This is genrecog.c in view mode; [Download] [Up]
/* Generate code from machine description to emit insns as rtl. Copyright (C) 1987,1988 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* This program is used to produce insn-recog.c, which contains a function called `recog' plus its subroutines. These functions contain a decision tree that recognizes whether an rtx, the argument given to recog, is a valid instruction. recog returns -1 if the rtx is not valid. If the rtx is valid, recog returns a nonnegative number which is the insn code number for the pattern that matched. This is the same as the order in the machine description of the entry that matched. This number can be used as an index into insn_templates and insn_n_operands (found in insn-output.c) or as an argument to output_insn_hairy (also in insn-output.c). */ #include <stdio.h> #include "config.h" #include "rtl.h" #include "obstack.h" struct obstack obstack; struct obstack *rtl_obstack = &obstack; #define obstack_chunk_alloc xmalloc #define obstack_chunk_free free extern int xmalloc (); extern void free (); /* Data structure for decision tree for recognizing legitimate instructions. */ struct decision { int number; char *position; RTX_CODE code; char *exact; enum machine_mode mode; char *tests; int insn_code_number; struct decision *next; struct decision *success; int opno; int dupno; int dupcount; int test_elt_zero_int; int elt_zero_int; int test_elt_one_int; int elt_one_int; int ignmode; struct decision *afterward; int label_needed; char *c_test; char *reg_class; char enforce_mode; int veclen; int subroutine_number; }; #define SUBROUTINE_THRESHOLD 50 int next_subroutine_number; /* recognize (top) { staten: x = XVECEXP (top, 0, 3); if (test_code (GET_CODE (x)) && test_mode (MODE (x)) && whatever_else) goto statep; else if (next one...) goto statem: goto stater; statep: actions...; return 1; statem: x = stack[depth--]; more tests...; stateq: stack[++depth] = x; x = XEXP (stack[depth], 0); more tests...; stater: x = XEXP (stack[depth], 1); } */ int next_number; int next_insn_code; /* Number of MATCH_DUP's seen so far in this instruction. */ int dupcount; struct decision *add_to_sequence (); struct decision *try_merge_2 (); void write_subroutine (); void print_code (); void clear_codes (); void clear_modes (); void change_state (); void write_tree (); char *copystr (); char *concat (); void fatal (); void fancy_abort (); void mybzero (); struct decision *first; /* Construct and return a sequence of decisions that will recognize INSN. */ struct decision * make_insn_sequence (insn) rtx insn; { rtx x; char *c_test = XSTR (insn, 2); struct decision *last; dupcount = 0; if (XVECLEN (insn, 1) == 1) x = XVECEXP (insn, 1, 0); else { x = rtx_alloc (PARALLEL); XVEC (x, 0) = XVEC (insn, 1); PUT_MODE (x, VOIDmode); } last = add_to_sequence (x, 0, ""); if (c_test[0]) last->c_test = c_test; last->insn_code_number = next_insn_code++; return first; } struct decision * add_to_sequence (pattern, last, position) rtx pattern; struct decision *last; char *position; { register RTX_CODE code; register struct decision *new = (struct decision *) xmalloc (sizeof (struct decision)); struct decision *this; char *newpos; register char *fmt; register int i; int depth; int len; new->number = next_number++; new->position = copystr (position); new->exact = 0; new->next = 0; new->success = 0; new->insn_code_number = -1; new->tests = 0; new->opno = -1; new->dupno = -1; new->dupcount = -1; new->test_elt_zero_int = 0; new->test_elt_one_int = 0; new->elt_zero_int = 0; new->elt_one_int = 0; new->enforce_mode = 0; new->ignmode = 0; new->afterward = 0; new->label_needed = 0; new->c_test = 0; new->reg_class = 0; new->veclen = 0; new->subroutine_number = 0; this = new; if (last == 0) first = new; else last->success = new; depth = strlen (position); newpos = (char *) alloca (depth + 2); strcpy (newpos, position); newpos[depth + 1] = 0; restart: if (pattern == 0) { new->exact = "0"; new->code = UNKNOWN; new->mode = VOIDmode; return new; } switch (GET_MODE (pattern)) { case 0: new->mode = VOIDmode; break; default: new->mode = GET_MODE (pattern); break; } new->code = code = GET_CODE (pattern); switch (code) { case MATCH_OPERAND: new->opno = XINT (pattern, 0); new->code = UNKNOWN; new->tests = XSTR (pattern, 1); if (*new->tests == 0) new->tests = 0; new->reg_class = XSTR (pattern, 2); if (*new->reg_class == 0) new->reg_class = 0; return new; case MATCH_OPERATOR: new->opno = XINT (pattern, 0); new->code = UNKNOWN; new->tests = XSTR (pattern, 1); if (*new->tests == 0) new->tests = 0; for (i = 0; i < XVECLEN (pattern, 2); i++) { newpos[depth] = i + '0'; new = add_to_sequence (XVECEXP (pattern, 2, i), new, newpos); } this->success->enforce_mode = 0; return new; case MATCH_DUP: new->dupno = XINT (pattern, 0); new->dupcount = dupcount++; new->code = UNKNOWN; return new; case ADDRESS: pattern = XEXP (pattern, 0); goto restart; case PC: new->exact = "pc_rtx"; return new; case CC0: new->exact = "cc0_rtx"; return new; case CONST_INT: if (INTVAL (pattern) == 0) { new->exact = "const0_rtx"; return new; } if (INTVAL (pattern) == 1) { new->exact = "const1_rtx"; return new; } break; case SET: newpos[depth] = '0'; new = add_to_sequence (SET_DEST (pattern), new, newpos); this->success->enforce_mode = 1; newpos[depth] = '1'; new = add_to_sequence (SET_SRC (pattern), new, newpos); return new; case STRICT_LOW_PART: newpos[depth] = '0'; new = add_to_sequence (XEXP (pattern, 0), new, newpos); this->success->enforce_mode = 1; return new; case SUBREG: this->test_elt_one_int = 1; this->elt_one_int = XINT (pattern, 1); newpos[depth] = '0'; new = add_to_sequence (XEXP (pattern, 0), new, newpos); this->success->enforce_mode = 1; return new; case ZERO_EXTRACT: case SIGN_EXTRACT: newpos[depth] = '0'; new = add_to_sequence (XEXP (pattern, 0), new, newpos); this->success->enforce_mode = 1; newpos[depth] = '1'; new = add_to_sequence (XEXP (pattern, 1), new, newpos); newpos[depth] = '2'; new = add_to_sequence (XEXP (pattern, 2), new, newpos); return new; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { newpos[depth] = '0' + i; if (fmt[i] == 'e' || fmt[i] == 'u') new = add_to_sequence (XEXP (pattern, i), new, newpos); else if (fmt[i] == 'i' && i == 0) { this->test_elt_zero_int = 1; this->elt_zero_int = XINT (pattern, i); } else if (fmt[i] == 'i' && i == 1) { this->test_elt_one_int = 1; this->elt_one_int = XINT (pattern, i); } else if (fmt[i] == 'E') { register int j; /* We do not handle a vector appearing as other than the first item, just because nothing uses them and by handling only the special case we can use one element in newpos for either the item number of a subexpression or the element number in a vector. */ if (i != 0) abort (); this->veclen = XVECLEN (pattern, i); for (j = 0; j < XVECLEN (pattern, i); j++) { newpos[depth] = 'a' + j; new = add_to_sequence (XVECEXP (pattern, i, j), new, newpos); } } else if (fmt[i] != '0') abort (); } return new; } /* Merge two decision trees OLD and ADD, modifying OLD destructively, and return the merged tree. */ struct decision * merge_trees (old, add) register struct decision *old, *add; { while (add) { register struct decision *next = add->next; add->next = 0; if (!try_merge_1 (old, add)) old = try_merge_2 (old, add); add = next; } return old; } /* Merge ADD into the next-chain starting with OLD only if it overlaps a condition already tested in OLD. Returns 1 if successful (OLD is modified), 0 if nothing has been done. */ int try_merge_1 (old, add) register struct decision *old, *add; { while (old) { if ((old->position == add->position || (old->position && add->position && !strcmp (old->position, add->position))) && (old->tests == add->tests || (old->tests && add->tests && !strcmp (old->tests, add->tests))) && (old->c_test == add->c_test || (old->c_test && add->c_test && !strcmp (old->c_test, add->c_test))) && old->test_elt_zero_int == add->test_elt_zero_int && old->elt_zero_int == add->elt_zero_int && old->test_elt_one_int == add->test_elt_one_int && old->elt_one_int == add->elt_one_int && old->veclen == add->veclen && old->dupno == add->dupno && old->opno == add->opno && (old->tests == 0 || (add->enforce_mode ? no_same_mode (old) : old->next == 0)) && old->code == add->code && old->mode == add->mode) { old->success = merge_trees (old->success, add->success); if (old->insn_code_number >= 0 && add->insn_code_number >= 0) fatal ("Two actions at one point in tree."); if (old->insn_code_number == -1) old->insn_code_number = add->insn_code_number; return 1; } old = old->next; } return 0; } /* Merge ADD into the next-chain that starts with OLD, preferably after something that tests the same place that ADD does. The next-chain of ADD itself is ignored, and it is set up for entering ADD into the new chain. Returns the new chain. */ struct decision * try_merge_2 (old, add) struct decision *old, *add; { register struct decision *p; struct decision *last = 0; struct decision *last_same_place = 0; /* Put this in after the others that test the same place, if there are any. If not, find the last chain element and insert there. One modification: if this one is NOT a MATCH_OPERAND, put it before any MATCH_OPERANDS that test the same place. Another: if enforce_mode (i.e. this is first operand of a SET), put this after the last thing that tests the same place for the same mode. */ int operand = 0 != add->tests; for (p = old; p; p = p->next) { if (p->position == add->position || (p->position && add->position && !strcmp (p->position, add->position))) { last_same_place = p; /* If enforce_mode, segregate the modes in numerical order. */ if (p->enforce_mode && (int) add->mode < (int) p->mode) break; #if 0 /* Keep explicit decompositions before those that test predicates. If enforce_mode, do this separately within each mode. */ if (! p->enforce_mode || p->mode == add->mode) if (!operand && p->tests) break; #endif } /* If this is past the end of the decisions at the same place as ADD, stop looking now; add ADD before here. */ else if (last_same_place) break; last = p; } /* Insert before P, which means after LAST. */ if (last) { add->next = last->next; last->next = add; return old; } add->next = old; return add; } int no_same_mode (node) struct decision *node; { register struct decision *p; register enum machine_mode mode = node->mode; for (p = node->next; p; p = p->next) if (p->mode == mode) return 0; return 1; } /* Count the number of subnodes of node NODE, assumed to be the start of a next-chain. If the number is high enough, make NODE start a separate subroutine in the C code that is generated. */ int break_out_subroutines (node) struct decision *node; { int size = 0; struct decision *sub; for (sub = node; sub; sub = sub->next) size += 1 + break_out_subroutines (sub->success); if (size > SUBROUTINE_THRESHOLD) { node->subroutine_number = ++next_subroutine_number; write_subroutine (node); size = 1; } return size; } void write_subroutine (tree) struct decision *tree; { printf ("int\nrecog_%d (x0, insn)\n register rtx x0;\n rtx insn;\n{\n", tree->subroutine_number); printf (" register rtx x1, x2, x3, x4, x5;\n rtx x6, x7, x8, x9, x10, x11;\n"); printf (" int tem;\n"); write_tree (tree, "", 0, "", 1); printf (" ret0: return -1;\n}\n\n"); } /* Write out C code to perform the decisions in the tree. */ void write_tree (tree, prevpos, afterward, afterpos, initial) struct decision *tree; char *prevpos; int afterward; char *afterpos; int initial; { register struct decision *p, *p1; char *pos; register int depth; int ignmode; enum anon1 { NO_SWITCH, CODE_SWITCH, MODE_SWITCH } in_switch = NO_SWITCH; char modemap[NUM_MACHINE_MODES]; char codemap[NUM_RTX_CODE]; pos = prevpos; if (tree->subroutine_number > 0 && ! initial) { printf (" L%d:\n", tree->number); if (afterward) { printf (" tem = recog_%d (x0, insn);\n", tree->subroutine_number); printf (" if (tem >= 0) return tem;\n"); change_state (pos, afterpos); printf (" goto L%d;\n", afterward); } else printf (" return recog_%d (x0, insn);\n", tree->subroutine_number); return; } tree->label_needed = 1; for (p = tree; p; p = p->next) { /* Find the next alternative to p that might be true when p is true. Test that one next if p's successors fail. Note that when the `tests' field is nonzero it is up to the specified test-function to compare machine modes and some (such as general_operand) don't always do so. But when inside a switch-on-modes we ignore this and consider all modes mutually exclusive. */ for (p1 = p->next; p1; p1 = p1->next) if (((p->code == UNKNOWN || p1->code == UNKNOWN || p->code == p1->code) && (p->mode == VOIDmode || p1->mode == VOIDmode || p->mode == p1->mode || (in_switch != MODE_SWITCH && (p->tests || p1->tests)))) || strcmp (p1->position, p->position)) break; p->afterward = p1; if (p1) p1->label_needed = 1; if (in_switch == MODE_SWITCH && (p->mode == VOIDmode || (! p->enforce_mode && p->tests != 0))) { in_switch = NO_SWITCH; printf (" }\n"); } if (in_switch == CODE_SWITCH && p->code == UNKNOWN) { in_switch = NO_SWITCH; printf (" }\n"); } if (p->label_needed) printf (" L%d:\n", p->number); if (p->success == 0 && p->insn_code_number < 0) abort (); change_state (pos, p->position); pos = p->position; depth = strlen (pos); ignmode = p->ignmode || pos[depth - 1] == '*' || p->tests; if (in_switch == NO_SWITCH) { /* If p and its alternatives all want the same mode, reject all others at once, first, then ignore the mode. */ if (!ignmode && p->mode != VOIDmode && p->next && same_modes (p, p->mode)) { printf (" if (GET_MODE (x%d) != %smode)\n", depth, GET_MODE_NAME (p->mode)); if (afterward) { printf (" {\n "); change_state (pos, afterpos); printf (" goto L%d;\n }\n", afterward); } else printf (" goto ret0;\n"); clear_modes (p); ignmode = 1; } /* If p and its alternatives all want the same code, reject all others at once, first, then ignore the code. */ if (p->code != UNKNOWN && p->next && same_codes (p, p->code)) { printf (" if (GET_CODE (x%d) != ", depth); print_code (p->code); printf (")\n"); if (afterward) { printf (" {"); change_state (pos, afterpos); printf (" goto L%d; }\n", afterward); } else printf (" goto ret0;\n"); clear_codes (p); } } /* If p and its alternatives all have different modes and there are at least 4 of them, make a switch. */ if (in_switch == NO_SWITCH && pos[depth-1] != '*') { register int i; int lose = 0; mybzero (modemap, sizeof modemap); for (p1 = p, i = 0; (p1 && p1->mode != VOIDmode && (p1->tests == 0 || p1->enforce_mode)); p1 = p1->next, i++) { if (! p->enforce_mode && modemap[(int) p1->mode]) { lose = 1; break; } modemap[(int) p1->mode] = 1; } if (!lose && i >= 4) { in_switch = MODE_SWITCH; printf (" switch (GET_MODE (x%d))\n {\n", depth); } } if (in_switch == NO_SWITCH) { register int i; mybzero (codemap, sizeof codemap); for (p1 = p, i = 0; p1 && p1->code != UNKNOWN; p1 = p1->next, i++) { if (codemap[(int) p1->code]) break; codemap[(int) p1->code] = 1; } if ((p1 == 0 || p1->code == UNKNOWN) && i >= 4) { in_switch = CODE_SWITCH; printf (" switch (GET_CODE (x%d))\n {\n", depth); } } if (in_switch == MODE_SWITCH) { if (modemap[(int) p->mode]) { printf (" case %smode:\n", GET_MODE_NAME (p->mode)); modemap[(int) p->mode] = 0; } } if (in_switch == CODE_SWITCH) { if (codemap[(int) p->code]) { printf (" case "); print_code (p->code); printf (":\n"); codemap[(int) p->code] = 0; } } printf (" if ("); if (p->exact || (p->code != UNKNOWN && in_switch != CODE_SWITCH)) { if (p->exact) printf ("x%d == %s", depth, p->exact); else { printf ("GET_CODE (x%d) == ", depth); print_code (p->code); } printf (" && "); } if (p->mode != VOIDmode && !ignmode && in_switch != MODE_SWITCH) printf ("GET_MODE (x%d) == %smode && ", depth, GET_MODE_NAME (p->mode)); if (p->test_elt_zero_int) printf ("XINT (x%d, 0) == %d && ", depth, p->elt_zero_int); if (p->veclen) printf ("XVECLEN (x%d, 0) == %d && ", depth, p->veclen); if (p->test_elt_one_int) printf ("XINT (x%d, 1) == %d && ", depth, p->elt_one_int); if (p->dupno >= 0) printf ("rtx_equal_p (x%d, recog_operand[%d]) && ", depth, p->dupno); if (p->tests) printf ("%s (x%d, %smode)", p->tests, depth, GET_MODE_NAME (p->mode)); else printf ("1"); if (p->opno >= 0) printf (")\n { recog_operand[%d] = x%d; ", p->opno, depth); else printf (")\n "); if (p->c_test) printf ("if (%s) ", p->c_test); if (p->insn_code_number >= 0) printf ("return %d;", p->insn_code_number); else printf ("goto L%d;", p->success->number); if (p->opno >= 0) printf (" }\n"); else printf ("\n"); /* Now, if inside a switch, branch to next switch member that might also need to be tested if this one fails. */ if (in_switch == CODE_SWITCH) { /* Find the next alternative to p that might be applicable if p was applicable. */ for (p1 = p->next; p1; p1 = p1->next) if (p1->code == UNKNOWN || p->code == p1->code) break; if (p1 == 0 || p1->code == UNKNOWN) printf (" break;\n"); else if (p1 != p->next) { printf (" goto L%d;\n", p1->number); p1->label_needed = 1; } } if (in_switch == MODE_SWITCH) { /* Find the next alternative to p that might be applicable if p was applicable. */ for (p1 = p->next; p1; p1 = p1->next) if (p1->mode == VOIDmode || p->mode == p1->mode) break; if (p1 == 0 || p1->mode == VOIDmode) printf (" break;\n"); else if (p1 != p->next) { printf (" goto L%d;\n", p1->number); p1->label_needed = 1; } } } if (in_switch != NO_SWITCH) printf (" }\n"); if (afterward) { change_state (pos, afterpos); printf (" goto L%d;\n", afterward); } else printf (" goto ret0;\n"); for (p = tree; p; p = p->next) if (p->success) { { pos = p->position; write_tree (p->success, pos, p->afterward ? p->afterward->number : afterward, p->afterward ? pos : afterpos, 0); } } } void print_code (code) RTX_CODE code; { register char *p1; for (p1 = GET_RTX_NAME (code); *p1; p1++) { if (*p1 >= 'a' && *p1 <= 'z') putchar (*p1 + 'A' - 'a'); else putchar (*p1); } } int same_codes (p, code) register struct decision *p; register RTX_CODE code; { for (; p; p = p->next) if (p->code != code) return 0; return 1; } void clear_codes (p) register struct decision *p; { for (; p; p = p->next) p->code = UNKNOWN; } int same_modes (p, mode) register struct decision *p; register enum machine_mode mode; { for (; p; p = p->next) if (p->mode != mode || p->tests) return 0; return 1; } void clear_modes (p) register struct decision *p; { for (; p; p = p->next) p->ignmode = 1; } void change_state (oldpos, newpos) char *oldpos; char *newpos; { int odepth = strlen (oldpos); int depth = odepth; int ndepth = strlen (newpos); /* Pop up as many levels as necessary. */ while (strncmp (oldpos, newpos, depth)) --depth; /* Go down to desired level. */ while (depth < ndepth) { if (newpos[depth] == '*') printf (" x%d = recog_addr_dummy;\n XEXP (x%d, 0) = x%d;\n", depth + 1, depth + 1, depth); else if (newpos[depth] >= 'a' && newpos[depth] <= 'z') printf (" x%d = XVECEXP (x%d, 0, %d);\n", depth + 1, depth, newpos[depth] - 'a'); else printf (" x%d = XEXP (x%d, %c);\n", depth + 1, depth, newpos[depth]); ++depth; } } char * copystr (s1) char *s1; { register char *tem; if (s1 == 0) return 0; tem = (char *) xmalloc (strlen (s1) + 1); strcpy (tem, s1); return tem; } void mybzero (b, length) register char *b; register int length; { while (length-- > 0) *b++ = 0; } char * concat (s1, s2) char *s1, *s2; { register char *tem; if (s1 == 0) return s2; if (s2 == 0) return s1; tem = (char *) xmalloc (strlen (s1) + strlen (s2) + 2); strcpy (tem, s1); strcat (tem, " "); strcat (tem, s2); return tem; } int xrealloc (ptr, size) char *ptr; int size; { int result = realloc (ptr, size); if (!result) fatal ("virtual memory exhausted"); return result; } int xmalloc (size) { register int val = malloc (size); if (val == 0) fatal ("virtual memory exhausted"); return val; } void fatal (s, a1, a2) char *s; { fprintf (stderr, "genrecog: "); fprintf (stderr, s, a1, a2); fprintf (stderr, "\n"); fprintf (stderr, "after %d instruction definitions\n", next_insn_code); exit (FATAL_EXIT_CODE); } /* More 'friendly' abort that prints the line and file. config.h can #define abort fancy_abort if you like that sort of thing. */ void fancy_abort () { fatal ("Internal gcc abort."); } int main (argc, argv) int argc; char **argv; { rtx desc; struct decision *tree = 0; FILE *infile; extern rtx read_rtx (); register int c; obstack_init (rtl_obstack); if (argc <= 1) fatal ("No input file name."); infile = fopen (argv[1], "r"); if (infile == 0) { perror (argv[1]); exit (FATAL_EXIT_CODE); } init_rtl (); next_insn_code = 0; printf ("/* Generated automatically by the program `genrecog'\n\ from the machine description file `md'. */\n\n"); /* Read the machine description. */ while (1) { c = read_skip_spaces (infile); if (c == EOF) break; ungetc (c, infile); desc = read_rtx (infile); if (GET_CODE (desc) == DEFINE_INSN) tree = merge_trees (tree, make_insn_sequence (desc)); if (GET_CODE (desc) == DEFINE_PEEPHOLE || GET_CODE (desc) == DEFINE_EXPAND) next_insn_code++; } printf ("#include \"config.h\"\n"); printf ("#include \"rtl.h\"\n"); printf ("#include \"insn-config.h\"\n"); printf ("#include \"recog.h\"\n"); printf ("#include \"real.h\"\n"); printf ("\n\ /* `recog' contains a decision tree\n\ that recognizes whether the rtx X0 is a valid instruction.\n\ \n\ recog returns -1 if the rtx is not valid.\n\ If the rtx is valid, recog returns a nonnegative number\n\ which is the insn code number for the pattern that matched.\n"); printf (" This is the same as the order in the machine description of\n\ the entry that matched. This number can be used as an index into\n\ insn_templates and insn_n_operands (found in insn-output.c)\n\ or as an argument to output_insn_hairy (also in insn-output.c). */\n\n"); printf ("rtx recog_operand[MAX_RECOG_OPERANDS];\n\n"); printf ("rtx *recog_operand_loc[MAX_RECOG_OPERANDS];\n\n"); printf ("rtx *recog_dup_loc[MAX_DUP_OPERANDS];\n\n"); printf ("char recog_dup_num[MAX_DUP_OPERANDS];\n\n"); printf ("extern rtx recog_addr_dummy;\n\n"); printf ("#define operands recog_operand\n\n"); break_out_subroutines (tree); printf ("int\nrecog (x0, insn)\n register rtx x0;\n rtx insn;\n{\n"); printf (" register rtx x1, x2, x3, x4, x5;\n rtx x6, x7, x8, x9, x10, x11;\n"); printf (" int tem;\n"); write_tree (tree, "", 0, "", 1); printf (" ret0: return -1;\n}\n"); fflush (stdout); exit (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE); }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.