emodule-de�ne : : :) command for that module.

This command implicitly calls (rehash-emodule-path) to rebuild the application brower

from the new path setting.

(set-load-path (PATH1 : : : PATHN))

Sets search path for command, geometry, etc. �les. The PATHi are strings giving the

pathnames of directories to be searched.

(set-motionscale X)

Set the motion scale factor to X (default value 0.5). These commands scale their motion

by an amount which depends on the distance from the frame to the center and on the

size of the frame. Speci�cally, they scale by dist + scaleof(frame) * motionscale where

dist is the distance from the center to the frame and motionscale is the motion scale

factor set by this function. Scaleof(frame) measures the size of the frame object.

Chapter 7: gcl: the Geomview Command Language 104

(setenv name string)

sets the environment variable \name" to the value \string"; the name is visible to

Geomview (as in pathnames containing $name) and to processes it creates, e.g. external

modules.

(sgi) Returns t if running on an sgi machine, nil if not

(shell shell-command)

Execute the given UNIX shell-command using /bin/sh. Geomview waits for it to

complete and will be unresponsive until it does.

(sleep-for TIME)

Suspend reading commands from this stream for TIME seconds. Commands already

read will still be executed; \sleep-for" inside \progn" won't delay execution of the rest

of the progn's contents.

(sleep-until TIME)

Suspend reading commands from this stream until TIME (in seconds). Commands

already read will still be executed; \sleep-until" inside \progn" won't delay execution

of the rest of the progn's contents. Time is measured according to this stream's clock,

as set by \set-clock"; if never set, the �rst sleep-until sets it to 0 (so initially (sleep-until

TIME) is the same as (sleep-for TIME)). Returns the number of seconds until TIME.

(snapshot cam-id �lename)

Save a snapshot of cam-id in IRIS rgb image format in �le �lename (a string). The

window is popped above all other windows and redrawn before taking the snapshot.

(soft-shader cam-id {on|off|toggle})

Select whether to use software or hardware shading in that camera.

(space {euclidean|hyperbolic|spherical})

Set the space associated with the world.

(stereowin cam-id [layout] [gapsize])

Con�gure cam-id as a stereo window. layout should be one of

no entire window is a single pane, stereo disabled

horizontal

split left/right: left is stereo eye#0, right is #1.

vertical split top/bottom: bottom is eye#0, top is #1.

colored panes overlap, red is stereo eye#0, cyan is #1.

A gap of gapsize pixels is left between subwindows; if omitted, subwindows are adja-

cent. If both layout and gapsize are omitted, e.g. (stereowin cam-id), returns current

settings as a (stereowin : : :) command list. This command doesn't set stereo projec-

tion; use merge camera or camera to set the stereyes transforms, and merge window or

window to set the pixel aspect ratio & window position if needed.

Chapter 7: gcl: the Geomview Command Language 105

(time-interests deltatime initial pre�x [su�x])

Indicates that all interest-related messages, when separated by at least deltatime sec-

onds of real time, should be preceded by the string pre�x and followed by su�x; the

�rst message is preceded by initial. All three are printf format strings, whose argument

is the current clock time (in seconds) on that stream. A deltatime of zero timestamps

every message. Typical usages:

(time-interests .1 "(set-clock %g)" "(sleep-until %g)")

(time-interests .1 "(set-clock %g)"

"(sleep-until %g) (progn (set-clock %g)" ")")

(time-interests .1 "(set-clock %g)"

"(if (> 0 (sleep-until %g)) (" "))"

(transform object-id center-id frame-id [rotate|translate|translate-scaled|scale] x y z [dt [smooth]])

Apply a motion (rotation or translation) to object object-id; that is, construct and

concatenate a transformation matrix with object-id's transform. The 3 id's involved

are the object that moves, the center of motion, and the frame of reference in which

to apply the motion. The center is easiest understood for rotations: if center-id is the

same as object-id then it will spin around its own axes; otherwise the moving object will

orbit the center object. Normally frame-id, in whose coordinate system the (mouse)

motions are interpreted, is focus, the current camera. Translations can be scaled

proportional to the distance between the target and the center. Support for spherical

and hyperbolic as well as Euclidean space is built-in: use the "space" command to

change spaces. With type "rotate" x, y, and z are oats specifying angles in RADIANS.

For types "translate" and "translate-scaled" x, y, and z are oats specifying distances

in the coordinate system of the center object. The optional dt �eld allows a simple form

of animation: if present, the object moves uniformly by a total of that amount during

approximately dt seconds, then stops. If dt is present and followed by the `smooth'

keyword, the motion is animated to move the same amount but starting and stopping

smoothly (using f(t)=3t^2 - 2t^3). If dt is absent, the motion is applied immediately.

(transform-incr object-id center-id frame-id [rotate|translate|translate-scaled] x y z [dt])

Apply continuing motion: construct a transformation matrix and concatenate it with

the current transform of object-id every refresh (sets object-id's incremental trans-

form). Same syntax as transform. If optional dt argument is present, the object is

moved at each time step such that its average motion equals one instance of the mo-

tion per dt seconds. E.g. (transform-incr World World World rotate 6.28318 0 0

10.0) rotates the World about its X axis at 360 degrees every 10 seconds.

(transform-set object-id center-id frame-id [rotate|translate|translate-scaled] x y z)

Set objectid's transform to the constructed transform. Same syntax as transform,

except that dt animation is not supported.

(ui-center id)

Set the center for user interface (i.e. mouse) controlled motions to object id.

Chapter 7: gcl: the Geomview Command Language 106

(ui-freeze [on|off])

Toggle whether user-interface panels should be updated. O� by default. Freezing, then

unfreezing panels saves time when many updates are happening in quick succession,

e.g. when deleting many objects.

ui-emotion-program

is an obsolete command. Use its new equivalent emodule-define instead.

ui-emotion-run

is an obsolete command. Use its new equivalent emodule-start instead.

(ui-panel panelname {on|off} [window])

Do or don't display the given user-interface panel. Case is ignored in panel names.

Current panelnames are:

geomview main panel

tools motion controls

appearance

appearance controls

cameras camera controls

lighting lighting controls

obscure obscure controls

materials material properties controls

command command entry box

credits Geomview credits

By default, the Main and Tools panels appear when Geomview starts. If the optional

Window is supplied, a position clause (e.g. (ui-panel obscure on { position xmin

xmax ymin ymax }) sets the panel's default position. (Only xmin and ymin values are

actually used.) A present but empty Window, e.g. (ui-panel obscure on {})" causes

interactive positioning.

(ui-target id [yes|no])

Set the target of user actions (the selected line of the target object browser) to id. The

second argument speci�es whether to make id the current object regardless of its type.

If no, then id becomes the current object of its type (geom or camera). The default is

yes. This command may result in a change of motion modes based on target choice.

(uninterest (command [args]))

Undoes the e�ect of an interest command. (command [args]) must be identical to

those used in the interest command.

(update [timestep in seconds])

Apply each incremental motion once. Uses timestep if it's present and nonzero; other-

wise motions are proportional to elapsed real time.

Chapter 7: gcl: the Geomview Command Language 107

(update-draw cam-id [timestep])

Apply each incremental motion once and then draw cam-id. Applies timestep seconds'

worth of motion, or uses elapsed real time if timestep is absent or zero.

(window cam-id window)

Specify attributes for the window of cam-id, e.g. its size or initial position, in the

OOGL Window syntax. The special cam-id default speci�es properties of future

windows (created by camera or new-camera).

(winenter cam-id)

Tell Geomview that the mouse cursor is in the window of cam-id. This function is for

development purposes and is not intended for general use.

(write {command,geometry,camera,transform,window} �lename [id|(id : : :)] [self|world|universe|other id])

write description of id in given format to �lename. Last parameter chooses coordinate

system for geometry & transform:

self just the object, no transformation or appearance (geometry only)

world the object as positioned within the World.

universe object's position in universal coordinates; includes Worldtransform

other id: the object transformed to id's coordinate system.

A �lename of `-' is a special case: data are written to the stream from which the 'write'

command was read. For external modules, the data are sent to the module's standard

input. For commands not read from an external program, `-' means Geomview's stan-

dard output. (See also the command command.)

The id can either be a single id or a parenthesized list of ids, like g0 or (g2 g1

dodec.off).

(write-sexpr �lename lispobject)

Writes the given lispobject to �lename. This function is intended for internal debugging

use only.

(xform id transform)

Concatenate transform with the current transform of the object (apply transform to

object id).

(xform-incr id transform)

Apply continual motion: concatenate transform with the current transform of the

object every refresh (set object ID's incremental transform to transform).

(xform-set id transform)

Overwrite the current object transform with transform (set object ID's transform to

transform).

(zoom cam-id factor)

Zoom cam-id, multiplying its �eld of view by factor. factor should be a positive number.

Chapter 8: Non-Euclidean Geometry 108

8 Non-EuclideanGeometry

Geomview supports hyperbolic and spherical geometry as well as Euclidean geometry. The three

buttons at the bottom of the Main panel are for setting the current geometry type.

In each of the three geometries, three models are supported: Virtual, Projective, and Conformal.

You can change the current model with the Model browser on the Camera panel. Each Geomview

camera has its own model setting.

The default model is all three spaces is Virtual. This corresponds to the camera being in the

same space as, and moving under the same set of transformations as, the geometry itself.

In Euclidean space Virtual is the most useful model. The other models were implemented for

hyperbolic and spherical spaces and just happen to work in Eucldiean space as well: Projective is

the same as Virtual but by default displays the unit sphere, and Conformal displays everything

inverted in the unit sphere.

In hyperbolic space, the Projective model setting gives a view of the projective ball model of

hyperbolic 3-space imbedded in Euclidean space. The camera is initially outside the unit ball. In

this model, the camera moves by Euclidean motions and geometry moves by hyperbolic motions.

Conformal model is similar but shows the conformal ball model instead.

In spherical space, the Projective model gives a view of half of the 3-sphere imbedded in Eu-

clidean 3-space. Spherical motions give rise to projective transformations in the Projective model,

and to Mo

�

bius transformations in the Conformal model. In both of these models the camera moves

by Euclidean motions.

In Projective and Conformal models, the unit sphere is drawn by default. You can turn it

o� and on at will using the Draw Sphere button in the Camera panel. In the Conformal model,

polygons and edges are subdivided as necessary to make them look curved. The parameters which

determine this subdivision can be set with the set-conformal-refine gcl command.

There are several sample hyperbolic space objects in the `data/geom/hyperbolic' subdirectory

of the Geomview directory (`/u/gcg/ngrap/data/geom/hyperbolic' on the Geometry Center's sys-

tem). Likewise, the subdirectory `data/geom/spherical' contains several sample spherical space

objects.

Chapter 9: Mathematica Graphics in Geomview or RenderMan 109

9 Mathematica Graphics in Geomview or RenderMan

Geomview comes with some Mathematica packages that let you use use Geomview to display

Mathematica graphics. Mathematica is a commercial mathematical software system available from

Wolfram Research, Inc.

There are two ways to do this.

1. Use Mathematica to write a graphics object to a �le in OOGL format or in RIB format.

2. Use Geomview as the default display for all 3D graphics output in Mathematica.

You can also use these packages to save Mathematica graphics in RenderMan (RIB) format.

Since the format of Mathematica graphics objects is di�erent from the OOGL formats, both of

these methods involve translating Mathematica graphics to OOGL format. Geomview is distributed

with a Mathematica package which does this translation. Before doing either of the above you must

install this package.

9.1 Using Mathematica to generate OOGL �les

The package `OOGL.m' allows Mathematica to write graphics objects in OOGL format. To use it,

give the command << OOGL.m to Mathematica to load the package. The WriteOOGL[�le,graphics]

command writes an OOGL description of the 3D graphics object graphics to the �le named �le.

This package also provides the Geomview command which sends a 3D graphics object to Ge-

omview. The �rst time you use this command it starts up a copy of Geomview. Later calls send

the graphics to the same Geomview. There are two ways to use the Geomview command.

Geomview[graphics]

Sends the 3D graphics object graphics to Geomview as a geom named Mathematica.

Subsequent usage of Geomview[graphics] replaces the Mathematica object in Ge-

omview with the new graphics.

Chapter 9: Mathematica Graphics in Geomview or RenderMan 110

Geomview[name,graphics]

Sends the 3D graphics object graphics to Geomview as a geom named name. You

can use multiple calls of this form with di�erent names to cause Geomview to display

several Mathematica objects at once and allow independent control over them.

% math

Mathematica 2.0 for SGI Iris

Copyright 1988-91 Wolfram Research, Inc.

-- GL graphics initialized --

In[1] := <<OOGL.m

In[2] := Plot3D[Sin[x + Sin[y]], {x,-2,2},{y,-2,2}]

Out[2] := -Graphics3D-

This displays graphics in the usual Mathematica way here.

In[3] := WriteOOGL["math.oogl", %2]

Out[3] := -Graphics3D-

This displays nothing new but writes the �le `math.oogl'. You can now load that �le into Geomview

on any computer. Alternately, you can use the Geomview command to start up a copy of Geomview

from within Mathematica.

In[5] := Geomview[%2]

Out[5] := -Graphics3D-

9.2 Using Geomview as Mathematica's Default 3D Display

The package `Geomview.m' arranges for Geomview to be the default display program for 3D

graphics in Mathematica. To load it, give the command << Geomview.m to Mathematica. There-

after, whenever you display 3D graphics with Plot3D or Show, Mathematica will send the graphics

to Geomview.

Chapter 9: Mathematica Graphics in Geomview or RenderMan 111

Loading `Geomview.m' implicitly loads `OOGL.m' as well, so you can use the Geomview and

WriteOOGL as described above after loading `Geomview.m'. You do not have to separately load

`OOGL.m'.

% math

Mathematica 2.0 for SGI Iris

Copyright 1988-91 Wolfram Research, Inc.

-- GL graphics initialized --

In[1] := <<Geomview.m

In[2] := Plot3D[x^2 + y^2, {x, -2, 2}, {y, -2, 2}]

Out[2] := -SurfaceGraphics-

This invokes geomivew and loads the graphics object into it.

In[3] := Plot3D[{x*y + 6, RGBColor[0,x,y]}, {x,0,1}, {y,0,1}]

Out[3] := -SurfaceGraphics-

This replaces the previous Geomview object by the new object.

In[4] := Geomview[{%2,%3}]

Out[4] := {-SurfaceGraphics-, -SurfaceGraphics-}

This displays both objects at once. You also can have more than one Mathematica object at a time

on display in Geomview, and have separate control over them, by using the Geomview command

with a name, See Section 9.1 [OOGL.m], page 109.

In[5] := Graphics3D[{RGBColor[1,0,0], Line[{ {2,2,2},{1,1,1} }] }]

Out[5] := -Graphics3D-

In[6] := Geomview["myline", %5]

Chapter 9: Mathematica Graphics in Geomview or RenderMan 112

This addes the Line speci�ed in In[5] to the existing Geomview display. It can be controlled

independently of the "Mathematica" object, which is currently the list of two plots.

In[7] := <<GL.m

If you're on an SGI, loading GL.m returns Mathematica to its usual 3D graphics display. To do

this on a NeXT you should load PSDirect.m if you are using Mathematica in a notebook, or

NeXT.m if you invoked Mathematica from a shell. The following plot will appear in a normal static

Mathematica window.

In[8] := ParametricPlot3D[{Sin[x],Sin[y],Sin[x]*Cos[y]}, {x,0,Pi},{y,0,Pi}]

Out[8] := -Graphics3D-

We can return to Geomview graphics at any time by reloading `Geomview.m'.

In[9] := <<Geomview.m

In[10] := Show[%8]

Out[10] := -Graphics3D-

In[11] := ParametricPlot3D[

{(2*(Cos[u] + u*Sin[u])*Sin[v])/(1 + u^2*Sin[v]^2),

(2*(Sin[u] - u*Cos[u])*Sin[v])/(1 + u^2*Sin[v]^2),

Log[Tan[v/2]] + (2*Cos[v])/(1 + u^2*Sin[v]^2)},

{u,-4,4},{v,.01,Pi-.01}]

Out[11] := -Graphics3D-

This last plot is Kuen's surface, a surface of constant negative curvature. Parametrization from

Alfred Gray's Modern Di�erential Geometry of Curves and Surfaces textbook.

9.3 Using Mathematica to generate RenderMan �les

In addition to the WriteOOGL and Geomview commands described above, the package `OOGL.m'

also de�nes the command WriteRIB which writes a 3D graphics object to a RenderMan RIB �le:

Chapter 9: Mathematica Graphics in Geomview or RenderMan 113

WriteRIB[�le, graphics] writes graphics to �le �le. RenderMan is a commercial rendering system

available from Pixar, Inc., which can produce extremely high quality images.

In[1] := <<OOGL.m

In[2] := <<Graphics/Polyhedra.m

In[3] := Graphics3D[Cube[]]

Out[3] := -Graphics3D-

In[4] := WriteRIB["cube.rib", %3]

Out[4] := -Graphics3D-

This generates the �le `math.rib'. This is a ready-to-render RIB �le of the given geometry, using

a default camera position, lighting, and the \plastic" shader. In a shell window, type render

cube.rib to generate the image �le `mma.tiff'. Of course, you need to have RenderMan installed

for this to work. A shortcut to render from inside Mathematica is WriteRIB["!render", foo].

WriteRIB works by �rst converting the Mathematica graphics object to OOGL format using

WriteOOGL and then calls an external program `oogl2rib' to convert OOGL to RIB format. The

oogl2rib program takes several options which you can specify in a string as an optional third

argument to WriteRIB. The default option string is " -n mma.tiff ", which indicates that the

RIB �le should generate a rendered TIFF �le named `mma.tiff'. A particularly useful option is

-g, which tells oogl2rib to convert only the geometry into a RIB fragment. You can insert that

fragment into a full RIB �le of your own making with camera positions and shaders of your choice,

to harness the full power of RenderMan.

The full usage of oogl2rib is:

oogl2rib [-n name] [-B r,g,b] [-w width] [-h height] [-fgb] [in�le] [out�le]

By default it reads from stdin and writes to stdout. Either in�le or out�le may be `-', which means

use stdin/stdout. The options are:

-n name Use name for the name of the rendered TIFF �le (default "geom.ti�") or framebu�er

window (default "geom.rib").

-B r,g,b Use background color (r,g,b). Each component ranges from 0 to 1. Default: none.

Chapter 9: Mathematica Graphics in Geomview or RenderMan 114

-w width -h height

Rendered frame will be width by height pixels.

-f RIB �le renders to on-screen framebu�er instead of TIFF �le.

-g Output only the geometry in RIB format.

-b Output only a Quick Renderman clip object. Ignores -nBwhf.

9.4 Using Geomview andMathematica on Di�erent Computers

It is possible to use Geomview to display graphics generated by Mathematica running on a

di�erent computer. If each computer is either an SGI or a NeXT and they are networked together,

you can tell Mathematica to use a remote host for Geomview graphics. If you want to use Math-

ematica on a computer that is not networked with your Geomview computer, or on any kind of

computer other than an SGI or a NeXT (for example a PC or a Mac), you can write out chunk

�les in Mathematica which you transfer to the Geomview computer and then translate to OOGL

format.

9.4.1 Using a Networked Geomview Host

The Geomview command looks at the DISPLAY or REMOTEHOST environment variables to try to

determine if you are logged in from another computer. If either of these indicates that you are,

Geomview will attempt to run Geomview on that computer. In order for this to work, your network

must be con�gured such that the Mathematica computer can successfully rsh to the Geomview

computer without giving a password.

You can also explicitly set the DisplayHost option to the Geomview command to a string which

is the desired hostname, for example:

In[1] := << OOGL.m

In[2] := Plot3D[Sin[x + Sin[y]], {x,-2,2},{y,-2,2}]

Out[2] := -Graphics3D-

In[3] := Geomview[%3, DisplayHost->"riemann"]

This displays the graphics %3 on the remote host named riemann.

Chapter 9: Mathematica Graphics in Geomview or RenderMan 115

Geomview recognizes the string "local" as a value for $DisplayHost; it forces the graphics to

be displayed on the local machine.

In addition to knowing the name of the machine you want to run Geomview on, the Geomview

needs to know the type of that machine (SGI or NeXT). By default, Geomview assumes that it is

the same kind of computer as the one you are running Mathematica on. The MachType option lets

you explicitly specify the type of the DisplayHost computer; it should be one of the strings "sgi"

or "next".

You can use SetOptions to change the default DisplayHost and MachType. For example,

In[4] := SetOptions[Geomview, DisplayHost->"riemann", MachType->"sgi"]

arranges for Geomview to run Geomview on an SGI workstation named riemann.

9.4.2 Transporting Mathematica Files to Geomview by Hand

The auxilliary function WriteChunk is for those who can only use Mathematica on a non-

Unix machine (Mac, PC) or a Unix machine that is not on a network with an SGI or NeXT.

WriteChunk[�le, graphics] generates a �le named �le which contains the graphics object graphics

in the format accepted by `math2oogl'.

You can transfer that �le to a computer that has Geomview installed on it and then use the

programs `math2oogl', `oogl2rib', and `geomview' directly from the shell. These programs are

distributed in the `bin/sgi' (on SGIs) or `bin/next' (on NeXTs) subdirectory of the Geomview

directory, and may have been installed so that they are on your path.

In[1]:= <<OOGL.m

In[2]:= Plot3D[Sin[x + Sin[y]], x,-2,2, y,-2,2]

Out[2]= -SurfaceGraphics-

In[3]:= WriteChunk["mychunk",%2]

This writes the �le `mychunk' which contains a description of the graphics object. You can then

transfer this �le to an SGI or NeXT and type

Chapter 9: Mathematica Graphics in Geomview or RenderMan 116

math2oogl < mychunk > mma.oogl

to convert it to the OOGL �le `mma.oogl' which you can then view using Geomview. This is the

equivalent of the WriteOOGL command.

For a result equivalent to the Geomview or Show commands, type

math2oogl -togeomview Mathematica geomview < mychunk

The WriteRIB command can be emulated from the shell as

math2oogl < mychunk | oogl2rib -n mma.tiff

9.5 Details of the Mathematica->GeomviewPackage

The `OOGL.m' package uses the external program `math2oogl' to convert Graphics3D objects

to OOGL format, because a compiled external program is able to do this conversion many times

faster than Mathematica.

The converter will sometimes handle colored SurfaceGraphics objects correctly that Mathe-

matica does not handle correctly, which means that Geomview[object] sometimes works where

Show[object] will give errors.

The converter supports the Polygon, Line, and Point graphics primitives, RGBColor

Graphics3D directives, and SurfaceGraphics objects with or without RGBColor directives, and

lists of any combination of these. It silently ignores all other directives.

The Mathematica to RenderMan conversion is actually a two-step process: Mathematica-

>OOGL (math2oogl), and OOGL->RenderMan (oogl2rib). The math2oogl program has only been

tested on SGIs and NeXTs, but could theoretically compile on any machine. The oogl2rib program

depends on the OOGL (Object Oriented Graphics Language) libraries, which now only exist on

SGI and NeXT machines.

Chapter 9: Mathematica Graphics in Geomview or RenderMan 117

In the WriteOOGL and WriteRIB commands, �lename can either be a string containing a �lename,

an OutputStream object, or a string starting with a ! to send the output to a command. Object

can be a Graphics3D object, a SurfaceGraphics object, or a list of these.

The packages work best with Mathematica 2.0 or better. With version 1.2, the Geomview

display is always on the local host.

9.6 Installing the Mathematica Packages

If Geomview is properly installed on your system according to the instructions in See Chapter 10

[Installation], page 119, then the Mathematica-to-Geomview packages should work as described

here; there should be no need for additional installation procedures. In practice, however, it is

sometimes necessary to taylor the installation of the Mathematica packages and/or of Geomview

itself to suit the needs of a particular system. This section contains details about how the in-

stallation works; if the Mathematica-to-Geomview connection does not seem to work for you after

following the Geomview installation procedure, consult this section to see what might need to be

�xed.

In this section, the phrase Geomview installation refers any of the procedures in See Chapter 10

[Installation], page 119. The way the Mathematica packages work and are installed is the same

regardless of whether you have one of the binary distributions or the source distribution.

1. The relevant mathematica �les are `OOGL.m', `Geomview.m', and `BezierPlot.m'; Mathematica

must be able to �nd these �les. They are distributed in the `$GEOMROOT/mathematica' sub-

directory of the binary distributions, and in the `$GEOMROOT/src/bin/geomutil/math2oogl'

subdirectory of the source distribution. These �les need to be in a directory that is on Mathe-

matica's search path. You can look at the value of the $Path variable in a Mathematica session

on your system to see a list of the directories on Mathematica's search path.

The Geomview installation procedure puts copies of the Mathematica packages into a directory

that you specify (MMAPACKAGEDIR). This should ensure that Mathematica can �nd them. Alter-

nately, you could arrange to append the pathname of the Mathmematica package subdirectory

of the Geomview distribution to the $Path variable each time you run Mathematica.

2. The package `OOGL.m' needs to be able to invoke the programs `geomview', `math2oogl', and

`oogl2rib'. The Geomview installation procedure installs these programs into a directory

that you specify for executables (BINDIR). Ideally, this directory should be on your shell's

$path. More speci�cally, it should be on the $path of the shell in which Mathematica runs;

the directory `/usr/local/bin' is usually a good choice. You can see the list of directories on

this path by giving the command !echo $path in Mathematica.

Chapter 9: Mathematica Graphics in Geomview or RenderMan 118

If for some reason you can't arrange for `geomview', `math2oogl', and `oogl2rib' to be in a

directory on the shell's $path, you can modify `OOGL.m' to cause it to look for them using

absolute pathnames. To do this, change the de�nitions of the variables $GeomviewPath and

$GeomRoot, which are de�ned near the top of the �le. Change $GeomviewPath to the absolute

pathname of the `geomview' shell script on your system. Change $GeomRoot to the absolute

pathname of the `$GEOMROOT' directory on your system. If you do this, you should also make

sure there are copies of `geomview', `math2oogl', and `oogl2rib' in the `$GEOMROOT/bin/sgi'

(on an SGI) or `$GEOMROOT/bin/next' (on a NeXT) directory.

3. The `geomview' shell script, which `OOGL.m' uses to invoke Geomview, needs to be able to �nd

the geomview executable �le (which is called `gvx' on the SGI and `Geomview.app/Geomview'

on the NeXT). The Geomview installation procedure should have been taken care of this, but

if your Mathematica session doesn't seem to be able to invoke Geomview, it's worth double-

checking that the settings in the `geomview' script are correct.

Chapter 10: Installation 119

10 Installation

What you do to install Geomview depends on which kind of computer you have (SGI or NeXT)

and on whether you have the source distribution or the binary distribution.

In general, if you don't care about looking at Geomview's source code, you should get the binary

distribution. Its installation is much easier and quicker than that for the source code.

10.1 Installing the SGI Binary Distribution

If you have just obtained a copy of the SGI binary distribution (�le `geomview-sgi.tar.Z'), you

should be able to run Geomview and make use of most of its features immediately after unpacking

it by cd'ing to the directory that it is in and typing geomview.

In order to fully install Geomview so that you can run it from any directory and use all of

its features, follow the steps in this section. In particular, you must go through this installation

procedure in order to use Geomview to display Mathematica graphics.

Geomview is distributed in a directory that contains various �les and subdirectories that Ge-

omview needs at run-time, such as data �les and external modules. It also contains other things

distributed with Geomview, such as documentation and (in the soure-code distribution) source-

code. We refer to the root directory of this tree as the `$GEOMROOT' directory. This is the directory

called `Geomview' that is created when you unpack the distribution �le.

To install Geomview on your system, arrange for the `$GEOMROOT' directory to be in a permanent

place. Then, in a shell window, cd to that directory and type install. This runs a shell script

which does the installation after asking you several questions about where you want to install the

various components of Geomview.

After running the install script you should now be able to run Geomview from any directory

on your system. (You may need to give the rehash command in any shells on your computer that

were started up before you did the installation.)

The `install' script puts copies of the �les in `$GEOMROOT/bin/sgi' and `$GEOMROOT/man' into

the directories you speci�ed for executables and man pages, respectively. Once you have done the

installation you can cut down one the disk space required by Geomview by removing some �les

from these directories, since copies have been installed elsewhere. You should �rst test that your

Chapter 10: Installation 120

installed Geomview works properly because once you remove these �les from their distribution

directories you will not be able to do the installation again.

In particular, the �les you can remove are

`$GEOMROOT/bin/sgi':

Remove all �les from here except `gvx', which is the geomview executable �le. DO

NOT REMOVE `gvx'. It is not installed elsewhere.

`$GEOMROOT/man':

You can remove all the �les in this directory.

10.1.1 Details of the SGI Binary Installation

The install script should be self-explanatory; just run it and answer the questions. This

section gives some details for system administrators and other users who may want to know more

about the installation.

The installation is actually done by make; the install script queries the user for the settings

of the following make variables and then invokes make install.

GEOMROOT: the absolute pathname of the Geomview root directory. The geomview shell script,

which is what users invoke to run Geomview, uses this to set various environment

variables that Geomview needs. It is very important that this be an absolute pathname

| i.e. it should start with a '/'.

BINDIR: a directory where executable �les are installed. The geomview shell script goes here, as

well as various other auxiliary programs that can be used in conjunction with geomview.

This should be a directory that is on users' `$path'. These auxiliary programs are

distributed in the `$GEOMROOT/bin/sgi' directory; if you specify this directory for

BINDIR, they are left in that directory.

MANDIR: a directory where Unix manual pages are installed. These are distributed in the

`$GEOMROOT/man' subdirectory; if you specify this directory for MANDIR, they are left in

that directory.

MMAPACKAGEDIR:

a directory where Mathematica packages are installed. This should be a directory

that Mathematica searches for packages that it loads; you can see what directories

your Mathematica searches by looking at the value of the $Path variable in a Math-

ematica session. The installation process will install some packages there which al-

Chapter 10: Installation 121

low you to use Geomview to display Mathematica graphics. These packages are dis-

tributed in the `$GEOMROOT/mathematica' subdirectory; if you specify this directory for

MMAPACKAGEDIR, or if you specify the empty string for MMAPACKAGEDIR, the packages

are left in that directory. For more details about the way these Mathematica packages

connect to Geomview, see Section 9.6 [Package Installation], page 117.

10.2 Installing the NeXT Binary Distribution

1. If you have just obtained a copy of the NeXTStep binary distribution (�le `geomview-

next.tar'), you can unpack it by double-clicking on it in the Workspace. This will open

up a File Viewer panel showing, among other things, a NeXT Installer package called

`Geomview.pkg'.

2. The �rst thing you should do is double-click on `Geomview.pkg' to invoke the NeXT Installer.

You will be asked where you want to install it; typically it should go in `/LocalApps' or in

`~/Apps' in your home directory. You should now be able to run Geomview and make use of

most of its features by double-clicking on the installed `Geomview.app' icon.

3. There are some aspects of the installation, however, that the NeXT Installer can't handle.

In order to fully install Geomview so that you can use all of its features, you should run the

`install' script in the `Geomview.app' directory. In particular, you must go through this

installation procedure in order to use Geomview to display Mathematica graphics.

To run the `install' script you can open `Geomview.app' in the Workspace by selecting it and

picking File->Open as Folder from theWorkspace menu. This will pop up a File Viewer panel

showing the contents of `Geomview.app'. Scroll down to the �le named `install', and double-

click on it. This will open a terminal window and run the script in that window. Alternately,

you can open a terminal window yourself, cd to `Geomview.app', and run `install' there.

The `install' script does the installation after asking you several questions about where

you want to install the various components of Geomview. After running the install script,

Geomview is completely installed. If in the future you move `Geomview.app' to some other

location you should run `install' again.

4. This step is optional. Geomview's example data �les are in the `Geomview.app/data' directory.

If you are on a network with both SGI workstations and NeXTStep workstations, and you want

to install Geomview to run on both, you can save disk space by having the two installations

share a common data directory. To do this, decide on a location for the data directory and copy

it there if it isn't there already (a good choice would be to leave it in the `$GEOMROOT' directory

in your SGI Geomview installation). Then edit the �le `Geomview.app/CONFIG.gv' to change

the setting of the variable GEOMVIEW_DATA to point to this directory (there are comments in

the �le telling you what to do). You can then remove the data directory from `Geomview.app'.

Chapter 10: Installation 122

To run geomview, double-click on `Geomview.app' from the workspace, or type open

Geomview.app from the appropriate directory, or type geomview from a shell window.

More Geomview documentation is in the `Geomview.app/doc' subdirectory. In particular, a

copy of the manual is there.

The `install' script puts copies of the �les in `Geomview.app/bin/next' and `Geomview.app/man'

into the directories you speci�ed for executables and man pages, respectively. Once you have done

the installation you can cut down one the disk space required by Geomview by removing all the

�les in these directories, since copies have been installed elsewhere. You should �rst test that your

installed Geomview works properly because once you remove these �les from their distribution

directories you will not be able to do the installation again.

10.2.1 Details of the NeXTStep Binary Installation

Other than the installation of the `Geomview.app' directory, the installation details of the

NeXTStep binary distribution are the same as for the SGI distribution, see Section 10.1.1 [SGI

Binary Detail], page 120. Note that the directory referred to in the SGI distribution as `$GEOMROOT'

is the `Geomview.app' directory in the NeXTStep distribution.

10.3 Compiling and Installing the Source Code Distribution

The main reason to get the source code distribution is to look at and/or work with the source

code. If you are only concered with using Geomview it is better to get the binary distribution. It

takes anywhere from 15 minutes to 1.5 hours to compile the entire source distribution, depending

on what kind of computer you have.

Let `$GEOMROOT' denote the full pathname of the Geomview source code directory; this is the

directory called `Geomview' that is created when you unpack the distribution. This directory

contains the Geomview source code as well as various other �les and subdirectories that Geomview

needs when it runs.

Before doing any compilation you should edit the �le `$GEOMROOT/makefiles/mk.site.default'.

This �le de�nes some make variables which specify your local con�guration. This includes the path-

names of the directories into which Geomview will be installed, and possibly some other settings as

well. There are comments in the �le telling you what to do. This �le is included by every Make�le

in the source tree, so the settings you specify here are used throughout the source.

Chapter 10: Installation 123

If you will be compiling for both SGI and NeXT, you can do both in the same directory tree. By

default the Make�les are set up to put the objects �les, libraries, and executables in directories which

depend on the type of computer, so the two architectures will not interfere with each other. The

Make�les use a variable called CPU to determine the type of machine. Before doing any compilation

you must arrange for this variable to have a value. There are two ways you can do this.

1. If you will always be compiling Geomview on the same type of computer (SGI or NeXT), edit

the �le `$GEOMROOT/makefiles/Makedefs.global' to set the CPU variable to either iris4 or

NeXT. The comments near the top of that �le will tell you where to do this.

2. If you will be compiling on both types of computers you can set a shell environment variable

named CPU to either iris4 or NeXT, and the Make�les will inherit the value from the environ-

ment. The script `$GEOMROOT/config' determines which kind of computer you are on and sets

this variable accordingly. To use this script, type source config in the (assuming a C-shell

type shell) in the `$GEOMROOT' directory shell in which you plan to do the compilation. Or you

can set the variable directly; it should be either NeXT or iris4. You will need to do this in

every shell in which you plan to do compilation.

Alternately, you could modify your shell initialization �le (`.cshrc' or whatever) to set CPU

appropriately.

Note that many of the Make�les refer to a variable called MACHTYPE to determine the type of

machine. This is set to either sgi or next, depending on the value of CPU.

Once you have con�gured your source tree by editing the �les as described above and setting the

CPU variable, you can compile and install Geomview by typing make install in the `$GEOMROOT'

directory. You can also type make all, or equivalently just make, to compile without installing,

and then type make install later to install.

You can use these same make comands in any subdirectory in the tree to recompile and/or install

a part of Geomview or a module.

If you want to compile fat binaries under NeXTStep 3.1, before doing any compilation edit the

�le `$GEOMROOT/makefiles/mk.next' to uncomment a particular line there. There are comments

in the �le telling you which line to uncomment.

If you want to modify the complier ags used during compilation, edit the �le

`$GEOMROOT/makefiles/Makedefs.global'; the COPTS variable speci�es the ags passed to the C

compiler (cc).

Chapter 10: Installation 124

10.4 Obtaining Geomview

Geomview is available free via anonymous ftp from Internet host `geom.umn.edu', IP address

128.101.25.35. The Geomview distribution �les are in the `pub/software/geomview' subdirectory.

They are all tar archive �les (`.tar' or `.tar.Z' �les), so you should use binary mode in ftp for

transferring them to your site.

The main �les are

`geomview-sgi.tar.Z'

The SGI binary distribution. Contains executables for running on any Silcon Graphics

IRIS workstation, plus documentation and example �les.

`geomview-next.tar'

The NeXTStep binary distribution. This contains fat binaries which will run on either

a NeXT workstation running NeXTStep 3.0 or 3.1, or a 486 PC running NeXTStep 3.1.

Also contains documentation and example �les. This .tar �le is not compressed because

it contains the distribution compressed into a NeXT Installer package, and further

compression actually increases the size of the �le. To unpack `geomview-next.tar' on

a NeXT, simple double-click on it in the Workspace.

`geomview-src.tar.Z'

The source code distribution; contains source code so you can compile Geomview and

the distributed external modules on either an SGI or on a NeXT workstation running

NeXTStep 3.0 or 3.1, or a 486 PC running NeXTStep 3.1. Also contains documentaion

and examples �les.

Each of the above archive �les contains the entire distribution: executables or source for Ge-

omview itself, plus all distributed external modules, example data �les, and documentation. These

archive �les are therefore rather large. If you do not have enough disk space on your worksta-

tion for the entire distribution, various pieces of the distribution are available separately in the

`pub/software/geomview/pieces' subdirectory. See the �le `README' in that directory for details.

After retrieving any of the distribution archive �les, you can unpack it with a command like the

following

% uncompress < geomview-sgi.tar.Z | tar xvopf -

Chapter 10: Installation 125

This will unpack the contents of the archive �le into a subdirectory named `Geomview'. Once

unpacked, you can delete the archive �le.

The following is a sample ftp session for retreiving and unpacking the SGI binary distribution.

After unpacking, see the �le `README' for more information.

artin% ftp geom.umn.edu

Connected to geom.umn.edu.

220 cameron FTP server (Version 5.88 Thu Jun 25 16:41:41 CDT 1992) ready.

Name (geom.umn.edu:mbp): anonymous

331 For password please enter your e-mail address or name and institution.

Password:mbp@geom.umn.edu

230 Guest login ok, access restrictions apply.

ftp> cd pub/software/geomview

250 CWD command successful.

ftp> binary

200 Type set to I.

ftp> get geomview-sgi.tar.Z

200 PORT command successful.

150 Opening BINARY mode data connection for geomview-sgi.tar.Z (5815980 bytes).

226 Transfer complete.

local: geomview-sgi.tar.Z remote: geomview-sgi.tar.Z

5815980 bytes received in 28.67 seconds (1.98e+02 Kbytes/s)

ftp> quit

221 Goodbye.

artin% ls -l

total 5680

-rw-rw-r-- 1 mbp 5815980 Aug 19 16:38 geomview-sgi.tar.Z

artin% uncompress < geomview-sgi.tar.Z | tar xvopf -

x ./CHANGES, 16910 bytes, 34 tape blocks

: : :

artin% rm geomview-sgi.tar.Z

Function Index 126

Function Index

(Index is nonexistent)

i

Table of Contents

What Is Geomview? : 1

Authors : 1

Let Us Hear From You : 2

1 Overview : 3

2 Tutorial : 4

3 Interaction : 11

3.1 Starting Geomview : 11

3.2 Command Line Options : 11

3.3 Basic Interaction: The Main Panel : 12

3.4 Loading Objects Into Geomview : 15

3.5 Using the Mouse to Manipulate Objects : 17

3.5.1 Selecting a Point of Interest : 21

3.6 Changing the Way Things Look : 22

3.6.1 The Appearance Panel : 23

3.6.2 The Materials Panel : 25

3.6.3 The Lighting Panel : 26

3.7 Cameras : 28

3.8 Saving your work: 30

3.9 The Commands and Obscure Panels : 32

3.10 Keyboard Shortcuts : 34

4 OOGL File Formats : 39

4.1 Conventions : 39

4.1.1 Syntax Common to All OOGL File Formats : : : : : : : : : : : : : 39

4.1.2 File Names : 39

4.1.3 Vertices : 40

4.1.4 Surface normal directions : 40

4.1.5 Transformation matrices : 41

4.1.6 Binary format: 41

4.1.7 Embedded objects and external-object references : : : : : : : : 42

4.1.8 Appearances : 43

4.2 Object File Formats : 46

ii

4.2.1 QUAD: collection of quadrilaterals : 46

4.2.2 MESH: rectangularly-connected mesh : : : : : : : : : : : : : : : : : : : 47

4.2.3 Bezier Surfaces : 48

4.2.4 OFF Files : 50

4.2.5 VECT Files : 52

4.2.6 SKEL Files : 54

4.2.7 SPHERE Files : 55

4.2.8 INST Files : 55

4.2.8.1 INST Examples : 56

4.2.9 LIST Files : 57

4.2.10 TLIST Files : 58

4.2.11 GROUP Files : 59

4.2.12 DISCGRP Files : 59

4.2.13 COMMENT Objects : 60

4.3 Non-geometric objects : 61

4.3.1 Transform Objects : 61

4.3.2 cameras : 62

4.3.3 window : 64

5 Customization: `.geomview' �les : 66

6 External Modules : 67

6.1 How External Modules Interface with Geomview : : : : : : : : : : : : : : : : : : 67

6.2 Example 1: Simple External Module : 68

6.3 Example 2: Simple External Module with FORMS Control Panel : : 72

6.4 The FORMS Library : 77

6.5 Example 3: External Module with Bi-Directional Communication

: 77

6.6 Module Installation : 86

6.6.1 Private Module Installation : 87

6.6.2 System Module Installation : 87

7 gcl: the Geomview Command Language : : : : : : : : : : 89

7.1 Conventions Used In Describing Argument Types : : : : : : : : : : : : : : : : : 90

7.2 Gcl Reference Guide : 91

8 Non-Euclidean Geometry : 108

iii

9 Mathematica Graphics in Geomview or RenderMan

: 109

9.1 Using Mathematica to generate OOGL �les : 109

9.2 Using Geomview as Mathematica's Default 3D Display : : : : : : : : : : 110

9.3 Using Mathematica to generate RenderMan �les : : : : : : : : : : : : : : : : : 112

9.4 Using Geomview and Mathematica on Di�erent Computers : : : : : : 114

9.4.1 Using a Networked Geomview Host: 114

9.4.2 Transporting Mathematica Files to Geomview by Hand

: 115

9.5 Details of the Mathematica->Geomview Package : : : : : : : : : : : : : : : : : 116

9.6 Installing the Mathematica Packages : 117

10 Installation : 119

10.1 Installing the SGI Binary Distribution : 119

10.1.1 Details of the SGI Binary Installation : : : : : : : : : : : : : : : : : 120

10.2 Installing the NeXT Binary Distribution : 121

10.2.1 Details of the NeXTStep Binary Installation : : : : : : : : : : 122

10.3 Compiling and Installing the Source Code Distribution : : : : : : : : : 122

10.4 Obtaining Geomview : 124

Function Index : 126

