
LISP AND SYMBOLIC COMPUTATION: An International Journal, ?, ??{??, 1994

c

 1994 Kluwer Academic Publishers { Manufactured in The Netherlands

A Tractable Scheme Implementation

RICHARD A. KELSEY (kelsey@ccs.neu.edu)

Northeastern University

JONATHAN A. REES (jar@cs.cornell.edu)

MIT and Cornell University

Abstract. Scheme 48 is an implementation of the Scheme programming language con-

structed with tractability and reliability as its primary design goals. It has the structural

properties of large, compiler-based Lisp implementations: it is written entirely in Scheme,

is bootstrapped via its compiler, and provides numerous language extensions. It controls

the complexity that ordinarily attends such large Lisp implementations through clear

articulation of internal modularity and by the exclusion of features, optimizations, and

generalizations that are of only marginal value.

1. Introduction

Scheme 48 is an implementation of the Scheme programming language con-

structed with tractability and reliability as its primary design goals. By

tractability we mean the ease with which the system can be understood and

changed. Although Lisp dialects, including Scheme, are relatively simple

languages, implementation tractability is often threatened by the demands

of providing high performance and extended functionality. The Scheme 48

project was initiated in order to experiment with techniques for maintain-

ing implementation tractability in the face of countervailing pressures and

to �nd out what tradeo�s were involved in doing so.

Small Lisp implementations are usually tractable merely by virtue of be-

ing small; it is usually possible for an experienced programmer to read and

understand the entire source program in a few days. However, Scheme 48

speci�cally attempts to tackle the structural problems posed by large Lisp

implementations. Although it is impossible to de�ne the terms small or

large precisely in this context, by a small Lisp system we generally mean

one that is less than about 15,000 lines of source code, is based on an in-

terpreter or simple translator not written in Lisp, and provides few, if any,

features beyond a small core language such as IEEE standard Scheme [1].

By a large Lisp system we mean one that is more than about 15,000 lines

and implements a large language such as Common Lisp [10] or a substan-

tially extended dialect of Scheme.

Draft of January 31, 1994



2 KELSEY AND REES

We arrived at the number 15,000 by examining the source code for a

collection of Lisp implementations. We found seven small Lisp systems in

public �le archives on the Internet, none of which contained more than

14,000 lines of source code, and three large systems of 25,000 to 120,000

lines. All of the large systems and two of the small ones included native

code compilers. The line counts are those for the interpreters and run-time

code and do not include the compilers.

Size is not the only reason that large Lisps tend towards incomprehen-

sibility. Large implementation size is a result of additional functionality.

Usually di�culties of comprehension are compounded by the authors us-

ing the additional features within the implementation itself. Even worse,

once a system has been bootstrapped, features are often re-implemented

in terms of themselves, and the original, non-circular code is deleted from

the sources. Circular de�nitions are hard to understand and even harder

to modify.

Scheme 48 is meant to be a substantial yet comprehensible system. The

current Scheme 48 system includes many extensions to standard Scheme

and has the basic structural characteristics of the large systems we sur-

veyed. Tractability is di�cult to measure, but our claim that Scheme 48 is

tractable is based on it having the following features:

� explicit interfaces are used to divide the code into modules;

� these modules are organized in a hierarchical fashion: the major com-

ponents of the system can be understood independently;

� the modules are largely independent: Scheme 48 can be built from the

available sources, in a mix and match fashion, as anything ranging

from a minimal implementation of a Scheme subset to an extended

development environment;

� there are multiple implementations of many of the interfaces;

� all of the code is written in Scheme;

� major parts of the system, including the code to build a working

image from the source �les, can be run stand-alone using any IEEE

Scheme implementation.

In addition, when writing the code for Scheme 48 we took the unusual

step of giving simplicity priority over execution speed, unless measurements

demonstrated that the increase in speed was signi�cant. Implemented fea-

tures not meeting this criterion were removed. The system's overall sim-

plicity helped in performing such experiments by making it easy to isolate

and evaluate di�erent implementation choices.

Draft of January 31, 1994



TRACTABLE SCHEME IMPLEMENTATION 3

Dialect Use within Scheme 48

Pre-Scheme Virtual machine implementation

Primitive Scheme Minimal compiled subset

Scheme General, standard

Big Scheme General

Con�guration language Module descriptions

Table 1: Scheme Dialects

2. System Organization

We used two main strategies to keep Scheme 48 comprehensible: the system

is written entirely in Scheme, using a variety of dialects, and is divided

into modules with explicit interfaces and dependencies. For each module

we used the simplest adequate dialect and tried to minimize the number

of dependencies on other modules. The Scheme dialects used are listed

in table 1. Primitive Scheme and Big Scheme have the same semantics

as Scheme, with the deletion or addition of procedures and syntax but

without signi�cant change to the underlying semantics. Pre-Scheme is more

of a departure, as it is designed to allow compilation to idomatic C code

(integers are ints and so forth). This requirement results in some signi�cant

restrictions on Pre-Scheme programs, although they can still be run as

Scheme programs. Pre-Scheme is discussed in section 4.

The Scheme 48 system is based on a virtual machine. Using a virtual

machine raised many of the same organizational issues as using a native

code compiler, such as how bootstrapping is accomplished, without forcing

us to deal with actually generating machine code or with other details

of hardware architecture. The virtual machine architecture gives a well-

de�ned interface to the execution hardware. The run-time code can use

that interface and ignore the question of whether the underlying machine

is real or virtual. Using a virtual machine also has the immediate and

practical bene�t of making Scheme 48 easy to port to new platforms.

The Scheme 48 implementation has four main parts: a realization of the

virtual machine, a Scheme compiler that produces code for the virtual ma-

chine, a static linker used to build executable images, and implementations

of both standard and non-standard Scheme library routines. The virtual

machine is written in Pre-Scheme, so that it can be compiled to e�cient

C or native code, and then run as a stand-alone program. The byte-code

compiler provides an implementation of Primitive Scheme, and the rest

of Scheme is implemented using code written in Primitive Scheme. The

compiler, linker, utilities, and the extensions that make up Big Scheme are

written in Scheme. Some of the extensions, such as multitasking, make

Draft of January 31, 1994



4 KELSEY AND REES

use of functionality provided by the virtual machine that is not part of

standard Scheme, and these modules cannot be run using other Scheme

implementations. The virtual machine, compiler, and linker can be (and

are) run using Scheme implementations other than Scheme 48.

Scheme 48's module system is designed to support both static linking

and rapid turnaround during program development. The design was in-


uenced by Standard ML modules [8] and the module system for Scheme

Xerox [4]. Each module has its own isolated namespace, with visibility

of bindings controlled by module descriptions written in a module con�g-

uration language. The module system bears some similarity to Common

Lisp's package system [10], although it controls the mapping of names to

denotations instead of the mapping of strings to symbols.

3. The Virtual Machine

The Scheme 48 virtual machine is a stack based machine similar to that de-

scribed in [2]. It is written in Pre-Scheme, a Scheme subset that is described

in section 4. The implementation of the virtual machine is organized ac-

cording to the internal interfaces listed in Table 2. The following sections

describe the interfaces and their implementations.

3.1. Architecture

The Scheme 48 architecture description is the interface between the vir-

tual machine and the rest of the Scheme 48 system. It contains descriptions

of the virtual machine's instruction set and data structures, and the kinds

of possible interrupts.

Three kinds of data structures are described in the interface: �xed size

objects containing other Scheme objects, vectors of Scheme objects, and

vectors containing untagged data. For objects of �xed size, such as pairs,

the architecture description lists the names of the various components (car,

cdr) in the order in which they are stored in memory. Vectors of Scheme

objects include Scheme vectors and records, and the templates described

below. Vectors of untagged data include strings and vectors of byte codes.

3.2. Data Representations

The basic data structure representing Scheme objects is a descriptor. A

descriptor is the size of a pointer and contains a tag in the low-order two

bits. (This particular representation is tuned for use on byte-addressed

machines where a pointer is four bytes.) The tag is one of:

Draft of January 31, 1994



TRACTABLE SCHEME IMPLEMENTATION 5

External interface

architecture Instruction set description

Data structures

memory Pointers and pointer arithmetic

descriptors Typed descriptors for Scheme objects

fixnum-arithmetic Small integer arithmetic with over
ow checks

stored-objects Manipulating heap objects

data-types Particular stored object types

ports Scheme I/O ports

Storage management

heap Heap (including garbage collector)

environments Lexical environments

stacks Operand stack and continuations

Byte-code interpreter

interpreter Instruction dispatch; error detection

resume Initialize, read a heap image, and start

interpreting

Table 2: Virtual machine interfaces

� Fixnum: the non-tag portion of the descriptor represents a small inte-

ger. We use zero as the �xnum tag to simplify arithmetic operations.

� Immediate: the low-order byte gives the type of the object; the rest

contains any other necessary information. Characters, the empty list,

#t and #f are all represented as immediate values. Another use of

immediate values is as illegal data values, allowing the virtual machine

to detect and report attempts to refer to the value of uninitialized

variables and other errors.

� Stored object: a pointer to a stored object. The �rst descriptor in

the object is a header describing the object. The pointer actually

points to the �rst non-header descriptor in the object. Most Scheme

objects, such as strings, pairs, vectors, and so on are represented as

stored objects. Stored objects either contain descriptors or untagged

data depending on their type.

� Header: description of a stored object. The descriptor includes the

type of the object, its size, and an immutability 
ag. If the immutabil-

ity 
ag is set, attempts to modify the object result in an exception

being raised.

The garbage collector and other heap manipulation routines are written

to allow headers within stored objects. An object that normally contains

Draft of January 31, 1994



6 KELSEY AND REES

only tagged data, such as a record, can also contain untagged data, as long

as an appropriate untagged data header is placed before the untagged data.

The system currently makes no use of this facility.

Having headers on all stored objects allows the contents of memory to

be scanned. Starting at the head of any stored object, it is possible to

scan through memory determing the type and contents of every subsequent

stored object. The virtual machine makes use of this in a number of ways.

There are number of alternatives to this particular data layout, some of

which have been used in other implementations [7]. Headers can use either

a �xnum or an immediate tag, freeing up one tag value. This tag can be

used to denote a pointer to a commonly used stored object type, typically

pairs, eliminating the need for headers on objects of that type. Or the

fourth tag can be unused, allowing some tag tests to be done using bit-test

instructions. We chose the current data representations because they are

simple and contain a certain amount of redundancy, and because saving

one or two machine instructions per type check or cons is not likely to

be important for an interpreted system. The modular nature of the entire

system would make it easy to change the data representations, should the

need arise.

There are �ve aggregate data structures used by the virtual machine:

templates, closures, continuations, locations, and run-time environments.

These are all stored objects. A template is a piece executable code. Each

contains a vector of instructions and a vector of values that includes con-

stants, locations, and other templates. A closure is the representation of a

procedure; it contains a template and an environment. A continuation con-

tains the information needed to restart the machine when a procedure call

returns, speci�cally the operand stack and contents of some of the machine's

registers. A location contains the value of a top-level variable. Locations

are distinct from symbols to allow for multiple top-level environments.

Run-time environments contain the values of lexically bound variables.

These are implemented as Scheme vectors, with the �rst value in each vec-

tor being the superior lexical environment. The address of a lexical variable

is given as two indices: the depth of the containing environment, with the

current environment being depth zero, and the index of the variable within

the containing environment. A common alternative is to use a single vector

for each environment, copying any necessary values from other environ-

ments whenever a new environment is made. This eliminates the need to

chain back through environments when fetching the values of variables. We

used nested environments to keep from having to add free variable analysis

to the byte-code compiler.

Draft of January 31, 1994



TRACTABLE SCHEME IMPLEMENTATION 7

3.3. Storage Management

The storage management system provides for the creation and recla-

mation of stored objects, including continuations and environments. In

addition, a stack interface includes operations for maintaining the operand

stack. Most objects are allocated from a heap. Heap storage is reclaimed

using a simple two-space copying garbage collector. The design of the

virtual machine puts few restrictions on the garbage collector and an early

version of the VM has been used for extensive experiments in this area [13].

The contents of the heap may be written to and read from �les. Heap

image �les contain a pointer to a distinguished entry procedure in that heap.

Heap images are machine independent; they contain the information needed

to relocate the heap in memory and to correct byte order if necessary.

When the virtual machine is started it reads a heap image from a �le and

begins execution by calling the entry procedure. Execution ceases when

that procedure returns. Heap image �les can be created either using the

write-image instruction or by using the static linker. A heap image �le

can be quite small, since it only needs to contain the information required

to execute a call to the entry procedure.

Continuations and environments are treated specially, since they can of-

ten be reclaimed more e�ciently than most objects. They are ordinarily

not needed by the program after the return from the call for which they were

created. The only exception to this is when call-with-current-continuation

is used.

There are four operations involving continuations: create a continua-

tion that contains the current argument stack and the machine's internal

state; invoke a continuation, restoring the argument stack and the ma-

chine's state; preserve the current continuation for later use; and make a

preserved continuation become the current one. The simplest implemen-

tation of this interface is to create all continuations in the heap. Creating

and invoking continuations then requires copying the operand stack to and

from the heap. Preserving and selecting continuations are no-ops, since

continuations are always in the heap and all heap objects have inde�nite

extent.

An alternative implementation is to create continuations on the operand

stack by pushing the machine's state on top of the current operands. This

avoids the need to copy the operand stack back and forth. It also improves

data locality by e�ciently reusing stack space. Preserving a continuation

becomes more expensive because it requires copying the continuation into

the heap. The continuation is copied back to the stack when it is invoked.

Continuations may be freely copied back and forth, because they are never

modi�ed, only created and invoked.

Draft of January 31, 1994



8 KELSEY AND REES

Environments can also be allocated either in the heap or on the stack.

An environment is created by making a vector that contains a pointer to

the current environment and the contents of the operand stack. This can

be done by allocating a vector in the heap and moving the values into

it, or by adding a vector header to the operand stack, at which point

the stack pointer points to the new environment. As with continuations,

preserving an environment that is on the stack requires moving it to the

heap. Environments can be modi�ed through the use of set!, so there must

be only one copy of each environment. Once an environment has migrated

to the heap it remains there.

Stack storage is reclaimed in two ways. When a continuation is invoked

the stack pointer is set to point to the top of the restored operand stack,

freeing up any stack space that was allocated since the continuation's cre-

ation. If the stack over
ows, the current continuation and environment are

copied to the heap, allowing the entire stack to be reused. All environ-

ments and continuations pointed to by these values are also copied if they

are on the stack. This makes stack allocation compatible with Scheme's

requirement for proper tail recursion, and also allows for recursions that

are deeper than would �t in the stack. Tail-recursive calls cause the calling

procedure's environment to become inaccessible, although it remains on the

stack until the program returns past that point or the live portions of the

stack are moved to the heap.

The storage allocation interface has been implemented both with and

without stack allocation of environments and continuations. Using stack

allocation is faster than using the heap, with some cost in increased com-

plexity of the stack and environment modules. For more information

see [5].

Another method of implementing proper tail recursion is to ensure that

at every procedure call the arguments to the call are on the stack directly

above the continuation for the call. For tail-recursive calls this requires

moving the arguments just before jumping to the code for the called proce-

dure. We added this form of tail call to the VM by adding a special call in-

struction that did the argument copying, and found that it was only slightly

slower than using the stack garbage collector. However, the stack copying

logic is still required for implementing call-with-current-continuation,

so the argument copying instruction is not used. For more details see [5].

3.4. Interpreter

The section describes the more important virtual machine instructions.

These instructions make use of the interpreter's registers, which are listed

in Table 3. To start with a simple example, here are the instructions for

Draft of January 31, 1994



TRACTABLE SCHEME IMPLEMENTATION 9

Value the most recent instruction result

PC byte-code program counter

Template instruction vector and a vector of literal values

Cont continuation

Env environment

Nargs number of arguments

Dynamic dynamic state

Enabled-Interrupts which interrupts are currently enabled

Interrupt-Handlers vector of procedures for processing interrupts

Exception-Handler procedure for processing exceptions

Table 3: The virtual machine's registers

the procedure (lambda (x) (+ 10 x)).

(check-nargs= 1)

(make-env 1)

(literal '10)

(push)

(local 0 1)

(+)

(return)

When control is transferred to the code for the procedure, Nargs contains

the number of arguments being passed and Env holds the lexical environ-

ment in which the procedure was created. The procedure �rst checks that

it was called with exactly one argument, and creates a new environment

containing the argument and the current value of Env. An exception is

raised by check-nargs= if the procedure was passed the wrong number of

arguments.

The body of the procedure begins by loading the literal value 10 from

Template and pushing it onto the stack. The local instruction is used

to obtain the value of x, using two operands that give the depth of x's

environment in the chain of lexical environments and the o�set of x in that

environment. + then pops 10 o� of the stack, adds it to the value of x

(which is in Value), and leaves the result in Value. Finally, the procedure

returns. The return instruction restores the operand stack and sets the PC,

Template, Env, and Cont registers using values from the current contents

of Cont.

For a procedure that takes an arbitrary number of arguments, such as

(lambda (x y . more-args) ...), the �rst few instructions would be

(check-nargs>= 2)

Draft of January 31, 1994



10 KELSEY AND REES

(make-rest-list 2)

(push)

(make-env 3)

The instruction (check-nargs>= 2) veri�es that there are least two argu-

ments present. (make-rest-list 2) puts all but the �rst two arguments

into a list, which is left in Value. This list is then pushed onto the stack

to become part of the environment.

The value of a lambda expression is a closure, containing a template and

an environment. A closure is made using the closure instruction. The new

closure contains the current environment and a template obtained from the

current template.

A procedure call is performed by creating a new continuation, pushing

the arguments onto the stack and using the call instruction. The code for

(g 'a) is:

(make-cont L1 0)

(literal 'a)

(push)

(global g)

(call 1)

L1: ...

The label operand to make-cont speci�es the program counter to be used

when the continuation is resumed. The second operand to make-cont is

the number of values that are currently on the operand stack. These values

must be saved in the continuation. The make-cont instruction is omitted

for tail-recursive calls. The value of a top-level variable is obtained from

a location stored in the template. The number of arguments in the call is

itself an operand supplied to the call instruction.

A variable's value is set using set-local! or set-global!, which are

identical to local and global except that they set the variable's value to

be the contents of Value instead of vice-versa.

The architecture contains both jump and conditional jump instructions

for executing conditionals. (if a 1 2) compiles to:

(global a)

(jump-if-false L1)

(literal '1)

(jump L2)

L1: (literal '2)

L2: ...

Draft of January 31, 1994



TRACTABLE SCHEME IMPLEMENTATION 11

For both jump instructions the o�set to the label must be positive; back-

wards jumps are not allowed. This ensures that every loop contains a pro-

cedure call, which in turn makes handling interrupts more uniform. There

could be a backward jump instruction that included a check for interrupts,

but making use of it would require a byte-code compiler somewhat more

sophisticated than the current one.

The following is a description of some of the less frequently used in-

structions that manipulate the interpreter's internal state. In addition to

the instructions described, there are a number of others that deal with

numeric operations, allocating, accessing, and modifying storage, various

input/output operations, and so on. There are a set of generic instructions

for dealing with stored objects such as pairs, symbols, vectors and strings.

These instructions take the type of the object as an additional operand

from the instruction stream. Adding new types of stored objects does not

require changing the instruction set.

current-cont

with-continuation

The �rst instruction sets Value to be the contents of Cont. The sec-

ond takes two operands, a continuation obtained using current-cont and

a procedure of no arguments. It sets Cont to be the continuation and

then calls the procedure. Together these are used to implement Scheme's

call-with-current-continuation.

get-dynamic-state

set-dynamic-state!

These move the contents of Value to Dynamic-State and vice versa. The

machine makes no other use of Dynamic-State. An alternative design

would be to keep the dynamic state in a top-level variable instead of in

a VM register. Using a machine register allows the VM to be used in a

multiprocessor environment, where each processor has its own registers but

all share a single heap.

set-exception-handler!

This sets Exception-Handler to be the procedure in Value. Whenever

an exceptional situation is detected the VM calls this procedure, passing

to it the current instruction and its operands. If the exception handler

returns, execution proceeds with the instruction following the one that

caused the exception. Most causes of exceptions are type errors. Others

include arithmetic over
ows, unbound and unititialized variables, passing

the wrong number of arguments to procedures, and errors when calling

operating system routines. Appropriate exception handlers can be used to

extend and augment the virtual machine.

set-interrupt-handlers!

return-from-interrupt

Draft of January 31, 1994



12 KELSEY AND REES

0 (check-nargs= 2)

2 (make-env 2)

4 (local 0 1) value of j

7 (push) push j as the �rst argument to +

8 (make-cont (=> 20) 1) 20 is the code, stack has one value

12 (local 0 2)

15 (push) push i as the �rst argument to h

16 (global h)

18 (call 1) call h with one argument

20 (+) code resumes here after the call to h

21 (push) push second argument to g

22 (global g)

24 (call 1)

Figure 1: Byte codes for (lambda (i j) (g (+ j (h i))))

set-enabled-interrupts!

The VM checks for interrupts whenever a call instruction is executed. If

an enabled interrupt has occurred since the previous call, the state of the

machine is saved in a continuation and the procedure appropriate for that

interrupt is obtained from the vector Interrupt-Handlers and called. The

return-from-interrupt instruction can then be used to restore the state

of the machine and continue execution. set-enabled-interrupts! sets

Enabled-Interrupts and places its old value in Value.

write-image

This takes two operands, a procedure and the name of a �le, and writes the

procedure into the �le as a restartable heap image. The writing process is

similar to a garbage collection in that it only writes objects reachable from

the procedure into the �le. See section 3.3 for more information.

There are several instructions used to allow calls to return multiple val-

ues. They are more complex than strictly necessary, due to our desire not

to require any additional overhead when returning exactly one value, and

are not described here for reasons of space.

4. Pre-Scheme Implementations

The virtual machine is written in Pre-Scheme, a subset of Scheme chosen

to allow compilation into fairly natural C code without losing too much of

Scheme's expressive power. The virtual machine and the rest of the system

are written in overlapping subsets of the same language, allowing some

Draft of January 31, 1994



TRACTABLE SCHEME IMPLEMENTATION 13

modules (such as the architecture description code) to be used in both.

Because Pre-Scheme is a subset of Scheme, the virtual machine can be run

and debugged using any Scheme implementation. This fact has greatly

assisted development, in particular because it permitted us to work on the

Scheme 48 virtual machine prior to the existence of a direct Pre-Scheme

compiler or working Scheme 48 system. The VM is quite slow when run as

a Scheme program. At one point a hand translation of the VM into C was

done by Bob Brown, an MIT graduate student.

Except for modi�cation and debugging, the virtual machine is compiled

from Pre-Scheme into C, using a compiler based on the transformational

compiler described in [6]. The Pre-Scheme compiler evaluates top-level

forms, performs static type checking and a great deal of partial evaluation,

and translates the resulting program into C. The result is a C version of the

VM which is as e�cient and as portable as a hand-coded C version would

be.

Pre-Scheme di�ers from Scheme in the following ways:

� Every top-level form is evaluated at compile time and may make

unrestricted use of Scheme.

� The Pre-Scheme compiler determines all types at compile time. Type

reconstruction is done after the top-level forms have been evaluated.

There is no run-time type discrimination.

� There is no automatic storage reclamation. Unused storage must be

freed explicitly.

� Proper tail recursion is guaranteed only for calls to lambda forms

bound by let and letrec or when explicitly declared for a particular

call.

The main restrictions imposed by Pre-Scheme are that the VM must

be accepted by Pre-Scheme's type-checking algorithm and that there is no

automatic storage reclamation. The latter restriction is reasonable, as Pre-

Scheme is intended for writing such things as garbage collectors. The Pre-

Scheme compiler uses a Hindley-Milner polymorphic type reconstruction

algorithm modi�ed to allow overloaded arithmetic operators and to take

into account the compiler's use of partial evaluation. If a procedure is to

be in-lined for all uses, then it can be fully polymorphic, as every use will

have a distinct implementation.

Using Pre-Scheme has been very successful. The code for the VM makes

use of higher-order procedures, macros that operate on parse trees, and

other features of Scheme that would not have been available had we used

Draft of January 31, 1994



14 KELSEY AND REES

C. Procedures are also used to implement data abstractions within the VM.

This results in a large number of small procedures. The virtual machine's

570 top-level forms, consisting of 2314 lines of Scheme code (excluding

commments), are compiled to 13 C procedures containing 8467 lines of

code. Once compiled into C it runs as quickly as similar hand-coded C

programs.

Figure 2 illustrates the coding style used in the VM. The example consists

of the code implementing the addition instruction. The �rst two forms are

from the fixnum-arithmetic module, which exports add-carefully, and

the last two are from the interpreter module. The procedure carefully

takes an arithmetic operator and returns a procedure that performs that

operation on two arguments, either passing the tagged result to a success

continuation, or passing the original arguments to a failure continuation if

the operation over
ows. extract-fixnum and enter-fixnum remove and

add type tags to small integers. The function overflows? checks that its

argument has enough unused bits for a type tag. goto indicates that a tail-

recursive call should be compiled using proper tail recursion. carefully

can then be used to de�ne add-carefully which performs addition on

integers.

define-primitive is a macro that expands into a call to the procedure

define-opcode which actually de�nes the instruction. The three argu-

ments to the macro are the instruction to de�ne, input argument speci-

�cations, and the body of the instruction. The expanded code retrieves

arguments from the stack, performs type checks and coercions, and exe-

cutes the body of the instruction. This is a simple Scheme macro that

would be painful to write using C's limited macro facility.

Figure 3 shows the C code produced for the addition instruction. This

is part of a large switch statement which performs instruction dispatch.

(A note on identi�ers: many Scheme identi�ers are not legal C identi�ers,

while on the other hand C is case-sensitive and Scheme is not. The com-

piler uses upper-case letters for the characters that are legal in identi�ers

in Scheme but not in C; for example *val* becomes SvalS. The compiler

also introduces local variables to shadow global variables to improve regis-

ter usage (similar to [11]). These introduced variables begin with R; thus

RSvalS is a local variable shadowing the global variable SvalS.)

This code is not what we would have written if we had used C in the

�rst place, but it is at least as e�cient. The use of Pre-Scheme makes

the program relatively more comprehensible and easier to modify without

incurring any run-time cost.

Draft of January 31, 1994



TRACTABLE SCHEME IMPLEMENTATION 15

(define (carefully op)

(lambda (x y succ fail)

(let ((z (op (extract-fixnum x) (extract-fixnum y))))

(if (overflows? z)

(goto fail x y)

(goto succ (enter-fixnum z))))))

(define add-carefully (carefully +))

(define (arith op)

(lambda (x y)

(op x y return arithmetic-overflow)))

(define-primitive op/+ (number-> number->) (arith add-carefully))

Figure 2: Implementation of the addition instruction

module-system Signatures, modules, and name lookup

syntactic Denotations; hygienic macros

compilation Byte-code compiler

analysis Optional optimization phase

linker Static heap image linker

reification Support for doing eval relative to a statically

linked image

assembler Optional byte-code assembler

Table 4: Byte-code compiler interfaces

5. Byte Code Compiler

The byte-code compiler compiles Scheme expressions into appropriate se-

quences of VM instructions. The compiler is as simple as we could make it

and still get acceptable performance. It does very few optimizations. We

use a simple compiler because it was easier to write, is easier to read, is

more likely to be correct, and improves the quality of debugging informa-

tion provided to users. The less processing the compiler does the easier it

is to relate the state of the machine to the source program when errors are

encountered.

The compiler takes as arguments an expression, an environment, the

number of values currently pushed on the stack, and information about

the expression's continuation. The stack value count is needed to generate

Draft of January 31, 1994



16 KELSEY AND REES

case 46 : {

long arg2_267X;

/* pop an operand from the stack */

RSstackS = (4 + RSstackS);

arg2_267X = *((long*)((unsigned char*)RSstackS));

/* check operand tags */

if ((0 == (3 & (arg2_267X | RSvalS)))) {

long x_268X;

long z_269X;

x_268X = RSvalS;

/* remove tags and add */

z_269X = (arg2_267X >> 2) + (x_268X >> 2);

/* overflow check */

if ((536870911 < z_269X)) {

goto L20950;}

else {

/* underflow check */

if ((z_269X < -536870912)) {

goto L20950;}

else {

/* add tag and continue */

RSvalS = (z_269X << 2);

goto START;}}

L20950: {

merged_arg1K0 = 0;

merged_arg0K1 = arg2_267X;

merged_arg0K2 = x_268X;

goto raise_exception2;}}

else {

merged_arg1K0 = 0;

merged_arg0K1 = arg2_267X;

merged_arg0K2 = RSvalS;

goto raise_exception2;}}

break;

Figure 3: Compiler output for the addition instruction

Draft of January 31, 1994



TRACTABLE SCHEME IMPLEMENTATION 17

make-cont instructions. The continuation argument has two parts, a kind

and an optional name. The kind is either return (the expression's value is

returned by the procedure being compiled), ignore (the value will not be

used), or fall-through (there is some following code that uses the value).

The name indicates the variable to which the value of the expression will

be bound, if any. If the expression is a lambda form, the name will be used

to provide debugging support.

For each lexically bound variable the compile-time environment has the

location of the variable in terms of the number of run-time environments

that must be chained through (back) and the index of the variable within

the �nal environment (over). For each top-level variable the environment

has either a location, from which the variable's value can be obtained at

run time, a special compilation method, or both. For a variable bound to

a primitive operator the compilation method is a procedure for generating

code for the operator. If the variable is bound to a macro, the compilation

method is a code transformation procedure. The macro facility is based

on the system described in [3]. Many of the special forms in Scheme are

implemented using macros.

The compiler itself is quite simple. Each procedure is compiled into a

separate template. The code for each checks the number of arguments,

makes a new environment and then executes the body.

Literal values are put in the template, and loaded at run time using the

literal instruction. Each variable is looked up in the environment. The

instruction generated for accessing or setting the variable's value depends

on the denotation returned. if is compiled using jump-if-false and then

jump to reach the following piece of code. A lambda form is compiled into a

template, which is placed in the current template as an operand to closure.

begin concatenates the code generated for each expression.

From the point of view of the compiler there are three kinds of procedure

calls: calls to primitives, calls to lambda forms, and all other calls. Calls to

primitives are compiled using the procedure obtained from the environment.

The code for other calls starts with make-cont if the call is not tail-recursive

(if the cont argument to the compiler is not return.) Then the arguments

are compiled in order followed by push instructions. If the call is to a

lambda form the code for the lambda is generated in-line to save the cost

of creating a closure. For all other calls code to evaluate the procedure is

compiled followed by a call instruction.

The compiler also contains code to compile procedural versions of the

primitives. For many primitives, such as +, it is necessary to also have a

procedure of the same name that invokes the primitive.

The output of the compiler is passed to an internal assembler which cal-

Draft of January 31, 1994



18 KELSEY AND REES

culates jump o�sets, builds the vector of values for the template, and makes

the template itself. This assembler also produces a structure containing any

debugging information emitted by the compiler. Some of this information is

indexed by the sections of the assembled code to which it pertains. Debug-

ging information includes the names of bound variables and their locations

in the environment, the source code for procedure calls and their continu-

ations, and names of procedures. There is a separate assembler, not used

by the compiler, that can assemble hand-written byte-code programs.

5.1. Optimizations

We have added a few optimizations to the compiler and the instruction

set since the original implementation. There are quite a number of other

optimizations that could have been done but were not, usually because the

increase in execution speed was not felt to be worth the added complexity.

Among the optimizations that are in the system are special instructions

for accessing local variables in the current environment or its immediate

ancestors, not creating closures for lambda forms found in call position,

not creating empty environments, and a few others.

The instruction set has not been optimized for execution speed or code

size to any great extent. A few instructions, such as the string=? instruc-

tion, could be replaced by signi�gantly slower Scheme code in the run-time

system. There are a number of common sequences of instructions that could

be merged into single instructions. Experiments have determined that the

resulting speed up is not large; the VM does not appear to be spending a

great deal of its time in fetching instructions.

Other possibilities for increased optimization abound. Some examples:

calls to known procedures, such as those for simple loops, could be compiled

as jumps; a jump-if-null instruction would speed up list processing code;

boolean expressions could be compiled for e�ect; leaf procedures (those that

do not create other procedures) don't need to create environment vectors.

The VM instructions needed for many such optimizations already exist.

However, the compiler would have to be made considerably more complex

in order to make use of them. Because the compiler is itself usually run

using Scheme 48, additional compiler complexity carries with it the penalty

of signi�gantly slower compilation speed. A system was built that did not

create leaf environments. In our judgement, the increase in speed did not

make up for the additional complexity and increased compilation time, so

this optimization was removed.

One change that might or might not improve the simplicity or speed of the

system would be to eliminate the value register and the push instruction.

The value register is equivalent to a cache for the top of the stack. Removing

Draft of January 31, 1994



TRACTABLE SCHEME IMPLEMENTATION 19

primitive-scheme Special forms and procedures that are

necessarily implemented directly by a

compiler or interpreter: lambda, if, car,

read-char, etc.

usual-macros Scheme's usual derived expression types: let,

cond, do, etc.

scheme-level-1 Procedures that are easily implemented in

terms of primitive-scheme: not, memq,

equal?, etc.

numeric-tower Number types other than small integers

(bignum, ratnum, 
onum, recnum)

winding call-with-current-continuation and

dynamic-wind

number-i/o number->string and string->number

reading The read procedure

writing The write procedure

evaluation eval and load

high-level-macros The syntax-rules macro

scheme Union of the above interfaces

Table 5: Scheme language interfaces

it would make the architecture description a little shorter. The size of

the code for the system would be essentially unchanged. The number of

VM instructions executed would decrease, as there would not be any push

instructions, but many of the instructions would have to do a little more

work.

6. Run-time library

The byte-code compiler and virtual machine implement a core Scheme di-

alect that we call Primitive Scheme. Scheme 48's run-time library builds

additional functionality on top of Primitive Scheme.

6.1. Scheme in terms of Primitive Scheme

The scheme interface speci�es the entire Scheme language as de�ned by

the Revised

4

Report. scheme is organized as the union of a number of

smaller interfaces for two purposes: (1) con�guring small systems that use

only particular subsets of the language, and (2) structuring implementa-

tions of the full language.

The modules that provide implementations of scheme's sub-interfaces

Draft of January 31, 1994



20 KELSEY AND REES

(Table 5) are straightforward, for the most part. The primitive-scheme

interface is implemented directly by the byte-code compiler and virtual

machine, while all the other interfaces have ordinary implementations as

Scheme programs.

The module for numeric-tower is more closely tied to the VM archi-

tecture than most of the other library modules. It consists of a set of

exception handlers for the VM's arithmetic instructions. If the VM inter-

preter encounters such an instruction for which the arguments are numbers

that are not implemented directly by the VM, then it raises an exception.

The exception is handled by a procedure that dispatches to an appropriate

specialist function: for example, if the two arguments are large integers,

then the large integer addition routine is invoked.

Following the philosophy of minimizing internal dependencies, the nu-

meric tower is carefully constructed so that the numeric types do not de-

pend on one another. It is possible to make use of any combination of

number types; for example, rational numbers can be used in the absence of

large integers.

The evaluation interface has two implementations. The �rst is a simple

meta-circular interpreter that does not rely on the virtual machine archi-

tecture. The second implements eval as a three-step process:

1. Invoke the byte-code compiler on the form, producing a template.

2. Make a closure from the given template and a null lexical environ-

ment. (Global variables are accessed via the template, not via the

environment component of the closure.)

3. Invoke the closure as an ordinary procedure.

Step 3 is the \re
ective" step that starts the virtual machine running on

the newly compiled form.

Many of these interfaces include entry points that do not become part of

Scheme. For example, the numeric-tower interface includes the procedures

necessary to add additional types of numbers.

6.2. Big Scheme in terms of Scheme

\Big Scheme" consists of a diverse collection of utilities and language

extensions of general interest. A few of these modules are used in the im-

plementation of the basic Scheme library. For example, the de�nitions of

current-input-port and current-output-port are in terms of dynamic

variables, which come from the fluids interface. Also, the byte-code com-

piler makes heavy internal use of records, tables, and enumerated types.

Draft of January 31, 1994



TRACTABLE SCHEME IMPLEMENTATION 21

bitwise Bitwise logical operations on integers

records Record package

fluids Dynamically bound variables

enumerated Enumerated types

tables Hash tables

byte-vectors Blocks of memory accessible by byte, word,

or half-word

conditions Condition system

exceptions Particular conditions for errors at the level of

primitive-scheme

interrupts Handling asynchronous interrupts; critical

sections

queues FIFO queues

random Random number generator

sort Sorting lists

pp Pretty-printer

format Formatted output

extended-ports I/O from/to strings, etc.

external-calls External function call

threads Multitasking

weak-pointers Weak pointers

big-scheme Union of the above interfaces

Table 6: Utilities and extensions interfaces

Other modules, such as conditions and interrupts are used in the develop-

ment environment (see next section). Still other modules, such as multi-

tasking and external calls, are useful for general applications programming.

Many of the interfaces in this group have two implementations: one writ-

ten in portable Scheme, and another that exploits special features of the

Scheme 48 virtual machine architecture. For example, the record pack-

age has a portable implementation in which records are represented using

vectors, and a Scheme 48-speci�c implementation in which records are a

distinct primitive type. The portable version can be used when running the

linker or other applications on a substrate other than Scheme 48, while the

Scheme 48-speci�c version provides increased functionality, performance,

or debuggability.

6.3. Scheme development environment

A complete development environment, comprising byte-code compiler,

run-time library, a command processor, and debugging utilities, can be

packaged as a single heap image for execution by the VM. This image can be

Draft of January 31, 1994



22 KELSEY AND REES

command-processor Command-oriented user interface

package-commands Commands for manipulating modules

application-builder Application image builder

disclosers Extensions to write and display-condition

to assist in debugging

debugging Trace, backtrace, time, and similar commands

inspector Data structure, stack, and environment

inspector

disassembler Byte-code disassembler

Table 7: Development environment interfaces

generated by the byte code compiler and linker using any implementation of

standard Scheme. Scheme 48 is \bootstrapped" only in the straightforward

sense that it includes an implementation of standard Scheme, which is a

su�cient basis for executing the code necessary for it to build itself.

The command processor is part of the Scheme development environment.

It is similar to an ordinary Lisp read-evaluate-print loop in that it repeat-

edly reads and executes forms (expressions and de�nitions), but di�ers in

that it also accepts requests for meta-level operations, and these requests

(called commands) are syntactically distinguished from forms to be exe-

cuted. Meta-level operations include obtaining backtraces or trace output,

specifying compiler directives, measuring execution time, and exiting the

development environment. The purpose for this distinction is to leave the

program namespace uncluttered with bindings of operators that are only

meaningful during program development. For example, in Common Lisp,

one would say (trace foo) to request tracing output for calls to foo, but

in the Scheme 48 command processor one says ,trace foo. When debug-

ging programs that make use of the module system, the entire command set

remains available regardless of the current expression evaluation context.

7. Discussion

Our claim is that by writing Scheme 48 as a collection of largely inde-

pendent modules we have produced a sophisticated and extended Scheme

implementation that is reliable, tractable, and easy to modify. Although

we have not stressed implementation e�ciency in this paper, Scheme 48

is a reasonably fast system, and is in use as a turnkey Scheme program-

ming system. It runs at approximately the speed of the fastest available

interpreters. (The widely di�ering implementation methodologies make it

di�cult to obtain meaningful numbers.)

The Scheme 48 system has been used for research in memory manage-

Draft of January 31, 1994



TRACTABLE SCHEME IMPLEMENTATION 23

ment, embedded systems, multiprocessing, language design, and computer

system veri�cation. Scheme 48 was chosen as the platform for these projects

because of its internal tractability and 
exibility.

Paul Wilson has done extensive research on memory management tech-

niques using an early version of Scheme 48 [12, 13]. Because of its virtual

machine architecture, Scheme 48's memory usage patterns are similar to

those of more complex systems, and is easier to modify and experiment

with.

Scheme 48 is currently being used to program mobile robots [9]. Multi-

threaded user programs are executed by the virtual machine on an em-

bedded processor on board the robot, while the byte-code compiler and

development environment run on a work station using a Scheme implemen-

tation built on top of Common Lisp. Programs are compiled on the work

station and then downloaded to the robot via a detachable tether. The on-

board component of the system uses the standard virtual machine (with

some additional hardware operations) and a stripped down version of the

run-time library. There is no need for a read-eval-print loop on board, for

example, and the system �ts easily within the limited memory available

on the robot (0.5 megabytes of RAM and 0.25 megabytes of EPROM).

The virtual machine and the initial heap image take up 21 and 80 kbytes,

respectively, of the EPROM.

Olin Shivers used Scheme 48 as a substrate for scsh, a Unix shell pro-

gramming language based on Scheme that gives the user full access to

existing Unix programs. Scheme 48 was chosen because it provides a good

programming environment, a general exception handling mechanism, and

the ability to make small stand-alone programs, all of which are desirable

for a shell programming language.

The VLISP project at MITRE Corporation and Northeastern University

used Scheme 48 as the basis for a fully veri�ed Scheme implementation.

The existence of the virtual machine interface, the simplicity of the byte-

code compiler, and the fact that the entire system is written in Scheme

combined to greatly simplify the veri�cation process. The fact that the

VLISP project was able to adopt much of Scheme 48's design unchanged

corroborates our claim that Scheme 48 is tractable and reliable.

References

1. IEEE Std 1178-1990. IEEE Standard for the Scheme Programming

Language. Institute of Electrical and Electronic Engineers, Inc., New

York, NY (1991).

2. Clinger, William. The scheme 311 compiler: An exercise in denotational

Draft of January 31, 1994



24 KELSEY AND REES

semantics. In Proc. 1984 ACM Symposium on Lisp and Functional

Programming (August 1984) 356{364.

3. Clinger, William and Rees, Jonathan. Macros that work. In Conf. Rec.

18 ACM Symposium on Principles of Programming Languages (1991).

4. Curtis, Pavel and Rauen, James. A module system for scheme. In

Proc. 1990 ACM Symposium on Lisp and Functional Programming

(1990) 13{19.

5. Kelsey, Richard. Tail-Recursive Stack Disciplines for an Interpreter.

Technical Report NU-CCS-93-03, Northeastern University College of

Computer Science, Boston, MA (1992).

6. Kelsey, Richard and Hudak, Paul. Realistic compilation by program

transformation. In Conf. Rec. 16 ACM Symposium on Principles of

Programming Languages (1989) 281{292.

7. Lee, Peter. Topics in Advanced Language Implementation. MIT Press,

Cambridge, MA (1991).

8. MacQueen, David B. Modules for standard ML. In Proc. 1984 ACM

Symposium on Lisp and Functional Programming (1984) 198{207.

9. Rees, Jonathan and Donald, Bruce. Program mobile robots in scheme.

In Proceedings of the 1992 IEEE International Conference on Robotics

and Automation (1992) 2681{2688.

10. Steele, Guy L. Common Lisp: the Language. Digital Press, Burlington

MA, second edition (1990).

11. Tarditi, D., Acharya, A., and Lee., P. No Assembly Required: Compil-

ing Standard ML to C. Technical Report, School of Computer Science,

Carnegie Mellon University (1991).

12. Wilson, Paul R. and Moher, Thomas G. Design of the opportunistic

garbage collector. In Proceedings of the Sigplan 1989 Conference on

Object-Oriented Programming: Systems, Languages, and Applications

(1989).

13. Wilson, Paul R., Lam, Micheal S, and Moher, Thomas G. E�ective

\static-graph" reorganization to improve locality in garbage collected

systems. In Proceedings of the Sigplan 1988 Conference on Program-

ming Language Design and Implementation (1991).

Draft of January 31, 1994


