ftp.nice.ch/pub/next/developer/languages/lisp/AKCL.1.599.s.tar.gz#/gcc-1.40/config/out-tahoe.c

This is out-tahoe.c in view mode; [Download] [Up]

/* Subroutines for insn-output.c for Tahoe.
   Copyright (C) 1989 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */


/*
 * File: output-tahoe.c
 *
 * This port made at the University of Buffalo by Devon Bowen,
 * Dale Wiles and Kevin Zachmann.
 *
 * Mail bugs reports or fixes to:	gcc@cs.buffalo.edu
 */


/* most of the print_operand_address function was taken from the vax	*/
/* since the modes are basically the same. I had to add a special case,	*/
/* though, for symbol references with offsets.				*/

#include <stdio.h>

print_operand_address (file, addr)
     FILE *file;
     register rtx addr;
{
  register rtx reg1, reg2, breg, ireg;
  rtx offset;
  static char *reg_name[] = REGISTER_NAMES;

 retry:
  switch (GET_CODE (addr))
    {
    case MEM:
      fprintf (file, "*");
      addr = XEXP (addr, 0);
      goto retry;

    case REG:
      fprintf (file, "(%s)", reg_name [REGNO (addr)]);
      break;

    case PRE_DEC:
      fprintf (file, "-(%s)", reg_name [REGNO (XEXP (addr, 0))]);
      break;

    case POST_INC:
      fprintf (file, "(%s)+", reg_name [REGNO (XEXP (addr, 0))]);
      break;

    case PLUS:
      reg1 = 0;	reg2 = 0;
      ireg = 0;	breg = 0;
      offset = 0;

      if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
	  && GET_CODE (XEXP (addr, 1)) == CONST_INT)
	output_addr_const (file, addr);

      if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
	  && GET_CODE (XEXP (addr, 0)) == CONST_INT)
	output_addr_const (file, addr);

      if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
	  || GET_CODE (XEXP (addr, 0)) == MEM)
	{
	  offset = XEXP (addr, 0);
	  addr = XEXP (addr, 1);
	}
      else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
	       || GET_CODE (XEXP (addr, 1)) == MEM)
	{
	  offset = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}
      if (GET_CODE (addr) != PLUS)
	;
      else if (GET_CODE (XEXP (addr, 0)) == MULT)
	{
	  reg1 = XEXP (addr, 0);
	  addr = XEXP (addr, 1);
	}
      else if (GET_CODE (XEXP (addr, 1)) == MULT)
	{
	  reg1 = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}
      else if (GET_CODE (XEXP (addr, 0)) == REG)
	{
	  reg1 = XEXP (addr, 0);
	  addr = XEXP (addr, 1);
	}
      else if (GET_CODE (XEXP (addr, 1)) == REG)
	{
	  reg1 = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}
      if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT)
	{
	  if (reg1 == 0)
	    reg1 = addr;
	  else
	    reg2 = addr;
	  addr = 0;
	}
      if (offset != 0)
	{
	  if (addr != 0) abort ();
	  addr = offset;
	}
      if (reg1 != 0 && GET_CODE (reg1) == MULT)
	{
	  breg = reg2;
	  ireg = reg1;
	}
      else if (reg2 != 0 && GET_CODE (reg2) == MULT)
	{
	  breg = reg1;
	  ireg = reg2;
	}
      else if (reg2 != 0 || GET_CODE (addr) == MEM)
	{
	  breg = reg2;
	  ireg = reg1;
	}
      else
	{
	  breg = reg1;
	  ireg = reg2;
	}
      if (addr != 0)
	output_address (offset);
      if (breg != 0)
	{
	  if (GET_CODE (breg) != REG)
	    abort ();
	  fprintf (file, "(%s)", reg_name[REGNO (breg)]);
	}
      if (ireg != 0)
	{
	  if (GET_CODE (ireg) == MULT)
	    ireg = XEXP (ireg, 0);
	  if (GET_CODE (ireg) != REG)
	    abort ();
	  fprintf (file, "[%s]", reg_name[REGNO (ireg)]);
	}
      break;

    default:
      output_addr_const (file, addr);
    }
}


/* Do a quick check and find out what the best way to do the */
/* mini-move is. Could be a push or a move.....		     */

static char *
singlemove_string (operands)
     rtx *operands;
{
  if (GET_CODE (operands[0]) == MEM
      && GET_CODE (XEXP (operands[0],0)) == PRE_DEC)
    return "pushl %1";
  return "movl %1,%0";
}


/* given the rtx for an address, return true if the given */
/* register number is used in the address somewhere.	  */

int
regisused (addr,regnum)
     rtx addr;
     int regnum;
{
  if (GET_CODE (addr) == REG)
    {
      if (REGNO (addr) == regnum)
	return (1);
      else
	return (0);
    }

  if (GET_CODE (addr) == MEM)
    return regisused (XEXP (addr,0),regnum);

  if (GET_CODE (addr) == MULT || GET_CODE (addr) == PLUS)
    return (regisused (XEXP (addr,0),regnum)
	    || regisused (XEXP (addr,1),regnum));

  return 0;
}


/* Given some rtx, traverse it and return the register used in a */
/* index. If no index is found, return 0.			 */

rtx
index_reg (addr)
     rtx addr;
{
  rtx temp;

  if (GET_CODE (addr) == MEM)
    return index_reg (XEXP (addr,0));

  if (GET_CODE (addr) == MULT)
    {
      if (GET_CODE (XEXP (addr,0)) == REG)
	return XEXP (addr,0);
      else
	return XEXP (addr,1);
    }

  if (GET_CODE (addr) == PLUS)
    {
      if (temp = index_reg (XEXP (addr,0)))
	return temp;
      else
	return index_reg (XEXP (addr,1));
    }

  return 0;
}


/* simulate the move double by generating two movl's. You have */
/* to be careful about mixing modes here. A future improvement */
/* would be to allow immediate doubles.			       */

char *
output_move_double (operands)
     rtx *operands;
{
  enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, INDOP, CNSTOP, RNDOP } optype0, optype1;
  rtx latehalf[2];
  rtx shftreg0 = 0, shftreg1 = 0;
  rtx temp0 = 0, temp1 = 0;
  rtx addreg0 = 0, addreg1 = 0;
  int dohighfirst = 0;

  /* First classify both operands. */

  if (REG_P (operands[0]))
    optype0 = REGOP;
  else if ((GET_CODE (operands[0])==MEM) && (shftreg0=index_reg (operands[0])))
    optype0 = INDOP;
  else if (offsettable_memref_p (operands[0]))
    optype0 = OFFSOP;
  else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
    {
      optype0 = PUSHOP;
      dohighfirst++;
    }
  else if (GET_CODE (operands[0]) == MEM)
    optype0 = MEMOP;
  else
    optype0 = RNDOP;

  if (REG_P (operands[1]))
    optype1 = REGOP;
  else if ((GET_CODE (operands[1])==MEM) && (shftreg1=index_reg (operands[1])))
    optype1 = INDOP;
  else if (offsettable_memref_p (operands[1]))
    optype1 = OFFSOP;
  else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
    optype1 = POPOP; 
  else if (GET_CODE (operands[1]) == MEM)
    optype1 = MEMOP;
  else if (GET_CODE (operands[1]) == CONST_DOUBLE || CONSTANT_P (operands[1]))
    optype1 = CNSTOP;
  else
    optype1 = RNDOP;

  /* set up for the high byte move for operand zero */

  switch (optype0)
    {

      /* if it's a register, just use the next highest in the */
      /* high address move.					*/

    case REGOP:
      latehalf[0] = gen_rtx (REG,SImode,REGNO (operands[0])+1);
      break;

      /* for an offsettable address, use the gcc function to  */
      /* modify the operand to get an offset of 4 higher for  */
      /* the second move.					*/

    case OFFSOP:
      latehalf[0] = adj_offsettable_operand (operands[0], 4);
      break;

      /* if the operand is MEMOP type, it must be a pointer	*/
      /* to a pointer. So just remember to increase the mem	*/
      /* location and use the same operand.			*/

    case MEMOP:
      latehalf[0] = operands[0];
      addreg0 = XEXP (operands[0],0);
      break;

      /* if we're dealing with a push instruction, just leave */
      /* the operand alone since it auto-increments.		*/

    case PUSHOP:
      latehalf[0] = operands[0];
      break;

      /* YUCK! Indexed addressing!! If the address is considered   */
      /* offsettable, go use the offset in the high part. Otherwise */
      /* find what exactly is being added to the mutiplication. If */
      /* it's a mem reference, increment that with the high part   */
      /* being unchanged to cause the shift. If it's a reg, do the */
      /* same. If you can't identify it, abort. Remember that the  */
      /* shift register was already set during identification.     */

    case INDOP:
      if (offsettable_memref_p (operands[0]))
	{
	  latehalf[0] = adj_offsettable_operand (operands[0],4);
	  break;
	}

      latehalf[0] = operands[0];

      temp0 = XEXP (XEXP (operands[0],0),0);
      if (GET_CODE (temp0) == MULT)
	{
	  temp1 = temp0;
	  temp0 = XEXP (XEXP (operands[0],0),1);
	}
      else
	{
	  temp1 = XEXP (XEXP (operands[0],0),1);
	  if (GET_CODE (temp1) != MULT)
	    abort ();
	}

      if (GET_CODE (temp0) == MEM)
	addreg0 = temp0;
      else if (GET_CODE (temp0) == REG)
	addreg0 = temp0;
      else
	abort ();

      break;

      /* if we don't know the operand type, print a friendly  */
      /* little error message...   8-)			*/

    case RNDOP:
      default:
      abort ();
    }

  /* do the same setup for operand one */

  switch (optype1)
    {

    case REGOP:
      latehalf[1] = gen_rtx (REG,SImode,REGNO (operands[1])+1);
      break;

    case OFFSOP:
      latehalf[1] = adj_offsettable_operand (operands[1], 4);
      break;

    case MEMOP:
      latehalf[1] = operands[1];
      addreg1 = XEXP (operands[1],0);
      break;

    case POPOP:
      latehalf[1] = operands[1];
      break;

    case INDOP:
      if (offsettable_memref_p (operands[1]))
	{
	  latehalf[1] = adj_offsettable_operand (operands[1],4);
	  break;
	}

      latehalf[1] = operands[1];

      temp0 = XEXP (XEXP (operands[1],0),0);
      if (GET_CODE (temp0) == MULT)
	{
	  temp1 = temp0;
	  temp0 = XEXP (XEXP (operands[1],0),1);
	}
      else
	{
	  temp1 = XEXP (XEXP (operands[1],0),1);
	  if (GET_CODE (temp1) != MULT)
	    abort ();
	}

      if (GET_CODE (temp0) == MEM)
	addreg1 = temp0;
      else if (GET_CODE (temp0) == REG)
	addreg1 = temp0;
      else
	abort ();

      break;

    case CNSTOP:
      /* Since this machine is big-endian,
	 the late half must be the low-order word for an integer,
	 or the latter word for a float.  */
      if (GET_CODE (operands[1]) == CONST_DOUBLE)
	{
	  if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_FLOAT)
	    {
	      latehalf[1] = gen_rtx (CONST_INT, VOIDmode,
				     CONST_DOUBLE_HIGH (operands[1]));
	      operands[1] = gen_rtx (CONST_INT, VOIDmode,
				     CONST_DOUBLE_LOW (operands[1]));
	    }
	  else
	    {
	      latehalf[1] = gen_rtx (CONST_INT, VOIDmode,
				     CONST_DOUBLE_LOW (operands[1]));
	      operands[1] = gen_rtx (CONST_INT, VOIDmode,
				     CONST_DOUBLE_HIGH (operands[1]));
	    }
	}
      else
	{
	  latehalf[1] = operands[1];
	  operands[1] = const0_rtx;
	}
      break;

    case RNDOP:
    default:
      abort ();
    }


  /* double the register used for shifting in both of the operands */
  /* but make sure the same register isn't doubled twice!	   */

  if (shftreg0 && shftreg1 && rtx_equal_p (shftreg0, shftreg1))
    output_asm_insn ("addl2 %0,%0", &shftreg0);
  else
    {
      if (shftreg0)
	output_asm_insn ("addl2 %0,%0", &shftreg0);
      if (shftreg1)
	output_asm_insn ("addl2 %0,%0", &shftreg1);
    }

  /* if the destination is a register and that register is needed in  */
  /* the source addressing mode, swap the order of the moves since we */
  /* don't want this destroyed til last. If both regs are used, not   */
  /* much we can do, so abort. If these becomes a problem, maybe we   */
  /* can do it on the stack?					      */

  if (GET_CODE (operands[0])==REG && regisused (operands[1],REGNO (operands[0])))
    if (regisused (latehalf[1],REGNO (latehalf[0])))
      8;
    else
      dohighfirst++;

  /* if we're pushing, do the high address part first. */

  if (dohighfirst)
    {

      if (addreg0 && addreg1 && (rtx_equal_p (addreg0,addreg1)))
	output_asm_insn ("addl2 $4,%0", &addreg0);
      else
	{
	  if (addreg0)
	    output_asm_insn ("addl2 $4,%0", &addreg0);
	  if (addreg1)
	    output_asm_insn ("addl2 $4,%0", &addreg1);
	}

      output_asm_insn (singlemove_string (latehalf), latehalf);

      if (addreg0 && addreg1 && (rtx_equal_p (addreg0,addreg1)))
	output_asm_insn ("subl2 $4,%0", &addreg0);
      else
	{
	  if (addreg0)
	    output_asm_insn ("subl2 $4,%0", &addreg0);
	  if (addreg1)
	    output_asm_insn ("subl2 $4,%0", &addreg1);
	}

      return singlemove_string (operands);
    }

  output_asm_insn (singlemove_string (operands), operands);

  if (addreg0 && addreg1 && (rtx_equal_p (addreg0,addreg1)))
    output_asm_insn ("addl2 $4,%0", &addreg0);
  else
    {
      if (addreg0)
	output_asm_insn ("addl2 $4,%0", &addreg0);
      if (addreg1)
	output_asm_insn ("addl2 $4,%0", &addreg1);
    }

  output_asm_insn (singlemove_string (latehalf), latehalf);

  if (addreg0 && addreg1 && (rtx_equal_p (addreg0,addreg1)))
    output_asm_insn ("subl2 $4,%0", &addreg0);
  else
    {
      if (addreg0)
	output_asm_insn ("subl2 $4,%0", &addreg0);
      if (addreg1)
	output_asm_insn ("subl2 $4,%0", &addreg1);
    }

  if (shftreg0 && shftreg1 && (rtx_equal_p (shftreg0,shftreg1)))
    output_asm_insn ("shar $1,%0,%0", &shftreg0);
  else
    {
      if (shftreg0)
	output_asm_insn ("shar $1,%0,%0", &shftreg0);
      if (shftreg1)
	output_asm_insn ("shar $1,%0,%0", &shftreg1);
    }

  return "";
}

These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.