This is light.c in view mode; [Download] [Up]
/* $Id: light.c,v 1.3 1996/09/27 01:27:55 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 2.0 * Copyright (C) 1995-1996 Brian Paul * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * $Log: light.c,v $ * Revision 1.3 1996/09/27 01:27:55 brianp * removed unused variables * * Revision 1.2 1996/09/15 14:18:10 brianp * now use GLframebuffer and GLvisual * * Revision 1.1 1996/09/13 01:38:16 brianp * Initial revision * */ #include <assert.h> #include <math.h> #include <stdlib.h> #include "context.h" #include "light.h" #include "dlist.h" #include "macros.h" #include "matrix.h" #include "types.h" #include "vb.h" #include "xform.h" #define DEG2RAD (M_PI/180.0) void gl_ShadeModel( GLcontext *ctx, GLenum mode ) { if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glShadeModel" ); return; } switch (mode) { case GL_FLAT: case GL_SMOOTH: if (ctx->Light.ShadeModel!=mode) { ctx->Light.ShadeModel = mode; ctx->NewState |= NEW_RASTER_OPS; } break; default: gl_error( ctx, GL_INVALID_ENUM, "glShadeModel" ); } } void gl_ColorMaterial( GLcontext *ctx, GLenum face, GLenum mode ) { if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glColorMaterial" ); return; } switch (face) { case GL_FRONT: case GL_BACK: case GL_FRONT_AND_BACK: ctx->Light.ColorMaterialFace = face; break; default: gl_error( ctx, GL_INVALID_ENUM, "glColorMaterial" ); return; } switch (mode) { case GL_EMISSION: case GL_AMBIENT: case GL_DIFFUSE: case GL_SPECULAR: case GL_AMBIENT_AND_DIFFUSE: ctx->Light.ColorMaterialMode = mode; break; default: gl_error( ctx, GL_INVALID_ENUM, "glColorMaterial" ); return; } } void gl_Lightfv( GLcontext *ctx, GLenum light, GLenum pname, const GLfloat *params, GLint nparams ) { GLint l; if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glShadeModel" ); return; } l = (GLint) (light - GL_LIGHT0); if (l<0 || l>=MAX_LIGHTS) { gl_error( ctx, GL_INVALID_ENUM, "glLight" ); return; } switch (pname) { case GL_AMBIENT: COPY_4V( ctx->Light.Light[l].Ambient, params ); break; case GL_DIFFUSE: COPY_4V( ctx->Light.Light[l].Diffuse, params ); break; case GL_SPECULAR: COPY_4V( ctx->Light.Light[l].Specular, params ); break; case GL_POSITION: /* transform position by ModelView matrix */ TRANSFORM_POINT( ctx->Light.Light[l].Position, ctx->ModelViewMatrix, params ); break; case GL_SPOT_DIRECTION: /* transform direction by inverse modelview */ { GLfloat direction[4]; direction[0] = params[0]; direction[1] = params[1]; direction[2] = params[2]; direction[3] = 0.0; if (!ctx->ModelViewInvValid) { gl_compute_modelview_inverse( ctx ); } gl_transform_vector( ctx->Light.Light[l].Direction, direction, ctx->ModelViewInv); } break; case GL_SPOT_EXPONENT: if (params[0]<0.0 || params[0]>128.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].SpotExponent = params[0]; gl_compute_spot_exp_table( &ctx->Light.Light[l] ); break; case GL_SPOT_CUTOFF: if ((params[0]<0.0 || params[0]>90.0) && params[0]!=180.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].SpotCutoff = params[0]; ctx->Light.Light[l].CosCutoff = cos(params[0]*DEG2RAD); break; case GL_CONSTANT_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].ConstantAttenuation = params[0]; break; case GL_LINEAR_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].LinearAttenuation = params[0]; break; case GL_QUADRATIC_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].QuadraticAttenuation = params[0]; break; default: gl_error( ctx, GL_INVALID_ENUM, "glLight" ); break; } ctx->NewState |= NEW_LIGHTING; } void gl_GetLightfv( GLcontext *ctx, GLenum light, GLenum pname, GLfloat *params ) { GLint l; l = (GLint) (light - GL_LIGHT0); if (l<0 || l>=MAX_LIGHTS) { gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); return; } switch (pname) { case GL_AMBIENT: COPY_4V( params, ctx->Light.Light[l].Ambient ); break; case GL_DIFFUSE: COPY_4V( params, ctx->Light.Light[l].Diffuse ); break; case GL_SPECULAR: COPY_4V( params, ctx->Light.Light[l].Specular ); break; case GL_POSITION: COPY_4V( params, ctx->Light.Light[l].Position ); break; case GL_SPOT_DIRECTION: COPY_3V( params, ctx->Light.Light[l].Direction ); break; case GL_SPOT_EXPONENT: params[0] = ctx->Light.Light[l].SpotExponent; break; case GL_SPOT_CUTOFF: params[0] = ctx->Light.Light[l].SpotCutoff; break; case GL_CONSTANT_ATTENUATION: params[0] = ctx->Light.Light[l].ConstantAttenuation; break; case GL_LINEAR_ATTENUATION: params[0] = ctx->Light.Light[l].LinearAttenuation; break; case GL_QUADRATIC_ATTENUATION: params[0] = ctx->Light.Light[l].QuadraticAttenuation; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); break; } } void gl_GetLightiv( GLcontext *ctx, GLenum light, GLenum pname, GLint *params ) { /* TODO */ } /**********************************************************************/ /*** Light Model ***/ /**********************************************************************/ void gl_LightModelfv( GLcontext *ctx, GLenum pname, const GLfloat *params ) { switch (pname) { case GL_LIGHT_MODEL_AMBIENT: COPY_4V( ctx->Light.Model.Ambient, params ); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: if (params[0]==0.0) ctx->Light.Model.LocalViewer = GL_FALSE; else ctx->Light.Model.LocalViewer = GL_TRUE; break; case GL_LIGHT_MODEL_TWO_SIDE: if (params[0]==0.0) ctx->Light.Model.TwoSide = GL_FALSE; else ctx->Light.Model.TwoSide = GL_TRUE; break; default: gl_error( ctx, GL_INVALID_ENUM, "glLightModel" ); break; } ctx->NewState |= NEW_LIGHTING; } /********** MATERIAL **********/ void gl_Materialfv( GLcontext *ctx, GLenum face, GLenum pname, const GLfloat *params ) { GLuint bitmask = 0, fmask = 0, bmask = 0; struct gl_material *mat; if (face!=GL_FRONT && face!=GL_BACK && face!=GL_FRONT_AND_BACK) { gl_error( ctx, GL_INVALID_ENUM, "glMaterial" ); return; } if (face==GL_FRONT || face==GL_FRONT_AND_BACK) { fmask = 0xfff; } if (face==GL_BACK || face==GL_FRONT_AND_BACK) { bmask = 0xfff; } /* Make a bitmask indicating what material attribute(s) we're updating */ switch (pname) { case GL_AMBIENT: bitmask |= (FRONT_AMBIENT_BIT & fmask) | (BACK_AMBIENT_BIT & bmask); break; case GL_DIFFUSE: bitmask |= (FRONT_DIFFUSE_BIT & fmask) | (BACK_DIFFUSE_BIT & bmask); break; case GL_SPECULAR: bitmask |= (FRONT_SPECULAR_BIT & fmask) | (BACK_SPECULAR_BIT & bmask); break; case GL_EMISSION: bitmask |= (FRONT_EMISSION_BIT & fmask) | (BACK_EMISSION_BIT & bmask); break; case GL_SHININESS: bitmask |= (FRONT_SHININESS_BIT & fmask) | (BACK_SHININESS_BIT & bmask); break; case GL_AMBIENT_AND_DIFFUSE: bitmask |= ((FRONT_AMBIENT_BIT | FRONT_DIFFUSE_BIT) & fmask) | ((BACK_AMBIENT_BIT | BACK_DIFFUSE_BIT) & bmask); break; case GL_COLOR_INDEXES: bitmask |= (FRONT_INDEXES_BIT & fmask) | (BACK_INDEXES_BIT & bmask); break; default: gl_error( ctx, GL_INVALID_ENUM, "glMaterial(pname)" ); return; } if (INSIDE_BEGIN_END(ctx)) { struct vertex_buffer *VB = ctx->VB; /* Save per-vertex material changes in the Vertex Buffer. * The update_material function will eventually update the global * ctx->Light.Material values. */ mat = VB->Material[VB->Count]; VB->MaterialMask[VB->Count] |= bitmask; VB->MaterialChanges = GL_TRUE; } else { /* just update the global material property */ mat = ctx->Light.Material; ctx->NewState |= NEW_LIGHTING; } if (bitmask & FRONT_AMBIENT_BIT) { COPY_4V( mat[0].Ambient, params ); } if (bitmask & BACK_AMBIENT_BIT) { COPY_4V( mat[1].Ambient, params ); } if (bitmask & FRONT_DIFFUSE_BIT) { COPY_4V( mat[0].Diffuse, params ); } if (bitmask & BACK_DIFFUSE_BIT) { COPY_4V( mat[1].Diffuse, params ); } if (bitmask & FRONT_SPECULAR_BIT) { COPY_4V( mat[0].Specular, params ); } if (bitmask & BACK_SPECULAR_BIT) { COPY_4V( mat[1].Specular, params ); } if (bitmask & FRONT_EMISSION_BIT) { COPY_4V( mat[0].Emission, params ); } if (bitmask & BACK_EMISSION_BIT) { COPY_4V( mat[1].Emission, params ); } if (bitmask & FRONT_SHININESS_BIT) { mat[0].Shininess = CLAMP( params[0], 0.0, 128.0 ); gl_compute_material_shine_table( &mat[0] ); } if (bitmask & BACK_SHININESS_BIT) { mat[1].Shininess = CLAMP( params[0], 0.0, 128.0 ); gl_compute_material_shine_table( &mat[1] ); } if (bitmask & FRONT_INDEXES_BIT) { mat[0].AmbientIndex = params[0]; mat[0].DiffuseIndex = params[1]; mat[0].SpecularIndex = params[2]; } if (bitmask & BACK_INDEXES_BIT) { mat[1].AmbientIndex = params[0]; mat[1].DiffuseIndex = params[1]; mat[1].SpecularIndex = params[2]; } } void gl_GetMaterialfv( GLcontext *ctx, GLenum face, GLenum pname, GLfloat *params ) { GLuint f; if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glGetMaterialfv" ); return; } if (face==GL_FRONT) { f = 0; } else if (face==GL_BACK) { f = 1; } else { gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" ); return; } switch (pname) { case GL_AMBIENT: COPY_4V( params, ctx->Light.Material[f].Ambient ); break; case GL_DIFFUSE: COPY_4V( params, ctx->Light.Material[f].Diffuse ); break; case GL_SPECULAR: COPY_4V( params, ctx->Light.Material[f].Specular ); break; case GL_EMISSION: COPY_4V( params, ctx->Light.Material[f].Emission ); break; case GL_SHININESS: *params = ctx->Light.Material[f].Shininess; break; case GL_COLOR_INDEXES: params[0] = ctx->Light.Material[f].AmbientIndex; params[1] = ctx->Light.Material[f].DiffuseIndex; params[2] = ctx->Light.Material[f].SpecularIndex; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); } } void gl_GetMaterialiv( GLcontext *ctx, GLenum face, GLenum pname, GLint *params ) { GLuint f; if (INSIDE_BEGIN_END(ctx)) { gl_error( ctx, GL_INVALID_OPERATION, "glGetMaterialiv" ); return; } if (face==GL_FRONT) { f = 0; } else if (face==GL_BACK) { f = 1; } else { gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" ); return; } switch (pname) { case GL_AMBIENT: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[3] ); break; case GL_DIFFUSE: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[3] ); break; case GL_SPECULAR: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[3] ); break; case GL_EMISSION: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[3] ); break; case GL_SHININESS: *params = ROUNDF( ctx->Light.Material[f].Shininess ); break; case GL_COLOR_INDEXES: params[0] = ROUNDF( ctx->Light.Material[f].AmbientIndex ); params[1] = ROUNDF( ctx->Light.Material[f].DiffuseIndex ); params[2] = ROUNDF( ctx->Light.Material[f].SpecularIndex ); break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); } } /**********************************************************************/ /***** Lighting computation *****/ /**********************************************************************/ /* * Notes: * When two-sided lighting is enabled we compute the color (or index) * for both the front and back side of the primitive. Then, when the * orientation of the facet is later learned, we can determine which * color (or index) to use for rendering. * * Variables: * n = normal vector * V = vertex position * P = light source position * Pe = (0,0,0,1) * * Precomputed: * IF P[3]==0 THEN * // light at infinity * IF local_viewer THEN * VP_inf_norm = unit vector from V to P // Precompute * ELSE * // eye at infinity * h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute * ENDIF * ENDIF * * Functions: * Normalize( v ) = normalized vector v * Magnitude( v ) = length of vector v */ /* * Whenever the spotlight exponent for a light changes we must call * this function to recompute the exponent lookup table. */ void gl_compute_spot_exp_table( struct gl_light *l ) { int i; double exponent = l->SpotExponent; l->SpotExpTable[0][0] = 0.0; for (i=1;i<EXP_TABLE_SIZE;i++) { l->SpotExpTable[i][0] = pow(i/(double)(EXP_TABLE_SIZE-1), exponent); } for (i=0;i<EXP_TABLE_SIZE-1;i++) { l->SpotExpTable[i][1] = l->SpotExpTable[i+1][0] - l->SpotExpTable[i][0]; } l->SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0; } /* * Whenever the shininess of a material changes we must call this * function to recompute the exponential lookup table. */ void gl_compute_material_shine_table( struct gl_material *m ) { int i; double exponent = m->Shininess; m->ShineTable[0] = 0.0; for (i=1;i<SHINE_TABLE_SIZE;i++) { double x = pow( i/(double)(SHINE_TABLE_SIZE-1), exponent ); if (x<1.0e-10) { m->ShineTable[i] = 0.0; } else { m->ShineTable[i] = x; } } } /* * Examine current lighting parameters to determine if the optimized lighting * function can be used. Also, precompute some lighting values which are * used by gl_color_shade_vertices_fast(). */ void gl_update_lighting( GLcontext *ctx ) { GLint i; struct gl_light *prev_enabled, *light; if (!ctx->Light.Enabled) { /* If lighting is not enabled, we can skip all this. */ return; } /* base color = material_emission + global_ambient */ ctx->Light.BaseColor[0] = ctx->Light.Material[0].Emission[0] + ctx->Light.Model.Ambient[0] * ctx->Light.Material[0].Ambient[0]; ctx->Light.BaseColor[1] = ctx->Light.Material[0].Emission[1] + ctx->Light.Model.Ambient[1] * ctx->Light.Material[0].Ambient[1]; ctx->Light.BaseColor[2] = ctx->Light.Material[0].Emission[2] + ctx->Light.Model.Ambient[2] * ctx->Light.Material[0].Ambient[2]; ctx->Light.BaseColor[3] = MIN2( ctx->Light.Material[0].Diffuse[3], 1.0F ); /* Setup linked list of enabled light sources */ prev_enabled = NULL; ctx->Light.FirstEnabled = NULL; for (i=0;i<MAX_LIGHTS;i++) { ctx->Light.Light[i].NextEnabled = NULL; if (ctx->Light.Light[i].Enabled) { if (prev_enabled) { prev_enabled->NextEnabled = &ctx->Light.Light[i]; } else { ctx->Light.FirstEnabled = &ctx->Light.Light[i]; } prev_enabled = &ctx->Light.Light[i]; } } /* Precompute some lighting stuff */ for (light = ctx->Light.FirstEnabled; light; light = light->NextEnabled) { struct gl_material *mat = &ctx->Light.Material[0]; /* Add each light's ambient component to base color */ ctx->Light.BaseColor[0] += light->Ambient[0] * mat->Ambient[0]; ctx->Light.BaseColor[1] += light->Ambient[1] * mat->Ambient[1]; ctx->Light.BaseColor[2] += light->Ambient[2] * mat->Ambient[2]; /* compute product of light's ambient with front material ambient */ light->MatAmbient[0] = light->Ambient[0] * mat->Ambient[0]; light->MatAmbient[1] = light->Ambient[1] * mat->Ambient[1]; light->MatAmbient[2] = light->Ambient[2] * mat->Ambient[2]; /* compute product of light's diffuse with front material diffuse */ light->MatDiffuse[0] = light->Diffuse[0] * mat->Diffuse[0]; light->MatDiffuse[1] = light->Diffuse[1] * mat->Diffuse[1]; light->MatDiffuse[2] = light->Diffuse[2] * mat->Diffuse[2]; /* compute product of light's specular with front material specular */ light->MatSpecular[0] = light->Specular[0] * mat->Specular[0]; light->MatSpecular[1] = light->Specular[1] * mat->Specular[1]; light->MatSpecular[2] = light->Specular[2] * mat->Specular[2]; /* VP (VP) = Normalize( Position ) */ COPY_3V( light->VP_inf_norm, light->Position ); NORMALIZE_3V( light->VP_inf_norm ); /* h_inf_norm = Normalize( V_to_P + <0,0,1> ) */ COPY_3V( light->h_inf_norm, light->VP_inf_norm ); light->h_inf_norm[2] += 1.0F; NORMALIZE_3V( light->h_inf_norm ); COPY_3V( light->NormDirection, light->Direction ); NORMALIZE_3V( light->NormDirection ); /* Compute color index diffuse and specular light intensities */ light->dli = 0.30F * light->Diffuse[0] + 0.59F * light->Diffuse[1] + 0.11F * light->Diffuse[2]; light->sli = 0.30F * light->Specular[0] + 0.59F * light->Specular[1] + 0.11F * light->Specular[2]; } /* Determine if the fast lighting function can be used */ ctx->Light.Fast = GL_TRUE; if ( ctx->Light.BaseColor[0]<0.0F || ctx->Light.BaseColor[1]<0.0F || ctx->Light.BaseColor[2]<0.0F || ctx->Light.BaseColor[3]<0.0F || ctx->Light.Model.TwoSide || ctx->Light.Model.LocalViewer || ctx->Light.ColorMaterialEnabled) { ctx->Light.Fast = GL_FALSE; } else { for (light=ctx->Light.FirstEnabled; light; light=light->NextEnabled) { if ( light->Position[3]!=0.0F || light->SpotCutoff!=180.0F || light->MatDiffuse[0]<0.0F || light->MatDiffuse[1]<0.0F || light->MatDiffuse[2]<0.0F || light->MatSpecular[0]<0.0F || light->MatSpecular[1]<0.0F || light->MatSpecular[2]<0.0F) { ctx->Light.Fast = GL_FALSE; break; } } } } /* * Use current lighting/material settings to compute the RGBA colors of * an array of vertexes. * Input: n - number of vertexes to process * vertex - array of vertex positions in eye coordinates * normal - array of surface normal vectors * twoside - 0 = front face shading only, 1 = two-sided lighting * Output: frontcolor - array of resulting front-face colors * backcolor - array of resulting back-face colors */ void gl_color_shade_vertices( GLcontext *ctx, GLuint n, GLfloat vertex[][4], GLfloat normal[][3], GLuint twoside, GLfixed frontcolor[][4], GLfixed backcolor[][4] ) { GLint side, j; GLfloat rscale, gscale, bscale, ascale; /* Compute scale factor to go from floats in [0,1] to integers or fixed * point values: */ rscale = (GLfloat) ( (GLint) ctx->Visual->RedScale << ctx->ColorShift ); gscale = (GLfloat) ( (GLint) ctx->Visual->GreenScale << ctx->ColorShift ); bscale = (GLfloat) ( (GLint) ctx->Visual->BlueScale << ctx->ColorShift ); ascale = (GLfloat) ( (GLint) ctx->Visual->AlphaScale << ctx->ColorShift ); for (side=0;side<=twoside;side++) { GLfloat r0, g0, b0, a0; GLfixed A; struct gl_light *light; struct gl_material *mat; mat = &ctx->Light.Material[side]; /*** Compute color contribution from global lighting ***/ r0 = ctx->Light.Material[side].Emission[0] + ctx->Light.Model.Ambient[0] * mat->Ambient[0]; g0 = mat->Emission[1] + ctx->Light.Model.Ambient[1] * mat->Ambient[1]; b0 = mat->Emission[2] + ctx->Light.Model.Ambient[2] * mat->Ambient[2]; /* Alpha is simple, same for all vertices */ a0 = mat->Diffuse[3]; A = (GLfixed) (CLAMP( a0, 0.0F, 1.0F ) * ascale); for (j=0;j<n;j++) { GLfloat R, G, B; GLfloat nx, ny, nz; if (side==0) { /* shade frontside */ nx = normal[j][0]; ny = normal[j][1]; nz = normal[j][2]; } else { /* shade backside */ nx = -normal[j][0]; ny = -normal[j][1]; nz = -normal[j][2]; } R = r0; G = g0; B = b0; /* Add contribution from each enabled light source */ for (light=ctx->Light.FirstEnabled; light; light=light->NextEnabled) { GLfloat attenuation; GLfloat VPx, VPy, VPz; /* unit vector from vertex to light */ GLfloat n_dot_VP; /* n dot VP */ /* compute VP and attenuation */ if (light->Position[3]==0.0) { /* directional light */ VPx = light->VP_inf_norm[0]; VPy = light->VP_inf_norm[1]; VPz = light->VP_inf_norm[2]; attenuation = 1.0F; } else { /* positional light */ GLfloat d; /* distance from vertex to light */ VPx = light->Position[0] - vertex[j][0]; VPy = light->Position[1] - vertex[j][1]; VPz = light->Position[2] - vertex[j][2]; d = (GLfloat) sqrt( VPx*VPx + VPy*VPy + VPz*VPz ); if (d>0.001F) { GLfloat invd = 1.0F / d; VPx *= invd; VPy *= invd; VPz *= invd; } attenuation = 1.0F / (light->ConstantAttenuation + d * (light->LinearAttenuation + d * light->QuadraticAttenuation)); } /* Compute dot product or normal and vector from V to light pos */ n_dot_VP = nx * VPx + ny * VPy + nz * VPz; /* diffuse and specular terms */ if (n_dot_VP<=0.0F) { /* surface faces away from light, no diffuse or specular */ R += attenuation * light->Ambient[0] * mat->Ambient[0]; G += attenuation * light->Ambient[1] * mat->Ambient[1]; B += attenuation * light->Ambient[2] * mat->Ambient[2]; /* done with this light */ } else { GLfloat hx, hy, hz, n_dot_h, t, spotlight_effect; GLfloat ambientR, ambientG, ambientB; GLfloat diffuseR, diffuseG, diffuseB; GLfloat specularR, specularG, specularB; ambientR = light->Ambient[0] * mat->Ambient[0]; ambientG = light->Ambient[1] * mat->Ambient[1]; ambientB = light->Ambient[2] * mat->Ambient[2]; /* spotlight factor */ if (light->SpotCutoff==180.0F) { /* not a spot light */ spotlight_effect = 1.0F; } else { GLfloat PVx, PVy, PVz, PV_dot_dir; PVx = -VPx; PVy = -VPy; PVz = -VPz; PV_dot_dir = PVx*light->NormDirection[0] + PVy*light->NormDirection[1] + PVz*light->NormDirection[2]; if (PV_dot_dir<=0.0F || PV_dot_dir<light->CosCutoff) { /* outside of cone */ spotlight_effect = 0.0F; } else { double x = PV_dot_dir * (EXP_TABLE_SIZE-1); int k = (int) x; spotlight_effect = light->SpotExpTable[k][0] + (x-k)*light->SpotExpTable[k][1]; } } /* diffuse term */ diffuseR = n_dot_VP * light->Diffuse[0] * mat->Diffuse[0]; diffuseG = n_dot_VP * light->Diffuse[1] * mat->Diffuse[1]; diffuseB = n_dot_VP * light->Diffuse[2] * mat->Diffuse[2]; /* specular term */ if (ctx->Light.Model.LocalViewer) { GLfloat vx, vy, vz, vlen; vx = vertex[j][0]; vy = vertex[j][1]; vz = vertex[j][2]; vlen = sqrt( vx*vx + vy*vy + vz*vz ); if (vlen>0.0001F) { GLfloat invlen = 1.0F / vlen; vx *= invlen; vy *= invlen; vz *= invlen; } /* h = VP + VPe */ hx = VPx - vx; hy = VPy - vy; hz = VPz - vz; } else { /* h = VP + <0,0,1> */ hx = VPx; hy = VPy; hz = VPz + 1.0F; } /* attention: h is not normalized, done later if needed */ n_dot_h = nx*hx + ny*hy + nz*hz; if (n_dot_h<=0.0F) { specularR = 0.0F; specularG = 0.0F; specularB = 0.0F; } else { GLfloat spec_coef; /* now `correct' the dot product */ n_dot_h = n_dot_h / sqrt( hx*hx + hy*hy + hz*hz ); if (n_dot_h>1.0F) { /* only happens if normal vector length > 1.0 */ spec_coef = pow( n_dot_h, mat->Shininess ); } else { /* use table lookup approximation */ int k = (int) (n_dot_h * (GLfloat) (SHINE_TABLE_SIZE-1)); spec_coef = mat->ShineTable[k]; } if (spec_coef<1.0e-10) { specularR = 0.0F; specularG = 0.0F; specularB = 0.0F; } else { specularR = spec_coef * light->Specular[0] * mat->Specular[0]; specularG = spec_coef * light->Specular[1] * mat->Specular[1]; specularB = spec_coef * light->Specular[2] * mat->Specular[2]; } } t = attenuation * spotlight_effect; R += t * (ambientR + diffuseR + specularR); G += t * (ambientG + diffuseG + specularG); B += t * (ambientB + diffuseB + specularB); } } /*loop over lights*/ if (side==0) { /* clamp and convert to integer or fixed point */ frontcolor[j][0] = (GLfixed) (CLAMP( R, 0.0F, 1.0F ) * rscale); frontcolor[j][1] = (GLfixed) (CLAMP( G, 0.0F, 1.0F ) * gscale); frontcolor[j][2] = (GLfixed) (CLAMP( B, 0.0F, 1.0F ) * bscale); frontcolor[j][3] = A; } else { /* clamp and convert to integer or fixed point */ backcolor[j][0] = (GLfixed) (CLAMP( R, 0.0F, 1.0F ) * rscale); backcolor[j][1] = (GLfixed) (CLAMP( G, 0.0F, 1.0F ) * gscale); backcolor[j][2] = (GLfixed) (CLAMP( B, 0.0F, 1.0F ) * bscale); backcolor[j][3] = A; } } /*loop over vertices*/ } /*for side*/ } /* * This is an optimized version of the above function. */ void gl_color_shade_vertices_fast( GLcontext *ctx, GLuint n, GLfloat vertex[][4], GLfloat normal[][3], GLuint twoside, GLfixed frontcolor[][4], GLfixed backcolor[][4] ) { GLint j; GLfloat rscale, gscale, bscale, ascale; GLfixed A; /* Compute scale factor to go from floats in [0,1] to integers or fixed * point values: */ rscale = (GLfloat) ( (GLint) ctx->Visual->RedScale << ctx->ColorShift ); gscale = (GLfloat) ( (GLint) ctx->Visual->GreenScale << ctx->ColorShift ); bscale = (GLfloat) ( (GLint) ctx->Visual->BlueScale << ctx->ColorShift ); ascale = (GLfloat) ( (GLint) ctx->Visual->AlphaScale << ctx->ColorShift ); /* Alpha is easy to compute, same for all vertices */ A = (GLfixed) ( ctx->Light.BaseColor[3] * ascale); /* Loop over vertices */ for (j=0;j<n;j++) { GLfloat R, G, B; GLfloat nx, ny, nz; struct gl_light *light; /* the normal vector */ nx = normal[j][0]; ny = normal[j][1]; nz = normal[j][2]; /* base color from global illumination and enabled light's ambient */ R = ctx->Light.BaseColor[0]; G = ctx->Light.BaseColor[1]; B = ctx->Light.BaseColor[2]; /* Add contribution from each light source */ for (light=ctx->Light.FirstEnabled; light; light=light->NextEnabled) { GLfloat n_dot_VP; /* n dot VP */ n_dot_VP = nx * light->VP_inf_norm[0] + ny * light->VP_inf_norm[1] + nz * light->VP_inf_norm[2]; /* diffuse and specular terms */ if (n_dot_VP>0.0F) { GLfloat n_dot_h; /** add diffuse term **/ R += n_dot_VP * light->MatDiffuse[0]; G += n_dot_VP * light->MatDiffuse[1]; B += n_dot_VP * light->MatDiffuse[2]; /** specular term **/ /* dot product of n and h_inf_norm */ n_dot_h = nx * light->h_inf_norm[0] + ny * light->h_inf_norm[1] + nz * light->h_inf_norm[2]; if (n_dot_h>0.0F) { if (n_dot_h>1.0F) { /* only happens if Magnitude(n) > 1.0 */ GLfloat spec_coef = pow( n_dot_h, ctx->Light.Material[0].Shininess ); if (spec_coef>1.0e-10F) { R += spec_coef * light->MatSpecular[0]; G += spec_coef * light->MatSpecular[1]; B += spec_coef * light->MatSpecular[2]; } } else { /* use table lookup approximation */ int k = (int) (n_dot_h * (GLfloat) (SHINE_TABLE_SIZE-1)); GLfloat spec_coef = ctx->Light.Material[0].ShineTable[k]; R += spec_coef * light->MatSpecular[0]; G += spec_coef * light->MatSpecular[1]; B += spec_coef * light->MatSpecular[2]; } } } } /*loop over lights*/ /* clamp and convert to integer or fixed point */ frontcolor[j][0] = (GLfixed) (MIN2( R, 1.0F ) * rscale); frontcolor[j][1] = (GLfixed) (MIN2( G, 1.0F ) * gscale); frontcolor[j][2] = (GLfixed) (MIN2( B, 1.0F ) * bscale); frontcolor[j][3] = A; } /*loop over vertices*/ } /* * Use current lighting/material settings to compute the color indexes * for an array of vertices. * Input: n - number of vertices to shade * vertex - array of [n] vertex position in viewing coordinates * normal - array of [n] surface normal vector * twoside - 0 = front face shading only, 1 = two-sided lighting * Output: frontindex - resulting array of [n] front-face color indexes * backindex - resulting array of [n] back-face color indexes */ void gl_index_shade_vertices( GLcontext *ctx, GLuint n, GLfloat vertex[][4], GLfloat normal[][3], GLuint twoside, GLuint frontindex[], GLuint backindex[] ) { GLint side, j; GLuint *output_index; for (side=0;side<=twoside;side++) { struct gl_material *mat = &ctx->Light.Material[side]; if (side==0) { output_index = frontindex; } else { output_index = backindex; } /* loop over vertices */ for (j=0;j<n;j++) { GLfloat index; GLfloat diffuse, specular; /* accumulated diffuse and specular */ GLfloat nx, ny, nz; /* normal vector */ struct gl_light *light; if (side==0) { /* shade frontside */ nx = normal[j][0]; ny = normal[j][1]; nz = normal[j][2]; } else { /* shade backside */ nx = -normal[j][0]; ny = -normal[j][1]; nz = -normal[j][2]; } diffuse = specular = 0.0F; /* Accumulate diffuse and specular from each light source */ for (light=ctx->Light.FirstEnabled; light; light=light->NextEnabled) { GLfloat attenuation; GLfloat lx, ly, lz; /* unit vector from vertex to light */ GLfloat l_dot_norm; /* dot product of l and n */ /* compute l and attenuation */ if (light->Position[3]==0.0) { /* directional light */ /* Effectively, l is a vector from the origin to the light. */ lx = light->VP_inf_norm[0]; ly = light->VP_inf_norm[1]; lz = light->VP_inf_norm[2]; attenuation = 1.0F; } else { /* positional light */ GLfloat d; /* distance from vertex to light */ lx = light->Position[0] - vertex[j][0]; ly = light->Position[1] - vertex[j][1]; lz = light->Position[2] - vertex[j][2]; d = (GLfloat) sqrt( lx*lx + ly*ly + lz*lz ); if (d>0.001F) { GLfloat invd = 1.0F / d; lx *= invd; ly *= invd; lz *= invd; } attenuation = 1.0F / (light->ConstantAttenuation + d * (light->LinearAttenuation + d * light->QuadraticAttenuation)); } l_dot_norm = lx*nx + ly*ny + lz*nz; if (l_dot_norm>0.0F) { GLfloat spot_times_atten; /* spotlight factor */ if (light->SpotCutoff==180.0F) { /* not a spot light */ spot_times_atten = attenuation; } else { GLfloat v[3], dot; v[0] = -lx; /* v points from light to vertex */ v[1] = -ly; v[2] = -lz; dot = DOT3( v, light->NormDirection ); if (dot<=0.0F || dot<light->CosCutoff) { /* outside of cone */ spot_times_atten = 0.0F; } else { double x = dot * (EXP_TABLE_SIZE-1); int k = (int) x; GLfloat spot = light->SpotExpTable[k][0] + (x-k)*light->SpotExpTable[k][1]; spot_times_atten = spot * attenuation; } } /* accumulate diffuse term */ diffuse += l_dot_norm * light->dli * spot_times_atten; /* accumulate specular term */ { GLfloat hx, hy, hz, dot, spec_coef; /* specular term */ if (ctx->Light.Model.LocalViewer) { GLfloat vx, vy, vz, vlen; vx = vertex[j][0]; vy = vertex[j][1]; vz = vertex[j][2]; vlen = sqrt( vx*vx + vy*vy + vz*vz ); if (vlen>0.0001F) { GLfloat invlen = 1.0F / vlen; vx *= invlen; vy *= invlen; vz *= invlen; } hx = lx - vx; hy = ly - vy; hz = lz - vz; } else { hx = lx; hy = ly; hz = lz + 1.0F; } /* attention: s is not normalized, done later if necessary */ dot = hx*nx + hy*ny + hz*nz; if (dot<=0.0F) { spec_coef = 0.0F; } else { /* now `correct' the dot product */ dot = dot / sqrt(hx*hx + hy*hy + hz*hz); if (dot>1.0F) { spec_coef = pow( dot, mat->Shininess ); } else { int k = (int) (dot * (GLfloat)(SHINE_TABLE_SIZE-1)); spec_coef = mat->ShineTable[k]; } } specular += spec_coef * light->sli * spot_times_atten; } } } /*loop over lights*/ /* Now compute final color index */ if (specular>1.0F) { index = mat->SpecularIndex; } else { GLfloat d_a, s_a; d_a = mat->DiffuseIndex - mat->AmbientIndex; s_a = mat->SpecularIndex - mat->AmbientIndex; index = mat->AmbientIndex + diffuse * (1.0F-specular) * d_a + specular * s_a; if (index>mat->SpecularIndex) { index = mat->SpecularIndex; } } output_index[j] = (GLuint) (GLint) index; } /*for vertex*/ } /*for side*/ }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.