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This memo describes a module system for the Scheme programming lan-

guage. The module system is unique in the extent to which it supports both

static linking and rapid turnaround during program development. The de-

sign was in
uenced by Standard ML modules[4] and by the module system

for Scheme Xerox[3]. It has also been shaped by the needs of Scheme 48,

a virtual-machine-based Scheme implementation designed to run both on

workstations and on relatively small (less than 1 Mbyte) embedded con-

trollers.

Except where noted, everything described here is implemented in Scheme 48,

and exercised by the Scheme 48 implementation and a few application pro-

grams.

Unlike the Common Lisp package system, the module system described

here controls the mapping of names to denotations, not the mapping of

strings to symbols.

Introduction

The module system supports the structured division of a corpus of Scheme

software into a set of modules. Each module has its own isolated namespace,

with visibility of bindings controlled by module descriptions written in a

special con�guration language.

A module may be instantiated multiple times, producing several pack-

ages, just as a lambda-expression can be instantiated multiple times to pro-

duce several di�erent procedures. Since single instantiation is the normal

case, I will defer discussion of multiple instantiation until a later section. For

now you can think of a package as simply a module's internal environment

mapping names to denotations.

A module exports bindings by providing views onto the underlying pack-

age. Such a view is called a structure (terminology from Standard ML). One

module may provide several di�erent views. A structure is just a subset of

the package's bindings. The particular set of names whose bindings are

exported is the structure's interface.

A module imports bindings from other modules by either opening or

accessing some structures that are built on other packages. When a structure
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is opened, all of its exported bindings are visible in the client package. On the

other hand, bindings from an accessed structure require explicitly quali�ed

references written with the structure-ref operator.

For example:

(define-structure foo (export a c cons)

(open scheme)

(begin (define a 1)

(define (b x) (+ a x))

(define (c y) (* (b a) y))))

(define-structure bar (export d)

(open scheme foo)

(begin (define (d w) (+ a (c w)))))

This con�guration de�nes two structures, foo and bar. foo is a view on

a package in which the scheme structure's bindings (including define and

+) are visible, together with bindings for a, b, and c. foo's interface is

(export a c cons), so of the bindings in its underlying package, foo only

exports those three. Similarly, structure bar consists of the binding of d

from a package in which both scheme's and foo's bindings are visible. foo's

binding of cons is imported from the Scheme structure and then re-exported.

A module's body, the part following begin in the above example, is

evaluated in an isolated lexical scope completely speci�ed by the package

de�nition's open and access clauses. In particular, the binding of the syn-

tactic operator define-structure is not visible unless it comes from some

opened structure. Similarly, bindings from the scheme structure aren't vis-

ible unless they become so by scheme (or an equivalent structure) being

opened.

The con�guration language

The con�guration language consists of top-level de�ning forms for modules

and interfaces. Its syntax is given in �gure 1.

A define-structure form introduces a binding of a name to a structure.

A structure is a view on an underlying package which is created according to

the clauses of the define-structure form. Each structure has an interface

that speci�es which bindings in the structure's underlying package can be

seen via that structure in other packages.

An open clause speci�es which structures will be opened up for use inside

the new package. At least one package must be speci�ed or else it will be
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hcon�gurationi �! hde�nitioni

�

hde�nitioni �! (define-structure hnamei hinterfacei hclausei

�

)

j (define-structures ((hnamei hinterfacei)

�

) hclausei

�

)

j (define-interface hnamei hinterfacei)

j (define-syntax hnamei htransformer-speci)

hclausei �! (open hnamei

�

)

j (access hnamei

�

)

j (begin hprogrami)

j (files h�lespeci

�

)

j (optimize hoptimize-speci

�

)

j (for-syntax hclausei

�

)

hinterfacei �! (export hitemi

�

)

j hnamei

j (compound-interface hinterfacei

�

)

hitemi �! hnamei j (hnamei htypei) j ((hnamei

�

) htypei)

Figure 1: The con�guration language.

impossible to write any useful programs inside the package, since define,

lambda, cons, structure-ref, etc. will be unavailable. Typical packages to

list in the open clause are scheme, which exports all bindings appropriate to
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Scheme, and structure-refs, which exports the structure-ref

operator (see below). For building structures that export structures, there

is a defpackage package that exports the operators of the con�guration

language. Many other structures, such as record and hash table facilities,

are also available in the Scheme 48 implementation.

An access clause speci�es which bindings of names to structures will be

visible inside the package body for use in structure-ref forms. structure-

ref has the following syntax:

hexpressioni �! (structure-ref hstruct-namei hnamei)

The hstruct-namei must be the name of an accessed structure, and hnamei

must be something that the structure exports. Only structures listed in

an access clause are valid in a structure-ref. If a package accesses any

structures, it should probably open the structure-refs structure so that

the structure-ref operator itself will be available.

The package's body is speci�ed by begin and/or files clauses. begin
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and files have the same semantics, except that for begin the text is given

directly in the package de�nition, while for files the text is stored some-

where in the �le system. The body consists of a Scheme program, that

is, a sequence of de�nitions and expressions to be evaluated in order. In

practice, I always use files in preference to begin; begin exists mainly for

expository purposes.

A name's imported binding may be lexically overridden or shadowed by

simply de�ning the name using a de�ning form such as define or define-

syntax. This will create a new binding without having any e�ect on the

binding in the opened package. For example, one can do (define car

'chevy) without a�ecting the binding of the name car in the scheme pack-

age.

Assignments (using set!) to imported and unde�ned variables are not

allowed. In order to set! a top-level variable, the package body must con-

tain a define form de�ning that variable. Applied to bindings from the

scheme structure, this restriction is compatible with the requirements of the
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Scheme report.

It is an error for two of a package's opened structures to export two

di�erent bindings for the same name. However, the current implementation

does not check for this situation; a name's binding is always taken from the

structure that is listed �rst within the open clause. This may be �xed in

the future.

File names in a files clause can be symbols, strings, or lists (Maclisp-

style \namelists"). A \.scm" �le type su�x is assumed. Symbols are con-

verted to �le names by converting to upper or lower case as appropriate for

the host operating system. A namelist is an operating-system-indepedent

way to specify a �le obtained from a subdirectory. For example, the namelist

(rts record) speci�es the �le record.scm in the rts subdirectory.

If the define-structure form was itself obtained from a �le, then �le

names in files clauses are interpreted relative to the directory in which the

�le containing the define-structure form was found. You can't at present

put an absolute path name in the files list.

Interfaces

An interface can be thought of as the type of a structure. In its basic form

it is just a list of variable names, written (export name : : :). However, in

place of a name one may write (name type), indicating the type of name's

binding. Currently the type �eld is ignored, except that exported macros
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must be indicated with type :syntax.

Interfaces may be either anonymous, as in the example in the introduc-

tion, or they may be given names by a define-interface form, for example

(define-interface foo-interface (export a c cons))

(define-structure foo foo-interface : : :)

In principle, interfaces needn't ever be named. If an interface had to be given

at the point of a structure's use as well as at the point of its de�nition, it

would be important to name interfaces in order to avoid having to write

them out twice, with risk of mismatch should the interface ever change. But

they don't.

Still, there are several reasons to use define-interface:

1. It is important to separate the interface de�nition from the package

de�nitions when there are multiple distinct structures that have the

same interface | that is, multiple implementations of the same ab-

straction.

2. It is conceptually cleaner, and useful for documentation purposes, to

separate a module's speci�cation (interface) from its implementation

(package).

3. My experience is that con�gurations that are separated into interface

de�nitions and package de�nitions are easier to read; the long lists of

exported bindings just get in the way most of the time.

The compound-interface operator forms an interface that is the union

of two or more component interfaces. For example,

(define-interface bar-interface

(compound-interface foo-interface (export mumble)))

de�nes bar-interface to be foo-interface with the name mumble added.

Macros

Hygienic macros, as described in [1, 2], are implemented. Structures may

export macros; auxiliary names introduced into the expansion are resolved

in the environment of the macro's de�nition.

For example, the scheme structure's delay macro is de�ned by the

rewrite rule
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(delay exp) =) (make-promise (lambda () exp)).

The variable make-promise is de�ned in the scheme structure's underlying

package, but is not exported. A use of the delay macro, however, always

accesses the correct de�nition of make-promise. Similarly, the case macro

expands into uses of cond, eqv?, and so on. These names are exported by

scheme, but their correct bindings will be found even if they are shadowed

by de�nitions in the client package.

Higher-order modules

There are define-module and define forms for de�ning modules that are

intended to be instantiated multiple times. But these are pretty kludgey |

for example, compiled code isn't shared between the instantiations | so I

won't describe them yet. If you must know, �gure it out from the following

grammar.

hde�nitioni �! (define-module (hnamei (hnamei hinterfacei)

�

)

hde�nitioni

�

hnamei)

j (define hnamei (hnamei hnamei

�

))

Compiling and linking

Scheme 48 has a static linker that produces stand-alone heap images from

module descriptions. One speci�es a particular procedure in a particular

structure to be the image's startup procedure (entry point), and the linker

traces dependency links as given by open and access clauses to determine

the composition of the heap image.

There is not currently any provision for separate compilation; the only

input to the static linker is source code. However, it will not be di�cult

to implement separate compilation. The unit of compilation is one module

(not one �le). Any opened or accessed structures from which macros are

obtained must be processed to the extent of extracting its macro de�nitions.

The compiler knows from the interface of an opened or accessed structure

which of its exports are macros. Except for macros, a module may be

compiled without any knowledge of the implementation of its opened and

accessed structures. However, inter-module optimization will be available

as an option.

6



The main di�culty with separate compilation is resolution of auxiliary

bindings introduced into macro expansions. The module compiler must

transmit to the loader or linker the search path by which such bindings are

to be resolved. In the case of the delay macro's auxiliary make-promise

(see example above), the loader or linker needs to know that the desired

binding of make-promise is the one apparent in delay's de�ning package,

not in the package being loaded or linked.

[I need to describe structure rei�cation.]

Semantics of con�guration mutation

During program development it is often desirable to make changes to pack-

ages and interfaces. In static languages it may be necessary to recompile

and re-link a program in order for such changes to be re
ected in a running

system. Even in interactive Common Lisp implementations, a change to

a package's exports often requires reloading clients that have already men-

tioned names whose bindings change. Once read resolves a use of a name

to a symbol, that resolution is �xed, so a change in the way that a name

resolves to a symbol can only be re
ected by re-reading all such references.

The Scheme 48 development environment supports rapid turnaround in

modular program development by allowing mutations to a program's con-

�guration, and giving a clear semantics to such mutations. The rule is that

variable bindings in a running program are always resolved according to

current structure and interface bindings, even when these bindings change

as a result of edits to the con�guration. For example, consider the following:

(define-interface foo-interface (export a c))

(define-structure foo foo-interface

(open scheme)

(begin (define a 1)

(define (b x) (+ a x))

(define (c y) (* (b a) y))))

(define-structure bar (export d)

(open scheme foo)

(begin (define (d w) (+ (b w) a))))

This program has a bug. The variable b, which is free in the de�nition of

d, has no binding in bar's package. Suppose that b was supposed to be

exported by foo, but was omitted from foo-interface by mistake. It is

not necessary to re-process bar or any of foo's other clients at this point.
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One need only change foo-interface and inform the development system

of that one change (using, say, an appropriate Emacs command), and foo's

binding of b will be found when procedure d is called.

Similarly, it is also possible to replace a structure; clients of the old struc-

ture will be modi�ed so that they see bindings from the new one. Shadowing

is also supported in the same way. Suppose that a client package C opens

a structure foo that exports a name x, and foo's implementation obtains

the binding of x as an import from some other structure bar. Then C will

see the binding from bar. If one then alters foo so that it shadows bar's

binding of x with a de�nition of its own, then procedures in C that reference

x will automatically see foo's de�nition instead of the one from bar that

they saw earlier.

This semantics might appear to require a large amount of computation on

every variable reference: The speci�ed behavior requires scanning the pack-

age's list of opened structures, examining their interfaces, on every variable

reference, not just at compile time. However, the development environment

uses caching with cache invalidation to make variable references fast.

Command processor support

While it is possible to use the Scheme 48 static linker for program develop-

ment, it is far more convenient to use the development environment, which

supports rapid turnaround for program changes. The programmer inter-

acts with the development environment through a command processor. The

command processor is like the usual Lisp read-eval-print loop in that it ac-

cepts Scheme forms to evaluate. However, all meta-level operations, such

as exiting the Scheme system or requests for trace output, are handled by

commands, which are lexically distinguished from Scheme forms. This ar-

rangement is borrowed from the Symbolics Lisp Machine system, and is rem-

iniscent of non-Lisp debuggers. Commands are a little easier to type than

Scheme forms (no parentheses, so you don't have to shift), but more im-

portantly, making them distinct from Scheme forms ensures that programs'

namespaces aren't clutterred with inappropriate bindings. Equivalently, the

command set is available for use regardless of what bindings happen to be

visible in the current program. This is especially important in conjunction

with the module system, which puts strict controls on visibility of bindings.

The Scheme 48 command processor supports the module system with a

variety of special commands. For commands that require structure names,

these names are resolved in a designated con�guration package that is dis-
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tinct from the current package for evaluating Scheme forms given to the

command processor. The command processor interprets Scheme forms in

a particular current package, and there are commands that move the com-

mand processor between di�erent packages.

Commands are introduced by a comma (,) and end at the end of line.

The command processor's prompt consists of the name of the current pack-

age followed by a greater-than (>).

,config

The ,config command sets the command processor's current package

to be the current con�guration package. Forms entered at this point

are interpreted as being con�guration language forms, not Scheme

forms.

,config command

This form of the ,config command executes another command in the

current con�guration package. For example,

,config ,load foo.scm

interprets con�guration language forms from the �le foo.scm in the

current con�guration package.

,in struct-name

The ,in command moves the command processor to a speci�ed struc-

ture's underlying package. For example:

user> ,config

config> (define-structure foo (export a)

(open scheme))

config> ,in foo

foo> (define a 13)

foo> a

13

In this example the command processor starts in a package called user,

but the ,config command moves it into the con�guration package,

which has the name config. The define-structure form binds, in

config, the name foo to a structure that exports a. Finally, the
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command ,in foo moves the command processor into structure foo's

underlying package.

A package's body isn't executed (evaluated) until the package is loaded,

which is accomplished by the ,load-package command.

,in struct-name command

This form of the ,in command executes a single command in the

speci�ed package without moving the command processor into that

package. Example:

,in mumble (cons 1 2)

,in mumble ,trace foo

,user [command]

This is similar to the ,config and ,in commands. It moves to or

executes a command in the user package (which is the default package

when the Scheme 48 command processor starts).

,for-syntax [command]

This is similar to the ,config and ,in commands. It moves to or

executes a command in the current package's \package for syntax,"

which is the package in which the forms f in (define-syntax name

f) are evaluated.

,load-package struct-name

The ,load-package command ensures that the speci�ed structure's

underlying package's program has been loaded. This consists of (1)

recursively ensuring that the packages of any opened or accessed struc-

tures are loaded, followed by (2) executing the package's body as spec-

i�ed by its de�nition's begin and files forms.

,reload-package struct-name

This command re-executes the structure's package's program. It is

most useful if the program comes from a �le or �les, when it will

update the package's bindings after mutations to its source �le.

,load �lespec : : :

The ,load command executes forms from the speci�ed �le or �les

in the current package. ,load �lespec is similar to (load "�lespec")
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except that the name load needn't be bound in the current package

to Scheme's load procedure.

,structure name interface

The ,structure command de�nes name in the con�guration package

to be a structure with interface interface based on the current package.

,open struct-name

�

The ,open command opens a new structure in the current package, as

if the package's de�nition's open clause had listed struct-name.

Con�guration packages

It is possible to set up multiple con�guration packages. The default con�g-

uration package opens the following structures:

� module-system, which exports define-structure and the other con-

�guration language keywords, as well as standard types and type con-

structors (:syntax, :value, proc, etc.).

� built-in-structures, which exports structures that are built into

the initial Scheme 48 image; these include scheme, tables, and records.

� more-structures, which exports additional structures that are avail-

able in the development environment; these include sort, random, and

threads.

Note that it does not open scheme.

You can de�ne other con�guration packages by simply making a package

that opens module-system and, optionally, built-in-structures, more-

structures, or other structures that export structures and interfaces.

For example:

> ,config (define-structure foo (export )

(open module-system

built-in-structures

more-structures))

> ,in foo

foo> (define-structure x (export a b)

(open scheme)

(files x))

foo>
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,config-package-is struct-name

The ,config-package-is command designates a new con�guration

package for use by the ,config command and resolution of struct-names

for other commands such as ,in and ,open.

Discussion

This module system was not designed as the be-all and end-all of Scheme

module systems; it was only intended to help Richard Kelsey and me to or-

ganize the Scheme 48 system. Not only does the module system help avoid

name clashes by keeping di�erent subsystems in di�erent namespaces, it has

also helped us to tighten up and generalize Scheme 48's internal interfaces.

Scheme 48 is unusual among Lisp implementations in admitting many di�er-

ent possible modes of operation. Examples of such multiple modes include

the following:

� Linking can be either static or dynamic.

� The development environment (compiler, debugger, and command

processor) can run either in the same address space as the program

being developed or in a di�erent address space. The environment and

user program may even run on di�erent processors under di�erent op-

erating systems[5].

� The virtual machine can be supported by either of two implementa-

tions of its implementation language, Prescheme.

The module system has been helpful in organizing these multiple modes. By

forcing us to write down interfaces and module dependencies, the module

system helps us to keep the system clean, or at least to keep us honest about

how clean or not it is.

The need to make structures and interfaces second-class instead of �rst-

class results from the requirements of static program analysis: it must be

possible for the compiler and linker to expand macros and resolve variable

bindings before the program is executed. Structures could be made �rst-class

(as in FX[6]) if a type system were added to Scheme and the de�nitions of

exported macros were de�ned in interfaces instead of in module bodies, but

even in that case types and interfaces would remain second-class.

The prohibition on assignment to imported bindings makes substitution

a valid optimization when a module is compiled as a block. The block com-

piler �rst scans the entire module body, noting which variables are assigned.
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Those that aren't assigned (only defined) may be assumed never assigned,

even if they are exported. The optimizer can then perform a very simple-

minded analysis to determine automatically that some procedures can and

should have their calls compiled in line.

The programming style encouraged by the module system is consistent

with the unextended Scheme language. Because module system features do

not generally show up within module bodies, an individual module may be

understood by someone who is not familiar with the module system. This is

a great aid to code presentation and portability. If a few simple conditions

are met (no name con
icts between packages, no use of structure-ref,

and use of files in preference to begin), then a multi-module program

can be loaded into a Scheme implementation that does not support the

module system. The Scheme 48 static linker satis�es these conditions, and

can therefore run in other Scheme implementations. Scheme 48's bootstrap

process, which is based on the static linker, is therefore nonincestuous. This

contrasts with most other integrated programming environments, such as

Smalltalk-80, where the system can only be built using an existing version

of the system itself.

Like ML modules, but unlike Scheme Xerox modules, this module system

is compositional. That is, structures are constructed by single syntactic units

that compose existing structures with a body of code. In Scheme Xerox, the

set of modules that can contribute to an interface is open-ended | any

module can contribute bindings to any interface whose name is in scope.

The module system implementation is a cross-bar that channels de�nitions

from modules to interfaces. The module system described here has simpler

semantics and makes dependencies easier to trace. It also allows for higher-

order modules, which Scheme Xerox considers unimportant.
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