Octave Quick Reference Octave Version 1.1.1

Starting Octave

octave start interactive Octave session octave file run Octave on commands in file octave --help describe command line options

Stopping Octave

exit Octave quit or exit

INTERRUPT (e.q. C-c) terminate current command and return to top-level prompt

Getting Help

list all commands and built-in variables help help command briefly describe command use Info to browse Octave manual help-i help -i command search for command in Octave manual

Motion in Info

SPC or C-v scroll forward one screenful DEL or M-v scroll backward one screenful C-1 redraw the display

Node Selection in Info

select the next node select the previous node select the 'up' node select the 'top' node select the directory node

select the first node in the current file select the last node in the current file reads the name of a node and selects it

kills the current node

Searching in Info

search for a string C-s search forward incrementally search backward incrementally

search index & go to corresponding node go to next match from last 'i' command

Command-Line Cursor Motion

C-b move back one character C-f move forward one character C-a move the the start of the line С-е move to the end of the line M-fmove forward a word M-b move backward a word

C-1 clear screen, reprinting current line at top

Inserting or Changing Text

M-TAB insert a tab character DEL delete character to the left of the cursor C-ddelete character under the cursor C-v add the next character verbatim C-t transpose characters at the point M-t transpose words at the point

surround optional arguments ... show one or more arguments Copyright 1996, John W. Eaton Permissions on back

Killing and Yanking

C-k kill to the end of the line C-y yank the most recently killed text M-d kill to the end of the current word M-DEL kill the word behind the cursor M-A rotate the kill ring and yank the new top

Command Completion and History

TAB complete a command or variable name M-?list possible completions RET enter the current line С-р move 'up' through the history list C-nmove 'down' through the history list M-< move to the first line in the history M-> move to the last line in the history C-r search backward in the history list search forward in the history list history [-q] [N] list N previous history lines, omitting

history numbers if -q

history -w [file] write history to file ("/.octave_hist if no file argument)

history -r [file] read history from file ("/.octave_hist if no file argument)

edit_history lines edit and then run previous commands from the history list

run_history lines run previous commands from the history

 $\begin{bmatrix} beg \end{bmatrix} \begin{bmatrix} end \end{bmatrix}$ Specify the first and last history commands to edit or run.

If beg is greater than end, reverse the list of commands before editing. If end is omitted, select commands from beg to the end of the history list. If both arguments are omitted, edit the previous item in the history list

Shell Commands

cd dir change working directory to dir print working directory рыq 1s [options] print directory listing getenv (string) return value of named environment va ria ble system (cmd)execute arbitrary shell command string

Matrices

Square brackets delimit literal matrices. Commas separate elements on the same row. Semicolons separate rows. Commas may be replaced by spaces, and semicolons may be replaced by one or more newlines. Elements of a matrix may be arbitrary expressions, provided that all the dimensions agree.

enter a row vector $[x, y, \dots]$ $[x; y; \dots]$ enter a column vector [w, x; y, z]enter a 2 X 2 matrix

Ranges

base : limit base: incr: limit

Specify a range of values beginning with base with no elements greater than limit. If it is omitted, the default value of incr is 1. Negative increments are permitted.

Strings and Common Escape Sequences

A string constant consists of a sequence of characters enclosed in either double-quote or single-quote marks.

11 a literal backslash \" a literal double-quote character \ > a literal single-quote character \n newline. ASCII code 10 ١t horizontal tab. ASCII code 9

Index Expressions

var (idx) select elements of a vector var (idx1, idx2)select elements of a matrix select row (column) corresponding to scalar scalarvectorselect rows (columns) corresponding to the elements of vector rangeselect rows (columns) corresponding to the elements of range select all rows (columns)

Global Variables

global var1 . . . Declare variables global.

Global variables may be accessed inside the body of a function without having to be passed in the function parameter list provided they are also declared global within the function.

Selected Built-in Variables

EDITOR editor to use with edit_historv Inf, NaN IEEE infinity, NaN LOADPATH path to search for function files PAGER program to use to paginate output ans last result not explicitly assigned machine precision eps рi realmax maximum representable value

minimum representable value

automatic_replot do_fortran_indexing implicit_str_to_num_ok output_max_field_width output_precision page_screen_output prefer_column_vectors resize_on_range_error save_precision silent_functions warn_divide_by_zero

realmin

automatically redraw plots Fortran-style indexing of matrices allow strings to become numbers maximum numeric field width min significant figures displayed control whether output is paged create column vectors by default automatic resizing of matrices digits stored by save command suppress output from functions suppress divide by zero errors

commas_in_literal_matrix

control handling of spaces in matrices

ignore_function_time_stamp

ignore changes in function files during session

ok_to_lose_imaginary_part

allow complex to real conversion

prefer_zero_one_indexing

if ambiguous, prefer 0-1 style indexing

Arithmetic and Increment Operators

x + yaddition x - ysubtraction x * ymatrix multiplication element by element multiplication $x \cdot * y$ right division, conceptually equivalent to x / y(inverse(y')*x')'element by element right division $x \cdot / y$ $x \setminus y$ left division, conceptually equivalent to inverse(x) * y $x \cdot y$ element by element left division $x \, \hat{} \, y$ power operator $x \cdot \hat{y}$ element by element power operator - x negation unary plus (a no-op) $_x$, complex conjugate transpose x . transpose ++ x (-- x)increment (decrement) x, return new x ++ (x --)increment (decrement) x. return old value

Assignment Expressions

var = exprassign expression to variable var (idx) = expr assign expression to indexed variable

Comparison and Boolean Operators

These operators work on an element-by-element basis. Both arguments are always evaluated.

x < ytrue if x is less than y $x \le y$ true if x is less than or equal to ytrue if x is greater than yx == yx >= ytrue if x is greater than or equal to ytrue if x is equal to yx > ytrue if x is not equal to yx != vx & y true if both x and y are true $x \mid y$ true if at least one of x or y is true ! bool true bool is false

Short-circuit Boolean Operators

Operators evaluate left-to-right, expecting scalar operands. Operands are only evaluated if necessary, stopping once overall truth value can be determined. Operands are converted to scalars by applying the all function.

x && y true if both x and y are true $x \mid \mid y$ true if at least one of x or y is true

Operator Precedence

Here is a table of the operators in Octave, in order of increasing precedence.

statement separators assignment, groups left to right | | && logical "or" and "and" & element-wise "or" and "and" < <= == >= > != relational operators colon addition and subtraction * / \ .* ./ .\ multiplication and division + - ++ -- ! unary minus, increment, logical "not" exponentiation

Statements

for identifier = expr stmt-list endfor

Execute stmt-list once for each column of expr. The variable identifier is set to the value of the current column during each iteration.

while (condition) stmt-list endwhile

Execute stmt-list while condition is true.

break exit innermost loop

continue go to beginning of innermost loop

return to calling function return

if (condition) if-body [else else-body] endif

Execute if-body if condition is true, otherwise execute elsebody.

if (condition) if-body [elseif (condition) elseif-body] endif

Execute if-body if condition is true, otherwise execute the elseif-body corresponding to the first elseif condition that is true, otherwise execute else-body.

Any number of elseif clauses may appear in an if statement.

unwind_protect body unwind_protect_cleanup cleanup end

Execute body. Execute cleanup no matter how control exits body.

Defining Functions

function [ret-list] function-name [(arg-list)] function-body

endfunction

eye (n, m)

ones (n, m)

zeros (n, m)

rand (n, m)

ret-list may be a single identifier or a comma-separated list of identifiers delimited by square-brackets.

arg-list is a comma-separated list of identifiers and may be

Basic Matrix Manipulations

rows (a)	return number of rows of a
columns (a)	return number of columns of a
all (a)	check if all elements of a nonzero
any (a)	check if any elements of a nonzero
find (a)	return indices of nonzero elements
sort (a)	order elements in each column of a
sum (a)	sum elements in columns of a
prod (a)	product of elements in columns of a
min (args)	find minimum values
max (args)	find maximum values
rem (x, y)	find remainder of x/y
reshape (a , m , n)	reformat a to be m by n
diag(v, k)	create diagonal matrices
linspace (b, l, n)	create vector of linearly-spaced elemen

logspace (b, l, n) create vector of log-spaced elements

create n by m identity matrix

create n by m matrix of ones

create n by m matrix of zeros

create n by m matrix of random values

Linear Algebra

chol (a) det (a)	Cholesky factorization compute the determinant of a matrix
eig (a)	eigenvalues and eigenvectors
expm (a)	compute the exponential of a matrix
hess (a)	compute Hessenberg decomposition
inverse (a)	invert a square matrix
norm (a, p)	compute the p-norm of a matrix
pinv (a)	compute pseudoinverse of a
qr (a)	compute the QR factorization of a matrix
rank (a)	matrix rank
schur (a)	Schur decomposition of a matrix
svd (a)	singular value decomposition
syl (a, b, c)	solve the Sylvester equation

Equations, ODEs, DAEs, Quadrature

*fsolve	solve nonlinear algebraic equations
*lsode	integrate nonlinear ODEs
*dassl	integrate nonlinear DAEs
*quad	integrate nonlinear functions

perror (nm, code) for functions that return numeric codes, print error message for named function and given error code

* See the on-line or printed manual for the complete list of arguments for these functions.

Signal Processing

fft (a)	Fast Fourier Transform using FFTPACK
ifft (a)	inverse FFT using FFTPACK
freqz (<i>args</i>)	FIR filter frequency response
sinc(x)	returns sin $(\pi x)/(\pi x)$

Image Processing

9
set the current colormap
convert gray scale to Octave image
display an Octave image matrix
display scaled matrix as image
display Octave image
display gray scale image
display RGB image
convert Octave image to gray scale
convert indexed image to RGB
load an image file
convert RGB to Octave image
fmt, map) save a matrix to $file$

Sets

$create_set(a, b)$	create row vector of unique values
complement(a, b)	elements of b not in a
intersection (a , b)	intersection of sets a and b
union (a , b)	union of sets a and b

Strings

strcmp(s, t)	compare strings
strcat(s, t,)	concatenate strings

C-style Input and Output

fopen (name, mode)	open file $name$
fclose ($file$)	close file
printf(fmt,)	formatted output to stdout
fprintf (file, fmt ,)	formatted output to file
${ t sprintf (} fmt, \ldots { t)}$	formatted output to string
\mathtt{scanf} (fmt)	formatted input from stdin
${ t fscanf (file, fmt)}$	formatted input from file
${ t sscanf}$ (str , fmt)	formatted input from string
fgets ($file$, len)	read len characters from file
${ t fflush }$ ($file$)	flush pending output to file
ftell ($file$)	return file pointer position
frewind ($file$)	move file pointer to beginning
freport	print a info for open files
fread (file, size, prec)	read binary data files
fwrite (file, size, prec)	write binary data files
feof (file)	determine if pointer is at EOF

A file may be referenced either by name or by the number returned from fopen. Three files are preconnected when Octave starts: stdin. stdout. and stderr.

Other Input and Output functions

save file var	save variables in file
${f load}$ $file$	load variables from file
disp (var)	display value of var to screen

Miscellaneous Functions

eval (str) feval (str ,)	evaluate str as a command evaluate function named by str, passing remaining args to called function
error (message)	print message and return to top level
<pre>clear pattern exist (str) who</pre>	clear variables matching pattern check existence of variable or function list current variables

Polynomials

compan (p)	companion matrix
conv(a, b)	convolution
\mathtt{deconv} (a , b)	deconvolve two vectors
poly (a)	create polynomial from a matrix
${ t polyderiv}$ (p)	derivative of polynomial
${ t polyreduce}$ (p)	integral of polynomial
$ exttt{polyval}$ (p , x)	value of polynomial at x
$ exttt{polyvalm}$ (p , x)	value of polynomial at x
roots(p)	polynomial roots
residue (a , b)	partial fraction expansion of ratio a/b

Statistics

corrcoef (x , y)	correlation coefficient
cov(x, y)	covariance
mean (a)	mean value
median (a)	median value
\mathtt{std} (a)	standard deviation
var(a)	variance

Basic Plotting

$ exttt{gplot} \ [ranges] \ expr \ [using] \ [title] \ [style]$	2D plotting
${\tt gsplot} \begin{bmatrix} ranges \end{bmatrix} expr \begin{bmatrix} using \end{bmatrix} \begin{bmatrix} title \end{bmatrix} \begin{bmatrix} style \end{bmatrix}$	3D plotting
ranges specify data ranges	
expr expression to plot	
using specify columns to plot	
title specify line title for legend	
style specify line style	

If ranges are supplied, they must come before the expression to plot. The using, title, and style options may appear in any order after expr. Multiple expressions may be plotted with a single command by separating them with commas.

set options	set plotting options
show options	show plotting options
replot	redisplay current plot
closeplot	close stream to gnuplot process
purge_tmp_files	clean up temporary plotting files
automatic_replot	built-in variable

Other Plotting Functions	
plot (args)	2D plot with linear axes
semilogx ($args$)	2D plot with logarithmic x-axis
${ t semilogy}$ ($args$)	2D plot with logarithmic y-axis
loglog (args)	2D plot with logarithmic axes
bar ($args$)	plot bar charts
stairs (x, y)	plot stairsteps
hist (y , x)	plot histograms
title (string)	set plot title
axis (limits)	set axis ranges
<pre>xlabel (string)</pre>	set x-axis label
${ t ylabel}$ ($string$)	set y-axis label
grid [on off]	set grid state
hold [on off]	set hold state
ishold	return 1 if hold is on, 0 otherwise
mesh (x, y, z) meshdom (x, y)	plot 3D surface create mesh coordinate matrices

Edition 1.1for Octave Version 1.1.1. Copyright 1996, John W. Eaton (jwe@che.utexas.edu). The author assumes no responsibility for any errors on this card.

This card may be freely distributed under the terms of the GNU General Public License.

TEX Macros for this card by Roland Pesch (pesch@cygnus.com), originally for the GDB reference card

Octave itself is free software; you are welcome to distribute copies of it under the terms of the GNU General Public License. There is absolutely no warranty for Octave.