
The Scheme of Things:

The June 1992 Meeting

1

Jonathan Rees

Cornell University

jar@cs.cornell.edu

An informally constituted group of people interested in the future of

the Scheme programming language met at the Xerox Palo Alto Research

Center on 25 June 1992. The main purpose of the meeting was to work on

the technical content of the next revision of the Scheme report.

We made progress on several fronts:

� Some di�erences with the IEEE Scheme standard were resolved.

� Proposals for multiple return values and dynamic-wind were adopted.

� A proposal for an eval procedure was adopted.

� The high-level macro facility described in the Revised

4

Report's ap-

pendix will be moved into the report proper.

Two subcommittees were formed: one to work on exceptions, and one to

charter the formation of a standard library. The subcommittees will report

back to the group with proposals for inclusion in the report.

It had been hoped that there would be progress on some other fronts

(user-de�ned types, dynamic binding, improvements to \rest" parameters),

but after inconclusive discussion these topics were dropped. These topics

will probably be taken up again in the future.

Norman Adams was appointed the Revised

5

Report's editor. It is hoped

that it will be ready by early 1993, so as to precede the reconstitution of the

IEEE standard group.

This article is my own interpretation of what transpired, and should not

be construed as de�nitive.

Agreement with the IEEE Scheme standard

Until now, the Scheme reports have encouraged but not required the empty

list () and the boolean false value #f to be distinct. It has been the intent

1

To appear in Lisp Pointers V(4), October{December 1992.

1



ever since the Revised Revised Report, however, that this distinction would

eventually be required. The IEEE Scheme standard bit the bullet in 1990,

and now the Revised

5

report follows.

The standard also dropped the distinction between essential and not-

essential language features; most features that were formerly not essential,

such as n-ary + and apply, are now required. The Revised

5

Report will adopt

this stance, at least as regards language features that are shared with the

IEEE standard. Non-essential non-IEEE oddities such as transcript-on

and transcript-off and the proposed interaction-environment (see be-

low) were not discussed at the meeting, however, and consensus on their

status will have to be reached via electronic mail.

A third aspect of the standard that was adopted was a certain obscure

paragraph regarding assignments to top-level variables (section 6, paragraph

2). The e�ect of this is that if a program contains an assignment to any top-

level variable, then the program must contain a define for that variable; it

is not su�cient that the variable be bound. This has been the case for most

variables, but the rule applies as well to variables such as car that have

built-in bindings. In addition, it is clari�ed that if a program makes such

a de�nition or assignment, then the behavior of built-in procedures will not

be a�ected. For example, rede�ning length cannot a�ect the behavior of

the built-in list->vector procedure. If in some particular implementation

list->vector is written in Scheme and calls length, then it must be sure

to call the built-in length procedure, not whatever happens to be the value

of the variable length.

Multiple return values

The call-with-values and values procedures were described in an earlier

Scheme of Things (Lisp Pointers, volume IV, number 1), but I'll review them

here. The following is adapted from John Ramsdell's concise description:

(values object : : :) essential procedure

values delivers all of its arguments to its continuation.

(call-with-values thunk receiver) essential procedure

call-with-values calls its thunk argument with a continuation that,

when passed some values, calls the receiver procedure with those val-

ues as arguments. The continuation for the call to receiver is the

continuation of the call to call-with-values.

2



Except for continuations created by the call-with-values procedure,

all continuations take exactly one value, as now; the e�ect of passing no

value or more than one value to continuations that were not created by

call-with-values is unspeci�ed (as indeed it is unspeci�ed now).

values might be de�ned as follows:

(define (values . things)

(call-with-current-continuation

(lambda (cont) (apply cont things))))

That is, the procedures supplied by call-with-current-continuation

must be passed the same number of arguments as values expected by the

continuation.

Because the behavior of a number-of-values mismatch between a contin-

uation and its invoker is unspeci�ed, some implementations may assign some

speci�c meaning to such situations; for example, extra values might be ig-

nored, or defaults might be supplied for missing values. Thus this multiple

return value proposal is compatible with Common Lisp's multiple values,

but strictly more conservative than it. The behavior of programs in such

situations was a point of contention among the authors, which is why only

the least common denominator behavior was speci�ed.

Unwind/wind protection

dynamic-wind, which was described previously in this column (when it was

The Scheme Environment; Lisp Pointers, volume I, number 2), is already

implemented in many Scheme dialects. dynamic-wind takes three argu-

ments, all of which are thunks (procedures of no arguments). It behaves as

if it were de�ned with

(define (dynamic-wind before during after)

(before)

(call-with-values during

(lambda results

(after)

(apply values results))))

except that the execution of the during thunk is \protected" against non-

local entries and exits: a throw out of the execution of during will cause the

after thunk to be invoked, and a throw from outside back in will cause the

before thunk to be invoked. (By \throw" I mean an invocation of an explicit

continuation as obtained from call-with-current-continuation.)

3



For details, the earlier Scheme Environment column refers the reader to

Friedman and Haynes's paper \Constraining Control" in POPL 1985, but

to save you the trouble of looking that up, I have supplied a more direct

implementation of dynamic-wind in an appendix to the present column.

dynamic-windwas adopted with the following clari�cations: The seman-

tics of (dynamic-wind before during after) should leave unspeci�ed what

happens if a throw occurs out of before or after ; and it is best to defer

interrupts during before and after.

Evaluating computed expressions

The original 1975 memo on Scheme described evaluate, which was analo-

gous to Lisp's traditional eval function. evaluate took a single argument,

an S-expression, and invoked an interpreter on it. For example:

(let ((name '+)) (evaluate (list name 2 3)))

�! 5

Scheme being lexically scoped, however, there was some confusion over which

environment the expression was to be evaluated in. Should

(let ((name '+))

(let ((+ *))

(evaluate (list name 2 3))))

evaluate to 5 or to 6?

To clarify matters, the Revised Report replaced evaluate with enclose,

which took two arguments, a lambda-expression and a representation of an

environment from which to supply bindings of the lambda-expression's free

variables. For example:

(let ((name '+))

(let ((+ *))

((enclose (list 'lambda '() (list name 2 3))

(list (cons '+ +))))))

�! 6

This forced the programmer to be explicit about the lambda-expression's

enclosing environment.

For various technical and practical reasons, there was no eval analogue

in subsequent Scheme reports. The major stumbling blocks were how to

describe eval formally and how to de�ne something that makes sense in

4



all extant variants of the language. Some Scheme implementations contain

a distinguished top-level environment, while others extend the language by

providing ways to create multiple environments, any of which might serve

equally well.

The eval proposal adopted at the June meeting, which I reproduce here,

is one that comes from Bill Rozas.

(eval expression environment-speci�er) essential procedure

eval evaluates expression in the environment indicated by environment-

speci�er. environment-speci�er may be the return value of one of the

three procedures described below, or implementation-speci�c exten-

sions. No other operations on environment speci�ers are de�ned by

this proposal.

Implementations may allow non-expression programs (i.e. de�nitions)

as the �rst argument to eval only when the second argument is the

return value of interaction-environment or some implementation

extension. In other words, eval will never create new bindings in the

return value of null-environment or scheme-report-environment.

(scheme-report-environment version) essential procedure

Version must be an exact non-negative integer corresponding to a

version of one of the Revised

n

Reports on Scheme. This procedure

returns a speci�er for an environment that contains exactly the set

of bindings speci�ed in the corresponding report that the implemen-

tation supports. Not all versions may be available in all implemen-

tations at all times. However, an implementation that conforms to

version n of the Revised

n

Reports on Scheme must accept version n.

If scheme-report-environment is available, but the speci�ed version

is not, the procedure will signal an error.

The e�ect of assigning (through the use of eval) a variable bound in a

scheme-report-environment (e.g. car) is unspeci�ed. Thus the envi-

ronments speci�ed by the return values of scheme-report-environment

may be immutable.

(null-environment) essential procedure

This procedure returns a speci�er for an environment that contains no

variable bindings, but contains (syntactic) bindings for all the syntactic

keywords de�ned in the report, and no others.

5



(interaction-environment) procedure

This procedure returns a speci�er for an environment that contains

implementation-de�ned bindings, typically a superset of those listed

in the report. The intent is that this procedure will return a speci-

�er for the environment in which the implementation would evaluate

expressions dynamically typed by the user.

Rozas explains: \The proposal does not imply the existence or support of

�rst-class environments, although it is compatible with them. The proposal

only requires a way of associating tags with a �nite set of distinguished

environments which the implementations can maintain implicitly (without

rei�cation).

\ `Pascal-like' implementations can support both null-environment and

scheme-report-environment since the environments speci�ed by the return

values of these procedures need not share any bindings with the current pro-

gram. A version of eval that supports these but not interaction-environment

can be written portably, but can be better written by the implementor, since

it can share code with the default evaluator or compiler."

Here \Pascal-like" refers to implementations that are restricted to static

compilation and linking. Because an eval that doesn't support interaction-

environment can be written entirely in the Scheme language described by

the rest of the report, it raises no troublesome questions about its formal

semantics.

Macros

The consensus of the meeting was that define-syntax, syntax-rules, let-

syntax, and letrec-syntax should be moved out of the report's appendix

into the main body of the report. Although everyone agrees that a low-level

macro facility is important, the subject is too contentious at present, with

three or more competing proposals at present. The disposition of the rest

of the appendix and of the other low-level proposals will be left up to the

report's editor.

Committee work

There is a strong sense that some kind of exception system is needed. How-

ever, no speci�c proposal was ready at the time of the meeting. A commit-

tee has been formed to work on one. What seems to be in the air might

be described as a highly distilled version of the condition system that Kent

6



Pitman developed for Common Lisp. I hope that I'll be able to report on

this in a future column.

On the subject of libraries, Will Clinger's minutes report that \the au-

thors perceive a need to give some library o�cial status. In fact, we need

to give o�cial sanction to multiple libraries. There is reason to distinguish

between accepted (or standard) libraries, experimental libraries, and propos-

als. The accepted libraries can reduce the intellectual size of the language

by removing things like string->list from the report. The experimental

libraries would contain solid implementations of experimental features, in-

cluding things that might never deserve to be in the report. The proposal

libraries could contain anything implemented in portable Scheme."

Among the content of the accepted libraries, some features (such as those

that may be moved out of the body of the report) may be required to be

built in to implementations, while others will be expected to be available on

demand (perhaps using something similar to, but not the same as, require

as found in Common Lisp and GNU Emacs).

A librarian was appointed (Rees), and a library committee is developing

proposals for the charter, structure, and content of the libraries.

� � �

I would like to acknowledge Will Clinger, who prepared the minutes of

the meeting, and the various people who contributed proposals, including

Bill Rozas and John Ramsdell. Any errors here are my responsibility, how-

ever. Thanks also to Norman Adams and Richard Kelsey for corrections to

a draft of this article.

I would also like to belatedly acknowledge Norman Adams, Pavel Cur-

tis, Bruce Donald, and Richard Kelsey for their comments on drafts of my

previous column.

For future columns, I am entertaining various topic possibilities, includ-

ing eval, threads, amb, and monads. If you have other ideas, and particu-

larly if you think the written record on the language is particularly poor in

certain areas, please write and let me know.

Appendix: An implementation of dynamic-wind

This program is based on my vague recollection of an ancient manuscript by

Chris Hanson and John Lamping. I apologize for the lack of data abstrac-

tion, but the code is more concise this way.

7



A state space is a tree with the current state at the root. Each node other

than the root is a triple hbefore; after; parenti, represented in this implemen-

tation as two pairs ((before . after) . parent). Navigating between states

requires re-rooting the tree by reversing parent-child links.

Since dynamic-wind interacts with call-with-current-continuation,

this implementation must replace the usual de�nition of the latter.

(define *here* (list #f))

(define original-cwcc call-with-current-continuation)

(define (call-with-current-continuation proc)

(let ((here *here*))

(original-cwcc (lambda (cont)

(proc (lambda results

(reroot! here)

(apply cont results)))))))

(define (dynamic-wind before during after)

(let ((here *here*))

(reroot! (cons (cons before after) here))

(call-with-values during

(lambda results

(reroot! here)

(apply values results)))))

(define (reroot! there)

(if (not (eq? *here* there))

(begin (reroot! (cdr there))

(let ((before (caar there))

(after (cdar there)))

(set-car! *here* (cons after before))

(set-cdr! *here* there)

(set-car! there #f)

(set-cdr! there '())

(set! *here* there)

(before)))))

8


