This is sparc.c in view mode; [Download] [Up]
/* tc-sparc.c -- Assemble for the SPARC Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #define cypress 1234 #include <stdio.h> #include <ctype.h> #include "as.h" #ifdef NeXT #include "libc.h" #include "md.h" #include "messages.h" #include "symbols.h" #endif NeXT /* careful, this file includes data *declarations* */ #ifdef NeXT #include "sparc-opcode.h" #include <mach-o/sparc/reloc.h> /* From GNU ansidecl.h */ #define PARAMS(paramlist) paramlist typedef long offsetT; #endif NeXT #ifdef NeXT /* * These are the default cputype and cpusubtype for the Sparc architecture. */ const cpu_type_t md_cputype = CPU_TYPE_SPARC; cpu_subtype_t md_cpusubtype = /*CPU_SUBTYPE_SPARC_ALL*/ 0; /* This is the byte sex for the Sparc architecture */ const enum byte_sex md_target_byte_sex = BIG_ENDIAN_BYTE_SEX; /* These characters start a comment anywhere on the line */ const char md_comment_chars[] = ";!"; /* These characters only start a comment at the beginning of a line */ const char md_line_comment_chars[] = "#"; /* * These characters can be used to separate mantissa decimal digits from * exponent decimal digits in floating point numbers. */ const char md_EXP_CHARS[] = "eE"; /* * The characters after a leading 0 that means this number is a floating point * constant as in 0f123.456 or 0d1.234E-12 (see md_EXP_CHARS above). */ const char md_FLT_CHARS[] = "dDfF"; #endif NeXT static void sparc_ip PARAMS ((char *)); static enum sparc_architecture current_architecture = v6; static int architecture_requested; static int warn_on_bump; #ifndef NeXT extern int target_big_endian; #endif NeXT const relax_typeS md_relax_table[1]; /* handle of the OPCODE hash table */ static struct hash_control *op_hash = NULL; #ifdef NeXT static void s_proc PARAMS ((int)); #else NeXT static void s_data1 PARAMS ((void)); static void s_seg PARAMS ((int)); static void s_proc PARAMS ((int)); static void s_reserve PARAMS ((int)); static void s_common PARAMS ((int)); #endif NeXT const pseudo_typeS md_pseudo_table[] = { #ifdef NeXT {"global", s_globl, 0}, /* Maybe we should fix compiler to use globl */ {"proc", s_proc, 0}, /* nop??? */ #else NeXT {"align", s_align_bytes, 0}, /* Defaulting is invalid (0) */ {"common", s_common, 0}, {"global", s_globl, 0}, {"half", cons, 2}, {"optim", s_ignore, 0}, {"proc", s_proc, 0}, {"reserve", s_reserve, 0}, {"seg", s_seg, 0}, {"skip", s_space, 0}, {"word", cons, 4}, #ifdef OBJ_ELF /* these are specific to sparc/svr4 */ {"pushsection", obj_elf_section, 0}, {"popsection", obj_elf_previous, 0}, {"uaword", cons, 4}, {"uahalf", cons, 2}, #endif #endif NeXT {NULL, 0, 0}, }; const int md_short_jump_size = 4; const int md_long_jump_size = 4; const int md_reloc_size = 12; /* Size of relocation record */ /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful */ const char comment_chars[] = "!"; /* JF removed '|' from comment_chars */ /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output */ /* Note that input_file.c hand checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that comments started like this one will always work if '/' isn't otherwise defined. */ const char line_comment_chars[] = "#"; const char line_separator_chars[] = ""; /* Chars that can be used to separate mant from exp in floating point nums */ const char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant */ /* As in 0f12.456 */ /* or 0d1.2345e12 */ const char FLT_CHARS[] = "rRsSfFdDxXpP"; /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be changed in read.c. Ideally it shouldn't have to know about it at all, but nothing is ideal around here. */ static unsigned char octal[256]; #define isoctal(c) octal[(unsigned char) (c)] static unsigned char toHex[256]; struct sparc_it { char *error; unsigned long opcode; struct nlist *nlistp; expressionS exp; int pcrel; #ifdef NeXT enum reloc_type_sparc reloc; #else NeXT bfd_reloc_code_real_type reloc; #endif NeXT }; struct sparc_it the_insn, set_insn; #if 0 static void print_insn PARAMS ((struct sparc_it *insn)); #endif static int getExpression PARAMS ((char *str)); static char *expr_end; static int special_case; /* * Instructions that require wierd handling because they're longer than * 4 bytes. */ #define SPECIAL_CASE_SET 1 #ifndef NeXT #define SPECIAL_CASE_FDIV 2 #endif NeXT /* * sort of like s_lcomm * */ #ifndef NeXT #ifndef OBJ_ELF static int max_alignment = 15; #endif static void s_reserve (ignore) int ignore; { char *name; char *p; char c; int align; int size; int temp; symbolS *symbolP; name = input_line_pointer; c = get_symbol_end (); p = input_line_pointer; *p = c; SKIP_WHITESPACE (); if (*input_line_pointer != ',') { as_bad ("Expected comma after name"); ignore_rest_of_line (); return; } ++input_line_pointer; if ((size = get_absolute_expression ()) < 0) { as_bad ("BSS length (%d.) <0! Ignored.", size); ignore_rest_of_line (); return; } /* bad length */ *p = 0; symbolP = symbol_find_or_make (name); *p = c; if (strncmp (input_line_pointer, ",\"bss\"", 6) != 0 && strncmp (input_line_pointer, ",\".bss\"", 7) != 0) { as_bad ("bad .reserve segment: `%s'", input_line_pointer); return; } if (input_line_pointer[2] == '.') input_line_pointer += 7; else input_line_pointer += 6; SKIP_WHITESPACE (); if (*input_line_pointer == ',') { ++input_line_pointer; SKIP_WHITESPACE (); if (*input_line_pointer == '\n') { as_bad ("Missing alignment"); return; } align = get_absolute_expression (); #ifndef OBJ_ELF if (align > max_alignment) { align = max_alignment; as_warn ("Alignment too large: %d. assumed.", align); } #endif if (align < 0) { align = 0; as_warn ("Alignment negative. 0 assumed."); } record_alignment (bss_section, align); /* convert to a power of 2 alignment */ for (temp = 0; (align & 1) == 0; align >>= 1, ++temp);; if (align != 1) { as_bad ("Alignment not a power of 2"); ignore_rest_of_line (); return; } /* not a power of two */ align = temp; } /* if has optional alignment */ else align = 0; if ((S_GET_SEGMENT (symbolP) == bss_section || !S_IS_DEFINED (symbolP)) #ifdef OBJ_AOUT && S_GET_OTHER (symbolP) == 0 && S_GET_DESC (symbolP) == 0 #endif ) { if (! need_pass_2) { char *pfrag; segT current_seg = now_seg; subsegT current_subseg = now_subseg; subseg_set (bss_section, 1); /* switch to bss */ if (align) frag_align (align, 0); /* do alignment */ /* detach from old frag */ if (S_GET_SEGMENT(symbolP) == bss_section) symbolP->sy_frag->fr_symbol = NULL; symbolP->sy_frag = frag_now; pfrag = frag_var (rs_org, 1, 1, (relax_substateT)0, symbolP, size, (char *)0); *pfrag = 0; S_SET_SEGMENT (symbolP, bss_section); subseg_set (current_seg, current_subseg); } } else { as_warn("Ignoring attempt to re-define symbol %s.", name); } /* if not redefining */ demand_empty_rest_of_line (); } static void s_common (ignore) int ignore; { char *name; char c; char *p; int temp, size; symbolS *symbolP; name = input_line_pointer; c = get_symbol_end (); /* just after name is now '\0' */ p = input_line_pointer; *p = c; SKIP_WHITESPACE (); if (*input_line_pointer != ',') { as_bad ("Expected comma after symbol-name"); ignore_rest_of_line (); return; } input_line_pointer++; /* skip ',' */ if ((temp = get_absolute_expression ()) < 0) { as_bad (".COMMon length (%d.) <0! Ignored.", temp); ignore_rest_of_line (); return; } size = temp; *p = 0; symbolP = symbol_find_or_make (name); *p = c; if (S_IS_DEFINED (symbolP)) { as_bad ("Ignoring attempt to re-define symbol"); ignore_rest_of_line (); return; } if (S_GET_VALUE (symbolP) != 0) { if (S_GET_VALUE (symbolP) != size) { as_warn ("Length of .comm \"%s\" is already %ld. Not changed to %d.", S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), size); } } else { #ifndef OBJ_ELF S_SET_VALUE (symbolP, (valueT) size); S_SET_EXTERNAL (symbolP); #endif } know (symbolP->sy_frag == &zero_address_frag); if (*input_line_pointer != ',') { as_bad ("Expected comma after common length"); ignore_rest_of_line (); return; } input_line_pointer++; SKIP_WHITESPACE (); if (*input_line_pointer != '"') { temp = get_absolute_expression (); #ifndef OBJ_ELF if (temp > max_alignment) { temp = max_alignment; as_warn ("Common alignment too large: %d. assumed", temp); } #endif if (temp < 0) { temp = 0; as_warn ("Common alignment negative; 0 assumed"); } #ifdef OBJ_ELF if (symbolP->local) { segT old_sec; int old_subsec; char *p; int align; allocate_bss: old_sec = now_seg; old_subsec = now_subseg; align = temp; record_alignment (bss_section, align); subseg_set (bss_section, 0); if (align) frag_align (align, 0); if (S_GET_SEGMENT (symbolP) == bss_section) symbolP->sy_frag->fr_symbol = 0; symbolP->sy_frag = frag_now; p = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP, size, (char *) 0); *p = 0; S_SET_SEGMENT (symbolP, bss_section); S_CLEAR_EXTERNAL (symbolP); subseg_set (old_sec, old_subsec); } else #endif { allocate_common: S_SET_VALUE (symbolP, (valueT) size); S_SET_EXTERNAL (symbolP); /* should be common, but this is how gas does it for now */ S_SET_SEGMENT (symbolP, &bfd_und_section); } } else { input_line_pointer++; /* @@ Some use the dot, some don't. Can we get some consistency?? */ if (*input_line_pointer == '.') input_line_pointer++; /* @@ Some say data, some say bss. */ if (strncmp (input_line_pointer, "bss\"", 4) && strncmp (input_line_pointer, "data\"", 5)) { while (*--input_line_pointer != '"') ; input_line_pointer--; goto bad_common_segment; } while (*input_line_pointer++ != '"') ; goto allocate_common; } demand_empty_rest_of_line (); return; { bad_common_segment: p = input_line_pointer; while (*p && *p != '\n') p++; c = *p; *p = '\0'; as_bad ("bad .common segment %s", input_line_pointer + 1); *p = c; input_line_pointer = p; ignore_rest_of_line (); return; } } static void s_seg (ignore) int ignore; { if (strncmp (input_line_pointer, "\"text\"", 6) == 0) { input_line_pointer += 6; s_text (0); return; } if (strncmp (input_line_pointer, "\"data\"", 6) == 0) { input_line_pointer += 6; s_data (0); return; } if (strncmp (input_line_pointer, "\"data1\"", 7) == 0) { input_line_pointer += 7; s_data1 (); return; } if (strncmp (input_line_pointer, "\"bss\"", 5) == 0) { input_line_pointer += 5; /* We only support 2 segments -- text and data -- for now, so things in the "bss segment" will have to go into data for now. You can still allocate SEG_BSS stuff with .lcomm or .reserve. */ subseg_set (data_section, 255); /* FIXME-SOMEDAY */ return; } as_bad ("Unknown segment type"); demand_empty_rest_of_line (); } static void s_data1 () { subseg_set (data_section, 1); demand_empty_rest_of_line (); } #endif NeXT static void s_proc (ignore) int ignore; { #ifdef NeXT totally_ignore_line(); #else NeXT while (!is_end_of_line[(unsigned char) *input_line_pointer]) { ++input_line_pointer; } ++input_line_pointer; #endif NeXT } /* This function is called once, at assembler startup time. It should set up all the tables, etc. that the MD part of the assembler will need. */ void md_begin () { register const char *retval = NULL; int lose = 0; register unsigned int i = 0; op_hash = hash_new (); while (i < NUMOPCODES) { const char *name = sparc_opcodes[i].name; retval = hash_insert (op_hash, (char *)name, (char *)&sparc_opcodes[i]); #ifdef NeXT if(retval != NULL && *retval != '\0') #else NeXT if (retval != NULL) #endif NeXT { fprintf (stderr, "internal error: can't hash `%s': %s\n", sparc_opcodes[i].name, retval); lose = 1; } do { if (sparc_opcodes[i].match & sparc_opcodes[i].lose) { fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n", sparc_opcodes[i].name, sparc_opcodes[i].args); lose = 1; } ++i; } while (i < NUMOPCODES && !strcmp (sparc_opcodes[i].name, name)); } if (lose) as_fatal ("Broken assembler. No assembly attempted."); for (i = '0'; i < '8'; ++i) octal[i] = 1; for (i = '0'; i <= '9'; ++i) toHex[i] = i - '0'; for (i = 'a'; i <= 'f'; ++i) toHex[i] = i + 10 - 'a'; for (i = 'A'; i <= 'F'; ++i) toHex[i] = i + 10 - 'A'; #ifndef NeXT target_big_endian = 1; #endif NeXT } #ifdef NeXT void md_end( void) { return; } #endif void md_assemble (str) char *str; { char *toP; int rsd; know (str); sparc_ip (str); /* See if "set" operand is absolute and small; skip sethi if so. */ if (special_case == SPECIAL_CASE_SET #ifdef NeXT && the_insn.exp.X_seg == SEG_ABSOLUTE) #else NeXT && the_insn.exp.X_op == O_constant) #endif NeXT { if (the_insn.exp.X_add_number >= -(1 << 12) && the_insn.exp.X_add_number < (1 << 12)) { the_insn.opcode = 0x80102000 /* or %g0,imm,... */ | (the_insn.opcode & 0x3E000000) /* dest reg */ | (the_insn.exp.X_add_number & 0x1FFF); /* imm */ special_case = 0; /* No longer special */ the_insn.reloc = BFD_RELOC_NONE; /* No longer relocated */ } } toP = frag_more (4); /* put out the opcode */ md_number_to_chars (toP, (valueT) the_insn.opcode, 4); /* put out the symbol-dependent stuff */ if (the_insn.reloc != BFD_RELOC_NONE) { #ifdef NeXT fix_new(frag_now, (toP - frag_now->fr_literal), 4, the_insn.exp.X_add_symbol, the_insn.exp.X_subtract_symbol, the_insn.exp.X_add_number, the_insn.pcrel, 0, /* XXX 1 for local labels due to scatter loading? */ the_insn.reloc); #else NeXT fix_new_exp (frag_now, /* which frag */ (toP - frag_now->fr_literal), /* where */ 4, /* size */ &the_insn.exp, the_insn.pcrel, the_insn.reloc); #endif NeXT } switch (special_case) { case SPECIAL_CASE_SET: special_case = 0; assert (the_insn.reloc == BFD_RELOC_HI22); /* See if "set" operand has no low-order bits; skip OR if so. */ #ifdef NeXT if (the_insn.exp.X_seg == SEG_ABSOLUTE #else NeXT if (the_insn.exp.X_op == O_constant #endif NeXT && ((the_insn.exp.X_add_number & 0x3FF) == 0)) return; toP = frag_more (4); rsd = (the_insn.opcode >> 25) & 0x1f; the_insn.opcode = 0x80102000 | (rsd << 25) | (rsd << 14); md_number_to_chars (toP, (valueT) the_insn.opcode, 4); #ifdef NeXT fix_new(frag_now, (toP - frag_now->fr_literal), 4, the_insn.exp.X_add_symbol, the_insn.exp.X_subtract_symbol, the_insn.exp.X_add_number, the_insn.pcrel, 0, BFD_RELOC_LO10); #else NeXT fix_new_exp (frag_now, /* which frag */ (toP - frag_now->fr_literal), /* where */ 4, /* size */ &the_insn.exp, the_insn.pcrel, BFD_RELOC_LO10); #endif NeXT return; #ifdef NeXT // no need to support Sun-4/260s #else NeXT case SPECIAL_CASE_FDIV: /* According to information leaked from Sun, the "fdiv" instructions on early SPARC machines would produce incorrect results sometimes. The workaround is to add an fmovs of the destination register to itself just after the instruction. This was true on machines with Weitek 1165 float chips, such as the Sun-4/260 and /280. */ special_case = 0; assert (the_insn.reloc == BFD_RELOC_NONE); toP = frag_more (4); rsd = (the_insn.opcode >> 25) & 0x1f; the_insn.opcode = 0x81A00020 | (rsd << 25) | rsd; /* fmovs dest,dest */ md_number_to_chars (toP, (valueT) the_insn.opcode, 4); return; #endif NeXT case 0: return; default: as_fatal ("failed sanity check."); } } static void sparc_ip (str) char *str; { char *error_message = ""; char *s; const char *args; char c; struct sparc_opcode *insn; char *argsStart; unsigned long opcode; unsigned int mask = 0; int match = 0; int comma = 0; long immediate_max = 0; for (s = str; islower (*s) || (*s >= '0' && *s <= '3'); ++s) ; switch (*s) { case '\0': break; case ',': comma = 1; /*FALLTHROUGH */ case ' ': *s++ = '\0'; break; default: as_bad ("Unknown opcode: `%s'", str); exit (1); } if ((insn = (struct sparc_opcode *) hash_find (op_hash, str)) == NULL) { as_bad ("Unknown opcode: `%s'", str); return; } if (comma) { *--s = ','; } argsStart = s; for (;;) { opcode = insn->match; memset (&the_insn, '\0', sizeof (the_insn)); the_insn.reloc = BFD_RELOC_NONE; /* * Build the opcode, checking as we go to make * sure that the operands match */ for (args = insn->args;; ++args) { switch (*args) { case 'M': case 'm': if (strncmp (s, "%asr", 4) == 0) { s += 4; if (isdigit (*s)) { long num = 0; while (isdigit (*s)) { num = num * 10 + *s - '0'; ++s; } if (num < 16 || 31 < num) { error_message = ": asr number must be between 15 and 31"; goto error; } /* out of range */ opcode |= (*args == 'M' ? RS1 (num) : RD (num)); continue; } else { error_message = ": expecting %asrN"; goto error; } /* if %asr followed by a number. */ } /* if %asr */ break; case '\0': /* end of args */ if (*s == '\0') { match = 1; } break; case '+': if (*s == '+') { ++s; continue; } if (*s == '-') { continue; } break; case '[': /* these must match exactly */ case ']': case ',': case ' ': if (*s++ == *args) continue; break; case '#': /* must be at least one digit */ if (isdigit (*s++)) { while (isdigit (*s)) { ++s; } continue; } break; case 'C': /* coprocessor state register */ if (strncmp (s, "%csr", 4) == 0) { s += 4; continue; } break; case 'b': /* next operand is a coprocessor register */ case 'c': case 'D': if (*s++ == '%' && *s++ == 'c' && isdigit (*s)) { mask = *s++; if (isdigit (*s)) { mask = 10 * (mask - '0') + (*s++ - '0'); if (mask >= 32) { break; } } else { mask -= '0'; } switch (*args) { case 'b': opcode |= mask << 14; continue; case 'c': opcode |= mask; continue; case 'D': opcode |= mask << 25; continue; } } break; case 'r': /* next operand must be a register */ case '1': case '2': case 'd': if (*s++ == '%') { switch (c = *s++) { case 'f': /* frame pointer */ if (*s++ == 'p') { mask = 0x1e; break; } goto error; case 'g': /* global register */ if (isoctal (c = *s++)) { mask = c - '0'; break; } goto error; case 'i': /* in register */ if (isoctal (c = *s++)) { mask = c - '0' + 24; break; } goto error; case 'l': /* local register */ if (isoctal (c = *s++)) { mask = (c - '0' + 16); break; } goto error; case 'o': /* out register */ if (isoctal (c = *s++)) { mask = (c - '0' + 8); break; } goto error; case 's': /* stack pointer */ if (*s++ == 'p') { mask = 0xe; break; } goto error; case 'r': /* any register */ if (!isdigit (c = *s++)) { goto error; } /* FALLTHROUGH */ case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if (isdigit (*s)) { if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32) { goto error; } } else { c -= '0'; } mask = c; break; default: goto error; } /* * Got the register, now figure out where * it goes in the opcode. */ switch (*args) { case '1': opcode |= mask << 14; continue; case '2': opcode |= mask; continue; case 'd': opcode |= mask << 25; continue; case 'r': opcode |= (mask << 25) | (mask << 14); continue; } } break; case 'e': /* next operand is a floating point register */ case 'v': case 'V': case 'f': case 'B': case 'R': case 'g': case 'H': case 'J': { char format; if (*s++ == '%' && ((format = *s) == 'f') && isdigit (*++s)) { for (mask = 0; isdigit (*s); ++s) { mask = 10 * mask + (*s - '0'); } /* read the number */ if ((*args == 'v' || *args == 'B' || *args == 'H') && (mask & 1)) { break; } /* register must be even numbered */ if ((*args == 'V' || *args == 'R' || *args == 'J') && (mask & 3)) { break; } /* register must be multiple of 4 */ if (mask >= 32) { error_message = ": There are only 32 f registers; [0-31]"; goto error; } /* on error */ } else { break; } /* if not an 'f' register. */ switch (*args) { case 'v': case 'V': case 'e': opcode |= RS1 (mask); continue; case 'f': case 'B': case 'R': opcode |= RS2 (mask); continue; case 'g': case 'H': case 'J': opcode |= RD (mask); continue; } /* pack it in. */ know (0); break; } /* float arg */ case 'F': if (strncmp (s, "%fsr", 4) == 0) { s += 4; continue; } break; case 'h': /* high 22 bits */ the_insn.reloc = BFD_RELOC_HI22; goto immediate; case 'l': /* 22 bit PC relative immediate */ the_insn.reloc = BFD_RELOC_SPARC_WDISP22; the_insn.pcrel = 1; goto immediate; case 'L': /* 30 bit immediate */ the_insn.reloc = BFD_RELOC_32_PCREL_S2; the_insn.pcrel = 1; goto immediate; case 'n': /* 22 bit immediate */ the_insn.reloc = BFD_RELOC_SPARC22; goto immediate; case 'i': /* 13 bit immediate */ /* What's the difference between base13 and 13? */ the_insn.reloc = BFD_RELOC_SPARC_BASE13; immediate_max = 0x0FFF; /*FALLTHROUGH */ immediate: if (*s == ' ') s++; if (*s == '%') { if ((c = s[1]) == 'h' && s[2] == 'i') { the_insn.reloc = BFD_RELOC_HI22; s += 3; } else if (c == 'l' && s[2] == 'o') { the_insn.reloc = BFD_RELOC_LO10; s += 3; } else break; } /* Note that if the getExpression() fails, we will still have created U entries in the symbol table for the 'symbols' in the input string. Try not to create U symbols for registers, etc. */ { /* This stuff checks to see if the expression ends in +%reg. If it does, it removes the register from the expression, and re-sets 's' to point to the right place. */ char *s1; for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++);; if (s1 != s && isdigit (s1[-1])) { if (s1[-2] == '%' && s1[-3] == '+') { s1 -= 3; *s1 = '\0'; (void) getExpression (s); *s1 = '+'; s = s1; continue; } else if (strchr ("goli0123456789", s1[-2]) && s1[-3] == '%' && s1[-4] == '+') { s1 -= 4; *s1 = '\0'; (void) getExpression (s); *s1 = '+'; s = s1; continue; } } } (void) getExpression (s); s = expr_end; #ifdef NeXT if (the_insn.exp.X_seg == SEG_ABSOLUTE && the_insn.exp.X_add_symbol == 0) #else NeXT if (the_insn.exp.X_op == O_constant && the_insn.exp.X_add_symbol == 0 && the_insn.exp.X_op_symbol == 0) #endif NeXT { /* Check for invalid constant values. Don't warn if constant was inside %hi or %lo, since these truncate the constant to fit. */ if (immediate_max != 0 && the_insn.reloc != BFD_RELOC_LO10 && the_insn.reloc != BFD_RELOC_HI22 && (the_insn.exp.X_add_number > immediate_max || the_insn.exp.X_add_number < ~immediate_max)) as_bad ("constant value must be between %ld and %ld", ~immediate_max, immediate_max); } /* Reset to prevent extraneous range check. */ immediate_max = 0; continue; case 'a': if (*s++ == 'a') { opcode |= ANNUL; continue; } break; case 'A': { char *push = input_line_pointer; expressionS e; input_line_pointer = s; expression (&e); #ifdef NeXT if (e.X_seg == SEG_ABSOLUTE) #else NeXT if (e.X_op == O_constant) #endif NeXT { opcode |= e.X_add_number << 5; s = input_line_pointer; input_line_pointer = push; continue; } /* if absolute */ break; } /* alternate space */ case 'p': if (strncmp (s, "%psr", 4) == 0) { s += 4; continue; } break; case 'q': /* floating point queue */ if (strncmp (s, "%fq", 3) == 0) { s += 3; continue; } break; case 'Q': /* coprocessor queue */ if (strncmp (s, "%cq", 3) == 0) { s += 3; continue; } break; case 'S': if (strcmp (str, "set") == 0) { special_case = SPECIAL_CASE_SET; continue; } #ifndef NeXT else if (strncmp (str, "fdiv", 4) == 0) { special_case = SPECIAL_CASE_FDIV; continue; } #endif NeXT break; case 't': if (strncmp (s, "%tbr", 4) != 0) break; s += 4; continue; case 'w': if (strncmp (s, "%wim", 4) != 0) break; s += 4; continue; case 'y': if (strncmp (s, "%y", 2) != 0) break; s += 2; continue; default: as_fatal ("failed sanity check."); } /* switch on arg code */ break; } /* for each arg that we expect */ error: if (match == 0) { /* Args don't match. */ if (((unsigned) (&insn[1] - sparc_opcodes)) < NUMOPCODES && !strcmp (insn->name, insn[1].name)) { ++insn; s = argsStart; continue; } else { as_bad ("Illegal operands%s", error_message); return; } } else { if (insn->architecture > current_architecture) { if ((!architecture_requested || warn_on_bump) && 1 ) { if (warn_on_bump) { as_warn ("architecture bumped from \"%s\" to \"%s\" on \"%s\"", architecture_pname[current_architecture], architecture_pname[insn->architecture], str); } /* if warning */ current_architecture = insn->architecture; } else { as_bad ("architecture mismatch on \"%s\" (\"%s\"). current architecture is \"%s\"", str, architecture_pname[insn->architecture], architecture_pname[current_architecture]); return; } /* if bump ok else error */ } /* if architecture higher */ } /* if no match */ break; } /* forever looking for a match */ the_insn.opcode = opcode; } static int getExpression (str) char *str; { char *save_in; segT seg; save_in = input_line_pointer; input_line_pointer = str; seg = expression (&the_insn.exp); #ifdef NeXT if (seg != SEG_ABSOLUTE && seg != SEG_SECT && seg != SEG_DIFFSECT && seg != SEG_UNKNOWN && seg != SEG_NONE && seg != SEG_BIG) #else NeXT if (seg != absolute_section && seg != text_section && seg != data_section && seg != bss_section && seg != undefined_section) #endif NeXT { the_insn.error = "bad segment"; expr_end = input_line_pointer; input_line_pointer = save_in; return 1; } expr_end = input_line_pointer; input_line_pointer = save_in; return 0; } /* getExpression() */ /* This is identical to the md_atof in m68k.c. I think this is right, but I'm not sure. Turn a string in input_line_pointer into a floating point constant of type type, and store the appropriate bytes in *litP. The number of LITTLENUMS emitted is stored in *sizeP . An error message is returned, or NULL on OK. */ /* Equal to MAX_PRECISION in atof-ieee.c */ #define MAX_LITTLENUMS 6 char * md_atof (type, litP, sizeP) char type; char *litP; int *sizeP; { int prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; LITTLENUM_TYPE *wordP; char *t; char *atof_ieee (); switch (type) { case 'f': case 'F': case 's': case 'S': prec = 2; break; case 'd': case 'D': case 'r': case 'R': prec = 4; break; case 'x': case 'X': prec = 6; break; case 'p': case 'P': prec = 6; break; default: *sizeP = 0; return "Bad call to MD_ATOF()"; } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * sizeof (LITTLENUM_TYPE); for (wordP = words; prec--;) { md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE)); litP += sizeof (LITTLENUM_TYPE); } return 0; } /* * Write out big-endian. */ void md_number_to_chars (buf, val, n) char *buf; #ifdef NeXT long val; #else NeXT valueT val; #endif NeXT int n; { #ifdef NeXT // sigh, all architectures do this.., switch(n) { case 4: *buf++ = val >> 24; *buf++ = val >> 16; case 2: *buf++ = val >> 8; case 1: *buf = val; break; default: abort(); } #else NeXT number_to_chars_bigendian (buf, val, n); #endif NeXT } /* Apply a fixS to the frags, now that we know the value it ought to hold. */ #ifdef NeXT void md_number_to_imm(unsigned char *buf, long val, int size, fixS *fixP, int nsect) { /* NOTE: size is not used as it appears it is encoded in the reloc */ #else NeXT int md_apply_fix (fixP, value) fixS *fixP; valueT *value; { char *buf = fixP->fx_where + fixP->fx_frag->fr_literal; offsetT val; val = *value; assert (fixP->fx_r_type < BFD_RELOC_UNUSED); fixP->fx_addnumber = val; /* Remember value for emit_reloc */ #endif NeXT #ifdef OBJ_ELF /* FIXME: SPARC ELF relocations don't use an addend in the data field itself. This whole approach should be somehow combined with the calls to bfd_perform_relocation. */ if (fixP->fx_addsy != NULL) return 1; #endif /* This is a hack. There should be a better way to handle this. Probably in terms of howto fields, once we can look at these fixups in terms of howtos. */ if (fixP->fx_r_type == BFD_RELOC_32_PCREL_S2 && fixP->fx_addsy) val += fixP->fx_where + fixP->fx_frag->fr_address; switch (fixP->fx_r_type) { #ifndef NeXT case BFD_RELOC_16: buf[0] = val >> 8; buf[1] = val; break; case BFD_RELOC_32: buf[0] = val >> 24; buf[1] = val >> 16; buf[2] = val >> 8; buf[3] = val; break; #endif case BFD_RELOC_32_PCREL_S2: val = (val >>= 2) + 1; buf[0] |= (val >> 24) & 0x3f; buf[1] = (val >> 16); buf[2] = val >> 8; buf[3] = val; break; case BFD_RELOC_HI22: if (!fixP->fx_addsy) { buf[1] |= (val >> 26) & 0x3f; buf[2] = val >> 18; buf[3] = val >> 10; } else { buf[2] = 0; buf[3] = 0; } break; case BFD_RELOC_SPARC22: if (val & ~0x003fffff) { as_bad ("relocation overflow"); } /* on overflow */ buf[1] |= (val >> 16) & 0x3f; buf[2] = val >> 8; buf[3] = val & 0xff; break; #ifndef NeXT case BFD_RELOC_SPARC13: if (val & ~0x00001fff) { as_bad ("relocation overflow"); } /* on overflow */ buf[2] |= (val >> 8) & 0x1f; buf[3] = val & 0xff; break; #endif case BFD_RELOC_LO10: if (!fixP->fx_addsy) { buf[2] |= (val >> 8) & 0x03; buf[3] = val; } else buf[3] = 0; break; case BFD_RELOC_SPARC_BASE13: if (((val > 0) && (val & ~(offsetT)0x00001fff)) || ((val < 0) && (~(val - 1) & ~(offsetT)0x00001fff))) { as_bad ("relocation overflow"); } buf[2] |= (val >> 8) & 0x1f; buf[3] = val; break; case BFD_RELOC_SPARC_WDISP22: val = (val >>= 2) + 1; /* FALLTHROUGH */ #ifndef NeXT case BFD_RELOC_SPARC_BASE22: #endif buf[1] |= (val >> 16) & 0x3f; buf[2] = val >> 8; buf[3] = val; break; #ifdef NeXT case SPARC_RELOC_VANILLA: switch(size){ case 4: *buf++ = val >> 24; *buf++ = val >> 16; case 2: *buf++ = val >> 8; case 1: *buf = val; break; default: abort(); } break; #endif NeXT case BFD_RELOC_NONE: default: as_bad ("bad or unhandled relocation type: 0x%02x", fixP->fx_r_type); break; } #ifndef NeXT return 1; #endif NeXT } #ifndef NeXT /* Translate internal representation of relocation info to BFD target format. */ arelent * tc_gen_reloc (section, fixp) asection *section; fixS *fixp; { arelent *reloc; bfd_reloc_code_real_type code; reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent)); assert (reloc != 0); reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym; reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; switch (fixp->fx_r_type) { #ifndef NeXT case BFD_RELOC_16: case BFD_RELOC_32: #endif case BFD_RELOC_HI22: case BFD_RELOC_LO10: case BFD_RELOC_32_PCREL_S2: case BFD_RELOC_SPARC_BASE13: case BFD_RELOC_SPARC_WDISP22: code = fixp->fx_r_type; break; default: abort (); } reloc->howto = bfd_reloc_type_lookup (stdoutput, code); assert (reloc->howto != 0); assert (!fixp->fx_pcrel == !reloc->howto->pc_relative); /* @@ Why fx_addnumber sometimes and fx_offset other times? */ if (reloc->howto->pc_relative == 0) reloc->addend = fixp->fx_addnumber; else if (reloc->howto->pcrel_offset == 0) reloc->addend = fixp->fx_offset - reloc->address; else reloc->addend = fixp->fx_offset; return reloc; } #endif NeXT #if 0 /* for debugging only */ static void print_insn (insn) struct sparc_it *insn; { const char *const Reloc[] = { "RELOC_8", "RELOC_16", "RELOC_32", "RELOC_DISP8", "RELOC_DISP16", "RELOC_DISP32", "RELOC_WDISP30", "RELOC_WDISP22", "RELOC_HI22", "RELOC_22", "RELOC_13", "RELOC_LO10", "RELOC_SFA_BASE", "RELOC_SFA_OFF13", "RELOC_BASE10", "RELOC_BASE13", "RELOC_BASE22", "RELOC_PC10", "RELOC_PC22", "RELOC_JMP_TBL", "RELOC_SEGOFF16", "RELOC_GLOB_DAT", "RELOC_JMP_SLOT", "RELOC_RELATIVE", "NO_RELOC" }; if (insn->error) fprintf (stderr, "ERROR: %s\n"); fprintf (stderr, "opcode=0x%08x\n", insn->opcode); fprintf (stderr, "reloc = %s\n", Reloc[insn->reloc]); fprintf (stderr, "exp = {\n"); fprintf (stderr, "\t\tX_add_symbol = %s\n", ((insn->exp.X_add_symbol != NULL) ? ((S_GET_NAME (insn->exp.X_add_symbol) != NULL) ? S_GET_NAME (insn->exp.X_add_symbol) : "???") : "0")); fprintf (stderr, "\t\tX_sub_symbol = %s\n", ((insn->exp.X_op_symbol != NULL) ? (S_GET_NAME (insn->exp.X_op_symbol) ? S_GET_NAME (insn->exp.X_op_symbol) : "???") : "0")); fprintf (stderr, "\t\tX_add_number = %d\n", insn->exp.X_add_number); fprintf (stderr, "}\n"); } #endif /* * md_parse_option * Invocation line includes a switch not recognized by the base assembler. * See if it's a processor-specific option. These are: * * -bump * Warn on architecture bumps. See also -A. * * -Av6, -Av7, -Av8, -Asparclite * Select the architecture. Instructions or features not * supported by the selected architecture cause fatal errors. * * The default is to start at v6, and bump the architecture up * whenever an instruction is seen at a higher level. * * If -bump is specified, a warning is printing when bumping to * higher levels. * * If an architecture is specified, all instructions must match * that architecture. Any higher level instructions are flagged * as errors. * * if both an architecture and -bump are specified, the * architecture starts at the specified level, but bumps are * warnings. * */ int md_parse_option (argP, cntP, vecP) char **argP; int *cntP; char ***vecP; { char *p; const char **arch; if (!strcmp (*argP, "bump")) { warn_on_bump = 1; } else if (**argP == 'A') { p = (*argP) + 1; for (arch = architecture_pname; *arch != NULL; ++arch) { if (strcmp (p, *arch) == 0) { break; } /* found a match */ } /* walk the pname table */ if (*arch == NULL) { as_bad ("unknown architecture: %s", p); } else { current_architecture = (enum sparc_architecture) (arch - architecture_pname); architecture_requested = 1; } } #ifdef OBJ_ELF else if (**argP == 'V') { print_version_id (); } else if (**argP == 'Q') { /* Qy - do emit .comment Qn - do not emit .comment */ } else if (**argP == 's') { /* use .stab instead of .stab.excl */ } #endif else if (strcmp (*argP, "sparc") == 0) { /* Ignore -sparc, used by SunOS make default .s.o rule. */ } else { /* Unknown option */ (*argP)++; return 0; } **argP = '\0'; /* Done parsing this switch */ return 1; } /* md_parse_option() */ /* We have no need to default values of symbols. */ /* ARGSUSED */ symbolS * md_undefined_symbol (name) char *name; { return 0; } /* md_undefined_symbol() */ /* Parse an operand that is machine-specific. We just return without modifying the expression if we have nothing to do. */ /* ARGSUSED */ void md_operand (expressionP) expressionS *expressionP; { } /* Round up a section size to the appropriate boundary. */ valueT md_section_align (segment, size) segT segment; valueT size; { #ifdef OBJ_AOUT /* Round all sects to multiple of 8 */ size = (size + 7) & (valueT) ~7; #endif return size; } /* Exactly what point is a PC-relative offset relative TO? On the sparc, they're relative to the address of the offset, plus its size. This gets us to the following instruction. (??? Is this right? FIXME-SOON) */ long md_pcrel_from (fixP) fixS *fixP; { return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address; } #ifdef NeXT int md_estimate_size_before_relax( fragS *fragP, int segment_type) { as_fatal("internal error: Relaxation should never occur"); return(0); } void md_convert_frag( fragS *fragP) { as_fatal("internal error: Relaxation should never occur"); } #endif NeXT /* end of tc-sparc.c */
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.