ftp.nice.ch/pub/next/developer/resources/libraries/tiff.3.0b.s.tar.gz#/tiff/contrib/xv/xvtiff.c

This is xvtiff.c in view mode; [Download] [Up]

/*
 * xvtiff.c - load routine for 'TIFF' format pictures
 *
 * LoadTIFF(fname, numcols)  -  load a TIFF file
 */

#include "xv.h"
#include "tiffio.h"

static int loadPalette();
static int loadColor();
static int loadImage();
static void _TIFFerr();
static void _TIFFwarn();

/*******************************************/
int LoadTIFF(fname,nc)
     char *fname;
     int   nc;
/*******************************************/
{
  TIFF  *tif;
  long   w, h;
  short	 bps, spp, photo, orient;
  int	 rv;

  TIFFSetErrorHandler(_TIFFerr);
  TIFFSetWarningHandler(_TIFFwarn);
  /* open the stream, if necesary */
  tif=TIFFOpen(fname,"r");
  if (!tif) return 1;

  /* flip orientation so that image comes in X order */
  TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &orient);
  switch (orient) {
  case ORIENTATION_TOPLEFT:
  case ORIENTATION_TOPRIGHT:
  case ORIENTATION_LEFTTOP:
  case ORIENTATION_RIGHTTOP:
    orient = ORIENTATION_BOTLEFT;
    break;
  case ORIENTATION_BOTRIGHT:
  case ORIENTATION_BOTLEFT:
  case ORIENTATION_RIGHTBOT:
  case ORIENTATION_LEFTBOT:
    orient = ORIENTATION_TOPLEFT;
    break;
  }
  TIFFSetField(tif, TIFFTAG_ORIENTATION, orient);

  rv = 0;
  TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &w);
  TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &h);
  TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &bps);
  TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photo);
  TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &spp);
  if (spp == 1) {
      rv = loadPalette(tif, w, h, photo, bps);
  } else {
      rv = loadColor(tif, w, h, photo, bps, nc);
  }
  TIFFClose(tif);

  SetDirRButt(F_FORMAT, F_TIFF);
  return(rv);
}  


/*******************************************/
static int loadPalette(tif, w, h, photo, bps)
TIFF *tif;
long  w,h;
int   photo,bps;
{
  switch (photo) {
  case PHOTOMETRIC_PALETTE:
	SetDirRButt(F_COLORS, F_FULLCOLOR);
	SetISTR(ISTR_FORMAT, "TIFF, %u-bit, palette format", bps);
	break;
  case PHOTOMETRIC_MINISWHITE:
  case PHOTOMETRIC_MINISBLACK:
	SetDirRButt(F_COLORS, bps == 1 ? F_BWDITHER : F_GREYSCALE);
	SetISTR(ISTR_FORMAT,"TIFF, %u-bit, %s format.", 
	     bps,
	     photo == PHOTOMETRIC_MINISWHITE ?	"min-is-white" :
						"min-is-black");
	break;
  }
  sprintf(formatStr, "%lux%lu TIFF.",w,h);

  /* load up the XV global variables */
  pic = (byte *) malloc(w*h,1);
  if (!pic) FatalError("couldn't malloc 'pic'");

  pWIDE = w;  pHIGH = h;

  return !loadImage(tif, w, h, pic, 0);
}

/*******************************************/
static int loadColor(tif, w, h, photo, bps, nc)
TIFF *tif;
long  w,h;
int   photo,bps,nc;
{
  byte *pic24;
  int  rv;

  SetDirRButt(F_COLORS, F_FULLCOLOR);

  SetISTR(ISTR_FORMAT,"TIFF, %u-bit, %s format.", 
	bps,
	(photo == PHOTOMETRIC_RGB ?	"RGB" :
	 photo == PHOTOMETRIC_YCBCR ?	"YCbCr" :
					"???"));
  sprintf(formatStr, "%lux%lu TIFF.",w,h);

  /* allocate 24-bit image */
  pic24 = (byte *) malloc(w*h*3);
  if (!pic24) FatalError("couldn't malloc 'pic24'");

  if (loadImage(tif, w, h, pic24, 0))
      rv = Conv24to8(pic24,w,h,nc);
  else
      rv = 1;
  free(pic24);
  return rv;
}

#include <varargs.h>

/*******************************************/
static void _TIFFerr(module, fmt, ap)
char *module;
char *fmt;
va_list ap;
{
  char buf[2048];
  char *cp = buf;

  if (module != NULL) {
    sprintf(cp, "%s: ", module);
    cp = strchr(cp, '\0');
  }
  vsprintf(cp, fmt, ap);
  strcat(cp, ".");
  SetISTR(ISTR_WARNING,buf);
}

/*******************************************/
static void _TIFFwarn(module, fmt, ap)
char *module;
char *fmt;
va_list ap;
{
  char buf[2048];
  char *cp = buf;

  if (module != NULL) {
    sprintf(cp, "%s: ", module);
    cp = strchr(cp, '\0');
  }
  strcpy(cp, "Warning, ");
  cp = strchr(cp, '\0');
  vsprintf(cp, fmt, ap);
  strcat(cp, ".");
  SetISTR(ISTR_WARNING,buf);
}

#ifdef notdef
typedef	unsigned char u_char;
typedef	unsigned short u_short;
typedef	unsigned int u_int;
typedef	unsigned long u_long;
#endif

typedef	byte RGBvalue;

static	u_long width, height;		/* image width & height */
static	u_short bitspersample;
static	u_short samplesperpixel;
static	u_short photometric;
static	u_short orientation;
/* colormap for pallete images */
static	u_short *redcmap, *greencmap, *bluecmap;
static	int stoponerr;			/* stop on read error */
static	char *filename;
/* YCbCr support */
static	u_short YCbCrHorizSampling;
static	u_short YCbCrVertSampling;
static	float *YCbCrCoeffs;
static	float *refBlackWhite;

static	byte **BWmap;
static	byte **PALmap;

static	int gt();

static int loadImage(tif, rwidth, rheight, raster, stop)
	TIFF *tif;
	u_long rwidth, rheight;
	byte *raster;
	int stop;
{
	int ok;
	u_long width, height;

	TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &bitspersample);
	switch (bitspersample) {
	case 1: case 2: case 4:
	case 8: case 16:
		break;
	default:
		TIFFError(TIFFFileName(tif),
		    "Sorry, can not handle %d-bit pictures", bitspersample);
		return (0);
	}
	TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &samplesperpixel);
	switch (samplesperpixel) {
	case 1: case 3: case 4:
		break;
	default:
		TIFFError(TIFFFileName(tif),
		    "Sorry, can not handle %d-channel images", samplesperpixel);
		return (0);
	}
	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
		switch (samplesperpixel) {
		case 1:
			photometric = PHOTOMETRIC_MINISBLACK;
			break;
		case 3: case 4:
			photometric = PHOTOMETRIC_RGB;
			break;
		default:
			TIFFError(TIFFFileName(tif),
			    "Missing needed \"PhotometricInterpretation\" tag");
			return (0);
		}
		TIFFError(TIFFFileName(tif),
		    "No \"PhotometricInterpretation\" tag, assuming %s\n",
		    photometric == PHOTOMETRIC_RGB ? "RGB" : "min-is-black");
	}
	/* XXX maybe should check photometric? */
	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &width);
	TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &height);
	/* XXX verify rwidth and rheight against width and height */
	stoponerr = stop;
	BWmap = NULL;
	PALmap = NULL;
	ok = gt(tif, rwidth, height, raster + (rheight-height)*rwidth);
	if (BWmap)
		free((char *)BWmap);
	if (PALmap)
		free((char *)PALmap);
	return (ok);
}

static int
checkcmap(n, r, g, b)
	int n;
	u_short *r, *g, *b;
{
	while (n-- >= 0)
		if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
			return (16);
	TIFFWarning(filename, "Assuming 8-bit colormap");
	return (8);
}

static	gtTileContig();
static	gtTileSeparate();
static	gtStripContig();
static	gtStripSeparate();
static	void initYCbCrConversion();

static
gt(tif, w, h, raster)
	TIFF *tif;
	int w, h;
	u_long *raster;
{
	u_short minsamplevalue, maxsamplevalue, planarconfig;
	RGBvalue *Map;
	int bpp = 1, e;
	int x, range;

	TIFFGetFieldDefaulted(tif, TIFFTAG_MINSAMPLEVALUE, &minsamplevalue);
	TIFFGetFieldDefaulted(tif, TIFFTAG_MAXSAMPLEVALUE, &maxsamplevalue);
	Map = NULL;
	switch (photometric) {
	case PHOTOMETRIC_YCBCR:
		TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRCOEFFICIENTS,
		    &YCbCrCoeffs);
		TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING,
		    &YCbCrHorizSampling, &YCbCrVertSampling);
		TIFFGetFieldDefaulted(tif, TIFFTAG_REFERENCEBLACKWHITE,
		    &refBlackWhite);
		initYCbCrConversion();
		/* fall thru... */
	case PHOTOMETRIC_RGB:
		bpp *= 3;
		if (minsamplevalue == 0 && maxsamplevalue == 255)
			break;
		/* fall thru... */
	case PHOTOMETRIC_MINISBLACK:
	case PHOTOMETRIC_MINISWHITE:
		range = maxsamplevalue - minsamplevalue;
		Map = (RGBvalue *)malloc((range + 1) * sizeof (RGBvalue));
		if (Map == NULL) {
			TIFFError(filename,
			    "No space for photometric conversion table");
			return (0);
		}
		if (photometric == PHOTOMETRIC_MINISWHITE) {
			for (x = 0; x <= range; x++)
				r[x] = g[x] = b[x] =
				    Map[x] = (255*(range-x))/range;
		} else {
			for (x = 0; x <= range; x++)
				r[x] = g[x] = b[x] = Map[x] = (255*x)/range;
		}
		if (photometric != PHOTOMETRIC_RGB && bitspersample <= 8) {
			/*
			 * Use photometric mapping table to construct
			 * unpacking tables for samples <= 8 bits.
			 */
			if (!makebwmap())
				return (0);
			/* no longer need Map, free it */
			free((char *)Map);
			Map = NULL;
		}
		break;
	case PHOTOMETRIC_PALETTE:
		if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
				  &redcmap, &greencmap, &bluecmap)) {
			TIFFError(filename,
			    "Missing required \"Colormap\" tag");
			return (0);
		}
		/*
		 * Convert 16-bit colormap to 8-bit (unless it looks
		 * like an old-style 8-bit colormap).
		 */
		range = (1<<bitspersample)-1;
		if (checkcmap(range, redcmap, greencmap, bluecmap) == 16) {
#define	CVT(x)		(((x) * 255) / ((1L<<16)-1))
			for (x = range; x >= 0; x--) {
				r[x] = CVT(redcmap[x]);
				g[x] = CVT(greencmap[x]);
				b[x] = CVT(bluecmap[x]);
			}
		} else {
			for (x = range; x >= 0; x--) {
				r[x] = redcmap[x];
				g[x] = greencmap[x];
				b[x] = bluecmap[x];
			}
		}
		if (bitspersample <= 8) {
			/*
			 * Use mapping table to construct
			 * unpacking tables for samples < 8 bits.
			 */
			if (!makecmap())
				return (0);
		}
		break;
	default:
		TIFFError(filename, "Unknown photometric tag %u", photometric);
		return (0);
	}
	TIFFGetField(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
	if (planarconfig == PLANARCONFIG_SEPARATE && samplesperpixel > 1) {
		e = TIFFIsTiled(tif) ?
		    gtTileSeparate(tif, raster, Map, h, w, bpp) :
		    gtStripSeparate(tif, raster, Map, h, w, bpp);
	} else {
		e = TIFFIsTiled(tif) ? 
		    gtTileContig(tif, raster, Map, h, w, bpp) :
		    gtStripContig(tif, raster, Map, h, w, bpp);
	}
	if (Map)
		free((char *)Map);
	return (e);
}

u_long
setorientation(tif, h)
	TIFF *tif;
	u_long h;
{
	u_long y;

	TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &orientation);
	switch (orientation) {
	case ORIENTATION_BOTRIGHT:
	case ORIENTATION_RIGHTBOT:	/* XXX */
	case ORIENTATION_LEFTBOT:	/* XXX */
		TIFFWarning(filename, "using bottom-left orientation");
		orientation = ORIENTATION_BOTLEFT;
		/* fall thru... */
	case ORIENTATION_BOTLEFT:
		y = 0;
		break;
	case ORIENTATION_TOPRIGHT:
	case ORIENTATION_RIGHTTOP:	/* XXX */
	case ORIENTATION_LEFTTOP:	/* XXX */
	default:
		TIFFWarning(filename, "using top-left orientation");
		orientation = ORIENTATION_TOPLEFT;
		/* fall thru... */
	case ORIENTATION_TOPLEFT:
		y = h-1;
		break;
	}
	return (y);
}

#if USE_PROTOTYPES
typedef void (*tileContigRoutine)
    (byte*, u_char*, RGBvalue*, u_long, u_long, int, int);
static tileContigRoutine pickTileContigCase(RGBvalue*);
#else
typedef void (*tileContigRoutine)();
static tileContigRoutine pickTileContigCase();
#endif

/*
 * Get an tile-organized image that has
 *	PlanarConfiguration contiguous if SamplesPerPixel > 1
 * or
 *	SamplesPerPixel == 1
 */	
static
gtTileContig(tif, raster, Map, h, w, bpp)
	TIFF *tif;
	byte *raster;
	RGBvalue *Map;
	u_long h, w;
	int bpp;
{
	u_long col, row, y;
	u_long tw, th;
	u_char *buf;
	int fromskew, toskew;
	u_int nrow;
	tileContigRoutine put;

	put = pickTileContigCase(Map);
	if (put == 0)
		return (0);
	buf = (u_char *)malloc(TIFFTileSize(tif));
	if (buf == 0) {
		TIFFError(filename, "No space for tile buffer");
		return (0);
	}
	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
	y = setorientation(tif, h);
	toskew = (orientation == ORIENTATION_TOPLEFT ? -tw + -w : -tw + w);
	for (row = 0; row < h; row += th) {
		nrow = (row + th > h ? h - row : th);
		for (col = 0; col < w; col += tw) {
			if (TIFFReadTile(tif, buf, col, row, 0, 0) < 0 &&
			    stoponerr)
				break;
			if (col + tw > w) {
				/*
				 * Tile is clipped horizontally.  Calculate
				 * visible portion and skewing factors.
				 */
				u_long npix = w - col;
				fromskew = tw - npix;
				(*put)(raster + (y*w + col)*bpp, buf, Map,
				    npix, nrow,
				    fromskew, (toskew + fromskew)*bpp);
			} else
				(*put)(raster + (y*w + col)*bpp, buf, Map,
				    tw, nrow,
				    0, toskew*bpp);
		}
		y += (orientation == ORIENTATION_TOPLEFT ? -nrow : nrow);
	}
	free(buf);
	return (1);
}

#if USE_PROTOTYPES
typedef void (*tileSeparateRoutine)
    (byte*, u_char*, u_char*, u_char*, RGBvalue*, u_long, u_long, int, int);
static tileSeparateRoutine pickTileSeparateCase(RGBvalue*);
#else
typedef void (*tileSeparateRoutine)();
static tileSeparateRoutine pickTileSeparateCase();
#endif

/*
 * Get an tile-organized image that has
 *	 SamplesPerPixel > 1
 *	 PlanarConfiguration separated
 * We assume that all such images are RGB.
 */	
static
gtTileSeparate(tif, raster, Map, h, w, bpp)
	TIFF *tif;
	byte *raster;
	RGBvalue *Map;
	u_long h, w;
	int bpp;
{
	u_long col, row, y;
	u_long tw, th;
	u_char *buf;
	u_char *r, *g, *b;
	int tilesize;
	int fromskew, toskew;
	u_int nrow;
	tileSeparateRoutine put;

	put = pickTileSeparateCase(Map);
	if (put == 0)
		return (0);
	tilesize = TIFFTileSize(tif);
	buf = (u_char *)malloc(3*tilesize);
	if (buf == 0) {
		TIFFError(filename, "No space for tile buffer");
		return (0);
	}
	r = buf;
	g = r + tilesize;
	b = g + tilesize;
	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
	y = setorientation(tif, h);
	toskew = (orientation == ORIENTATION_TOPLEFT ? -tw + -w : -tw + w);
	for (row = 0; row < h; row += th) {
		nrow = (row + th > h ? h - row : th);
		for (col = 0; col < w; col += tw) {
			if (TIFFReadTile(tif, r, col, row,0,0) < 0 && stoponerr)
				break;
			if (TIFFReadTile(tif, g, col, row,0,1) < 0 && stoponerr)
				break;
			if (TIFFReadTile(tif, b, col, row,0,2) < 0 && stoponerr)
				break;
			if (col + tw > w) {
				/*
				 * Tile is clipped horizontally.  Calculate
				 * visible portion and skewing factors.
				 */
				u_long npix = w - col;
				fromskew = tw - npix;
				(*put)(raster + (y*w + col)*bpp, r, g, b, Map,
				    npix, nrow,
				    fromskew, (toskew + fromskew)*bpp);
			} else
				(*put)(raster + (y*w + col)*bpp, r, g, b, Map,
				    tw, nrow, 0, toskew*bpp);
		}
		y += (orientation == ORIENTATION_TOPLEFT ? -nrow : nrow);
	}
	free(buf);
	return (1);
}

/*
 * Get a strip-organized image that has
 *	PlanarConfiguration contiguous if SamplesPerPixel > 1
 * or
 *	SamplesPerPixel == 1
 */	
static
gtStripContig(tif, raster, Map, h, w, bpp)
	TIFF *tif;
	byte *raster;
	RGBvalue *Map;
	u_long h, w;
	int bpp;
{
	u_long row, y, nrow;
	u_char *buf;
	tileContigRoutine put;
	u_long rowsperstrip;
	u_long imagewidth;
	int scanline;
	int fromskew, toskew;

	put = pickTileContigCase(Map);
	if (put == 0)
		return (0);
	buf = (u_char *)malloc(TIFFStripSize(tif));
	if (buf == 0) {
		TIFFError(filename, "No space for strip buffer");
		return (0);
	}
	y = setorientation(tif, h);
	toskew = (orientation == ORIENTATION_TOPLEFT ? -w + -w : -w + w);
	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &imagewidth);
	scanline = TIFFScanlineSize(tif);
	fromskew = (w < imagewidth ? imagewidth - w : 0);
	for (row = 0; row < h; row += rowsperstrip) {
		nrow = (row + rowsperstrip > h ? h - row : rowsperstrip);
		if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, row, 0),
		    buf, nrow*scanline) < 0 && stoponerr)
			break;
		(*put)(raster + y*w*bpp, buf, Map, w, nrow,
		    fromskew, toskew*bpp);
		y += (orientation == ORIENTATION_TOPLEFT ? -nrow : nrow);
	}
	free(buf);
	return (1);
}

/*
 * Get a strip-organized image with
 *	 SamplesPerPixel > 1
 *	 PlanarConfiguration separated
 * We assume that all such images are RGB.
 */
static
gtStripSeparate(tif, raster, Map, h, w, bpp)
	TIFF *tif;
	byte *raster;
	register RGBvalue *Map;
	u_long h, w;
	int bpp;
{
	u_char *buf;
	u_char *r, *g, *b;
	u_long row, y, nrow;
	int scanline;
	tileSeparateRoutine put;
	u_long rowsperstrip;
	u_long imagewidth;
	u_int stripsize;
	int fromskew, toskew;

	stripsize = TIFFStripSize(tif);
	r = buf = (u_char *)malloc(3*stripsize);
	if (buf == 0)
		return (0);
	g = r + stripsize;
	b = g + stripsize;
	put = pickTileSeparateCase(Map);
	if (put == 0) {
		TIFFError(filename, "Can not handle format");
		return (0);
	}
	y = setorientation(tif, h);
	toskew = (orientation == ORIENTATION_TOPLEFT ? -w + -w : -w + w);
	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &imagewidth);
	scanline = TIFFScanlineSize(tif);
	fromskew = (w < imagewidth ? imagewidth - w : 0);
	for (row = 0; row < h; row += rowsperstrip) {
		nrow = (row + rowsperstrip > h ? h - row : rowsperstrip);
		if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, row, 0),
		    r, nrow*scanline) < 0 && stoponerr)
			break;
		if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, row, 1),
		    g, nrow*scanline) < 0 && stoponerr)
			break;
		if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, row, 2),
		    b, nrow*scanline) < 0 && stoponerr)
			break;
		(*put)(raster + y*w*bpp, r, g, b, Map, w, nrow,
		    fromskew, toskew*bpp);
		y += (orientation == ORIENTATION_TOPLEFT ? -nrow : nrow);
	}
	free(buf);
	return (1);
}

/*
 * Greyscale images with less than 8 bits/sample are handled
 * with a table to avoid lots of shifts and masks.  The table
 * is setup so that put*bwtile (below) can retrieve 8/bitspersample
 * pixel values simply by indexing into the table with one
 * number.
 */
makebwmap()
{
	register int i;
	int nsamples = 8 / bitspersample;
	register byte *p;

	BWmap = (byte **)malloc(
	    256*sizeof (byte *)+(256*nsamples*sizeof(byte)));
	if (BWmap == NULL) {
		TIFFError(filename, "No space for B&W mapping table");
		return (0);
	}
	p = (byte *)(BWmap + 256);
	for (i = 0; i < 256; i++) {
		BWmap[i] = p;
		switch (bitspersample) {
#define	GREY(x)	*p++ = x;
		case 1:
			GREY(i>>7);
			GREY((i>>6)&1);
			GREY((i>>5)&1);
			GREY((i>>4)&1);
			GREY((i>>3)&1);
			GREY((i>>2)&1);
			GREY((i>>1)&1);
			GREY(i&1);
			break;
		case 2:
			GREY(i>>6);
			GREY((i>>4)&3);
			GREY((i>>2)&3);
			GREY(i&3);
			break;
		case 4:
			GREY(i>>4);
			GREY(i&0xf);
			break;
		case 8:
			GREY(i);
			break;
		}
#undef	GREY
	}
	return (1);
}

/*
 * Palette images with <= 8 bits/sample are handled
 * with a table to avoid lots of shifts and masks.  The table
 * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
 * pixel values simply by indexing into the table with one
 * number.
 */
makecmap()
{
	register int i;
	int nsamples = 8 / bitspersample;
	register byte *p;

	PALmap = (byte **)malloc(
	    256*sizeof (byte *)+(256*nsamples*sizeof(byte)));
	if (PALmap == NULL) {
		TIFFError(filename, "No space for Palette mapping table");
		return (0);
	}
	p = (byte *)(PALmap + 256);
	for (i = 0; i < 256; i++) {
		PALmap[i] = p;
#define	CMAP(x)	*p++ = x;
		switch (bitspersample) {
			register RGBvalue c;
		case 1:
			CMAP(i>>7);
			CMAP((i>>6)&1);
			CMAP((i>>5)&1);
			CMAP((i>>4)&1);
			CMAP((i>>3)&1);
			CMAP((i>>2)&1);
			CMAP((i>>1)&1);
			CMAP(i&1);
			break;
		case 2:
			CMAP(i>>6);
			CMAP((i>>4)&3);
			CMAP((i>>2)&3);
			CMAP(i&3);
			break;
		case 4:
			CMAP(i>>4);
			CMAP(i&0xf);
			break;
		case 8:
			CMAP(i);
			break;
		}
#undef CMAP
	}
	return (1);
}

/*
 * The following routines move decoded data returned
 * from the TIFF library into rasters filled with packed
 * ABGR pixels (i.e. suitable for passing to lrecwrite.)
 *
 * The routines have been created according to the most
 * important cases and optimized.  pickTileContigCase and
 * pickTileSeparateCase analyze the parameters and select
 * the appropriate "put" routine to use.
 */
#define	REPEAT8(op)	REPEAT4(op); REPEAT4(op)
#define	REPEAT4(op)	REPEAT2(op); REPEAT2(op)
#define	REPEAT2(op)	op; op
#define	CASE8(x,op)				\
	switch (x) {				\
	case 7: op; case 6: op; case 5: op;	\
	case 4: op; case 3: op; case 2: op;	\
	case 1: op;				\
	}
#define	CASE4(x,op)	switch (x) { case 3: op; case 2: op; case 1: op; }

#define	UNROLL8(w, op1, op2) {		\
	register u_long x;		\
	for (x = w; x >= 8; x -= 8) {	\
		op1;			\
		REPEAT8(op2);		\
	}				\
	if (x > 0) {			\
		op1;			\
		CASE8(x,op2);		\
	}				\
}
#define	UNROLL4(w, op1, op2) {		\
	register u_long x;		\
	for (x = w; x >= 4; x -= 4) {	\
		op1;			\
		REPEAT4(op2);		\
	}				\
	if (x > 0) {			\
		op1;			\
		CASE4(x,op2);		\
	}				\
}
#define	UNROLL2(w, op1, op2) {		\
	register u_long x;		\
	for (x = w; x >= 2; x -= 2) {	\
		op1;			\
		REPEAT2(op2);		\
	}				\
	if (x) {			\
		op1;			\
		op2;			\
	}				\
}
			

#define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; }

/*
 * 8-bit palette => colormap/RGB
 */
static void
put8bitcmaptile(cp, pp, Map, w, h, fromskew, toskew)
	register byte *cp;
	register u_char *pp;
	RGBvalue *Map;
	u_long w, h;
	int fromskew, toskew;
{
	while (h-- > 0) {
		UNROLL8(w,, *cp++ = PALmap[*pp++][0]);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 4-bit palette => colormap/RGB
 */
static void
put4bitcmaptile(cp, pp, Map, w, h, fromskew, toskew)
	register byte *cp;
	register u_char *pp;
	register RGBvalue *Map;
	u_long w, h;
	int fromskew, toskew;
{
	register byte *bw;

	fromskew /= 2;
	while (h-- > 0) {
		UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 2-bit palette => colormap/RGB
 */
static void
put2bitcmaptile(cp, pp, Map, w, h, fromskew, toskew)
	register byte *cp;
	register u_char *pp;
	register RGBvalue *Map;
	u_long w, h;
	int fromskew, toskew;
{
	register byte *bw;

	fromskew /= 4;
	while (h-- > 0) {
		UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 1-bit palette => colormap/RGB
 */
static void
put1bitcmaptile(cp, pp, Map, w, h, fromskew, toskew)
	register byte *cp;
	register u_char *pp;
	register RGBvalue *Map;
	u_long w, h;
	int fromskew, toskew;
{
	register byte *bw;

	fromskew /= 8;
	while (h-- > 0) {
		UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 8-bit greyscale => colormap/RGB
 */
static void
putgreytile(cp, pp, Map, w, h, fromskew, toskew)
	register byte *cp;
	register u_char *pp;
	RGBvalue *Map;
	u_long w, h;
	int fromskew, toskew;
{
	while (h-- > 0) {
		register u_long x;
		for (x = w; x-- > 0;)
			*cp++ = BWmap[*pp++][0];
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 1-bit bilevel => colormap/RGB
 */
static void
put1bitbwtile(cp, pp, Map, w, h, fromskew, toskew)
	byte *cp;
	u_char *pp;
	RGBvalue **Map;
	u_long w, h;
	int fromskew, toskew;
{
	register byte *bw;

	fromskew /= 8;
	while (h-- > 0) {
		UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 2-bit greyscale => colormap/RGB
 */
static void
put2bitbwtile(cp, pp, Map, w, h, fromskew, toskew)
	byte *cp;
	u_char *pp;
	RGBvalue **Map;
	u_long w, h;
	int fromskew, toskew;
{
	register byte *bw;

	fromskew /= 4;
	while (h-- > 0) {
		UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 4-bit greyscale => colormap/RGB
 */
static void
put4bitbwtile(cp, pp, Map, w, h, fromskew, toskew)
	byte *cp;
	u_char *pp;
	RGBvalue **Map;
	u_long w, h;
	int fromskew, toskew;
{
	register byte *bw;

	fromskew /= 2;
	while (h-- > 0) {
		UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 8-bit packed samples => RGB
 */
static void
putRGBcontig8bittile(cp, pp, Map, w, h, fromskew, toskew)
	register byte *cp;
	register u_char *pp;
	register RGBvalue *Map;
	u_long w, h;
	int fromskew, toskew;
{
	fromskew *= samplesperpixel;
	if (Map) {
		while (h-- > 0) {
			register u_long x;
			for (x = w; x-- > 0;) {
				*cp++ = Map[pp[0]];
				*cp++ = Map[pp[1]];
				*cp++ = Map[pp[2]];
				pp += samplesperpixel;
			}
			pp += fromskew;
			cp += toskew;
		}
	} else {
		while (h-- > 0) {
			UNROLL8(w,,
			    *cp++ = pp[0];
			    *cp++ = pp[1];
			    *cp++ = pp[2];
			    pp += samplesperpixel);
			cp += toskew;
			pp += fromskew;
		}
	}
}

/*
 * 16-bit packed samples => RGB
 */
static void
putRGBcontig16bittile(cp, pp, Map, w, h, fromskew, toskew)
	register byte *cp;
	register u_short *pp;
	register RGBvalue *Map;
	u_long w, h;
	int fromskew, toskew;
{
	register u_int x;

	fromskew *= samplesperpixel;
	if (Map) {
		while (h-- > 0) {
			for (x = w; x-- > 0;) {
				*cp++ = Map[pp[0]];
				*cp++ = Map[pp[1]];
				*cp++ = Map[pp[2]];
				pp += samplesperpixel;
			}
			cp += toskew;
			pp += fromskew;
		}
	} else {
		while (h-- > 0) {
			for (x = w; x-- > 0;) {
				*cp++ = pp[0];
				*cp++ = pp[1];
				*cp++ = pp[2];
				pp += samplesperpixel;
			}
			cp += toskew;
			pp += fromskew;
		}
	}
}

/*
 * 8-bit unpacked samples => RGB
 */
static void
putRGBseparate8bittile(cp, r, g, b, Map, w, h, fromskew, toskew)
	register byte *cp;
	register u_char *r, *g, *b;
	register RGBvalue *Map;
	u_long w, h;
	int fromskew, toskew;

{
	if (Map) {
		while (h-- > 0) {
			register u_long x;
			for (x = w; x > 0; x--) {
				*cp++ = Map[*r++];
				*cp++ = Map[*g++];
				*cp++ = Map[*b++];
			}
			SKEW(r, g, b, fromskew);
			cp += toskew;
		}
	} else {
		while (h-- > 0) {
			UNROLL8(w,,
			    *cp++ = *r++;
			    *cp++ = *g++;
			    *cp++ = *b++;
			);
			SKEW(r, g, b, fromskew);
			cp += toskew;
		}
	}
}

/*
 * 16-bit unpacked samples => RGB
 */
static void
putRGBseparate16bittile(cp, r, g, b, Map, w, h, fromskew, toskew)
	register byte *cp;
	register u_short *r, *g, *b;
	register RGBvalue *Map;
	u_long w, h;
	int fromskew, toskew;
{
	register u_long x;

	if (Map) {
		while (h-- > 0) {
			for (x = w; x > 0; x--) {
				*cp++ = Map[*r++];
				*cp++ = Map[*g++];
				*cp++ = Map[*b++];
			}
			SKEW(r, g, b, fromskew);
			cp += toskew;
		}
	} else {
		while (h-- > 0) {
			for (x = 0; x < w; x++) {
				*cp++ = *r++;
				*cp++ = *g++;
				*cp++ = *b++;
			}
			SKEW(r, g, b, fromskew);
			cp += toskew;
		}
	}
}

#define	Code2V(c, RB, RW, CR)	((((c)-RB)*(float)CR)/(float)(RW-RB))
#define	CLAMP(f,min,max) \
    (int)((f)+.5 < (min) ? (min) : (f)+.5 > (max) ? (max) : (f)+.5)

#define	LumaRed		YCbCrCoeffs[0]
#define	LumaGreen	YCbCrCoeffs[1]
#define	LumaBlue	YCbCrCoeffs[2]

static	float D1, D2;
static	float D3, D4;

static void
initYCbCrConversion()
{
	D1 = 2 - 2*LumaRed;
	D2 = D1*LumaRed / LumaGreen;
	D3 = 2 - 2*LumaBlue;
	D4 = D2*LumaBlue / LumaGreen;
}

static void
putRGBContigYCbCrClump(cp, pp, cw, ch, w, n, fromskew, toskew)
	register byte *cp;
	register u_char *pp;
	int cw, ch;
	u_long w;
	int n, fromskew, toskew;
{
	float Cb, Cr;
	int j, k;

	Cb = Code2V(pp[n],   refBlackWhite[2], refBlackWhite[3], 127);
	Cr = Code2V(pp[n+1], refBlackWhite[4], refBlackWhite[5], 127);
	for (j = 0; j < ch; j++) {
		for (k = 0; k < cw; k++) {
			float Y, R, G, B;
			Y = Code2V(*pp++,
			    refBlackWhite[0], refBlackWhite[1], 255);
			R = Y + Cr*D1;
			B = Y + Cb*D3;
			G = Y - Cb*D4 - Cr*D2;
			cp[3*k+0] = CLAMP(R,0,255);
			cp[3*k+1] = CLAMP(G,0,255);
			cp[3*k+2] = CLAMP(B,0,255);
		}
		cp += 3*w+toskew;
		pp += fromskew;
	}
}
#undef LumaBlue
#undef LumaGreen
#undef LumaRed
#undef CLAMP
#undef Code2V

/*
 * 8-bit packed YCbCr samples => RGB
 */
static void
putcontig8bitYCbCrtile(cp, pp, Map, w, h, fromskew, toskew)
	register byte *cp;
	register u_char *pp;
	register RGBvalue *Map;
	u_long w, h;
	int fromskew, toskew;
{
	u_int Coff = YCbCrVertSampling * YCbCrHorizSampling;
	byte *tp;
	u_long x;

	/* XXX adjust fromskew */
	while (h >= YCbCrVertSampling) {
		tp = cp;
		for (x = w; x >= YCbCrHorizSampling; x -= YCbCrHorizSampling) {
			putRGBContigYCbCrClump(tp, pp,
			    YCbCrHorizSampling, YCbCrVertSampling,
			    w, Coff, 0, toskew);
			tp += 3*YCbCrHorizSampling;
			pp += Coff+2;
		}
		if (x > 0) {
			putRGBContigYCbCrClump(tp, pp,
			    x, YCbCrVertSampling,
			    w, Coff, YCbCrHorizSampling - x, toskew);
			pp += Coff+2;
		}
		cp += YCbCrVertSampling*(3*w + toskew);
		pp += fromskew;
		h -= YCbCrVertSampling;
	}
	if (h > 0) {
		tp = cp;
		for (x = w; x >= YCbCrHorizSampling; x -= YCbCrHorizSampling) {
			putRGBContigYCbCrClump(tp, pp, YCbCrHorizSampling, h,
			    w, Coff, 0, toskew);
			tp += 3*YCbCrHorizSampling;
			pp += Coff+2;
		}
		if (x > 0)
			putRGBContigYCbCrClump(tp, pp, x, h,
			    w, Coff, YCbCrHorizSampling - x, toskew);
	}
}

/*
 * Select the appropriate conversion routine for packed data.
 */
static tileContigRoutine
pickTileContigCase(Map)
	RGBvalue* Map;
{
	tileContigRoutine put = 0;

	switch (photometric) {
	case PHOTOMETRIC_RGB:
		put = (bitspersample == 8 ?
		    putRGBcontig8bittile : putRGBcontig16bittile);
		break;
	case PHOTOMETRIC_PALETTE:
		switch (bitspersample) {
		case 8:	put = put8bitcmaptile; break;
		case 4: put = put4bitcmaptile; break;
		case 2: put = put2bitcmaptile; break;
		case 1: put = put1bitcmaptile; break;
		}
		break;
	case PHOTOMETRIC_MINISWHITE:
	case PHOTOMETRIC_MINISBLACK:
		switch (bitspersample) {
		case 8:	put = putgreytile; break;
		case 4: put = put4bitbwtile; break;
		case 2: put = put2bitbwtile; break;
		case 1: put = put1bitbwtile; break;
		}
		break;
	case PHOTOMETRIC_YCBCR:
		switch (bitspersample) {
		case 8: put = putcontig8bitYCbCrtile; break;
		}
		break;
	}
	if (put == 0)
		TIFFError(filename, "Can not handle format");
	return (put);
}

/*
 * Select the appropriate conversion routine for unpacked data.
 *
 * NB: we assume that unpacked single channel data is directed
 *	 to the "packed routines.
 */
static tileSeparateRoutine
pickTileSeparateCase(Map)
	RGBvalue* Map;
{
	tileSeparateRoutine put = 0;

	switch (photometric) {
	case PHOTOMETRIC_RGB:
		put = (bitspersample == 8 ?
		    putRGBseparate8bittile : putRGBseparate16bittile);
		break;
	}
	if (put == 0)
		TIFFError(filename, "Can not handle format");
	return (put);
}

These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.