This is optabs.c in view mode; [Download] [Up]
/* Expand the basic unary and binary arithmetic operations, for GNU compiler. Copyright (C) 1987, 1988 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "config.h" #include "rtl.h" #include "tree.h" #include "flags.h" #include "insn-flags.h" #include "insn-codes.h" #include "expr.h" #include "insn-config.h" #include "recog.h" /* In ANSI C we could write MODE + 1, but traditional C compilers seem to reject it. */ #define INC_MODE(MODE) (enum machine_mode) ((int)(MODE) + 1) /* Each optab contains info on how this target machine can perform a particular operation for all sizes and kinds of operands. The operation to be performed is often specified by passing one of these optabs as an argument. See expr.h for documentation of these optabs. */ optab add_optab; optab sub_optab; optab smul_optab; optab umul_optab; optab smul_widen_optab; optab umul_widen_optab; optab sdiv_optab; optab sdivmod_optab; optab udiv_optab; optab udivmod_optab; optab smod_optab; optab umod_optab; optab flodiv_optab; optab ftrunc_optab; optab and_optab; optab andcb_optab; optab ior_optab; optab xor_optab; optab ashl_optab; optab lshr_optab; optab lshl_optab; optab ashr_optab; optab rotl_optab; optab rotr_optab; optab mov_optab; optab movstrict_optab; optab neg_optab; optab abs_optab; optab one_cmpl_optab; optab ffs_optab; optab cmp_optab; optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */ optab tst_optab; /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) gives the gen_function to make a branch to test that condition. */ rtxfun bcc_gen_fctn[NUM_RTX_CODE]; /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) gives the gen_function to make a store-condition insn to test that condition. */ rtxfun setcc_gen_fctn[NUM_RTX_CODE]; /* Generate code to perform an operation specified by BINOPTAB on operands OP0 and OP1, with result having machine-mode MODE. UNSIGNEDP is for the case where we have to widen the operands to perform the operation. It says to use zero-extension. If TARGET is nonzero, the value is generated there, if it is convenient to do so. In all cases an rtx is returned for the locus of the value; this may or may not be TARGET. */ rtx expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods) enum machine_mode mode; optab binoptab; rtx op0, op1; rtx target; int unsignedp; enum optab_methods methods; { enum mode_class class; enum machine_mode wider_mode; register rtx temp; rtx last; class = GET_MODE_CLASS (mode); op0 = protect_from_queue (op0, 0); op1 = protect_from_queue (op1, 0); if (target) target = protect_from_queue (target, 1); #if 0 /* We may get better code by generating the result in a register when the target is not one of the operands. */ if (target && ! rtx_equal_p (target, op1) && ! rtx_equal_p (target, op0)) target_is_not_an_operand = 1; #endif if (flag_force_mem) { op0 = force_not_mem (op0); op1 = force_not_mem (op1); } /* Record where to delete back to if we backtrack. */ last = get_last_insn (); /* If operation is commutative, try to make the first operand a register. Even better, try to make it the same as the target. Also try to make the last operand a constant. */ if (binoptab == add_optab || binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab || binoptab == smul_optab || binoptab == umul_optab || binoptab == smul_widen_optab || binoptab == umul_widen_optab) { if (((target == 0 || GET_CODE (target) == REG) ? ((GET_CODE (op1) == REG && GET_CODE (op0) != REG) || target == op1) : rtx_equal_p (op1, target)) || GET_CODE (op0) == CONST_INT) { temp = op1; op1 = op0; op0 = temp; } } /* If we can do it with a three-operand insn, do so. */ if (methods != OPTAB_MUST_WIDEN && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { int icode = (int) binoptab->handlers[(int) mode].insn_code; enum machine_mode mode0 = insn_operand_mode[icode][1]; enum machine_mode mode1 = insn_operand_mode[icode][2]; rtx pat; rtx xop0 = op0, xop1 = op1; if (target) temp = target; else temp = gen_reg_rtx (mode); /* In case the insn wants input operands in modes different from the result, convert the operands. */ if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0) xop0 = convert_to_mode (mode0, xop0, unsignedp); if (GET_MODE (xop1) != VOIDmode && GET_MODE (xop1) != mode1) xop1 = convert_to_mode (mode1, xop1, unsignedp); /* Now, if insn requires register operands, put operands into regs. */ if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) xop0 = force_reg (mode0, xop0); if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)) xop1 = force_reg (mode1, xop1); if (! (*insn_operand_predicate[icode][0]) (temp, mode)) temp = gen_reg_rtx (mode); pat = GEN_FCN (icode) (temp, xop0, xop1); if (pat) { emit_insn (pat); return temp; } else delete_insns_since (last); } /* It can't be open-coded in this mode. Use a library call if one is available and caller says that's ok. */ if (binoptab->handlers[(int) mode].lib_call && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN)) { rtx insn_before, insn_first, insn_last; rtx funexp = gen_rtx (SYMBOL_REF, Pmode, binoptab->handlers[(int) mode].lib_call); /* Pass the address through a pseudoreg, if desired, before the "beginning" of the library call. So this insn isn't "part of" the library call, in case that is deleted, or cse'd. */ #ifndef NO_FUNCTION_CSE if (! flag_no_function_cse) funexp = copy_to_mode_reg (Pmode, funexp); #endif insn_before = get_last_insn (); /* Cannot pass FUNEXP since emit_library_call insists on getting a SYMBOL_REF. But cse will make this SYMBOL_REF be replaced with the copy we made just above. */ /* Pass 1 for NO_QUEUE so we don't lose any increments if the libcall is cse'd or moved. */ emit_library_call (gen_rtx (SYMBOL_REF, Pmode, binoptab->handlers[(int) mode].lib_call), 1, mode, 2, op0, mode, op1, mode); target = hard_libcall_value (mode); temp = copy_to_reg (target); if (insn_before == 0) insn_first = get_insns (); else insn_first = NEXT_INSN (insn_before); insn_last = get_last_insn (); REG_NOTES (insn_last) = gen_rtx (EXPR_LIST, REG_EQUAL, gen_rtx (binoptab->code, mode, op0, op1), gen_rtx (INSN_LIST, REG_RETVAL, insn_first, REG_NOTES (insn_last))); REG_NOTES (insn_first) = gen_rtx (INSN_LIST, REG_LIBCALL, insn_last, REG_NOTES (insn_first)); return temp; } delete_insns_since (last); /* It can't be done in this mode. Can we do it in a wider mode? */ if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN || methods == OPTAB_MUST_WIDEN)) return 0; /* Caller says, don't even try. */ /* Compute the value of METHODS to pass to recursive calls. Don't allow widening to be tried recursively. */ methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT); /* Widening is now independent of specific machine modes. It is assumed that widening may be performed to any higher numbered mode in the same mode class. */ if (class == MODE_INT || class == MODE_FLOAT) { for (wider_mode = INC_MODE (mode); ((int) wider_mode < (int) MAX_MACHINE_MODE && GET_MODE_CLASS (wider_mode) == class); wider_mode = INC_MODE (wider_mode)) { if ((binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) || (methods == OPTAB_LIB && binoptab->handlers[(int) wider_mode].lib_call)) { rtx xop0 = op0, xop1 = op1; int no_extend = 0; /* For certain operations, we need not actually extend the narrow operands, as long as we will truncate the results to the same narrowness. */ if (binoptab == ior_optab || binoptab == and_optab || binoptab == xor_optab || binoptab == andcb_optab || binoptab == add_optab || binoptab == sub_optab || binoptab == smul_optab || binoptab == umul_optab || binoptab == ashl_optab || binoptab == lshl_optab) no_extend = 1; if (GET_MODE (xop0) != VOIDmode) { if (no_extend) { temp = force_reg (GET_MODE (xop0), xop0); xop0 = gen_rtx (SUBREG, wider_mode, temp, 0); } else { temp = gen_reg_rtx (wider_mode); convert_move (temp, xop0, unsignedp); xop0 = temp; } } if (GET_MODE (xop1) != VOIDmode) { if (no_extend) { temp = force_reg (GET_MODE (xop1), xop1); xop1 = gen_rtx (SUBREG, wider_mode, temp, 0); } else { temp = gen_reg_rtx (wider_mode); convert_move (temp, xop1, unsignedp); xop1 = temp; } } temp = expand_binop (wider_mode, binoptab, xop0, xop1, 0, unsignedp, methods); if (temp) { if (class == MODE_FLOAT) { if (target == 0) target = gen_reg_rtx (mode); convert_move (target, temp, 0); return target; } else return gen_lowpart (mode, temp); } else delete_insns_since (last); } } } return 0; } /* Expand a binary operator which has both signed and unsigned forms. UOPTAB is the optab for unsigned operations, and SOPTAB is for signed operations. If we widen unsigned operands, we may use a signed wider operation instead of an unsigned wider operation, since the result would be the same. */ rtx sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods) enum machine_mode mode; optab uoptab, soptab; rtx op0, op1, target; int unsignedp; enum optab_methods methods; { register rtx temp; optab direct_optab = unsignedp ? uoptab : soptab; struct optab wide_soptab; /* Do it without widening, if possible. */ temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_DIRECT); if (temp || methods == OPTAB_DIRECT) return temp; /* Try widening to a signed int. Make a fake signed optab that hides any signed insn for direct use. */ wide_soptab = *soptab; wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing; wide_soptab.handlers[(int) mode].lib_call = 0; temp = expand_binop (mode, &wide_soptab, op0, op1, target, unsignedp, OPTAB_WIDEN); /* For unsigned operands, try widening to an unsigned int. */ if (temp == 0 && unsignedp) temp = expand_binop (mode, uoptab, op0, op1, target, unsignedp, OPTAB_WIDEN); if (temp || methods == OPTAB_WIDEN) return temp; /* Use the right width lib call if that exists. */ temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB); if (temp || methods == OPTAB_LIB) return temp; /* Must widen and use a lib call, use either signed or unsigned. */ temp = expand_binop (mode, &wide_soptab, op0, op1, target, unsignedp, methods); if (temp != 0) return temp; if (unsignedp) return expand_binop (mode, uoptab, op0, op1, target, unsignedp, methods); return 0; } /* Generate code to perform an operation specified by BINOPTAB on operands OP0 and OP1, with two results to TARG1 and TARG2. We assume that the order of the operands for the instruction is TARG0, OP0, OP1, TARG1, which would fit a pattern like [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))]. Either TARG0 or TARG1 may be zero, but what that means is that that result is not actually wanted. We will generate it into a dummy pseudo-reg and discard it. They may not both be zero. Returns 1 if this operation can be performed; 0 if not. */ int expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp) optab binoptab; rtx op0, op1; rtx targ0, targ1; int unsignedp; { enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1); enum mode_class class; enum machine_mode wider_mode; class = GET_MODE_CLASS (mode); op0 = protect_from_queue (op0, 0); op1 = protect_from_queue (op1, 0); if (flag_force_mem) { op0 = force_not_mem (op0); op1 = force_not_mem (op1); } if (targ0) targ0 = protect_from_queue (targ0, 1); else targ0 = gen_reg_rtx (mode); if (targ1) targ1 = protect_from_queue (targ1, 1); else targ1 = gen_reg_rtx (mode); if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { emit_insn (GEN_FCN (binoptab->handlers[(int) mode].insn_code) (targ0, op0, op1, targ1)); return 1; } /* It can't be done in this mode. Can we do it in a wider mode? */ if (class == MODE_INT || class == MODE_FLOAT) { for (wider_mode = INC_MODE (mode); ((int) wider_mode < (int) MAX_MACHINE_MODE && GET_MODE_CLASS (wider_mode) == class); wider_mode = INC_MODE (wider_mode)) { if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) { expand_twoval_binop_convert (binoptab, wider_mode, op0, op1, targ0, targ1, unsignedp); return 1; } } } return 0; } int expand_twoval_binop_convert (binoptab, mode, op0, op1, targ0, targ1, unsignedp) register optab binoptab; register rtx op0, op1, targ0, targ1; int unsignedp; { register rtx t0 = gen_reg_rtx (SImode); register rtx t1 = gen_reg_rtx (SImode); register rtx temp; temp = gen_reg_rtx (SImode); convert_move (temp, op0, unsignedp); op0 = temp; temp = gen_reg_rtx (SImode); convert_move (temp, op1, unsignedp); op1 = temp; expand_twoval_binop (binoptab, op0, op1, t0, t1, unsignedp); convert_move (targ0, t0, unsignedp); convert_move (targ1, t1, unsignedp); return 1; } /* Generate code to perform an operation specified by UNOPTAB on operand OP0, with result having machine-mode MODE. UNSIGNEDP is for the case where we have to widen the operands to perform the operation. It says to use zero-extension. If TARGET is nonzero, the value is generated there, if it is convenient to do so. In all cases an rtx is returned for the locus of the value; this may or may not be TARGET. */ rtx expand_unop (mode, unoptab, op0, target, unsignedp) enum machine_mode mode; optab unoptab; rtx op0; rtx target; int unsignedp; { enum mode_class class; enum machine_mode wider_mode; register rtx temp; class = GET_MODE_CLASS (mode); op0 = protect_from_queue (op0, 0); if (flag_force_mem) { op0 = force_not_mem (op0); } if (target) target = protect_from_queue (target, 1); if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { int icode = (int) unoptab->handlers[(int) mode].insn_code; enum machine_mode mode0 = insn_operand_mode[icode][1]; if (target) temp = target; else temp = gen_reg_rtx (mode); if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0) op0 = convert_to_mode (mode0, op0, unsignedp); /* Now, if insn requires register operands, put operands into regs. */ if (! (*insn_operand_predicate[icode][1]) (op0, mode0)) op0 = force_reg (mode0, op0); if (! (*insn_operand_predicate[icode][0]) (temp, mode)) temp = gen_reg_rtx (mode); emit_insn (GEN_FCN (icode) (temp, op0)); return temp; } else if (unoptab->handlers[(int) mode].lib_call) { rtx insn_before, insn_last; rtx funexp = gen_rtx (SYMBOL_REF, Pmode, unoptab->handlers[(int) mode].lib_call); /* Pass the address through a pseudoreg, if desired, before the "beginning" of the library call (for deletion). */ #ifndef NO_FUNCTION_CSE if (! flag_no_function_cse) funexp = copy_to_mode_reg (Pmode, funexp); #endif insn_before = get_last_insn (); /* Cannot pass FUNEXP since emit_library_call insists on getting a SYMBOL_REF. But cse will make this SYMBOL_REF be replaced with the copy we made just above. */ /* Pass 1 for NO_QUEUE so we don't lose any increments if the libcall is cse'd or moved. */ emit_library_call (gen_rtx (SYMBOL_REF, Pmode, unoptab->handlers[(int) mode].lib_call), 1, mode, 1, op0, mode); target = hard_libcall_value (mode); temp = copy_to_reg (target); insn_last = get_last_insn (); REG_NOTES (insn_last) = gen_rtx (EXPR_LIST, REG_EQUAL, gen_rtx (unoptab->code, mode, op0), gen_rtx (INSN_LIST, REG_RETVAL, NEXT_INSN (insn_before), REG_NOTES (insn_last))); REG_NOTES (NEXT_INSN (insn_before)) = gen_rtx (INSN_LIST, REG_LIBCALL, insn_last, REG_NOTES (NEXT_INSN (insn_before))); return temp; } /* It can't be done in this mode. Can we do it in a wider mode? */ if (class == MODE_INT || class == MODE_FLOAT) { for (wider_mode = INC_MODE (mode); ((int) wider_mode < (int) MAX_MACHINE_MODE && GET_MODE_CLASS (wider_mode) == class); wider_mode = INC_MODE (wider_mode)) { if ((unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) || unoptab->handlers[(int) wider_mode].lib_call) { if (GET_MODE (op0) != VOIDmode) { temp = gen_reg_rtx (wider_mode); convert_move (temp, op0, unsignedp); op0 = temp; } target = expand_unop (wider_mode, unoptab, op0, 0, unsignedp); if (class == MODE_FLOAT) { if (target == 0) target = gen_reg_rtx (mode); convert_move (target, temp, 0); return target; } else return gen_lowpart (mode, target); } } } return 0; } /* Generate an instruction whose insn-code is INSN_CODE, with two operands: an output TARGET and an input OP0. TARGET *must* be nonzero, and the output is always stored there. CODE is an rtx code such that (CODE OP0) is an rtx that describes the value that is stored into TARGET. */ void emit_unop_insn (icode, target, op0, code) int icode; rtx target; rtx op0; enum rtx_code code; { register rtx temp; enum machine_mode mode0 = insn_operand_mode[icode][1]; rtx insn; rtx prev_insn; temp = target = protect_from_queue (target, 1); op0 = protect_from_queue (op0, 0); if (flag_force_mem) op0 = force_not_mem (op0); /* Now, if insn requires register operands, put operands into regs. */ if (! (*insn_operand_predicate[icode][1]) (op0, mode0)) op0 = force_reg (mode0, op0); if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp)) || (flag_force_mem && GET_CODE (temp) == MEM)) temp = gen_reg_rtx (GET_MODE (temp)); prev_insn = get_last_insn (); insn = emit_insn (GEN_FCN (icode) (temp, op0)); /* If we just made a multi-insn sequence, record in the last insn an equivalent expression for its value and a pointer to the first insn. This makes cse possible. */ if (code != UNKNOWN && PREV_INSN (insn) != prev_insn) REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, gen_rtx (code, GET_MODE (temp), op0), REG_NOTES (insn)); if (temp != target) emit_move_insn (target, temp); } /* Generate code to store zero in X. */ void emit_clr_insn (x) rtx x; { emit_move_insn (x, const0_rtx); } /* Generate code to store 1 in X assuming it contains zero beforehand. */ void emit_0_to_1_insn (x) rtx x; { emit_move_insn (x, const1_rtx); } /* Generate code to compare X with Y so that the condition codes are set. UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they need to be widened. If they have mode BLKmode, then SIZE specifies the size of both X and Y, and ALIGN specifies the known shared alignment of X and Y. */ void emit_cmp_insn (x, y, size, unsignedp, align) rtx x, y; rtx size; int unsignedp; int align; { enum machine_mode mode = GET_MODE (x); enum mode_class class; enum machine_mode wider_mode; if (mode == VOIDmode) mode = GET_MODE (y); /* They could both be VOIDmode if both args are immediate constants, but we should fold that at an earlier stage. With no special code here, this will call abort, reminding the programmer to implement such folding. */ class = GET_MODE_CLASS (mode); if (mode != BLKmode && flag_force_mem) { x = force_not_mem (x); y = force_not_mem (y); } /* Handle all BLKmode compares. */ if (mode == BLKmode) { emit_queue (); x = protect_from_queue (x, 0); y = protect_from_queue (y, 0); if (size == 0) abort (); #ifdef HAVE_cmpstrqi if (HAVE_cmpstrqi && GET_CODE (size) == CONST_INT && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode))) emit_insn (gen_cmpstrqi (x, y, size, gen_rtx (CONST_INT, VOIDmode, align))); else #endif #ifdef HAVE_cmpstrhi if (HAVE_cmpstrhi && GET_CODE (size) == CONST_INT && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode))) emit_insn (gen_cmpstrhi (x, y, size, gen_rtx (CONST_INT, VOIDmode, align))); else #endif #ifdef HAVE_cmpstrsi if (HAVE_cmpstrsi) emit_insn (gen_cmpstrsi (x, y, convert_to_mode (SImode, size, 1), gen_rtx (CONST_INT, VOIDmode, align))); else #endif { #ifdef TARGET_MEM_FUNCTIONS emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "memcmp"), 0, SImode, 3, XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, size, Pmode); #else emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "bcmp"), 0, SImode, 3, XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, size, Pmode); #endif emit_cmp_insn (hard_libcall_value (SImode), const0_rtx, 0, 0, 0); } return; } /* Handle some compares against zero. */ if (y == CONST0_RTX (mode) && tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { int icode = (int) tst_optab->handlers[(int) mode].insn_code; emit_queue (); x = protect_from_queue (x, 0); y = protect_from_queue (y, 0); /* Now, if insn requires register operands, put operands into regs. */ if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])) x = force_reg (insn_operand_mode[icode][0], x); emit_insn (GEN_FCN (icode) (x)); return; } /* Handle compares for which there is a directly suitable insn. */ if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { int icode = (int) cmp_optab->handlers[(int) mode].insn_code; emit_queue (); x = protect_from_queue (x, 0); y = protect_from_queue (y, 0); /* Now, if insn requires register operands, put operands into regs. */ if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])) x = force_reg (insn_operand_mode[icode][0], x); if (! (*insn_operand_predicate[icode][1]) (y, insn_operand_mode[icode][1])) y = force_reg (insn_operand_mode[icode][1], y); emit_insn (GEN_FCN (icode) (x, y)); return; } /* Try widening if we can find a direct insn that way. */ if (class == MODE_INT || class == MODE_FLOAT) { for (wider_mode = INC_MODE (mode); ((int) wider_mode < (int) MAX_MACHINE_MODE && GET_MODE_CLASS (wider_mode) == class); wider_mode = INC_MODE (wider_mode)) { if (cmp_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) { x = convert_to_mode (wider_mode, x, unsignedp); y = convert_to_mode (wider_mode, y, unsignedp); emit_cmp_insn (x, y, 0, unsignedp, align); return; } } } /* Handle a lib call just for the mode we are using. */ if (cmp_optab->handlers[(int) mode].lib_call) { char *string = cmp_optab->handlers[(int) mode].lib_call; /* If we want unsigned, and this mode has a distinct unsigned comparison routine, use that. */ if (unsignedp && ucmp_optab->handlers[(int) mode].lib_call) string = ucmp_optab->handlers[(int) mode].lib_call; emit_library_call (gen_rtx (SYMBOL_REF, Pmode, string), 0, SImode, 2, x, mode, y, mode); /* Integer comparison returns a result that must be compared against 1, so that even if we do an unsigned compare afterward, there is still a value that can represent the result "less than". */ if (GET_MODE_CLASS (mode) == MODE_INT) emit_cmp_insn (hard_libcall_value (SImode), const1_rtx, 0, unsignedp, 0); else emit_cmp_insn (hard_libcall_value (SImode), const0_rtx, 0, 0, 0); return; } /* Try widening and then using a libcall. */ if (class == MODE_FLOAT) { for (wider_mode = INC_MODE (mode); ((int) wider_mode < (int) MAX_MACHINE_MODE && GET_MODE_CLASS (wider_mode) == class); wider_mode = INC_MODE (wider_mode)) { if ((cmp_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) || (cmp_optab->handlers[(int) wider_mode].lib_call != 0)) { x = convert_to_mode (wider_mode, x, unsignedp); y = convert_to_mode (wider_mode, y, unsignedp); emit_cmp_insn (x, y, 0, unsignedp, align); } } return; } abort (); } /* These three functions generate an insn body and return it rather than emitting the insn. They do not protect from queued increments, because they may be used 1) in protect_from_queue itself and 2) in other passes where there is no queue. */ /* Generate and return an insn body to add Y to X. */ rtx gen_add2_insn (x, y) rtx x, y; { return (GEN_FCN (add_optab->handlers[(int) GET_MODE (x)].insn_code) (x, x, y)); } int have_add2_insn (mode) enum machine_mode mode; { return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; } /* Generate and return an insn body to subtract Y from X. */ rtx gen_sub2_insn (x, y) rtx x, y; { return (GEN_FCN (sub_optab->handlers[(int) GET_MODE (x)].insn_code) (x, x, y)); } int have_sub2_insn (mode) enum machine_mode mode; { return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; } /* Generate the body of an instruction to copy Y into X. */ rtx gen_move_insn (x, y) rtx x, y; { register enum machine_mode mode = GET_MODE (x); if (mode == VOIDmode) mode = GET_MODE (y); return (GEN_FCN (mov_optab->handlers[(int) mode].insn_code) (x, y)); } #if 0 /* Tables of patterns for extending one integer mode to another. */ enum insn_code zero_extend_optab[MAX_MACHINE_MODE][MAX_MACHINE_MODE]; enum insn_code sign_extend_optab[MAX_MACHINE_MODE][MAX_MACHINE_MODE]; /* Generate the body of an insn to extend Y (with mode MFROM) into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */ rtx gen_extend_insn (x, y, mto, mfrom, unsignedp) rtx x, y; enum machine_mode mto, mfrom; int unsignedp; { return (GEN_FCN ((unsignedp ? zero_extend_optab : sign_extend_optab) [(int)mto][(int)mfrom]) (x, y)); } static void init_extends () { bzero (sign_extend_optab, sizeof sign_extend_optab); bzero (zero_extend_optab, sizeof zero_extend_optab); sign_extend_optab[(int) SImode][(int) HImode] = CODE_FOR_extendhisi2; sign_extend_optab[(int) SImode][(int) QImode] = CODE_FOR_extendqisi2; sign_extend_optab[(int) HImode][(int) QImode] = CODE_FOR_extendqihi2; zero_extend_optab[(int) SImode][(int) HImode] = CODE_FOR_zero_extendhisi2; zero_extend_optab[(int) SImode][(int) QImode] = CODE_FOR_zero_extendqisi2; zero_extend_optab[(int) HImode][(int) QImode] = CODE_FOR_zero_extendqihi2; } #endif /* can_fix_p and can_float_p say whether the target machine can directly convert a given fixed point type to a given floating point type, or vice versa. The returned value is the CODE_FOR_... value to use, or CODE_FOR_nothing if these modes cannot be directly converted. */ static enum insn_code fixtab[2][2][2]; static enum insn_code fixtrunctab[2][2][2]; static enum insn_code floattab[2][2]; /* *TRUNCP_PTR is set to 1 if it is necessary to output an explicit FTRUNC insn before the fix insn; otherwise 0. */ static enum insn_code can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr) enum machine_mode fltmode, fixmode; int unsignedp; int *truncp_ptr; { *truncp_ptr = 0; if (fixtrunctab[fltmode != SFmode][fixmode == DImode][unsignedp] != CODE_FOR_nothing) return fixtrunctab[fltmode != SFmode][fixmode == DImode][unsignedp]; if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing) { *truncp_ptr = 1; return fixtab[fltmode != SFmode][fixmode == DImode][unsignedp]; } return CODE_FOR_nothing; } static enum insn_code can_float_p (fltmode, fixmode) enum machine_mode fixmode, fltmode; { return floattab[fltmode != SFmode][fixmode == DImode]; } void init_fixtab () { enum insn_code *p; for (p = fixtab[0][0]; p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]); p++) *p = CODE_FOR_nothing; for (p = fixtrunctab[0][0]; p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]); p++) *p = CODE_FOR_nothing; #ifdef HAVE_fixsfsi2 if (HAVE_fixsfsi2) fixtab[0][0][0] = CODE_FOR_fixsfsi2; #endif #ifdef HAVE_fixsfdi2 if (HAVE_fixsfdi2) fixtab[0][1][0] = CODE_FOR_fixsfdi2; #endif #ifdef HAVE_fixdfsi2 if (HAVE_fixdfsi2) fixtab[1][0][0] = CODE_FOR_fixdfsi2; #endif #ifdef HAVE_fixdfdi2 if (HAVE_fixdfdi2) fixtab[1][1][0] = CODE_FOR_fixdfdi2; #endif #ifdef HAVE_fixunssfsi2 if (HAVE_fixunssfsi2) fixtab[0][0][1] = CODE_FOR_fixunssfsi2; #endif #ifdef HAVE_fixunssfdi2 if (HAVE_fixunssfdi2) fixtab[0][1][1] = CODE_FOR_fixunssfdi2; #endif #ifdef HAVE_fixunsdfsi2 if (HAVE_fixunsdfsi2) fixtab[1][0][1] = CODE_FOR_fixunsdfsi2; #endif #ifdef HAVE_fixunsdfdi2 if (HAVE_fixunsdfdi2) fixtab[1][1][1] = CODE_FOR_fixunsdfdi2; #endif #ifdef HAVE_fix_truncsfsi2 if (HAVE_fix_truncsfsi2) fixtrunctab[0][0][0] = CODE_FOR_fix_truncsfsi2; #endif #ifdef HAVE_fix_truncsfdi2 if (HAVE_fix_truncsfdi2) fixtrunctab[0][1][0] = CODE_FOR_fix_truncsfdi2; #endif #ifdef HAVE_fix_truncdfsi2 if (HAVE_fix_truncdfsi2) fixtrunctab[1][0][0] = CODE_FOR_fix_truncdfsi2; #endif #ifdef HAVE_fix_truncdfdi2 if (HAVE_fix_truncdfdi2) fixtrunctab[1][1][0] = CODE_FOR_fix_truncdfdi2; #endif #ifdef HAVE_fixuns_truncsfsi2 if (HAVE_fixuns_truncsfsi2) fixtrunctab[0][0][1] = CODE_FOR_fixuns_truncsfsi2; #endif #ifdef HAVE_fixuns_truncsfdi2 if (HAVE_fixuns_truncsfdi2) fixtrunctab[0][1][1] = CODE_FOR_fixuns_truncsfdi2; #endif #ifdef HAVE_fixuns_truncdfsi2 if (HAVE_fixuns_truncdfsi2) fixtrunctab[1][0][1] = CODE_FOR_fixuns_truncdfsi2; #endif #ifdef HAVE_fixuns_truncdfdi2 if (HAVE_fixuns_truncdfdi2) fixtrunctab[1][1][1] = CODE_FOR_fixuns_truncdfdi2; #endif #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC /* This flag says the same insns that convert to a signed fixnum also convert validly to an unsigned one. */ { int i; int j; for (i = 0; i < 2; i++) for (j = 0; j < 2; j++) fixtrunctab[i][j][1] = fixtrunctab[i][j][0]; } #endif } void init_floattab () { enum insn_code *p; for (p = floattab[0]; p < floattab[0] + sizeof floattab / sizeof (floattab[0][0]); p++) *p = CODE_FOR_nothing; #ifdef HAVE_floatsisf2 if (HAVE_floatsisf2) floattab[0][0] = CODE_FOR_floatsisf2; #endif #ifdef HAVE_floatdisf2 if (HAVE_floatdisf2) floattab[0][1] = CODE_FOR_floatdisf2; #endif #ifdef HAVE_floatsidf2 if (HAVE_floatsidf2) floattab[1][0] = CODE_FOR_floatsidf2; #endif #ifdef HAVE_floatdidf2 if (HAVE_floatdidf2) floattab[1][1] = CODE_FOR_floatdidf2; #endif } /* Generate code to convert FROM to floating point and store in TO. FROM must be fixed point. UNSIGNEDP nonzero means regard FROM as unsigned. Normally this is done by correcting the final value if it is negative. */ void expand_float (real_to, from, unsignedp) rtx real_to, from; int unsignedp; { enum insn_code icode; register rtx to; /* Constants should get converted in `fold'. We lose here since we don't know the mode. */ if (GET_MODE (from) == VOIDmode) abort (); to = real_to = protect_from_queue (real_to, 1); from = protect_from_queue (from, 0); if (flag_force_mem) { from = force_not_mem (from); } /* If we are about to do some arithmetic to correct for an unsigned operand, do it in a pseudo-register. */ if (unsignedp && ! (GET_CODE (to) == REG && REGNO (to) >= FIRST_PSEUDO_REGISTER)) to = gen_reg_rtx (GET_MODE (to)); /* Now do the basic conversion. Do it in the specified modes if possible; otherwise convert either input, output or both with wider mode; otherwise use a library call. */ if ((icode = can_float_p (GET_MODE (to), GET_MODE (from))) != CODE_FOR_nothing) { emit_unop_insn (icode, to, from, FLOAT); } else if (GET_MODE (to) == SFmode && ((icode = can_float_p (DFmode, GET_MODE (from))) != CODE_FOR_nothing)) { to = gen_reg_rtx (DFmode); emit_unop_insn (icode, to, from, FLOAT); } /* If we can't float a SI, maybe we can float a DI. If so, convert to DI and then float. */ else if (GET_MODE (from) != DImode && (can_float_p (GET_MODE (to), DImode) != CODE_FOR_nothing || can_float_p (DFmode, DImode) != CODE_FOR_nothing)) { register rtx tem = gen_reg_rtx (DImode); convert_move (tem, from, unsignedp); from = tem; /* If we extend FROM then we don't need to correct the final value for unsignedness. */ unsignedp = 0; if ((icode = can_float_p (GET_MODE (to), GET_MODE (from))) != CODE_FOR_nothing) { emit_unop_insn (icode, to, from, FLOAT); } else if ((icode = can_float_p (DFmode, DImode)) != CODE_FOR_nothing) { to = gen_reg_rtx (DFmode); emit_unop_insn (icode, to, from, FLOAT); } } /* No hardware instruction available; call a library to convert from SImode or DImode into DFmode. */ else { if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode)) { from = convert_to_mode (SImode, from, unsignedp); unsignedp = 0; } emit_library_call (gen_rtx (SYMBOL_REF, Pmode, (GET_MODE (from) == SImode ? "__floatsidf" : "__floatdidf")), 0, DFmode, 1, from, GET_MODE (from)); to = copy_to_reg (hard_libcall_value (DFmode)); } /* If FROM was unsigned but we treated it as signed, then in the case where it is negative (and therefore TO is negative), correct its value by 2**bitwidth. */ if (unsignedp) { rtx label = gen_label_rtx (); rtx temp; REAL_VALUE_TYPE offset; do_pending_stack_adjust (); emit_cmp_insn (to, GET_MODE (to) == DFmode ? dconst0_rtx : fconst0_rtx, 0, 0, 0); emit_jump_insn (gen_bge (label)); offset = REAL_VALUE_LDEXP (1.0, GET_MODE_BITSIZE (GET_MODE (from))); temp = expand_binop (GET_MODE (to), add_optab, to, immed_real_const_1 (offset, GET_MODE (to)), to, 0, OPTAB_LIB_WIDEN); if (temp != to) emit_move_insn (to, temp); do_pending_stack_adjust (); emit_label (label); } /* Copy result to requested destination if we have been computing in a temp location. */ if (to != real_to) { if (GET_MODE (real_to) == GET_MODE (to)) emit_move_insn (real_to, to); else convert_move (real_to, to, 0); } } /* expand_fix: generate code to convert FROM to fixed point and store in TO. FROM must be floating point. */ static rtx ftruncify (x) rtx x; { rtx temp = gen_reg_rtx (GET_MODE (x)); return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0); } void expand_fix (to, from, unsignedp) register rtx to, from; int unsignedp; { enum insn_code icode; register rtx target; int must_trunc = 0; while (1) { icode = can_fix_p (GET_MODE (to), GET_MODE (from), unsignedp, &must_trunc); if (icode != CODE_FOR_nothing) { if (must_trunc) from = ftruncify (from); emit_unop_insn (icode, to, from, FIX); return; } #if 0 /* Turned off. It fails because the positive numbers that become temporarily negative are rounded up instead of down. */ /* If no insns for unsigned conversion, we can go via a signed number. But make sure we won't overflow in the compiler. */ if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_INT /* Make sure we won't lose significant bits doing this. */ && GET_MODE_BITSIZE (GET_MODE (from)) > GET_MODE_BITSIZE (GET_MODE (to))) { icode = can_fix_p (GET_MODE (to), GET_MODE (from), 0, &must_trunc); if (icode != CODE_FOR_nothing) { REAL_VALUE_TYPE offset; rtx temp, temp1; int bitsize = GET_MODE_BITSIZE (GET_MODE (to)); if (must_trunc) from = ftruncify (from); /* Subtract 2**(N-1), convert to signed number, then add 2**(N-1). */ offset = REAL_VALUE_LDEXP (1.0, bitsize - 1); temp = expand_binop (GET_MODE (from), sub_optab, from, immed_real_const_1 (offset, GET_MODE (from)), 0, 0, OPTAB_LIB_WIDEN); temp1 = gen_reg_rtx (GET_MODE (to)); emit_unop_insn (icode, temp1, temp, FIX); temp = expand_binop (GET_MODE (to), add_optab, temp1, gen_rtx (CONST_INT, VOIDmode, 1 << (bitsize - 1)), to, 1, OPTAB_LIB_WIDEN); if (temp != to) emit_move_insn (to, temp); return; } } #endif icode = can_fix_p (DImode, GET_MODE (from), unsignedp, &must_trunc); if (GET_MODE (to) != DImode && icode != CODE_FOR_nothing) { register rtx temp = gen_reg_rtx (DImode); if (must_trunc) from = ftruncify (from); emit_unop_insn (icode, temp, from, FIX); convert_move (to, temp, unsignedp); return; } /* If FROM is not DFmode, convert to DFmode and try again from there. */ if (GET_MODE (from) == DFmode) break; from = convert_to_mode (DFmode, from, 0); } /* We can't do it with an insn, so use a library call. The mode of FROM is known to be DFmode. */ to = protect_from_queue (to, 1); from = protect_from_queue (from, 0); if (flag_force_mem) from = force_not_mem (from); if (GET_MODE (to) != DImode) { emit_library_call (gen_rtx (SYMBOL_REF, Pmode, unsignedp ? "__fixunsdfsi" : "__fixdfsi"), 0, SImode, 1, from, DFmode); target = hard_libcall_value (SImode); } else { emit_library_call (gen_rtx (SYMBOL_REF, Pmode, unsignedp ? "__fixunsdfdi" : "__fixdfdi"), 0, DImode, 1, from, DFmode); target = hard_libcall_value (DImode); } if (GET_MODE (to) == GET_MODE (target)) emit_move_insn (to, target); else convert_move (to, target, 0); } static optab init_optab (code) enum rtx_code code; { int i; optab op = (optab) malloc (sizeof (struct optab)); op->code = code; for (i = 0; i < NUM_MACHINE_MODES; i++) { op->handlers[i].insn_code = CODE_FOR_nothing; op->handlers[i].lib_call = 0; } return op; } /* Call this once to initialize the contents of the optabs appropriately for the current target machine. */ void init_optabs () { init_fixtab (); init_floattab (); init_comparisons (); /* init_extends (); */ add_optab = init_optab (PLUS); sub_optab = init_optab (MINUS); smul_optab = init_optab (MULT); umul_optab = init_optab (UMULT); smul_widen_optab = init_optab (MULT); umul_widen_optab = init_optab (UMULT); sdiv_optab = init_optab (DIV); sdivmod_optab = init_optab (UNKNOWN); udiv_optab = init_optab (UDIV); udivmod_optab = init_optab (UNKNOWN); smod_optab = init_optab (MOD); umod_optab = init_optab (UMOD); flodiv_optab = init_optab (DIV); ftrunc_optab = init_optab (UNKNOWN); and_optab = init_optab (AND); andcb_optab = init_optab (UNKNOWN); ior_optab = init_optab (IOR); xor_optab = init_optab (XOR); ashl_optab = init_optab (ASHIFT); ashr_optab = init_optab (ASHIFTRT); lshl_optab = init_optab (LSHIFT); lshr_optab = init_optab (LSHIFTRT); rotl_optab = init_optab (ROTATE); rotr_optab = init_optab (ROTATERT); mov_optab = init_optab (UNKNOWN); movstrict_optab = init_optab (UNKNOWN); cmp_optab = init_optab (UNKNOWN); ucmp_optab = init_optab (UNKNOWN); tst_optab = init_optab (UNKNOWN); neg_optab = init_optab (NEG); abs_optab = init_optab (ABS); one_cmpl_optab = init_optab (NOT); ffs_optab = init_optab (FFS); #ifdef HAVE_addqi3 if (HAVE_addqi3) add_optab->handlers[(int) QImode].insn_code = CODE_FOR_addqi3; #endif #ifdef HAVE_addhi3 if (HAVE_addhi3) add_optab->handlers[(int) HImode].insn_code = CODE_FOR_addhi3; #endif #ifdef HAVE_addsi3 if (HAVE_addsi3) add_optab->handlers[(int) SImode].insn_code = CODE_FOR_addsi3; #endif #ifdef HAVE_adddi3 if (HAVE_adddi3) add_optab->handlers[(int) DImode].insn_code = CODE_FOR_adddi3; #endif #ifdef HAVE_addsf3 if (HAVE_addsf3) add_optab->handlers[(int) SFmode].insn_code = CODE_FOR_addsf3; #endif #ifdef HAVE_adddf3 if (HAVE_adddf3) add_optab->handlers[(int) DFmode].insn_code = CODE_FOR_adddf3; #endif add_optab->handlers[(int) DImode].lib_call = "__adddi3"; add_optab->handlers[(int) SFmode].lib_call = "__addsf3"; add_optab->handlers[(int) DFmode].lib_call = "__adddf3"; #ifdef HAVE_subqi3 if (HAVE_subqi3) sub_optab->handlers[(int) QImode].insn_code = CODE_FOR_subqi3; #endif #ifdef HAVE_subhi3 if (HAVE_subhi3) sub_optab->handlers[(int) HImode].insn_code = CODE_FOR_subhi3; #endif #ifdef HAVE_subsi3 if (HAVE_subsi3) sub_optab->handlers[(int) SImode].insn_code = CODE_FOR_subsi3; #endif #ifdef HAVE_subdi3 if (HAVE_subdi3) sub_optab->handlers[(int) DImode].insn_code = CODE_FOR_subdi3; #endif #ifdef HAVE_subsf3 if (HAVE_subsf3) sub_optab->handlers[(int) SFmode].insn_code = CODE_FOR_subsf3; #endif #ifdef HAVE_subdf3 if (HAVE_subdf3) sub_optab->handlers[(int) DFmode].insn_code = CODE_FOR_subdf3; #endif sub_optab->handlers[(int) DImode].lib_call = "__subdi3"; sub_optab->handlers[(int) SFmode].lib_call = "__subsf3"; sub_optab->handlers[(int) DFmode].lib_call = "__subdf3"; #ifdef HAVE_mulqi3 if (HAVE_mulqi3) smul_optab->handlers[(int) QImode].insn_code = CODE_FOR_mulqi3; #endif #ifdef HAVE_mulhi3 if (HAVE_mulhi3) smul_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulhi3; #endif #ifdef HAVE_mulsi3 if (HAVE_mulsi3) smul_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulsi3; #endif #ifdef HAVE_muldi3 if (HAVE_muldi3) smul_optab->handlers[(int) DImode].insn_code = CODE_FOR_muldi3; #endif #ifdef HAVE_mulsf3 if (HAVE_mulsf3) smul_optab->handlers[(int) SFmode].insn_code = CODE_FOR_mulsf3; #endif #ifdef HAVE_muldf3 if (HAVE_muldf3) smul_optab->handlers[(int) DFmode].insn_code = CODE_FOR_muldf3; #endif #ifdef MULSI3_LIBCALL smul_optab->handlers[(int) SImode].lib_call = MULSI3_LIBCALL; #else smul_optab->handlers[(int) SImode].lib_call = "__mulsi3"; #endif smul_optab->handlers[(int) DImode].lib_call = "__muldi3"; smul_optab->handlers[(int) SFmode].lib_call = "__mulsf3"; smul_optab->handlers[(int) DFmode].lib_call = "__muldf3"; #ifdef HAVE_mulqihi3 if (HAVE_mulqihi3) smul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulqihi3; #endif #ifdef HAVE_mulhisi3 if (HAVE_mulhisi3) smul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulhisi3; #endif #ifdef HAVE_mulsidi3 if (HAVE_mulsidi3) smul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_mulsidi3; #endif #ifdef HAVE_umulqi3 if (HAVE_umulqi3) umul_optab->handlers[(int) QImode].insn_code = CODE_FOR_umulqi3; #endif #ifdef HAVE_umulhi3 if (HAVE_umulhi3) umul_optab->handlers[(int) HImode].insn_code = CODE_FOR_umulhi3; #endif #ifdef HAVE_umulsi3 if (HAVE_umulsi3) umul_optab->handlers[(int) SImode].insn_code = CODE_FOR_umulsi3; #endif #ifdef HAVE_umuldi3 if (HAVE_umuldi3) umul_optab->handlers[(int) DImode].insn_code = CODE_FOR_umuldi3; #endif #ifdef HAVE_umulsf3 if (HAVE_umulsf3) umul_optab->handlers[(int) SFmode].insn_code = CODE_FOR_umulsf3; #endif #ifdef HAVE_umuldf3 if (HAVE_umuldf3) umul_optab->handlers[(int) DFmode].insn_code = CODE_FOR_umuldf3; #endif #ifdef UMULSI3_LIBCALL umul_optab->handlers[(int) SImode].lib_call = UMULSI3_LIBCALL; #else umul_optab->handlers[(int) SImode].lib_call = "__umulsi3"; #endif umul_optab->handlers[(int) DImode].lib_call = "__umuldi3"; umul_optab->handlers[(int) SFmode].lib_call = "__umulsf3"; umul_optab->handlers[(int) DFmode].lib_call = "__umuldf3"; #ifdef HAVE_umulqihi3 if (HAVE_umulqihi3) umul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_umulqihi3; #endif #ifdef HAVE_umulhisi3 if (HAVE_umulhisi3) umul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_umulhisi3; #endif #ifdef HAVE_umulsidi3 if (HAVE_umulsidi3) umul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_umulsidi3; #endif #ifdef HAVE_divqi3 if (HAVE_divqi3) sdiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_divqi3; #endif #ifdef HAVE_divhi3 if (HAVE_divhi3) sdiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_divhi3; #endif #ifdef HAVE_divsi3 if (HAVE_divsi3) sdiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_divsi3; #endif #ifdef HAVE_divdi3 if (HAVE_divdi3) sdiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_divdi3; #endif #ifdef DIVSI3_LIBCALL sdiv_optab->handlers[(int) SImode].lib_call = DIVSI3_LIBCALL; #else sdiv_optab->handlers[(int) SImode].lib_call = "__divsi3"; #endif sdiv_optab->handlers[(int) DImode].lib_call = "__divdi3"; #ifdef HAVE_udivqi3 if (HAVE_udivqi3) udiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivqi3; #endif #ifdef HAVE_udivhi3 if (HAVE_udivhi3) udiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivhi3; #endif #ifdef HAVE_udivsi3 if (HAVE_udivsi3) udiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivsi3; #endif #ifdef HAVE_udivdi3 if (HAVE_udivdi3) udiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivdi3; #endif #ifdef UDIVSI3_LIBCALL udiv_optab->handlers[(int) SImode].lib_call = UDIVSI3_LIBCALL; #else udiv_optab->handlers[(int) SImode].lib_call = "__udivsi3"; #endif udiv_optab->handlers[(int) DImode].lib_call = "__udivdi3"; #ifdef HAVE_divmodqi4 if (HAVE_divmodqi4) sdivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_divmodqi4; #endif #ifdef HAVE_divmodhi4 if (HAVE_divmodhi4) sdivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_divmodhi4; #endif #ifdef HAVE_divmodsi4 if (HAVE_divmodsi4) sdivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_divmodsi4; #endif #ifdef HAVE_divmoddi4 if (HAVE_divmoddi4) sdivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_divmoddi4; #endif #ifdef HAVE_udivmodqi4 if (HAVE_udivmodqi4) udivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivmodqi4; #endif #ifdef HAVE_udivmodhi4 if (HAVE_udivmodhi4) udivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivmodhi4; #endif #ifdef HAVE_udivmodsi4 if (HAVE_udivmodsi4) udivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivmodsi4; #endif #ifdef HAVE_udivmoddi4 if (HAVE_udivmoddi4) udivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivmoddi4; #endif #ifdef HAVE_modqi3 if (HAVE_modqi3) smod_optab->handlers[(int) QImode].insn_code = CODE_FOR_modqi3; #endif #ifdef HAVE_modhi3 if (HAVE_modhi3) smod_optab->handlers[(int) HImode].insn_code = CODE_FOR_modhi3; #endif #ifdef HAVE_modsi3 if (HAVE_modsi3) smod_optab->handlers[(int) SImode].insn_code = CODE_FOR_modsi3; #endif #ifdef HAVE_moddi3 if (HAVE_moddi3) smod_optab->handlers[(int) DImode].insn_code = CODE_FOR_moddi3; #endif #ifdef MODSI3_LIBCALL smod_optab->handlers[(int) SImode].lib_call = MODSI3_LIBCALL; #else smod_optab->handlers[(int) SImode].lib_call = "__modsi3"; #endif smod_optab->handlers[(int) DImode].lib_call = "__moddi3"; #ifdef HAVE_umodqi3 if (HAVE_umodqi3) umod_optab->handlers[(int) QImode].insn_code = CODE_FOR_umodqi3; #endif #ifdef HAVE_umodhi3 if (HAVE_umodhi3) umod_optab->handlers[(int) HImode].insn_code = CODE_FOR_umodhi3; #endif #ifdef HAVE_umodsi3 if (HAVE_umodsi3) umod_optab->handlers[(int) SImode].insn_code = CODE_FOR_umodsi3; #endif #ifdef HAVE_umoddi3 if (HAVE_umoddi3) umod_optab->handlers[(int) DImode].insn_code = CODE_FOR_umoddi3; #endif #ifdef UMODSI3_LIBCALL umod_optab->handlers[(int) SImode].lib_call = UMODSI3_LIBCALL; #else umod_optab->handlers[(int) SImode].lib_call = "__umodsi3"; #endif umod_optab->handlers[(int) DImode].lib_call = "__umoddi3"; #ifdef HAVE_divsf3 if (HAVE_divsf3) flodiv_optab->handlers[(int) SFmode].insn_code = CODE_FOR_divsf3; #endif #ifdef HAVE_divdf3 if (HAVE_divdf3) flodiv_optab->handlers[(int) DFmode].insn_code = CODE_FOR_divdf3; #endif flodiv_optab->handlers[(int) SFmode].lib_call = "__divsf3"; flodiv_optab->handlers[(int) DFmode].lib_call = "__divdf3"; #ifdef HAVE_ftruncsf2 if (HAVE_ftruncsf2) ftrunc_optab->handlers[(int) SFmode].insn_code = CODE_FOR_ftruncsf2; #endif #ifdef HAVE_ftruncdf2 if (HAVE_ftruncdf2) ftrunc_optab->handlers[(int) DFmode].insn_code = CODE_FOR_ftruncdf2; #endif #ifdef HAVE_andqi3 if (HAVE_andqi3) and_optab->handlers[(int) QImode].insn_code = CODE_FOR_andqi3; #endif #ifdef HAVE_andhi3 if (HAVE_andhi3) and_optab->handlers[(int) HImode].insn_code = CODE_FOR_andhi3; #endif #ifdef HAVE_andsi3 if (HAVE_andsi3) and_optab->handlers[(int) SImode].insn_code = CODE_FOR_andsi3; #endif #ifdef HAVE_anddi3 if (HAVE_anddi3) and_optab->handlers[(int) DImode].insn_code = CODE_FOR_anddi3; #endif and_optab->handlers[(int) DImode].lib_call = "__anddi3"; #ifdef HAVE_andcbqi3 if (HAVE_andcbqi3) andcb_optab->handlers[(int) QImode].insn_code = CODE_FOR_andcbqi3; #endif #ifdef HAVE_andcbhi3 if (HAVE_andcbhi3) andcb_optab->handlers[(int) HImode].insn_code = CODE_FOR_andcbhi3; #endif #ifdef HAVE_andcbsi3 if (HAVE_andcbsi3) andcb_optab->handlers[(int) SImode].insn_code = CODE_FOR_andcbsi3; #endif #ifdef HAVE_andcbdi3 if (HAVE_andcbdi3) andcb_optab->handlers[(int) DImode].insn_code = CODE_FOR_andcbdi3; #endif andcb_optab->handlers[(int) DImode].lib_call = "__andcbdi3"; #ifdef HAVE_iorqi3 if (HAVE_iorqi3) ior_optab->handlers[(int) QImode].insn_code = CODE_FOR_iorqi3; #endif #ifdef HAVE_iorhi3 if (HAVE_iorhi3) ior_optab->handlers[(int) HImode].insn_code = CODE_FOR_iorhi3; #endif #ifdef HAVE_iorsi3 if (HAVE_iorsi3) ior_optab->handlers[(int) SImode].insn_code = CODE_FOR_iorsi3; #endif #ifdef HAVE_iordi3 if (HAVE_iordi3) ior_optab->handlers[(int) DImode].insn_code = CODE_FOR_iordi3; #endif ior_optab->handlers[(int) DImode].lib_call = "__iordi3"; #ifdef HAVE_xorqi3 if (HAVE_xorqi3) xor_optab->handlers[(int) QImode].insn_code = CODE_FOR_xorqi3; #endif #ifdef HAVE_xorhi3 if (HAVE_xorhi3) xor_optab->handlers[(int) HImode].insn_code = CODE_FOR_xorhi3; #endif #ifdef HAVE_xorsi3 if (HAVE_xorsi3) xor_optab->handlers[(int) SImode].insn_code = CODE_FOR_xorsi3; #endif #ifdef HAVE_xordi3 if (HAVE_xordi3) xor_optab->handlers[(int) DImode].insn_code = CODE_FOR_xordi3; #endif xor_optab->handlers[(int) DImode].lib_call = "__xordi3"; #ifdef HAVE_ashlqi3 if (HAVE_ashlqi3) ashl_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashlqi3; #endif #ifdef HAVE_ashlhi3 if (HAVE_ashlhi3) ashl_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashlhi3; #endif #ifdef HAVE_ashlsi3 if (HAVE_ashlsi3) ashl_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashlsi3; #endif #ifdef HAVE_ashldi3 if (HAVE_ashldi3) ashl_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashldi3; #endif ashl_optab->handlers[(int) SImode].lib_call = "__ashlsi3"; ashl_optab->handlers[(int) DImode].lib_call = "__ashldi3"; #ifdef HAVE_ashrqi3 if (HAVE_ashrqi3) ashr_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashrqi3; #endif #ifdef HAVE_ashrhi3 if (HAVE_ashrhi3) ashr_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashrhi3; #endif #ifdef HAVE_ashrsi3 if (HAVE_ashrsi3) ashr_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashrsi3; #endif #ifdef HAVE_ashrdi3 if (HAVE_ashrdi3) ashr_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashrdi3; #endif ashr_optab->handlers[(int) SImode].lib_call = "__ashrsi3"; ashr_optab->handlers[(int) DImode].lib_call = "__ashrdi3"; #ifdef HAVE_lshlqi3 if (HAVE_lshlqi3) lshl_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshlqi3; #endif #ifdef HAVE_lshlhi3 if (HAVE_lshlhi3) lshl_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshlhi3; #endif #ifdef HAVE_lshlsi3 if (HAVE_lshlsi3) lshl_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshlsi3; #endif #ifdef HAVE_lshldi3 if (HAVE_lshldi3) lshl_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshldi3; #endif lshl_optab->handlers[(int) SImode].lib_call = "__lshlsi3"; lshl_optab->handlers[(int) DImode].lib_call = "__lshldi3"; #ifdef HAVE_lshrqi3 if (HAVE_lshrqi3) lshr_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshrqi3; #endif #ifdef HAVE_lshrhi3 if (HAVE_lshrhi3) lshr_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshrhi3; #endif #ifdef HAVE_lshrsi3 if (HAVE_lshrsi3) lshr_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshrsi3; #endif #ifdef HAVE_lshrdi3 if (HAVE_lshrdi3) lshr_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshrdi3; #endif lshr_optab->handlers[(int) SImode].lib_call = "__lshrsi3"; lshr_optab->handlers[(int) DImode].lib_call = "__lshrdi3"; #ifdef HAVE_rotlqi3 if (HAVE_rotlqi3) rotl_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotlqi3; #endif #ifdef HAVE_rotlhi3 if (HAVE_rotlhi3) rotl_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotlhi3; #endif #ifdef HAVE_rotlsi3 if (HAVE_rotlsi3) rotl_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotlsi3; #endif #ifdef HAVE_rotldi3 if (HAVE_rotldi3) rotl_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotldi3; #endif rotl_optab->handlers[(int) SImode].lib_call = "__rotlsi3"; rotl_optab->handlers[(int) DImode].lib_call = "__rotldi3"; #ifdef HAVE_rotrqi3 if (HAVE_rotrqi3) rotr_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotrqi3; #endif #ifdef HAVE_rotrhi3 if (HAVE_rotrhi3) rotr_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotrhi3; #endif #ifdef HAVE_rotrsi3 if (HAVE_rotrsi3) rotr_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotrsi3; #endif #ifdef HAVE_rotrdi3 if (HAVE_rotrdi3) rotr_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotrdi3; #endif rotr_optab->handlers[(int) SImode].lib_call = "__rotrsi3"; rotr_optab->handlers[(int) DImode].lib_call = "__rotrdi3"; #ifdef HAVE_negqi2 if (HAVE_negqi2) neg_optab->handlers[(int) QImode].insn_code = CODE_FOR_negqi2; #endif #ifdef HAVE_neghi2 if (HAVE_neghi2) neg_optab->handlers[(int) HImode].insn_code = CODE_FOR_neghi2; #endif #ifdef HAVE_negsi2 if (HAVE_negsi2) neg_optab->handlers[(int) SImode].insn_code = CODE_FOR_negsi2; #endif #ifdef HAVE_negdi2 if (HAVE_negdi2) neg_optab->handlers[(int) DImode].insn_code = CODE_FOR_negdi2; #endif #ifdef HAVE_negsf2 if (HAVE_negsf2) neg_optab->handlers[(int) SFmode].insn_code = CODE_FOR_negsf2; #endif #ifdef HAVE_negdf2 if (HAVE_negdf2) neg_optab->handlers[(int) DFmode].insn_code = CODE_FOR_negdf2; #endif neg_optab->handlers[(int) SImode].lib_call = "__negsi2"; neg_optab->handlers[(int) DImode].lib_call = "__negdi2"; neg_optab->handlers[(int) SFmode].lib_call = "__negsf2"; neg_optab->handlers[(int) DFmode].lib_call = "__negdf2"; #ifdef HAVE_absqi2 if (HAVE_absqi2) abs_optab->handlers[(int) QImode].insn_code = CODE_FOR_absqi2; #endif #ifdef HAVE_abshi2 if (HAVE_abshi2) abs_optab->handlers[(int) HImode].insn_code = CODE_FOR_abshi2; #endif #ifdef HAVE_abssi2 if (HAVE_abssi2) abs_optab->handlers[(int) SImode].insn_code = CODE_FOR_abssi2; #endif #ifdef HAVE_absdi2 if (HAVE_absdi2) abs_optab->handlers[(int) DImode].insn_code = CODE_FOR_absdi2; #endif #ifdef HAVE_abssf2 if (HAVE_abssf2) abs_optab->handlers[(int) SFmode].insn_code = CODE_FOR_abssf2; #endif #ifdef HAVE_absdf2 if (HAVE_absdf2) abs_optab->handlers[(int) DFmode].insn_code = CODE_FOR_absdf2; #endif /* No library calls here! If there is no abs instruction, expand_expr will generate a conditional negation. */ #ifdef HAVE_one_cmplqi2 if (HAVE_one_cmplqi2) one_cmpl_optab->handlers[(int) QImode].insn_code = CODE_FOR_one_cmplqi2; #endif #ifdef HAVE_one_cmplhi2 if (HAVE_one_cmplhi2) one_cmpl_optab->handlers[(int) HImode].insn_code = CODE_FOR_one_cmplhi2; #endif #ifdef HAVE_one_cmplsi2 if (HAVE_one_cmplsi2) one_cmpl_optab->handlers[(int) SImode].insn_code = CODE_FOR_one_cmplsi2; #endif #ifdef HAVE_one_cmpldi2 if (HAVE_one_cmpldi2) one_cmpl_optab->handlers[(int) DImode].insn_code = CODE_FOR_one_cmpldi2; #endif one_cmpl_optab->handlers[(int) SImode].lib_call = "__one_cmplsi2"; one_cmpl_optab->handlers[(int) DImode].lib_call = "__one_cmpldi2"; #ifdef HAVE_ffsqi2 if (HAVE_ffsqi2) ffs_optab->handlers[(int) QImode].insn_code = CODE_FOR_ffsqi2; #endif #ifdef HAVE_ffshi2 if (HAVE_ffshi2) ffs_optab->handlers[(int) HImode].insn_code = CODE_FOR_ffshi2; #endif #ifdef HAVE_ffssi2 if (HAVE_ffssi2) ffs_optab->handlers[(int) SImode].insn_code = CODE_FOR_ffssi2; #endif #ifdef HAVE_ffsdi2 if (HAVE_ffsdi2) ffs_optab->handlers[(int) DImode].insn_code = CODE_FOR_ffsdi2; #endif ffs_optab->handlers[(int) SImode].lib_call = "ffs"; #ifdef HAVE_movqi if (HAVE_movqi) mov_optab->handlers[(int) QImode].insn_code = CODE_FOR_movqi; #endif #ifdef HAVE_movhi if (HAVE_movhi) mov_optab->handlers[(int) HImode].insn_code = CODE_FOR_movhi; #endif #ifdef HAVE_movsi if (HAVE_movsi) mov_optab->handlers[(int) SImode].insn_code = CODE_FOR_movsi; #endif #ifdef HAVE_movdi if (HAVE_movdi) mov_optab->handlers[(int) DImode].insn_code = CODE_FOR_movdi; #endif #ifdef HAVE_movti if (HAVE_movti) mov_optab->handlers[(int) TImode].insn_code = CODE_FOR_movti; #endif #ifdef HAVE_movsf if (HAVE_movsf) mov_optab->handlers[(int) SFmode].insn_code = CODE_FOR_movsf; #endif #ifdef HAVE_movdf if (HAVE_movdf) mov_optab->handlers[(int) DFmode].insn_code = CODE_FOR_movdf; #endif #ifdef HAVE_movtf if (HAVE_movtf) mov_optab->handlers[(int) TFmode].insn_code = CODE_FOR_movtf; #endif #ifdef HAVE_movstrictqi if (HAVE_movstrictqi) movstrict_optab->handlers[(int) QImode].insn_code = CODE_FOR_movstrictqi; #endif #ifdef HAVE_movstricthi if (HAVE_movstricthi) movstrict_optab->handlers[(int) HImode].insn_code = CODE_FOR_movstricthi; #endif #ifdef HAVE_movstrictsi if (HAVE_movstrictsi) movstrict_optab->handlers[(int) SImode].insn_code = CODE_FOR_movstrictsi; #endif #ifdef HAVE_movstrictdi if (HAVE_movstrictdi) movstrict_optab->handlers[(int) DImode].insn_code = CODE_FOR_movstrictdi; #endif #ifdef HAVE_cmpqi if (HAVE_cmpqi) cmp_optab->handlers[(int) QImode].insn_code = CODE_FOR_cmpqi; #endif #ifdef HAVE_cmphi if (HAVE_cmphi) cmp_optab->handlers[(int) HImode].insn_code = CODE_FOR_cmphi; #endif #ifdef HAVE_cmpsi if (HAVE_cmpsi) cmp_optab->handlers[(int) SImode].insn_code = CODE_FOR_cmpsi; #endif #ifdef HAVE_cmpdi if (HAVE_cmpdi) cmp_optab->handlers[(int) DImode].insn_code = CODE_FOR_cmpdi; #endif #ifdef HAVE_cmpsf if (HAVE_cmpsf) cmp_optab->handlers[(int) SFmode].insn_code = CODE_FOR_cmpsf; #endif #ifdef HAVE_cmpdf if (HAVE_cmpdf) cmp_optab->handlers[(int) DFmode].insn_code = CODE_FOR_cmpdf; #endif #ifdef HAVE_tstqi if (HAVE_tstqi) tst_optab->handlers[(int) QImode].insn_code = CODE_FOR_tstqi; #endif #ifdef HAVE_tsthi if (HAVE_tsthi) tst_optab->handlers[(int) HImode].insn_code = CODE_FOR_tsthi; #endif #ifdef HAVE_tstsi if (HAVE_tstsi) tst_optab->handlers[(int) SImode].insn_code = CODE_FOR_tstsi; #endif #ifdef HAVE_tstdi if (HAVE_tstdi) tst_optab->handlers[(int) DImode].insn_code = CODE_FOR_tstdi; #endif #ifdef HAVE_tstsf if (HAVE_tstsf) tst_optab->handlers[(int) SFmode].insn_code = CODE_FOR_tstsf; #endif #ifdef HAVE_tstdf if (HAVE_tstdf) tst_optab->handlers[(int) DFmode].insn_code = CODE_FOR_tstdf; #endif /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */ cmp_optab->handlers[(int) DImode].lib_call = "__cmpdi2"; ucmp_optab->handlers[(int) DImode].lib_call = "__ucmpdi2"; cmp_optab->handlers[(int) SFmode].lib_call = "__cmpsf2"; cmp_optab->handlers[(int) DFmode].lib_call = "__cmpdf2"; #if HAVE_beq if (HAVE_beq) bcc_gen_fctn[(int) EQ] = gen_beq; #endif #if HAVE_bne if (HAVE_bne) bcc_gen_fctn[(int) NE] = gen_bne; #endif #if HAVE_bgt if (HAVE_bgt) bcc_gen_fctn[(int) GT] = gen_bgt; #endif #if HAVE_bge if (HAVE_bge) bcc_gen_fctn[(int) GE] = gen_bge; #endif #if HAVE_bgtu if (HAVE_bgtu) bcc_gen_fctn[(int) GTU] = gen_bgtu; #endif #if HAVE_bgeu if (HAVE_bgeu) bcc_gen_fctn[(int) GEU] = gen_bgeu; #endif #if HAVE_blt if (HAVE_blt) bcc_gen_fctn[(int) LT] = gen_blt; #endif #if HAVE_ble if (HAVE_ble) bcc_gen_fctn[(int) LE] = gen_ble; #endif #if HAVE_bltu if (HAVE_bltu) bcc_gen_fctn[(int) LTU] = gen_bltu; #endif #if HAVE_bleu if (HAVE_bleu) bcc_gen_fctn[(int) LEU] = gen_bleu; #endif #if HAVE_seq if (HAVE_seq) setcc_gen_fctn[(int) EQ] = gen_seq; #endif #if HAVE_sne if (HAVE_sne) setcc_gen_fctn[(int) NE] = gen_sne; #endif #if HAVE_sgt if (HAVE_sgt) setcc_gen_fctn[(int) GT] = gen_sgt; #endif #if HAVE_sge if (HAVE_sge) setcc_gen_fctn[(int) GE] = gen_sge; #endif #if HAVE_sgtu if (HAVE_sgtu) setcc_gen_fctn[(int) GTU] = gen_sgtu; #endif #if HAVE_sgeu if (HAVE_sgeu) setcc_gen_fctn[(int) GEU] = gen_sgeu; #endif #if HAVE_slt if (HAVE_slt) setcc_gen_fctn[(int) LT] = gen_slt; #endif #if HAVE_sle if (HAVE_sle) setcc_gen_fctn[(int) LE] = gen_sle; #endif #if HAVE_sltu if (HAVE_sltu) setcc_gen_fctn[(int) LTU] = gen_sltu; #endif #if HAVE_sleu if (HAVE_sleu) setcc_gen_fctn[(int) LEU] = gen_sleu; #endif }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.