GNU Octave

A high-level interactive language for numerical computations
Edition 3 for Octave version 2.0.11
February 1997

John W. Eaton

Copyright © 1996, 1997 John W. Eaton.

This is the third edition of the Octave documentation, and is consistent with version 2.0.11
of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, 59 Temple Place—Suite 330, Boston,
MA 02111-1307, USA.

Preface 1

Preface

Octave was originally intended to be companion software for an undergraduate-level
textbook on chemical reactor design being written by James B. Rawlings of the University
of Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems.

There are those who would say that we should be teaching the students Fortran instead,
because that is the computer language of engineering, but every time we have tried that, the
students have spent far too much time trying to figure out why their Fortran code crashes
and not enough time learning about chemical engineering. With Octave, most students pick
up the basics quickly, and are using it confidently in just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in
several other undergraduate and graduate courses in the Chemical Engineering Department
at the University of Texas, and the math department at the University of Texas has been
using it for teaching differential equations and linear algebra as well. If you find it useful,
please let us know. We are always interested to find out how Octave is being used in other
places.

Virtually everyone thinks that the name Octave has something to do with music, but it
is actually the name of a former professor of mine who wrote a famous textbook on chemical
reaction engineering, and who was also well known for his ability to do quick ‘back of the
envelope’ calculations. We hope that this software will make it possible for many people to
do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix E [Copying], page 231) as described at the beginning
of this manual. You are also encouraged to help make Octave more useful by writing and
contributing additional functions for it, and by reporting any problems you may have.

Acknowledgements

Many people have already contributed to Octave’s development. In addition to John
W. Eaton, the following people have helped write parts of Octave or helped out in various
other ways.

e Thomas Baier (baier@ci.tuwien.ac.at) wrote the original versions of popen, pclose,
execute, sync_system, and async_system.

e Karl Berry (karl@cs.umb.edu) wrote the kpathsea library that allows Octave to re-
cursively search directory paths for function and script files.

e Georg Beyerle (gbeyerle@awi-potsdam.de) contributed code to save values in MaT-
LAB’s ‘.mat’-file format, and has provided many useful bug reports and suggestions.

e John Campbell (jcc@bevo.che.wisc.edu) wrote most of the file and C-style input and
output functions.

GNU Octave

Brian Fox (bfox@gnu.ai.mit.edu) wrote the readline library used for command his-
tory editing, and the portion of this manual that documents it.

Klaus Gebhardt (gebhardt@crunch.ikp.physik.th-darmstadt.de) ported Octave to
0S/2.

A. Scottedward Hodel (A.S.Hodel@eng.auburn.edu) contributed a number of func-
tions including expm, qzval, qzhess, syl, lyap, and balance.

Kurt Hornik (Kurt.Hornik@ci.tuwien.ac.at) provided the corrcoef, cov, fftconv,
fftfilt, ged, led, kurtosis, null, orth, poly, polyfit, roots, and skewness func-
tions, supplied documentation for these and numerous other functions, rewrote the
Emacs mode for editing Octave code and provided its documentation, and has helped
tremendously with testing. He has also been a constant source of new ideas for im-
proving Octave.

Phil Johnson (johnsonp@nicco.sscnet.ucla.edu) has helped to make Linux releases
available.

Friedrich Leisch (leisch@ci.tuwien.ac.at) provided the mahalanobis function.

Ken Neighbors (wkn@leland.stanford.edu) has provided many useful bug reports
and comments on MATLAB compatibility.

Rick Niles (niles@axp745.gsfc.nasa.gov) rewrote Octave’s plotting functions to add
line styles and the ability to specify an unlimited number of lines in a single call. He
also continues to track down odd incompatibilities and bugs.

Mark Odegard (meo@sugarland.unocal.com) provided the initial implementation of
fread, fwrite, feof, and ferror.

Tony Richardson (tony@guts.biomed.uakron.edu) wrote Octave’s image processing
functions as well as most of the original polynomial functions.

R. Bruce Tenison (Bruce.Tenison@eng.auburn.edu) wrote the hess and schur func-
tions.

Teresa Twaroch (twaroch@ci.tuwien.ac.at) provided the functions gls and ols.

Andreas Weingessel (Andreas.Weingessel@ci.tuwien.ac.at) wrote the audio func-
tions 1in2mu, loadaudio, mu2lin, playaudio, record, saveaudio, and setaudio.

Fook Fah Yap (ffy@eng.cam.ac.uk) provided the £ft and ifft functions and valuable
bug reports for early versions.

Special thanks to the following people and organizations for supporting the development

of Octave:

Digital Equipment Corporation, for an equipment grant as part of their External Re-
search Program.

Sun Microsystems, Inc., for an Academic Equipment grant.

International Business Machines, Inc., for providing equipment as part of a grant to
the University of Texas College of EEngineering.

Texaco Chemical Company, for providing funding to continue the development of this
software.

The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

Preface 3

e The State of Texas, for providing funding through the Texas Advanced Technology
Program under Grant No. 003658-078.

e Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

e James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-
ical Engineering.
e Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and used
to produce Octave.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving new
problems, and to make your code freely available for others to use.

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to
improve Octave. See Appendix B [Trouble], page 207, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute
it on certain conditions. Octave is not in the public domain. It is copyrighted and there are
restrictions on its distribution, but the restrictions are designed to ensure that others will
have the same freedom to use and redistribute Octave that you have. The precise conditions
can be found in the GNU General Public License that comes with Octave and that also
appears in Appendix E [Copying], page 231.

Octave is available on CD-ROM with various collections of other free software, and
from the Free Software Foundation. Ordering a copy of Octave from the Free Software
Foundation helps to fund the development of more free software. For more information,
write to

Free Software Foundation
59 Temple Place—Suite 330
Boston, MA 02111-1307
USA

Octave is also available on the Internet from ‘ftp://ftp.che.wisc.edu/pub/octave’,
and additional information is available from ‘http://www.che.wisc.edu/octave’.

GNU Octave

Chapter 1: A Brief Introduction to Octave 5

1 A Brief Introduction to Octave

This manual documents how to run, install and port GNU Octave, and how to report
bugs.

GNU Octave is a high-level language, primarily intended for numerical computations.
It provides a convenient command line interface for solving linear and nonlinear problems
numerically, and for performing other numerical experiments. It may also be used as a
batch-oriented language.

GNU Octave is also freely redistributable software. You may redistribute it and /or mod-
ify it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual in Appendix E [Copying], page 231.

This document corresponds to Octave version 2.0.11.

1.1 Running Octave

On most systems, the way to invoke Octave is with the shell command ‘octave’. Octave
displays an initial message and then a prompt indicating it is ready to accept input. You
can begin typing Octave commands immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing Control-C (usually
written C-c for short). C-c gets its name from the fact that you type it by holding down
and then pressing (. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP
signal, usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but before doing that,
it might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning
Octave by using it. Lines marked with ‘octave:13>" are lines you type, ending each with
a carriage return. Octave will respond with an answer, or by displaying a graph.

Creating a Matrix

To create a new matrix and store it in a variable so that it you can refer to it later, type
the command

octave:1> a=[1, 1, 2; 3, 5, 8; 13, 21, 34]
Octave will respond by printing the matrix in neatly aligned columns. Ending a command
with a semicolon tells Octave to not print the result of a command. For example
octave:2> b = rand (3, 2);
will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of any variable, simply type the name of the variable. For example,
to display the value stored in the matrix b, type the command

6 GNU Octave

octave:3> b

Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For exam-
ple, to multiply the matrix a by a scalar value, type the command
octave:4> 2 * a
To multiply the two matrices a and b, type the command
octave:5> a * b
To form the matrix product a”a, type the command
octave:6> a’ * a

Solving Linear Equations

To solve the set of linear equations ax = b, use the left division operator, ‘\’:
octave:7> a \ b

This is conceptually equivalent to a=!b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equations of the form

z—f: (z,1), z(t =ty) =
For Octave to integrate equations of this form, you must first provide a definition of the
function f(z,t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right
hand side function for an interesting pair of nonlinear differential equations. Note that
while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:8> function xdot = £ (x, t)

a0 oo H
"
coorro
= ¢

N

xdot (1)
xdot (2)

r*x(1)*(1 - x(1)/k) - a*x(1)*x(2)/(1 + b*x(1));

>
>
>
>
>
>
>
>
>
> ckaxx(1)*x(2)/(1 + b*x(1)) - d*x(2);

>
> endfunction

Given the initial condition

Chapter 1: A Brief Introduction to Octave 7

x0 = [1; 2];
and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)
t = linspace (0, 50, 200)°;
it is easy to integrate the set of differential equations:
x = lsode ("f", x0, t);
The function 1sode uses the Livermore Solver for Ordinary Differential Equations, described

in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55-64.

Producing Graphical Output

To display the solution of the previous example graphically, use the command
plot (t, x)

If you are using the X Window System, Octave will automatically create a separate
window to display the plot. If you are using a terminal that supports some other graphics
commands, you will need to tell Octave what kind of terminal you have. Type the command

gset term

to see a list of the supported terminal types. Octave uses gnuplot to display graphics, and
can display graphics on any terminal that is supported by gnuplot.

To capture the output of the plot command in a file rather than sending the output
directly to your terminal, you can use a set of commands like this
gset term postscript
gset output '"foo.ps"
replot
This will work for other types of output devices as well. Octave’s gset command is really
just piped to the gnuplot subprocess, so that once you have a plot on the screen that you
like, you should be able to do something like this to create an output file suitable for your
graphics printer.
Or, you can eliminate the intermediate file by using commands like this
gset term postscript
gset output "|lpr -Pname_of_your_graphics_printer"
replot

Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, type Control-p (usually written C-p for short).
C-p gets its name from the fact that you type it by holding down and then pressing
(. Doing this will normally bring back the previous line of input. C-n will bring up the
next line of input, C-b will move the cursor backward on the line, C-f will move the cursor
forward on the line, etc.

A complete description of the command line editing capability is given in this manual
in Section 2.4 [Command Line Editing], page 18.

8 GNU Octave

Getting Help

Octave has an extensive help facility. The same documentation that is available in
printed form is also available from the Octave prompt, because both forms of the documen-
tation are created from the same input file.

In order to get good help you first need to know the name of the command that you
want to use. This name of the function may not always be obvious, but a good place to
start is to just type help. This will show you all the operators, reserved words, functions,
built-in variables, and function files. You can then get more help on anything that is listed
by simply including the name as an argument to help. For example,

help plot
will display the help text for the plot function.

Octave sends output that is too long to fit on one screen through a pager like less or
more. Type a to advance one line, a to advance one page, and (g to exit the
pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke
Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual in Section 2.3 [Getting Help], page 17.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
arguments or metasyntactic variables appear in this font or form: first-number. Com-
mands that you type at the shell prompt sometimes appear in this font or form: ‘octave
--no-init-file’. Commands that you type at the Octave prompt sometimes appear in
this font or form: foo --bar —-baz. Specific keys on your keyboard appear in this font or

form: (ANY).

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated
with ‘=’. For example,

sqrt (2)
= 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.

In some cases, matrix values that are returned by expressions are displayed like this

(1, 2; 3, 4] == [1, 3; 2, 4]
= [1,0;0, 1]

and in other cases, they are displayed like this

Chapter 1: A Brief Introduction to Octave 9

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘=’. For example,

rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 4], 7)

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. Examples in
this manual indicate printed text with ‘~4’. The value that is returned by evaluating the
expression (here 1) is displayed with ‘=’ and follows on a separate line.

printf (“"foo %s\n", "bar")
- foo bar
=1

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line starting with error:.

struct_elements ([1, 2; 3, 4])
error: struct_elements: wrong type argument ‘matrix’

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a uniform format.
The first line of a description contains the name of the item followed by its arguments, if
any. The category—function, variable, or whatever—is printed next to the right margin.
The description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

Here is a description of an imaginary function foo:

foo (x, y, ..)) Function
The function foo subtracts x from y, then adds the remaining arguments to
the result. If y is not supplied, then the number 19 is used by default.

10 GNU Octave

foo (1, [3, 5], 3, 9)
= [14, 16]
foo (5)
= 14
More generally,

foo (w, x, y, ...)

X - w+y+ ...

Any parameter whose name contains the name of a type (e.g., integer, integerl or matrix)
is expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

Functions in Octave may be defined in several different ways. The catagory name for
functions may include another name that indicates the way that the function is defined.
These additional tags include

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is
part of the compiled Octave binary.

Loadable Function
The function described is written in a language like C++, C, or Fortran. On
systems that support dynamic linking of user-supplied functions, it may be
automatically linked while Octave is running, but only if it is needed. See
Section 11.8 [Dynamically Linked Functions], page 95.

Function File
The function described is defined using Octave commands stored in a text file.
See Section 11.6 [Function Files], page 92.

Mapping Function
The function described works element-by-element for matrix and vector argu-
ments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the
word ‘Function’ is replaced by ‘Command. Commands are functions that may called with-
out surrounding their arguments in parentheses. For example, here is the description for
Octave’s c¢d command:

cd dir Command

chdir dir Command
Change the current working directory to dir. For example, cd “/octave changes
the current working directory to ‘“/octave’. If the directory does not exist, an
error message is printed and the working directory is not changed.

Chapter 1: A Brief Introduction to Octave 11

1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the
user, built-in variables typically exist specifically so that users can change them to alter the
way Octave behaves (built-in variables are also sometimes called user options). Ordinary
variables and built-in variables are described using a format like that for functions except
that there are no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_what_i_say.

do_what_i_mean_not_what_i_say Built-in Variable
If the value of this variable is nonzero, Octave will do what you actually wanted,
even if you have typed a completely different and meaningless list of commands.

Other variable descriptions have the same format, but ‘Built-in Variable’ is replaced by
‘Variable’, for ordinary variables, or ‘Constant’ for symbolic constants whose values cannot

be changed.

12

GNU Octave

Chapter 2: Getting Started 13

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Oc-
tave session, get help at the command prompt, edit the command line, and write Octave
programs that can be executed as commands from your shell.

2.1 Invoking Octave

Normally, Octave is used interactively by running the program ‘octave’ without any
arguments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’is a shorter
equivalent).

2.1.1 Command Line Options

Here is a complete list of all the command line options that Octave accepts.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to
print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

--echo-commands
-X Echo commands as they are executed.

--exec-path path
Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that set
the built-in variable EXEC_PATH.

--help
-h
-? Print short help message and exit.

--info-file filename
Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that set
the built-in variable INFO_FILE.

--info-program program

Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found

14 GNU Octave

in the environment, but not any commands in the system or user startup files
that set the built-in variable INFO_PROGRAM.

--interactive

-i Force interactive behavior. This can be useful for running Octave via a remote
shell command or inside an Emacs shell buffer. For another way to run Octave
within Emacs, see Appendix D [Emacs], page 221.

--no-init-file
Don’t read the “/.octaverc’ or ‘.octaverc’ files.

--no-line-editing
Disable command-line editing and history.

--no-site-file
Don’t read the site-wide ‘octaverc’ file.

--norc
-f Don’t read any of the system or user initialization files at startup. This is

equivalent to using both of the options --no-init-file and --no-site-file.
--path path

-p path Specify the path to search for function files. The value of path specified on the
command line will override any value of OCTAVE_PATH found in the environment,
but not any commands in the system or user startup files that set the built-in
variable LOADPATH.

--silent
--quiet
-q Don’t print the usual greeting and version message at startup.

--traditional

--braindead
Set initial values for user-preference variables to the following values for com-
patibility with MATLAB.

PS1 = ">>

PS2 = n
beep_on_error =1
default_save_format = "mat-binary"
define_all_return_values =
do_fortran_indexing =
empty_list_elements_ok =
implicit_str_to_num_ok =
ok_to_lose_imaginary_part =
page_screen_output =
prefer_column_vectors =
print_empty_dimensions =
treat_neg_dim_as_zero =
warn_function_name_clash =
whitespace_in_literal_matrix = "traditional"

O~ OO O = = = =

--verbose
-V Turn on verbose output.

Chapter 2: Getting Started 15

--version
-v Print the program version number and exit.

file Execute commands from file.

Octave also includes several built-in variables that contain information about the com-
mand line, including the number of arguments and all of the options.

argv Built-in Variable
The command line arguments passed to Octave are available in this variable.
For example, if you invoked Octave using the command

octave --no-line-editing --silent

argv would be a string vector with the elements -—-no-line-editing and --
silent.

If you write an executable Octave script, argv will contain the list of arguments
passed to the script. see Section 2.6 [Executable Octave Programs], page 25.

program_invocation_name Built-in Variable

program_naine Built-in Variable
When Octave starts, the value of the built-in variable program_invocation_
name is automatically set to the name that was typed at the shell prompt
to run Octave, and the value of program_name is automatically set to the
final component of program_invocation_name. For example, if you typed
‘/usr/local/bin/octave’ to start Octave, program_invocation_name would
have the value "/usr/local/bin/octave", and program_name would have the
value "octave".

If executing a script from the command line (e.g., octave foo.m or using an
executable Octave script, the program name is set to the name of the script.
See Section 2.6 [Executable Octave Programs], page 25 for an example of how
to create an executable Octave script.

Here is an example of using these variables to reproduce Octave’s command line.
printf ("%s", program_name);
for 1 = l:nargin
printf (" ¥%s", argv(i,:));

endfor

printf ("\n");
See Section 8.1 [Index Expressions]|, page 59 for an explanation of how to properly index
arrays of strings and substrings in Octave, and See Section 11.1 [Defining Functions], page 85
for information about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the following files:

octave-home/share/octave/site/m/startup/octaverc
Where octave-home is the directory in which all of Octave is installed (the
default is ‘/usr/local’). This file is provided so that changes to the default

16 GNU Octave

Octave environment can be made globally for all users at your site for all ver-
sions of Octave you have installed. Some care should be taken when making
changes to this file, since all users of Octave at your site will be affected.

octave-home/share/octave/version/m/startup/octaverc
Where octave-home is the directory in which all of Octave is installed (the
default is ‘/usr/local’), and version is the version number of Octave. This
file is provided so that changes to the default Octave environment can be made
globally for all users for a particular version of Octave. Some care should be
taken when making changes to this file, since all users of Octave at your site
will be affected.

“/.octaverc
This file is normally used to make personal changes to the default Octave envi-
ronment.

.octaverc
This file can be used to make changes to the default Octave environment for
a particular project. Octave searches for this file in the current directory after
it reads "/ .octaverc’. Any use of the cd command in the ‘*/.octaverc’ file
will affect the directory that Octave searches for the file ‘.octaverc’.

If you start Octave in your home directory, commands from from the file
‘“/.octaverc’ will only be executed once.

A message will be displayed as each of the startup files is read if you invoke Octave with
the —-verbose option but without the -—-silent option.

Startup files may contain any valid Octave commands, including function definitions.

2.2 Quitting Octave

exit (status) Built-in Function

quit (status) Built-in Function
Exit the current Octave session. If the optional integer value status is supplied,
pass that value to the operating system as the Octave’s exit status.

atexit (fcn) Built-in Function
Register function to be called when Octave exits. For example,

function print_flops_at_exit ()
printf (“\ni%s\n", system ("fortune"));
fflush (stdout);

endfunction

atexit ("print_flops_at_exit");

will print a message when Octave exits.

Chapter 2: Getting Started 17

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command help
-i. In addition, the documentation for individual user-written functions and variables is
also available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See
Section 11.6 [Function Files], page 92, for more information about how to document the
functions you write.

help Command
Octave’s help command can be used to print brief usage-style messages, or
to display information directly from an on-line version of the printed manual,
using the GNU Info browser. If invoked without any arguments, help prints a
list of all the available operators, functions, and built-in variables. If the first
argument is -1, the help command searches the index of the on-line version of
this manual for the given topics.

For example, the command help help prints a short message describing the
help command, and help -i help starts the GNU Info browser at this node in
the on-line version of the manual.

Once the GNU Info browser is running, help for using it is available using the
command C-h.

The help command can give you information about operators, but not the comma and
semicolons that are used as command separators. To get help for those, you must type help
comma or help semicolon.

INFO_FILE Built-in Variable
The variable INFO_FILE names the location of the Octave info file. The default
value is "octave-home/info/octave.info", where octave-home is the directory
where all of Octave is installed.

INFO_PROGRAM Built-in Variable

The variable INFO_PROGRAM names the info program to run. Its initial value
is "octave-home/libexec/octave/version/exec/arch/info'", where octave-
home is the directory where all of Octave is installed, version is the Octave
version number, and arch is the machine type. The value of INFO_PROGRAM
can be overridden by the environment variable OCTAVE_INFO_PROGRAM, or the
command line argument —--info-program NAME, or by setting the value of the
built-in variable INFO_PROGRAM in a startup script.

suppress_verbose_help_message Built-in Variable
If the value of suppress_verbose_help_message is nonzero, Octave will not
add additional help information to the end of the output from the help com-
mand and usage messages for built-in commands.

18 GNU Octave

2.4 Command Line Editing

Octave uses the GNU readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. Please
see The GNU Readline Library manual for more information.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type C-a,
hold down (CTRL) and then press (&). In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. On some terminals,
you type M-u by holding down and pressing (. If your terminal does not have a
key, you can still type Meta charcters using two-character sequences starting with
ESC. Thus, to enter M-u, you could type (ESC){u). The ESC character sequences are also
allowed on terminals with real Meta keys. In the following sections, Meta characters such
as Meta-u are written as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.

C-f Move forward one character.

DEL Delete the character to the left of the cursor.

Cc-d Delete the character underneath the cursor.

M-f Move forward a word.

M-b Move backward a word.

C-a Move to the start of the line.

C-e Move to the end of the line.

Cc-1 Clear the screen, reprinting the current line at the top.

C-_

c-/ Undo the last thing that you did. You can undo all the way back to an empty
line.

M-r Undo all changes made to this line. This is like typing the ‘undo’ command

enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the arrow keys in place of
C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

Chapter 2: Getting Started 19

There is also a function available so that you can clear the screen from within Octave
programs.

cle () Built-in Function
home () Built-in Function
Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use,
usually by yanking it back into the line. If the description for a command says that it ‘kills’
text, then you can be sure that you can get the text back in a different (or the same) place
later.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

M-(DEL) Kill from the cursor to the start of the previous word, or if between words, to
the start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-(DEL)
because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one
clean sweep. The kill ring is not line specific; the text that you killed on a previously typed
line is available to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that would otherwise have
a special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.
C=q
C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-(TAB) Insert a tab character.

Cc-t Drag the character before the cursor forward over the character at the cursor,
also moving the cursor forward. If the cursor is at the end of the line, then
transpose the two characters before it.

20 GNU Octave

M-t Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-1 Lowecase the characters following the cursor to the end of the current (or fol-
lowing) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word
if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type For You

The following commands allow Octave to complete command and variable names for
you.

TAB Attempt to do completion on the text before the cursor. Octave can complete
the names of commands and variables.

M-7 List the possible completions of the text before the cursor.

completion_append_char Built-in Variable
The value of completion_append_char is used as the character to append to
successful command-line completion attempts. The default value is " " (a single
space).

completion_matches (hint) Built-in Function
Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might
be controlling Octave and handling user input. The current command number
is not incremented when this function is called. This is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you can recall previous
commands to edit or execute them again. When you exit Octave, the most recent commands
you have typed, up to the number specified by the variable history_size, are saved in a
file. When Octave starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD

RET Accept the line regardless of where the cursor is. If this line is non-empty, add
it to the history list. If this line was a history line, then restore the history line
to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M—< Move to the first line in the history.

Chapter 2: Getting Started 21

M->
C-r
C-s
On most
through the
In additi

provides thr
history list.

Move to the end of the input history, i.e., the line you are entering!

Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

Search forward starting at the current line and moving ‘down’ through the
history as necessary.

terminals, you can also use the arrow keys in place of C-p and C-n to move
history list.

on to the keyboard commands for moving through the history list, Octave
ee functions for viewing, editing, and re-running chunks of commands from the

history options Command

edit_history options

If invoked with no arguments, history displays a list of commands that you
have executed. Valid options are:

-w file Write the current history to the file file. If the name is omitted,
use the default history file (normally ‘“/.octave_hist’).

-r file Read the file file, replacing the current history list with its con-
tents. If the name is omitted, use the default history file (normally
‘~/.octave_hist’).

N Only display the most recent N lines of history.

-q Don’t number the displayed lines of history. This is useful for cut-
ting and pasting commands if you are using the X Window System.

For example, to display the five most recent commands that you have typed
without displaying line numbers, use the command history -q 5.

If invoked with no arguments, edit_history allows you to edit the history list
using the editor named by the variable EDITOR. The commands to be edited
are first copied to a temporary file. When you exit the editor, Octave executes
the commands that remain in the file. It is often more convenient to use edit_
history to define functions rather than attempting to enter them directly on
the command line. By default, the block of commands is executed as soon as
you exit the editor. To avoid executing any commands, simply delete all the
lines from the buffer before exiting the editor.
The edit_history command takes two optional arguments specifying the his-
tory numbers of first and last commands to edit. For example, the command
edit_history 13
extracts all the commands from the 13th through the last in the history list.
The command
edit_history 13 169
only extracts commands 13 through 169. Specifying a larger number for the
first command than the last command reverses the list of commands before
placing them in the buffer to be edited. If both arguments are omitted, the
previous command in the history list is used.

Command

22 GNU Octave

run_history Command
Similar to edit_history, except that the editor is not invoked, and the com-
mands are simply executed as they appear in the history list.

EDITOR Built-in Variable
A string naming the editor to use with the edit_history command. If the
environment variable EDITOR is set when Octave starts, its value is used as the
default. Otherwise, EDITOR is set to "emacs".

history _file Built-in Variable
This variable specifies the name of the file used to store command history. The
default value is "~/ .octave_hist", but may be overridden by the environment
variable OCTAVE_HISTFILE.

history_size Built-in Variable
This variable specifies how many entries to store in the history file. The default
value is 1024, but may be overridden by the environment variable OCTAVE_
HISTSIZE.

saving_history Built-in Variable
If the value of saving_history is "true", command entered on the command
line are saved in the file specified by the variable history_file.

2.4.6 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-
escaped special characters that are decoded as follows:

At The time.

g’ The date.

‘\n’ Begins a new line by printing the equivalent of a carriage return followed by a
line feed.

‘\s’ The name of the program (usually just ‘octave’).

Aw’ The current working directory.

AW The basename of the current working directory.

Aw’ The username of the current user.

‘\b’ The hostname, up to the first ..

‘\H’ The hostname.

A# The command number of this command, counting from when Octave starts.

A The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.

g’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.

‘\nnn’ The character whose character code in octal is nnn.

AW A backslash.

Chapter 2: Getting Started 23

PS1 Built-in Variable
The primary prompt string. When executing interactively, Octave displays the
primary prompt PS1 when it is ready to read a command.

The default value of PS1 is "\s:\#> ". To change it, use a command like
octave:13> PS1 = "\\u@\\H> "
which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged

in on the host ‘kremvax.kgb.su’. Note that two backslashes are required to
enter a backslash into a string. See Chapter 5 [Strings], page 39.

PS2 Built-in Variable
The secondary prompt string, which is printed when Octave is expecting addi-
tional input to complete a command. For example, when defining a function
over several lines, Octave will print the value of PS1 at the beginning of each
line after the first. The default value of PS2 is "> .

PS4 Built-in Variable

If Octave is invoked with the -—echo-input option, the value of PS4 is printed
before each line of input that is echoed. The default value of PS4 is "+ ". See
Section 2.1 [Invoking Octave], page 13, for a description of -—echo-input.

2.4.7 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by
recording the input you type and the output that Octave produces in a separate file.

diary options Command
Create a list of all commands and the output they produce, mixed together just
as you see them on your terminal. Valid options are:

on Start recording your session in a file called ‘diary’ in your current
working directory.

off Stop recording your session in the diary file.
file Record your session in the file named file.

Without any arguments, diary toggles the current diary state.

Sometimes it is useful to see the commands in a function or script as they are being
evaluated. This can be especially helpful for debugging some kinds of problems.

echo options Command
Control whether commands are displayed as they are executed. Valid options
are:
on Enable echoing of commands as they are executed in script files.
off Disable echoing of commands as they are executed in script files.
on all Enable echoing of commands as they are executed in script files

and functions.

24 GNU Octave

off all Disable echoing of commands as they are executed in script files
and functions.

If invoked without any arguments, echo toggles the current echo state.

echo_executing_commands Built-in Variable
This variable is may also be used to control the echo state. It may be the sum
of the following values:

1 Echo commands read from script files.
2 Echo commands from functions.
4 Echo commands read from command line.

More than one state can be active at once. For example, a value of 3 is equivalent
to the command echo on all.

The value of echo_executing_commands is set by the echo command and the
command line option --echo-input.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.
A parse error occurs if Octave cannot understand something you have typed. For exam-
ple, if you misspell a keyword,
octave:13> functon y = £ (x) y = x~2; endfunction
Octave will respond immediately with a message like this:

parse error:

functon y = £ (x) y = x72; endfunction

For most parse errors, Octave uses a caret (‘°’) to mark the point on the line where it
was unable to make sense of your input. In this case, Octave generated an error message
because the keyword function was misspelled. Instead of seeing ‘function f’, Octave saw
two consecutive variable names, which is invalid in this context. It marked the error at the
y because the first name by itself was accepted as valid input.

Another class of error message occurs occurs at evaluation time. These errors are called
run-time errors, or sometimes evaluation errors because they occur when your program is
being run, or evaluated. For example, if after correcting the mistake in the previous function
definition, you type

octave:13> £ ()
Octave will respond with

error: ‘x’ undefined near line 1 column 24

error: evaluating expression near line 1, column 24

error: evaluating assignment expression near line 1, column 22
error: called from ‘f’

Chapter 2: Getting Started 25

This error message has several parts, and gives you quite a bit of information to help you
locate the source of the error. The messages are generated from the point of the innermost
error, and provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be
undefined near line 1 and column 24 of some function or expression. For errors occurring
within functions, lines from the beginning of the file containing the function definition. For
errors occurring at the top level, the line number indicates the input line number, which is
usually displayed in the prompt string.

The second and third lines in the example indicate that the error occurred within an
assignment expression, and the last line of the error message indicates that the error occurred
within the function £. If the function £ had been called from another function, for example,
g, the list of errors would have ended with one more line:

error: called from ‘g’

These lists of function calls usually make it fairly easy to trace the path your program
took before the error occurred, and to correct the error before trying again.

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts,
using the ‘#!” script mechanism. You can do this on GNU systems and on many Unix
systems!

For example, you could create a text file named ‘hello’, containing the following lines:

#! octave-interpreter-name -qf
a sample Octave program
printf ("Hello, world!'\n");

(where octave-interpreter-name should be replaced with the full file name for your Octave
binary). After making this file executable (with the chmod command), you can simply type:

hello
at the shell, and the system will arrange to run Octave as if you had typed:
octave hello

The line beginning with ‘#!’ lists the full file name of an interpreter to be run, and an
optional initial command line argument to pass to that interpreter. The operating system
then runs the interpreter with the given argument and the full argument list of the executed
program. The first argument in the list is the full file name of the Octave program. The
rest of the argument list will either be options to Octave, or data files, or both. The ‘-qf’
option is usually specified in stand-alone Octave programs to prevent them from printing
the normal startup message, and to keep them from behaving differently depending on
the contents of a particular user’s ‘“/.octaverc’ file. See Section 2.1 [Invoking Octave],
page 13. Note that some operating systems may place a limit on the number of characters
that are recognized after ‘#!°.

! The ‘#!” mechanism works on Unix systems derived from Berkeley Unix, System V
Release 4, and some System V Release 3 systems.

26 GNU Octave

Self-contained Octave scripts are useful when you want to write a program which users
can invoke without knowing that the program is written in the Octave language.

If you invoke an executable Octave script with command line arguments, the arguments
are available in the built-in variable argv. See Section 2.1.1 [Command Line Options],
page 13. For example, the following program will reproduce the command line that is used
to execute it.

#! /bin/octave -qf
printf ("%s", program_name);
for 1 = l:nargin

printf (" ¥%s", argv(i,:));
endfor
printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and
that is not really part of the program. Comments can explain what the program does, and
how it works. Nearly all programming languages have provisions for comments, because
programs are typically hard to understand without them.

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or
the percent symbol ‘)’ and continues to the end of the line. The Octave interpreter ignores
the rest of a line following a sharp sign or percent symbol. For example, we could have put
the following into the function f:

function xdot = f (x, t)

usage: f (x, t)

#

This function defines the right hand
side functions for a set of nonlinear
differential equations.

r = 0.25;

endfunction

The help command (see Section 2.3 [Getting Help], page 17) is able to find the first
block of comments in a function (even those that are composed directly on the command
line). This means that users of Octave can use the same commands to get help for built-in
functions, and for functions that you have defined. For example, after defining the function
f above, the command help f produces the output

usage: f (x, t)
This function defines the right hand

side functions for a set of nonlinear
differential equations.

Chapter 2: Getting Started 27

Although it is possible to put comment lines into keyboard-composed throw-away Octave
programs, it usually isn’t very useful, because the purpose of a comment is to help you or
another person understand the program at a later time.

28

GNU Octave

Chapter 3: Data Types 29

3 Data Types

All versions of Octave include a number of built-in data types, including real and complex
scalars and matrices, character strings, and a data structure type.

It is also possible to define new specialized data types by writing a small amount of
C++ code. On some systems, new data types can be loaded dynamically while Octave is
running, so it is not necessary to recompile all of Octave just to add a new type. See
Section 11.8 [Dynamically Linked Functions], page 95 for more information about Octave’s
dynamic linking capabilities. Section 3.2 [User-defined Data Types], page 30 describes what
you must do to define a new data type for Octave.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges,
character strings, and a data structure type. Additional built-in data types may be added
in future versions. If you need a specialized data type that is not currently provided as a
built-in type, you are encouraged to write your own user-defined data type and contribute
it for distribution in a future release of Octave.

3.1.1 Numeric Objects

Octave’s built-in numeric objects include real and complex scalars and matrices. All
built-in numeric data is currently stored as double precision numbers. On systems that use
the IEEE floating point format, values in the range of approximately 2.2251 x 1073% to
1.7977 x 1038 can be stored, and the relative precision is approximately 2.2204 x 10716,
The exact values are given by the variables realmin, realmax, and eps, respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It
is easy to extract individual rows, columns, or submatrices is using a variety of powerful
indexing features. See Section 8.1 [Index Expressions], page 59.

See Chapter 4 [Numeric Data Types], page 31, for more information.

3.1.2 String Objects

A character string in Octave consists of a sequence of characters enclosed in either
double-quote or single-quote marks. Internally, Octave currently stores strings as matrices
of characters. All the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings], page 39, for more information.

3.1.3 Data Structure Objects

Octave’s data structure type can help you to organize related objects of different types.
The current implementation uses an associative array with indices limited to strings, but
the syntax is more like C-style structures.

See Chapter 6